Compare commits

..

18 Commits

Author SHA1 Message Date
041aa12848 Create branch for next serialization release
[SVN r38613]
2007-08-13 03:23:47 +00:00
3ff4258fbb This commit was manufactured by cvs2svn to create tag
'Version_1_34_1'.

[SVN r38286]
2007-07-24 19:28:14 +00:00
35040aab6a Add missing newline at eof.
[SVN r37425]
2007-04-12 19:43:30 +00:00
bfd5cc0a87 Updated single-header implementation
[SVN r37420]
2007-04-12 14:25:21 +00:00
0fd45d73b1 Doc update to reflect latest additions
[SVN r37368]
2007-04-05 18:55:22 +00:00
3bf8d0f1b4 Fixed incorrect BORLANDC macro
[SVN r37314]
2007-03-28 21:26:19 +00:00
789cb2b24f boost::none implementation fixed for bcc <= 5.6.4
[SVN r37301]
2007-03-27 16:02:57 +00:00
7287f2bf11 in_palce_factory.apply problem fixed
[SVN r37157]
2007-03-07 20:17:23 +00:00
b6a1946a60 none_t/none reimplemented to avoid precompiled header issues (thanks to Joe Gottam)
optional<T> now has direct relational operator
optional<T>::operator-> fixed for reference types


[SVN r37126]
2007-03-01 23:08:33 +00:00
9bbde2be14 Fixed operator->() for optional references.
[SVN r37125]
2007-03-01 21:50:12 +00:00
f258713788 Fixed operator->() for optional references.
[SVN r37124]
2007-03-01 21:39:25 +00:00
3dc3f46d66 Merged copyright and license addition
[SVN r35907]
2006-11-07 19:27:00 +00:00
c23c21d9c2 Remove obsolete Boost.Build v1 files.
[SVN r35880]
2006-11-06 17:10:46 +00:00
5182283649 misused "precedence" changed to "precedent"
[SVN r35831]
2006-11-04 02:13:53 +00:00
4599ae0bfd merge from head [removed unnamed namespace (see http://lists.boost.org/Archives/boost/2006/07/107873.php); usual copyright/license/url fixes]
[SVN r34647]
2006-07-20 23:23:09 +00:00
9ccefc8349 workaround for Borland
[SVN r34288]
2006-06-12 19:02:41 +00:00
0961a6598a Disambiguated certain constructs.
[SVN r34226]
2006-06-08 01:39:40 +00:00
03248b5fd8 This commit was manufactured by cvs2svn to create branch 'RC_1_34_0'.
[SVN r33417]
2006-03-21 02:26:31 +00:00
59 changed files with 500 additions and 6222 deletions

View File

@ -1,28 +0,0 @@
# Boost.Optional
#
# Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal
#
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
# Quickbook
# -----------------------------------------------------------------------------
import quickbook ;
xml optional
:
optional.qbk
;
boostbook standalone
:
optional
:
<xsl:param>toc.max.depth=1
<xsl:param>toc.section.depth=1
<xsl:param>chunk.section.depth=1
;

View File

@ -1,60 +0,0 @@
[/
Boost.Optional
Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[section Acknowledgments]
[heading Pre-formal review]
* Peter Dimov suggested the name 'optional', and was the first to point out
the need for aligned storage.
* Douglas Gregor developed 'type_with_alignment', and later Eric Friedman
coded 'aligned_storage', which are the core of the optional class
implementation.
* Andrei Alexandrescu and Brian Parker also worked with aligned storage
techniques and their work influenced the current implementation.
* Gennadiy Rozental made extensive and important comments which shaped the
design.
* Vesa Karvonen and Douglas Gregor made quite useful comparisons between
optional, variant and any; and made other relevant comments.
* Douglas Gregor and Peter Dimov commented on comparisons and evaluation
in boolean contexts.
* Eric Friedman helped understand the issues involved with aligned storage,
move/copy operations and exception safety.
* Many others have participated with useful comments: Aleksey Gurotov,
Kevlin Henney, David Abrahams, and others I can't recall.
[heading Post-formal review]
* William Kempf carefully considered the originally proposed interface
and suggested the new interface which is currently used. He also started and
fueled the discussion about the analogy optional<>/smart pointer and about
relational operators.
* Peter Dimov, Joel de Guzman, David Abrahams, Tanton Gibbs and Ian Hanson
focused on the relational semantics of optional (originally undefined);
concluding with the fact that the pointer-like interface doesn't make it a
pointer so it shall have deep relational operators.
* Augustus Saunders also explored the different relational semantics between
optional<> and a pointer and developed the OptionalPointee concept as an aid
against potential conflicts on generic code.
* Joel de Guzman noticed that optional<> can be seen as an API on top of
variant<T,nil_t>.
* Dave Gomboc explained the meaning and usage of the Haskell analog to
optional<>: the Maybe type constructor (analogy originally pointed out by
David Sankel).
* Other comments were posted by Vincent Finn, Anthony Williams, Ed Brey,
Rob Stewart, and others.
* Joel de Guzman made the case for the support of references and helped
with the proper semantics.
* Mat Marcus shown the virtues of a value-oriented interface, influencing
the current design, and contributed the idea of "none".
[endsect]

View File

@ -1,17 +0,0 @@
[/
Boost.Optional
Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[section Dependencies and Portability]
The implementation uses `type_traits/alignment_of.hpp` and
`type_traits/type_with_alignment.hpp`
[endsect]

View File

@ -1,251 +0,0 @@
[/
Boost.Optional
Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[section Development]
[section The models]
In C++, we can ['declare] an object (a variable) of type `T`, and we can give this
variable an ['initial value] (through an ['initializer]. (c.f. 8.5)).
When a declaration includes a non-empty initializer (an initial value is given),
it is said that the object has been initialized.
If the declaration uses an empty initializer (no initial value is given), and
neither default nor value initialization applies, it is said that the object is
[*uninitialized]. Its actual value exist but has an ['indeterminate initial value]
(c.f. 8.5.9).
`optional<T>` intends to formalize the notion of initialization (or lack of it)
allowing a program to test whether an object has been initialized and stating
that access to the value of an uninitialized object is undefined behavior. That
is, when a variable is declared as `optional<T>` and no initial value is given,
the variable is ['formally] uninitialized. A formally uninitialized optional object
has conceptually no value at all and this situation can be tested at runtime. It
is formally ['undefined behavior] to try to access the value of an uninitialized
optional. An uninitialized optional can be assigned a value, in which case its initialization state changes to initialized. Furthermore, given the formal
treatment of initialization states in optional objects, it is even possible to
reset an optional to ['uninitialized].
In C++ there is no formal notion of uninitialized objects, which means that
objects always have an initial value even if indeterminate.
As discussed on the previous section, this has a drawback because you need
additional information to tell if an object has been effectively initialized.
One of the typical ways in which this has been historically dealt with is via
a special value: `EOF`, `npos`, -1, etc... This is equivalent to adding the
special value to the set of possible values of a given type. This super set of
`T` plus some ['nil_t]—were `nil_t` is some stateless POD-can be modeled in modern
languages as a [*discriminated union] of T and nil_t. Discriminated unions are
often called ['variants]. A variant has a ['current type], which in our case is either
`T` or `nil_t`.
Using the __BOOST_VARIANT__ library, this model can be implemented in terms of `boost::variant<T,nil_t>`.
There is precedent for a discriminated union as a model for an optional value:
the __HASKELL__ [*Maybe] built-in type constructor. Thus, a discriminated union
`T+nil_t` serves as a conceptual foundation.
A `variant<T,nil_t>` follows naturally from the traditional idiom of extending
the range of possible values adding an additional sentinel value with the
special meaning of ['Nothing]. However, this additional ['Nothing] value is largely
irrelevant for our purpose since our goal is to formalize the notion of
uninitialized objects and, while a special extended value can be used to convey
that meaning, it is not strictly necessary in order to do so.
The observation made in the last paragraph about the irrelevant nature of the
additional `nil_t` with respect to [_purpose] of `optional<T>` suggests an
alternative model: a ['container] that either has a value of `T` or nothing.
As of this writing I don't know of any precedence for a variable-size
fixed-capacity (of 1) stack-based container model for optional values, yet I
believe this is the consequence of the lack of practical implementations of
such a container rather than an inherent shortcoming of the container model.
In any event, both the discriminated-union or the single-element container
models serve as a conceptual ground for a class representing optional—i.e.
possibly uninitialized—objects.
For instance, these models show the ['exact] semantics required for a wrapper
of optional values:
Discriminated-union:
* [*deep-copy] semantics: copies of the variant implies copies of the value.
* [*deep-relational] semantics: comparisons between variants matches both
current types and values
* If the variant's current type is `T`, it is modeling an ['initialized] optional.
* If the variant's current type is not `T`, it is modeling an ['uninitialized]
optional.
* Testing if the variant's current type is `T` models testing if the optional
is initialized
* Trying to extract a `T` from a variant when its current type is not `T`, models
the undefined behavior of trying to access the value of an uninitialized optional
Single-element container:
* [*deep-copy] semantics: copies of the container implies copies of the value.
* [*deep-relational] semantics: comparisons between containers compare container
size and if match, contained value
* If the container is not empty (contains an object of type `T`), it is modeling
an ['initialized] optional.
* If the container is empty, it is modeling an ['uninitialized] optional.
* Testing if the container is empty models testing if the optional is
initialized
* Trying to extract a `T` from an empty container models the undefined behavior
of trying to access the value of an uninitialized optional
[endsect]
[section The semantics]
Objects of type `optional<T>` are intended to be used in places where objects of
type `T` would but which might be uninitialized. Hence, `optional<T>`'s purpose is
to formalize the additional possibly uninitialized state.
From the perspective of this role, `optional<T>` can have the same operational
semantics of `T` plus the additional semantics corresponding to this special
state.
As such, `optional<T>` could be thought of as a ['supertype] of `T`. Of course, we
can't do that in C++, so we need to compose the desired semantics using a
different mechanism.
Doing it the other way around, that is, making `optional<T>` a ['subtype] of `T`
is not only conceptually wrong but also impractical: it is not allowed to
derive from a non-class type, such as a built-in type.
We can draw from the purpose of `optional<T>` the required basic semantics:
* [*Default Construction:] To introduce a formally uninitialized wrapped
object.
* [*Direct Value Construction via copy:] To introduce a formally initialized
wrapped object whose value is obtained as a copy of some object.
* [*Deep Copy Construction:] To obtain a new yet equivalent wrapped object.
* [*Direct Value Assignment (upon initialized):] To assign a value to the
wrapped object.
* [*Direct Value Assignment (upon uninitialized):] To initialize the wrapped
object with a value obtained as a copy of some object.
* [*Assignment (upon initialized):] To assign to the wrapped object the value
of another wrapped object.
* [*Assignment (upon uninitialized):] To initialize the wrapped object with
value of another wrapped object.
* [*Deep Relational Operations (when supported by the type T):] To compare
wrapped object values taking into account the presence of uninitialized states.
* [*Value access:] To unwrap the wrapped object.
* [*Initialization state query:] To determine if the object is formally
initialized or not.
* [*Swap:] To exchange wrapped objects. (with whatever exception safety
guarantees are provided by `T`'s swap).
* [*De-initialization:] To release the wrapped object (if any) and leave the
wrapper in the uninitialized state.
Additional operations are useful, such as converting constructors and
converting assignments, in-place construction and assignment, and safe
value access via a pointer to the wrapped object or null.
[endsect]
[section The Interface]
Since the purpose of optional is to allow us to use objects with a formal
uninitialized additional state, the interface could try to follow the
interface of the underlying `T` type as much as possible. In order to choose
the proper degree of adoption of the native `T` interface, the following must
be noted: Even if all the operations supported by an instance of type `T` are
defined for the entire range of values for such a type, an `optional<T>`
extends such a set of values with a new value for which most
(otherwise valid) operations are not defined in terms of `T`.
Furthermore, since `optional<T>` itself is merely a `T` wrapper (modeling a `T`
supertype), any attempt to define such operations upon uninitialized optionals
will be totally artificial w.r.t. `T`.
This library chooses an interface which follows from `T`'s interface only for
those operations which are well defined (w.r.t the type `T`) even if any of the
operands are uninitialized. These operations include: construction,
copy-construction, assignment, swap and relational operations.
For the value access operations, which are undefined (w.r.t the type `T`) when
the operand is uninitialized, a different interface is chosen (which will be
explained next).
Also, the presence of the possibly uninitialized state requires additional
operations not provided by `T` itself which are supported by a special interface.
[heading Lexically-hinted Value Access in the presence of possibly
untitialized optional objects: The operators * and ->]
A relevant feature of a pointer is that it can have a [*null pointer value].
This is a ['special] value which is used to indicate that the pointer is not
referring to any object at all. In other words, null pointer values convey
the notion of inexistent objects.
This meaning of the null pointer value allowed pointers to became a ['de
facto] standard for handling optional objects because all you have to do
to refer to a value which you don't really have is to use a null pointer
value of the appropriate type. Pointers have been used for decades—from
the days of C APIs to modern C++ libraries—to ['refer] to optional (that is,
possibly inexistent) objects; particularly as optional arguments to a
function, but also quite often as optional data members.
The possible presence of a null pointer value makes the operations that
access the pointee's value possibly undefined, therefore, expressions which
use dereference and access operators, such as: `( *p = 2 )` and `( p->foo() )`,
implicitly convey the notion of optionality, and this information is tied to
the ['syntax] of the expressions. That is, the presence of operators `*` and `->`
tell by themselves —without any additional context— that the expression will
be undefined unless the implied pointee actually exist.
Such a ['de facto] idiom for referring to optional objects can be formalized
in the form of a concept: the __OPTIONAL_POINTEE__ concept.
This concept captures the syntactic usage of operators `*`, `->` and
conversion to `bool` to convey the notion of optionality.
However, pointers are good to [_refer] to optional objects, but not particularly
good to handle the optional objects in all other respects, such as initializing
or moving/copying them. The problem resides in the shallow-copy of pointer
semantics: if you need to effectively move or copy the object, pointers alone
are not enough. The problem is that copies of pointers do not imply copies of
pointees. For example, as was discussed in the motivation, pointers alone
cannot be used to return optional objects from a function because the object
must move outside from the function and into the caller's context.
A solution to the shallow-copy problem that is often used is to resort to
dynamic allocation and use a smart pointer to automatically handle the details
of this. For example, if a function is to optionally return an object `X`, it can
use `shared_ptr<X>` as the return value. However, this requires dynamic allocation
of `X`. If `X` is a built-in or small POD, this technique is very poor in terms of
required resources. Optional objects are essentially values so it is very
convenient to be able to use automatic storage and deep-copy semantics to
manipulate optional values just as we do with ordinary values. Pointers do
not have this semantics, so are inappropriate for the initialization and
transport of optional values, yet are quite convenient for handling the access
to the possible undefined value because of the idiomatic aid present in the
__OPTIONAL_POINTEE__ concept incarnated by pointers.
[heading Optional<T> as a model of OptionalPointee]
For value access operations `optional<>` uses operators `*` and `->` to
lexically warn about the possibly uninitialized state appealing to the
familiar pointer semantics w.r.t. to null pointers.
[warning
However, it is particularly important to note that `optional<>` objects
are not pointers. [_`optional<>` is not, and does not model, a pointer].
]
For instance, `optional<>` does not have shallow-copy so does not alias:
two different optionals never refer to the ['same] value unless `T` itself is
a reference (but may have ['equivalent] values).
The difference between an `optional<T>` and a pointer must be kept in mind,
particularly because the semantics of relational operators are different:
since `optional<T>` is a value-wrapper, relational operators are deep: they
compare optional values; but relational operators for pointers are shallow:
they do not compare pointee values.
As a result, you might be able to replace `optional<T>` by `T*` on some
situations but not always. Specifically, on generic code written for both,
you cannot use relational operators directly, and must use the template
functions __FUNCTION_EQUAL_POINTEES__ and __FUNCTION_LESS_POINTEES__ instead.
[endsect]
[endsect]

View File

@ -1,102 +0,0 @@
[/
Boost.Optional
Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[section Examples]
[section Optional return values]
optional<char> get_async_input()
{
if ( !queue.empty() )
return optional<char>(queue.top());
else return optional<char>(); // uninitialized
}
void receive_async_message()
{
optional<char> rcv ;
// The safe boolean conversion from 'rcv' is used here.
while ( (rcv = get_async_input()) && !timeout() )
output(*rcv);
}
[endsect]
[section Optional local variables]
optional<string> name ;
if ( database.open() )
{
name.reset ( database.lookup(employer_name) ) ;
}
else
{
if ( can_ask_user )
name.reset ( user.ask(employer_name) ) ;
}
if ( name )
print(*name);
else print("employer's name not found!");
[endsect]
[section Optional data members]
class figure
{
public:
figure()
{
// data member 'm_clipping_rect' is uninitialized at this point.
}
void clip_in_rect ( rect const& rect )
{
....
m_clipping_rect.reset ( rect ) ; // initialized here.
}
void draw ( canvas& cvs )
{
if ( m_clipping_rect )
do_clipping(*m_clipping_rect);
cvs.drawXXX(..);
}
// this can return NULL.
rect const* get_clipping_rect() { return get_pointer(m_clipping_rect); }
private :
optional<rect> m_clipping_rect ;
};
[endsect]
[section Bypassing expensive unnecessary default construction]
class ExpensiveCtor { ... } ;
class Fred
{
Fred() : mLargeVector(10000) {}
std::vector< optional<ExpensiveCtor> > mLargeVector ;
} ;
[endsect]
[endsect]

View File

@ -1,14 +0,0 @@
index.html
boost_optional/development.html
boost_optional/synopsis.html
boost_optional/detailed_semantics.html
boost_optional/examples.html
boost_optional/optional_references.html
boost_optional/rebinding_semantics_for_assignment_of_optional_references.html
boost_optional/in_place_factories.html
boost_optional/a_note_about_optional_bool_.html
boost_optional/exception_safety_guarantees.html
boost_optional/type_requirements.html
boost_optional/implementation_notes.html
boost_optional/dependencies_and_portability.html
boost_optional/acknowledgments.html

View File

@ -1,84 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>A note about
optional&lt;bool&gt;</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="in_place_factories.html" title="In-Place Factories">
<link rel="next" href="exception_safety_guarantees.html" title="Exception Safety
Guarantees">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="in_place_factories.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="exception_safety_guarantees.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.a_note_about_optional_bool_"></a><a href="a_note_about_optional_bool_.html" title="A note about
optional&lt;bool&gt;">A note about
optional&lt;bool&gt;</a>
</h2></div></div></div>
<p>
<code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span></code> should
be used with special caution and consideration.
</p>
<p>
First, it is functionally similar to a tristate boolean (false,maybe,true)
&#8212;such as <a href="../../../../tribool/index.html" target="_top">boost::tribool</a>&#8212;
except that in a tristate boolean, the maybe state <span class="underline">represents
a valid value</span>, unlike the corresponding state of an uninitialized
<code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span></code>. It
should be carefully considered if an <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span></code>
instead of a <code class="computeroutput"><span class="identifier">tribool</span></code> is really
needed.
</p>
<p>
Second, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code>
provides an implicit conversion to <code class="computeroutput"><span class="keyword">bool</span></code>.
This conversion refers to the initialization state and not to the contained
value. Using <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span></code> can
lead to subtle errors due to the implicit <code class="computeroutput"><span class="keyword">bool</span></code>
conversion:
</p>
<pre class="programlisting">
<span class="keyword">void</span> <span class="identifier">foo</span> <span class="special">(</span> <span class="keyword">bool</span> <span class="identifier">v</span> <span class="special">)</span> <span class="special">;</span>
<span class="keyword">void</span> <span class="identifier">bar</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">v</span> <span class="special">=</span> <span class="keyword">try</span><span class="special">();</span>
<span class="comment">// The following intended to pass the value of 'v' to foo():
</span> <span class="identifier">foo</span><span class="special">(</span><span class="identifier">v</span><span class="special">);</span>
<span class="comment">// But instead, the initialization state is passed
</span> <span class="comment">// due to a typo: it should have been foo(*v).
</span><span class="special">}</span>
</pre>
<p>
The only implicit conversion is to <code class="computeroutput"><span class="keyword">bool</span></code>,
and it is safe in the sense that typical integral promotions don't apply (i.e.
if <code class="computeroutput"><span class="identifier">foo</span><span class="special">()</span></code>
takes an <code class="computeroutput"><span class="keyword">int</span></code> instead, it won't
compile).
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="in_place_factories.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="exception_safety_guarantees.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,122 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Acknowledgments</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="dependencies_and_portability.html" title="Dependencies
and Portability">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="dependencies_and_portability.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.acknowledgments"></a><a href="acknowledgments.html" title="Acknowledgments">Acknowledgments</a>
</h2></div></div></div>
<a name="boost_optional.acknowledgments.pre_formal_review"></a><h4>
<a name="id2644860"></a>
<a href="acknowledgments.html#boost_optional.acknowledgments.pre_formal_review">Pre-formal
review</a>
</h4>
<div class="itemizedlist"><ul type="disc">
<li>
Peter Dimov suggested the name 'optional', and was the first to point out
the need for aligned storage.
</li>
<li>
Douglas Gregor developed 'type_with_alignment', and later Eric Friedman coded
'aligned_storage', which are the core of the optional class implementation.
</li>
<li>
Andrei Alexandrescu and Brian Parker also worked with aligned storage techniques
and their work influenced the current implementation.
</li>
<li>
Gennadiy Rozental made extensive and important comments which shaped the
design.
</li>
<li>
Vesa Karvonen and Douglas Gregor made quite useful comparisons between optional,
variant and any; and made other relevant comments.
</li>
<li>
Douglas Gregor and Peter Dimov commented on comparisons and evaluation in
boolean contexts.
</li>
<li>
Eric Friedman helped understand the issues involved with aligned storage,
move/copy operations and exception safety.
</li>
<li>
Many others have participated with useful comments: Aleksey Gurotov, Kevlin
Henney, David Abrahams, and others I can't recall.
</li>
</ul></div>
<a name="boost_optional.acknowledgments.post_formal_review"></a><h4>
<a name="id2644931"></a>
<a href="acknowledgments.html#boost_optional.acknowledgments.post_formal_review">Post-formal
review</a>
</h4>
<div class="itemizedlist"><ul type="disc">
<li>
William Kempf carefully considered the originally proposed interface and
suggested the new interface which is currently used. He also started and
fueled the discussion about the analogy optional&lt;&gt;/smart pointer and
about relational operators.
</li>
<li>
Peter Dimov, Joel de Guzman, David Abrahams, Tanton Gibbs and Ian Hanson
focused on the relational semantics of optional (originally undefined); concluding
with the fact that the pointer-like interface doesn't make it a pointer so
it shall have deep relational operators.
</li>
<li>
Augustus Saunders also explored the different relational semantics between
optional&lt;&gt; and a pointer and developed the OptionalPointee concept
as an aid against potential conflicts on generic code.
</li>
<li>
Joel de Guzman noticed that optional&lt;&gt; can be seen as an API on top
of variant&lt;T,nil_t&gt;.
</li>
<li>
Dave Gomboc explained the meaning and usage of the Haskell analog to optional&lt;&gt;:
the Maybe type constructor (analogy originally pointed out by David Sankel).
</li>
<li>
Other comments were posted by Vincent Finn, Anthony Williams, Ed Brey, Rob
Stewart, and others.
</li>
<li>
Joel de Guzman made the case for the support of references and helped with
the proper semantics.
</li>
<li>
Mat Marcus shown the virtues of a value-oriented interface, influencing the
current design, and contributed the idea of "none".
</li>
</ul></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="dependencies_and_portability.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a>
</div>
</body>
</html>

View File

@ -1,46 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Dependencies
and Portability</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="implementation_notes.html" title="Implementation Notes">
<link rel="next" href="acknowledgments.html" title="Acknowledgments">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="implementation_notes.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="acknowledgments.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.dependencies_and_portability"></a><a href="dependencies_and_portability.html" title="Dependencies
and Portability">Dependencies
and Portability</a>
</h2></div></div></div>
<p>
The implementation uses <code class="computeroutput"><span class="identifier">type_traits</span><span class="special">/</span><span class="identifier">alignment_of</span><span class="special">.</span><span class="identifier">hpp</span></code> and
<code class="computeroutput"><span class="identifier">type_traits</span><span class="special">/</span><span class="identifier">type_with_alignment</span><span class="special">.</span><span class="identifier">hpp</span></code>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="implementation_notes.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="acknowledgments.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

File diff suppressed because it is too large Load Diff

View File

@ -1,415 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Development</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="next" href="synopsis.html" title="Synopsis">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../index.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="synopsis.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.development"></a><a href="development.html" title="Development">Development</a>
</h2></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="development.html#boost_optional.development.the_models">The models</a></span></dt>
<dt><span class="section"><a href="development.html#boost_optional.development.the_semantics">The semantics</a></span></dt>
<dt><span class="section"><a href="development.html#boost_optional.development.the_interface">The Interface</a></span></dt>
</dl></div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_optional.development.the_models"></a><a href="development.html#boost_optional.development.the_models" title="The models">The models</a>
</h3></div></div></div>
<p>
In C++, we can <span class="emphasis"><em>declare</em></span> an object (a variable) of type
<code class="computeroutput"><span class="identifier">T</span></code>, and we can give this variable
an <span class="emphasis"><em>initial value</em></span> (through an <span class="emphasis"><em>initializer</em></span>.
(c.f. 8.5)). When a declaration includes a non-empty initializer (an initial
value is given), it is said that the object has been initialized. If the
declaration uses an empty initializer (no initial value is given), and neither
default nor value initialization applies, it is said that the object is
<span class="bold"><strong>uninitialized</strong></span>. Its actual value exist but
has an <span class="emphasis"><em>indeterminate initial value</em></span> (c.f. 8.5.9). <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> intends
to formalize the notion of initialization (or lack of it) allowing a program
to test whether an object has been initialized and stating that access to
the value of an uninitialized object is undefined behavior. That is, when
a variable is declared as <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
and no initial value is given, the variable is <span class="emphasis"><em>formally</em></span>
uninitialized. A formally uninitialized optional object has conceptually
no value at all and this situation can be tested at runtime. It is formally
<span class="emphasis"><em>undefined behavior</em></span> to try to access the value of an
uninitialized optional. An uninitialized optional can be assigned a value,
in which case its initialization state changes to initialized. Furthermore,
given the formal treatment of initialization states in optional objects,
it is even possible to reset an optional to <span class="emphasis"><em>uninitialized</em></span>.
</p>
<p>
In C++ there is no formal notion of uninitialized objects, which means that
objects always have an initial value even if indeterminate. As discussed
on the previous section, this has a drawback because you need additional
information to tell if an object has been effectively initialized. One of
the typical ways in which this has been historically dealt with is via a
special value: <code class="computeroutput"><span class="identifier">EOF</span></code>, <code class="computeroutput"><span class="identifier">npos</span></code>, -1, etc... This is equivalent to
adding the special value to the set of possible values of a given type. This
super set of <code class="computeroutput"><span class="identifier">T</span></code> plus some
<span class="emphasis"><em>nil_t</em></span>&#8212;were <code class="computeroutput"><span class="identifier">nil_t</span></code>
is some stateless POD-can be modeled in modern languages as a <span class="bold"><strong>discriminated
union</strong></span> of T and nil_t. Discriminated unions are often called <span class="emphasis"><em>variants</em></span>.
A variant has a <span class="emphasis"><em>current type</em></span>, which in our case is either
<code class="computeroutput"><span class="identifier">T</span></code> or <code class="computeroutput"><span class="identifier">nil_t</span></code>.
Using the <a href="../../../../variant/index.html" target="_top">Boost.Variant</a>
library, this model can be implemented in terms of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">variant</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">nil_t</span><span class="special">&gt;</span></code>.
There is precedent for a discriminated union as a model for an optional value:
the <a href="http://www.haskell.org/" target="_top">Haskell</a> <span class="bold"><strong>Maybe</strong></span>
built-in type constructor. Thus, a discriminated union <code class="computeroutput"><span class="identifier">T</span><span class="special">+</span><span class="identifier">nil_t</span></code>
serves as a conceptual foundation.
</p>
<p>
A <code class="computeroutput"><span class="identifier">variant</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">nil_t</span><span class="special">&gt;</span></code> follows naturally from the traditional
idiom of extending the range of possible values adding an additional sentinel
value with the special meaning of <span class="emphasis"><em>Nothing</em></span>. However,
this additional <span class="emphasis"><em>Nothing</em></span> value is largely irrelevant
for our purpose since our goal is to formalize the notion of uninitialized
objects and, while a special extended value can be used to convey that meaning,
it is not strictly necessary in order to do so.
</p>
<p>
The observation made in the last paragraph about the irrelevant nature of
the additional <code class="computeroutput"><span class="identifier">nil_t</span></code> with
respect to <span class="underline">purpose</span> of <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> suggests
an alternative model: a <span class="emphasis"><em>container</em></span> that either has a
value of <code class="computeroutput"><span class="identifier">T</span></code> or nothing.
</p>
<p>
As of this writing I don't know of any precedence for a variable-size fixed-capacity
(of 1) stack-based container model for optional values, yet I believe this
is the consequence of the lack of practical implementations of such a container
rather than an inherent shortcoming of the container model.
</p>
<p>
In any event, both the discriminated-union or the single-element container
models serve as a conceptual ground for a class representing optional&#8212;i.e.
possibly uninitialized&#8212;objects. For instance, these models show the <span class="emphasis"><em>exact</em></span>
semantics required for a wrapper of optional values:
</p>
<p>
Discriminated-union:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
<span class="bold"><strong>deep-copy</strong></span> semantics: copies of the variant
implies copies of the value.
</li>
<li>
<span class="bold"><strong>deep-relational</strong></span> semantics: comparisons
between variants matches both current types and values
</li>
<li>
If the variant's current type is <code class="computeroutput"><span class="identifier">T</span></code>,
it is modeling an <span class="emphasis"><em>initialized</em></span> optional.
</li>
<li>
If the variant's current type is not <code class="computeroutput"><span class="identifier">T</span></code>,
it is modeling an <span class="emphasis"><em>uninitialized</em></span> optional.
</li>
<li>
Testing if the variant's current type is <code class="computeroutput"><span class="identifier">T</span></code>
models testing if the optional is initialized
</li>
<li>
Trying to extract a <code class="computeroutput"><span class="identifier">T</span></code> from
a variant when its current type is not <code class="computeroutput"><span class="identifier">T</span></code>,
models the undefined behavior of trying to access the value of an uninitialized
optional
</li>
</ul></div>
<p>
Single-element container:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
<span class="bold"><strong>deep-copy</strong></span> semantics: copies of the container
implies copies of the value.
</li>
<li>
<span class="bold"><strong>deep-relational</strong></span> semantics: comparisons
between containers compare container size and if match, contained value
</li>
<li>
If the container is not empty (contains an object of type <code class="computeroutput"><span class="identifier">T</span></code>), it is modeling an <span class="emphasis"><em>initialized</em></span>
optional.
</li>
<li>
If the container is empty, it is modeling an <span class="emphasis"><em>uninitialized</em></span>
optional.
</li>
<li>
Testing if the container is empty models testing if the optional is initialized
</li>
<li>
Trying to extract a <code class="computeroutput"><span class="identifier">T</span></code> from
an empty container models the undefined behavior of trying to access the
value of an uninitialized optional
</li>
</ul></div>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_optional.development.the_semantics"></a><a href="development.html#boost_optional.development.the_semantics" title="The semantics">The semantics</a>
</h3></div></div></div>
<p>
Objects of type <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
are intended to be used in places where objects of type <code class="computeroutput"><span class="identifier">T</span></code>
would but which might be uninitialized. Hence, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>'s
purpose is to formalize the additional possibly uninitialized state. From
the perspective of this role, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
can have the same operational semantics of <code class="computeroutput"><span class="identifier">T</span></code>
plus the additional semantics corresponding to this special state. As such,
<code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> could
be thought of as a <span class="emphasis"><em>supertype</em></span> of <code class="computeroutput"><span class="identifier">T</span></code>.
Of course, we can't do that in C++, so we need to compose the desired semantics
using a different mechanism. Doing it the other way around, that is, making
<code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> a
<span class="emphasis"><em>subtype</em></span> of <code class="computeroutput"><span class="identifier">T</span></code>
is not only conceptually wrong but also impractical: it is not allowed to
derive from a non-class type, such as a built-in type.
</p>
<p>
We can draw from the purpose of <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
the required basic semantics:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
<span class="bold"><strong>Default Construction:</strong></span> To introduce a formally
uninitialized wrapped object.
</li>
<li>
<span class="bold"><strong>Direct Value Construction via copy:</strong></span> To
introduce a formally initialized wrapped object whose value is obtained
as a copy of some object.
</li>
<li>
<span class="bold"><strong>Deep Copy Construction:</strong></span> To obtain a new
yet equivalent wrapped object.
</li>
<li>
<span class="bold"><strong>Direct Value Assignment (upon initialized):</strong></span>
To assign a value to the wrapped object.
</li>
<li>
<span class="bold"><strong>Direct Value Assignment (upon uninitialized):</strong></span>
To initialize the wrapped object with a value obtained as a copy of some
object.
</li>
<li>
<span class="bold"><strong>Assignment (upon initialized):</strong></span> To assign
to the wrapped object the value of another wrapped object.
</li>
<li>
<span class="bold"><strong>Assignment (upon uninitialized):</strong></span> To initialize
the wrapped object with value of another wrapped object.
</li>
<li>
<span class="bold"><strong>Deep Relational Operations (when supported by the
type T):</strong></span> To compare wrapped object values taking into account
the presence of uninitialized states.
</li>
<li>
<span class="bold"><strong>Value access:</strong></span> To unwrap the wrapped object.
</li>
<li>
<span class="bold"><strong>Initialization state query:</strong></span> To determine
if the object is formally initialized or not.
</li>
<li>
<span class="bold"><strong>Swap:</strong></span> To exchange wrapped objects. (with
whatever exception safety guarantees are provided by <code class="computeroutput"><span class="identifier">T</span></code>'s
swap).
</li>
<li>
<span class="bold"><strong>De-initialization:</strong></span> To release the wrapped
object (if any) and leave the wrapper in the uninitialized state.
</li>
</ul></div>
<p>
Additional operations are useful, such as converting constructors and converting
assignments, in-place construction and assignment, and safe value access
via a pointer to the wrapped object or null.
</p>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_optional.development.the_interface"></a><a href="development.html#boost_optional.development.the_interface" title="The Interface">The Interface</a>
</h3></div></div></div>
<p>
Since the purpose of optional is to allow us to use objects with a formal
uninitialized additional state, the interface could try to follow the interface
of the underlying <code class="computeroutput"><span class="identifier">T</span></code> type
as much as possible. In order to choose the proper degree of adoption of
the native <code class="computeroutput"><span class="identifier">T</span></code> interface, the
following must be noted: Even if all the operations supported by an instance
of type <code class="computeroutput"><span class="identifier">T</span></code> are defined for
the entire range of values for such a type, an <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
extends such a set of values with a new value for which most (otherwise valid)
operations are not defined in terms of <code class="computeroutput"><span class="identifier">T</span></code>.
</p>
<p>
Furthermore, since <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
itself is merely a <code class="computeroutput"><span class="identifier">T</span></code> wrapper
(modeling a <code class="computeroutput"><span class="identifier">T</span></code> supertype),
any attempt to define such operations upon uninitialized optionals will be
totally artificial w.r.t. <code class="computeroutput"><span class="identifier">T</span></code>.
</p>
<p>
This library chooses an interface which follows from <code class="computeroutput"><span class="identifier">T</span></code>'s
interface only for those operations which are well defined (w.r.t the type
<code class="computeroutput"><span class="identifier">T</span></code>) even if any of the operands
are uninitialized. These operations include: construction, copy-construction,
assignment, swap and relational operations.
</p>
<p>
For the value access operations, which are undefined (w.r.t the type <code class="computeroutput"><span class="identifier">T</span></code>) when the operand is uninitialized, a
different interface is chosen (which will be explained next).
</p>
<p>
Also, the presence of the possibly uninitialized state requires additional
operations not provided by <code class="computeroutput"><span class="identifier">T</span></code>
itself which are supported by a special interface.
</p>
<a name="boost_optional.development.the_interface.lexically_hinted_value_access_in_the_presence_of_possibly_untitialized_optional_objects__the_operators___and___gt_"></a><h5>
<a name="id2615242"></a>
<a href="development.html#boost_optional.development.the_interface.lexically_hinted_value_access_in_the_presence_of_possibly_untitialized_optional_objects__the_operators___and___gt_">Lexically-hinted
Value Access in the presence of possibly untitialized optional objects: The
operators * and -&gt;</a>
</h5>
<p>
A relevant feature of a pointer is that it can have a <span class="bold"><strong>null
pointer value</strong></span>. This is a <span class="emphasis"><em>special</em></span> value which
is used to indicate that the pointer is not referring to any object at all.
In other words, null pointer values convey the notion of inexistent objects.
</p>
<p>
This meaning of the null pointer value allowed pointers to became a <span class="emphasis"><em>de
facto</em></span> standard for handling optional objects because all you have
to do to refer to a value which you don't really have is to use a null pointer
value of the appropriate type. Pointers have been used for decades&#8212;from
the days of C APIs to modern C++ libraries&#8212;to <span class="emphasis"><em>refer</em></span>
to optional (that is, possibly inexistent) objects; particularly as optional
arguments to a function, but also quite often as optional data members.
</p>
<p>
The possible presence of a null pointer value makes the operations that access
the pointee's value possibly undefined, therefore, expressions which use
dereference and access operators, such as: <code class="computeroutput"><span class="special">(</span>
<span class="special">*</span><span class="identifier">p</span> <span class="special">=</span> <span class="number">2</span> <span class="special">)</span></code>
and <code class="computeroutput"><span class="special">(</span> <span class="identifier">p</span><span class="special">-&gt;</span><span class="identifier">foo</span><span class="special">()</span> <span class="special">)</span></code>, implicitly
convey the notion of optionality, and this information is tied to the <span class="emphasis"><em>syntax</em></span>
of the expressions. That is, the presence of operators <code class="computeroutput"><span class="special">*</span></code>
and <code class="computeroutput"><span class="special">-&gt;</span></code> tell by themselves
&#8212;without any additional context&#8212; that the expression will be undefined
unless the implied pointee actually exist.
</p>
<p>
Such a <span class="emphasis"><em>de facto</em></span> idiom for referring to optional objects
can be formalized in the form of a concept: the <a href="../../../../utility/OptionalPointee.html" target="_top">OptionalPointee</a>
concept. This concept captures the syntactic usage of operators <code class="computeroutput"><span class="special">*</span></code>, <code class="computeroutput"><span class="special">-&gt;</span></code>
and conversion to <code class="computeroutput"><span class="keyword">bool</span></code> to convey
the notion of optionality.
</p>
<p>
However, pointers are good to <span class="underline">refer</span>
to optional objects, but not particularly good to handle the optional objects
in all other respects, such as initializing or moving/copying them. The problem
resides in the shallow-copy of pointer semantics: if you need to effectively
move or copy the object, pointers alone are not enough. The problem is that
copies of pointers do not imply copies of pointees. For example, as was discussed
in the motivation, pointers alone cannot be used to return optional objects
from a function because the object must move outside from the function and
into the caller's context.
</p>
<p>
A solution to the shallow-copy problem that is often used is to resort to
dynamic allocation and use a smart pointer to automatically handle the details
of this. For example, if a function is to optionally return an object <code class="computeroutput"><span class="identifier">X</span></code>, it can use <code class="computeroutput"><span class="identifier">shared_ptr</span><span class="special">&lt;</span><span class="identifier">X</span><span class="special">&gt;</span></code>
as the return value. However, this requires dynamic allocation of <code class="computeroutput"><span class="identifier">X</span></code>. If <code class="computeroutput"><span class="identifier">X</span></code>
is a built-in or small POD, this technique is very poor in terms of required
resources. Optional objects are essentially values so it is very convenient
to be able to use automatic storage and deep-copy semantics to manipulate
optional values just as we do with ordinary values. Pointers do not have
this semantics, so are inappropriate for the initialization and transport
of optional values, yet are quite convenient for handling the access to the
possible undefined value because of the idiomatic aid present in the <a href="../../../../utility/OptionalPointee.html" target="_top">OptionalPointee</a> concept
incarnated by pointers.
</p>
<a name="boost_optional.development.the_interface.optional_lt_t_gt__as_a_model_of_optionalpointee"></a><h5>
<a name="id2615580"></a>
<a href="development.html#boost_optional.development.the_interface.optional_lt_t_gt__as_a_model_of_optionalpointee">Optional&lt;T&gt;
as a model of OptionalPointee</a>
</h5>
<p>
For value access operations <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> uses operators <code class="computeroutput"><span class="special">*</span></code>
and <code class="computeroutput"><span class="special">-&gt;</span></code> to lexically warn
about the possibly uninitialized state appealing to the familiar pointer
semantics w.r.t. to null pointers.
</p>
<div class="warning"><table border="0" summary="Warning">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../images/warning.png"></td>
<th align="left">Warning</th>
</tr>
<tr><td align="left" valign="top">
<p>
</p>
<p>
However, it is particularly important to note that <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> objects are not pointers. <span class="underline"><code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> is not, and does not model, a
pointer</span>.
</p>
<p>
</p>
</td></tr>
</table></div>
<p>
For instance, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code>
does not have shallow-copy so does not alias: two different optionals never
refer to the <span class="emphasis"><em>same</em></span> value unless <code class="computeroutput"><span class="identifier">T</span></code>
itself is a reference (but may have <span class="emphasis"><em>equivalent</em></span> values).
The difference between an <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
and a pointer must be kept in mind, particularly because the semantics of
relational operators are different: since <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
is a value-wrapper, relational operators are deep: they compare optional
values; but relational operators for pointers are shallow: they do not compare
pointee values. As a result, you might be able to replace <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
by <code class="computeroutput"><span class="identifier">T</span><span class="special">*</span></code>
on some situations but not always. Specifically, on generic code written
for both, you cannot use relational operators directly, and must use the
template functions <a href="../../../../utility/OptionalPointee.html#equal" target="_top"><code class="computeroutput"><span class="identifier">equal_pointees</span><span class="special">()</span></code></a>
and <a href="../../../../utility/OptionalPointee.html#less" target="_top"><code class="computeroutput"><span class="identifier">less_pointees</span><span class="special">()</span></code></a>
instead.
</p>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../index.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="synopsis.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,151 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Examples</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="detailed_semantics.html" title="Detailed Semantics">
<link rel="next" href="optional_references.html" title="Optional references">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="detailed_semantics.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="optional_references.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.examples"></a><a href="examples.html" title="Examples">Examples</a>
</h2></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="examples.html#boost_optional.examples.optional_return_values">Optional
return values</a></span></dt>
<dt><span class="section"><a href="examples.html#boost_optional.examples.optional_local_variables">Optional
local variables</a></span></dt>
<dt><span class="section"><a href="examples.html#boost_optional.examples.optional_data_members">Optional
data members</a></span></dt>
<dt><span class="section"><a href="examples.html#boost_optional.examples.bypassing_expensive_unnecessary_default_construction">Bypassing
expensive unnecessary default construction</a></span></dt>
</dl></div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_optional.examples.optional_return_values"></a><a href="examples.html#boost_optional.examples.optional_return_values" title="Optional
return values">Optional
return values</a>
</h3></div></div></div>
<pre class="programlisting">
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">&gt;</span> <span class="identifier">get_async_input</span><span class="special">()</span>
<span class="special">{</span>
<span class="keyword">if</span> <span class="special">(</span> <span class="special">!</span><span class="identifier">queue</span><span class="special">.</span><span class="identifier">empty</span><span class="special">()</span> <span class="special">)</span>
<span class="keyword">return</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">&gt;(</span><span class="identifier">queue</span><span class="special">.</span><span class="identifier">top</span><span class="special">());</span>
<span class="keyword">else</span> <span class="keyword">return</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">&gt;();</span> <span class="comment">// uninitialized
</span><span class="special">}</span>
<span class="keyword">void</span> <span class="identifier">receive_async_message</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">&gt;</span> <span class="identifier">rcv</span> <span class="special">;</span>
<span class="comment">// The safe boolean conversion from 'rcv' is used here.
</span> <span class="keyword">while</span> <span class="special">(</span> <span class="special">(</span><span class="identifier">rcv</span> <span class="special">=</span> <span class="identifier">get_async_input</span><span class="special">())</span> <span class="special">&amp;&amp;</span> <span class="special">!</span><span class="identifier">timeout</span><span class="special">()</span> <span class="special">)</span>
<span class="identifier">output</span><span class="special">(*</span><span class="identifier">rcv</span><span class="special">);</span>
<span class="special">}</span>
</pre>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_optional.examples.optional_local_variables"></a><a href="examples.html#boost_optional.examples.optional_local_variables" title="Optional
local variables">Optional
local variables</a>
</h3></div></div></div>
<pre class="programlisting">
<span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">string</span><span class="special">&gt;</span> <span class="identifier">name</span> <span class="special">;</span>
<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">database</span><span class="special">.</span><span class="identifier">open</span><span class="special">()</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">name</span><span class="special">.</span><span class="identifier">reset</span> <span class="special">(</span> <span class="identifier">database</span><span class="special">.</span><span class="identifier">lookup</span><span class="special">(</span><span class="identifier">employer_name</span><span class="special">)</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
<span class="keyword">else</span>
<span class="special">{</span>
<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">can_ask_user</span> <span class="special">)</span>
<span class="identifier">name</span><span class="special">.</span><span class="identifier">reset</span> <span class="special">(</span> <span class="identifier">user</span><span class="special">.</span><span class="identifier">ask</span><span class="special">(</span><span class="identifier">employer_name</span><span class="special">)</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">name</span> <span class="special">)</span>
<span class="identifier">print</span><span class="special">(*</span><span class="identifier">name</span><span class="special">);</span>
<span class="keyword">else</span> <span class="identifier">print</span><span class="special">(</span><span class="string">"employer's name not found!"</span><span class="special">);</span>
</pre>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_optional.examples.optional_data_members"></a><a href="examples.html#boost_optional.examples.optional_data_members" title="Optional
data members">Optional
data members</a>
</h3></div></div></div>
<pre class="programlisting">
<span class="keyword">class</span> <span class="identifier">figure</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">figure</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// data member 'm_clipping_rect' is uninitialized at this point.
</span> <span class="special">}</span>
<span class="keyword">void</span> <span class="identifier">clip_in_rect</span> <span class="special">(</span> <span class="identifier">rect</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rect</span> <span class="special">)</span>
<span class="special">{</span>
<span class="special">....</span>
<span class="identifier">m_clipping_rect</span><span class="special">.</span><span class="identifier">reset</span> <span class="special">(</span> <span class="identifier">rect</span> <span class="special">)</span> <span class="special">;</span> <span class="comment">// initialized here.
</span> <span class="special">}</span>
<span class="keyword">void</span> <span class="identifier">draw</span> <span class="special">(</span> <span class="identifier">canvas</span><span class="special">&amp;</span> <span class="identifier">cvs</span> <span class="special">)</span>
<span class="special">{</span>
<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">m_clipping_rect</span> <span class="special">)</span>
<span class="identifier">do_clipping</span><span class="special">(*</span><span class="identifier">m_clipping_rect</span><span class="special">);</span>
<span class="identifier">cvs</span><span class="special">.</span><span class="identifier">drawXXX</span><span class="special">(..);</span>
<span class="special">}</span>
<span class="comment">// this can return NULL.
</span> <span class="identifier">rect</span> <span class="keyword">const</span><span class="special">*</span> <span class="identifier">get_clipping_rect</span><span class="special">()</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">get_pointer</span><span class="special">(</span><span class="identifier">m_clipping_rect</span><span class="special">);</span> <span class="special">}</span>
<span class="keyword">private</span> <span class="special">:</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">rect</span><span class="special">&gt;</span> <span class="identifier">m_clipping_rect</span> <span class="special">;</span>
<span class="special">};</span>
</pre>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_optional.examples.bypassing_expensive_unnecessary_default_construction"></a><a href="examples.html#boost_optional.examples.bypassing_expensive_unnecessary_default_construction" title="Bypassing
expensive unnecessary default construction">Bypassing
expensive unnecessary default construction</a>
</h3></div></div></div>
<pre class="programlisting">
<span class="keyword">class</span> <span class="identifier">ExpensiveCtor</span> <span class="special">{</span> <span class="special">...</span> <span class="special">}</span> <span class="special">;</span>
<span class="keyword">class</span> <span class="identifier">Fred</span>
<span class="special">{</span>
<span class="identifier">Fred</span><span class="special">()</span> <span class="special">:</span> <span class="identifier">mLargeVector</span><span class="special">(</span><span class="number">10000</span><span class="special">)</span> <span class="special">{}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">ExpensiveCtor</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="identifier">mLargeVector</span> <span class="special">;</span>
<span class="special">}</span> <span class="special">;</span>
</pre>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="detailed_semantics.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="optional_references.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,140 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Exception Safety
Guarantees</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="a_note_about_optional_bool_.html" title="A note about
optional&lt;bool&gt;">
<link rel="next" href="type_requirements.html" title="Type requirements">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="a_note_about_optional_bool_.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="type_requirements.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.exception_safety_guarantees"></a><a href="exception_safety_guarantees.html" title="Exception Safety
Guarantees">Exception Safety
Guarantees</a>
</h2></div></div></div>
<p>
Because of the current implementation (see <a href="../index.html#optional_implementation_notes">Implementation
Notes</a>), all of the assignment methods:
</p>
<div class="itemizedlist"><ul type="disc">
<li><code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="keyword">operator</span><span class="special">=</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">const</span><span class="special">&amp;</span>
<span class="special">)</span></code></li>
<li><code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="keyword">operator</span><span class="special">=</span> <span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="special">)</span></code></li>
<li><code class="computeroutput"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="keyword">operator</span><span class="special">=</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">U</span><span class="special">&gt;</span>
<span class="keyword">const</span><span class="special">&amp;</span>
<span class="special">)</span></code></li>
<li><code class="computeroutput"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">InPlaceFactory</span><span class="special">&gt;</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="keyword">operator</span><span class="special">=</span> <span class="special">(</span> <span class="identifier">InPlaceFactory</span>
<span class="keyword">const</span><span class="special">&amp;</span>
<span class="special">)</span></code></li>
<li><code class="computeroutput"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">TypedInPlaceFactory</span><span class="special">&gt;</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="keyword">operator</span><span class="special">=</span> <span class="special">(</span> <span class="identifier">TypedInPlaceFactory</span>
<span class="keyword">const</span><span class="special">&amp;</span>
<span class="special">)</span> </code></li>
<li><code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;:::</span><span class="identifier">reset</span> <span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;)</span></code></li>
</ul></div>
<p>
Can only <span class="emphasis"><em>guarantee</em></span> the <span class="underline">basic
exception safety</span>: The lvalue optional is left <span class="underline">uninitialized</span>
if an exception is thrown (any previous value is <span class="emphasis"><em>first</em></span>
destroyed using <code class="computeroutput"><span class="identifier">T</span><span class="special">::~</span><span class="identifier">T</span><span class="special">()</span></code>)
</p>
<p>
On the other hand, the <span class="emphasis"><em>uninitializing</em></span> methods:
</p>
<div class="itemizedlist"><ul type="disc">
<li><code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="keyword">operator</span><span class="special">=</span> <span class="special">(</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">none_t</span> <span class="special">)</span></code></li>
<li><code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">reset</span><span class="special">()</span></code></li>
</ul></div>
<p>
Provide the no-throw guarantee (assuming a no-throw <code class="computeroutput"><span class="identifier">T</span><span class="special">::~</span><span class="identifier">T</span><span class="special">()</span></code>)
</p>
<p>
However, since <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code>
itself doesn't throw any exceptions, the only source for exceptions here are
<code class="computeroutput"><span class="identifier">T</span></code>'s constructor, so if you
know the exception guarantees for <code class="computeroutput"><span class="identifier">T</span><span class="special">::</span><span class="identifier">T</span> <span class="special">(</span>
<span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="special">)</span></code>, you
know that <code class="computeroutput"><span class="identifier">optional</span></code>'s assignment
and reset has the same guarantees.
</p>
<pre class="programlisting">
<span class="comment">//
</span><span class="comment">// Case 1: Exception thrown during assignment.
</span><span class="comment">//
</span><span class="identifier">T</span> <span class="identifier">v0</span><span class="special">(</span><span class="number">123</span><span class="special">);</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">opt0</span><span class="special">(</span><span class="identifier">v0</span><span class="special">);</span>
<span class="keyword">try</span>
<span class="special">{</span>
<span class="identifier">T</span> <span class="identifier">v1</span><span class="special">(</span><span class="number">456</span><span class="special">);</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">opt1</span><span class="special">(</span><span class="identifier">v1</span><span class="special">);</span>
<span class="identifier">opt0</span> <span class="special">=</span> <span class="identifier">opt1</span> <span class="special">;</span>
<span class="comment">// If no exception was thrown, assignment succeeded.
</span> <span class="identifier">assert</span><span class="special">(</span> <span class="special">*</span><span class="identifier">opt0</span> <span class="special">==</span> <span class="identifier">v1</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
<span class="keyword">catch</span><span class="special">(...)</span>
<span class="special">{</span>
<span class="comment">// If any exception was thrown, 'opt0' is reset to uninitialized.
</span> <span class="identifier">assert</span><span class="special">(</span> <span class="special">!</span><span class="identifier">opt0</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
<span class="comment">//
</span><span class="comment">// Case 2: Exception thrown during reset(v)
</span><span class="comment">//
</span><span class="identifier">T</span> <span class="identifier">v0</span><span class="special">(</span><span class="number">123</span><span class="special">);</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">opt</span><span class="special">(</span><span class="identifier">v0</span><span class="special">);</span>
<span class="keyword">try</span>
<span class="special">{</span>
<span class="identifier">T</span> <span class="identifier">v1</span><span class="special">(</span><span class="number">456</span><span class="special">);</span>
<span class="identifier">opt</span><span class="special">.</span><span class="identifier">reset</span> <span class="special">(</span> <span class="identifier">v1</span> <span class="special">)</span> <span class="special">;</span>
<span class="comment">// If no exception was thrown, reset succeeded.
</span> <span class="identifier">assert</span><span class="special">(</span> <span class="special">*</span><span class="identifier">opt</span> <span class="special">==</span> <span class="identifier">v1</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
<span class="keyword">catch</span><span class="special">(...)</span>
<span class="special">{</span>
<span class="comment">// If any exception was thrown, 'opt' is reset to uninitialized.
</span> <span class="identifier">assert</span><span class="special">(</span> <span class="special">!</span><span class="identifier">opt</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
</pre>
<a name="boost_optional.exception_safety_guarantees.swap"></a><h4>
<a name="id2644335"></a>
<a href="exception_safety_guarantees.html#boost_optional.exception_safety_guarantees.swap">Swap</a>
</h4>
<p>
<code class="computeroutput"><span class="keyword">void</span> <span class="identifier">swap</span><span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;&amp;,</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;&amp;</span> <span class="special">)</span></code> has the same exception guarantee as <code class="computeroutput"><span class="identifier">swap</span><span class="special">(</span><span class="identifier">T</span><span class="special">&amp;,</span><span class="identifier">T</span><span class="special">&amp;)</span></code>
when both optionals are initialized. If only one of the optionals is initialized,
it gives the same <span class="emphasis"><em>basic</em></span> exception guarantee as <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">reset</span><span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="special">)</span></code> (since
<code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">reset</span><span class="special">()</span></code> doesn't throw). If none of the optionals
is initialized, it has no-throw guarantee since it is a no-op.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="a_note_about_optional_bool_.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="type_requirements.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,52 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Implementation Notes</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="type_requirements.html" title="Type requirements">
<link rel="next" href="dependencies_and_portability.html" title="Dependencies
and Portability">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="type_requirements.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="dependencies_and_portability.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.implementation_notes"></a><a href="implementation_notes.html" title="Implementation Notes">Implementation Notes</a>
</h2></div></div></div>
<p>
<code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> is
currently implemented using a custom aligned storage facility built from <code class="computeroutput"><span class="identifier">alignment_of</span></code> and <code class="computeroutput"><span class="identifier">type_with_alignment</span></code>
(both from Type Traits). It uses a separate boolean flag to indicate the initialization
state. Placement new with <code class="computeroutput"><span class="identifier">T</span></code>'s
copy constructor and <code class="computeroutput"><span class="identifier">T</span></code>'s destructor
are explicitly used to initialize,copy and destroy optional values. As a result,
<code class="computeroutput"><span class="identifier">T</span></code>'s default constructor is
effectively by-passed, but the exception guarantees are basic. It is planned
to replace the current implementation with another with stronger exception
safety, such as a future <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">variant</span></code>.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="type_requirements.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="dependencies_and_portability.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,200 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>In-Place Factories</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="rebinding_semantics_for_assignment_of_optional_references.html" title="Rebinding
semantics for assignment of optional references">
<link rel="next" href="a_note_about_optional_bool_.html" title="A note about
optional&lt;bool&gt;">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="rebinding_semantics_for_assignment_of_optional_references.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="a_note_about_optional_bool_.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.in_place_factories"></a><a href="in_place_factories.html" title="In-Place Factories">In-Place Factories</a>
</h2></div></div></div>
<p>
One of the typical problems with wrappers and containers is that their interfaces
usually provide an operation to initialize or assign the contained object as
a copy of some other object. This not only requires the underlying type to
be <a href="../../../../utility/CopyConstructible.html" target="_top">Copy Constructible</a>,
but also requires the existence of a fully constructed object, often temporary,
just to follow the copy from:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">X</span>
<span class="special">{</span>
<span class="identifier">X</span> <span class="special">(</span> <span class="keyword">int</span><span class="special">,</span> <span class="identifier">std</span><span class="special">:::</span><span class="identifier">string</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span> <span class="special">;</span>
<span class="keyword">class</span> <span class="identifier">W</span>
<span class="special">{</span>
<span class="identifier">X</span> <span class="identifier">wrapped_</span> <span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">W</span> <span class="special">(</span> <span class="identifier">X</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span> <span class="special">)</span> <span class="special">:</span> <span class="identifier">wrapped_</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">{}</span>
<span class="special">}</span> <span class="special">;</span>
<span class="keyword">void</span> <span class="identifier">foo</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Temporary object created.
</span> <span class="identifier">W</span> <span class="special">(</span> <span class="identifier">X</span><span class="special">(</span><span class="number">123</span><span class="special">,</span><span class="string">"hello"</span><span class="special">)</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
A solution to this problem is to support direct construction of the contained
object right in the container's storage. In this scheme, the user only needs
to supply the arguments to the constructor to use in the wrapped object construction.
</p>
<pre class="programlisting">
<span class="keyword">class</span> <span class="identifier">W</span>
<span class="special">{</span>
<span class="identifier">X</span> <span class="identifier">wrapped_</span> <span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">W</span> <span class="special">(</span> <span class="identifier">X</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span> <span class="special">)</span> <span class="special">:</span> <span class="identifier">wrapped_</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">{}</span>
<span class="identifier">W</span> <span class="special">(</span> <span class="keyword">int</span> <span class="identifier">a0</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">a1</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">wrapped_</span><span class="special">(</span><span class="identifier">a0</span><span class="special">,</span><span class="identifier">a1</span><span class="special">)</span> <span class="special">{}</span>
<span class="special">}</span> <span class="special">;</span>
<span class="keyword">void</span> <span class="identifier">foo</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Wrapped object constructed in-place
</span> <span class="comment">// No temporary created.
</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">123</span><span class="special">,</span><span class="string">"hello"</span><span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
A limitation of this method is that it doesn't scale well to wrapped objects
with multiple constructors nor to generic code were the constructor overloads
are unknown.
</p>
<p>
The solution presented in this library is the family of <span class="bold"><strong>InPlaceFactories</strong></span>
and <span class="bold"><strong>TypedInPlaceFactories</strong></span>. These factories
are a family of classes which encapsulate an increasing number of arbitrary
constructor parameters and supply a method to construct an object of a given
type using those parameters at an address specified by the user via placement
new.
</p>
<p>
For example, one member of this family looks like:
</p>
<pre class="programlisting">
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span><span class="keyword">class</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">A1</span><span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">TypedInPlaceFactory2</span>
<span class="special">{</span>
<span class="identifier">A0</span> <span class="identifier">m_a0</span> <span class="special">;</span> <span class="identifier">A1</span> <span class="identifier">m_a1</span> <span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">TypedInPlaceFactory2</span><span class="special">(</span> <span class="identifier">A0</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a0</span><span class="special">,</span> <span class="identifier">A1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a1</span> <span class="special">)</span> <span class="special">:</span> <span class="identifier">m_a0</span><span class="special">(</span><span class="identifier">a0</span><span class="special">),</span> <span class="identifier">m_a1</span><span class="special">(</span><span class="identifier">a1</span><span class="special">)</span> <span class="special">{}</span>
<span class="keyword">void</span> <span class="identifier">construct</span> <span class="special">(</span> <span class="keyword">void</span><span class="special">*</span> <span class="identifier">p</span> <span class="special">)</span> <span class="special">{</span> <span class="keyword">new</span> <span class="special">(</span><span class="identifier">p</span><span class="special">)</span> <span class="identifier">T</span><span class="special">(</span><span class="identifier">m_a0</span><span class="special">,</span><span class="identifier">m_a1</span><span class="special">)</span> <span class="special">;</span> <span class="special">}</span>
<span class="special">}</span> <span class="special">;</span>
</pre>
<p>
A wrapper class aware of this can use it as:
</p>
<pre class="programlisting">
<span class="keyword">class</span> <span class="identifier">W</span>
<span class="special">{</span>
<span class="identifier">X</span> <span class="identifier">wrapped_</span> <span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">W</span> <span class="special">(</span> <span class="identifier">X</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span> <span class="special">)</span> <span class="special">:</span> <span class="identifier">wrapped_</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">{}</span>
<span class="identifier">W</span> <span class="special">(</span> <span class="identifier">TypedInPlaceFactory2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">fac</span> <span class="special">)</span> <span class="special">{</span> <span class="identifier">fac</span><span class="special">.</span><span class="identifier">construct</span><span class="special">(&amp;</span><span class="identifier">wrapped_</span><span class="special">)</span> <span class="special">;</span> <span class="special">}</span>
<span class="special">}</span> <span class="special">;</span>
<span class="keyword">void</span> <span class="identifier">foo</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Wrapped object constructed in-place via a TypedInPlaceFactory.
</span> <span class="comment">// No temporary created.
</span> <span class="identifier">W</span> <span class="special">(</span> <span class="identifier">TypedInPlaceFactory2</span><span class="special">&lt;</span><span class="identifier">X</span><span class="special">,</span><span class="keyword">int</span><span class="special">,</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span><span class="special">&amp;</span><span class="identifier">rt</span><span class="special">(</span><span class="number">123</span><span class="special">,</span><span class="string">"hello"</span><span class="special">))</span> <span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
The factories are divided in two groups:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
<span class="underline">TypedInPlaceFactories</span>: those which
take the target type as a primary template parameter.
</li>
<li>
<span class="underline">InPlaceFactories</span>: those with a template
<code class="computeroutput"><span class="identifier">construct</span><span class="special">(</span><span class="keyword">void</span><span class="special">*)</span></code> member
function taking the target type.
</li>
</ul></div>
<p>
Within each group, all the family members differ only in the number of parameters
allowed.
</p>
<p>
This library provides an overloaded set of helper template functions to construct
these factories without requiring unnecessary template parameters:
</p>
<pre class="programlisting">
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">A0</span><span class="special">,...,</span><span class="keyword">class</span> <span class="identifier">AN</span><span class="special">&gt;</span>
<span class="identifier">InPlaceFactoryN</span> <span class="special">&lt;</span><span class="identifier">A0</span><span class="special">,...,</span><span class="identifier">AN</span><span class="special">&gt;</span> <span class="identifier">in_place</span> <span class="special">(</span> <span class="identifier">A0</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a0</span><span class="special">,</span> <span class="special">...,</span> <span class="identifier">AN</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">aN</span><span class="special">)</span> <span class="special">;</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span><span class="keyword">class</span> <span class="identifier">A0</span><span class="special">,...,</span><span class="keyword">class</span> <span class="identifier">AN</span><span class="special">&gt;</span>
<span class="identifier">TypedInPlaceFactoryN</span> <span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">A0</span><span class="special">,...,</span><span class="identifier">AN</span><span class="special">&gt;</span> <span class="identifier">in_place</span> <span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a0</span><span class="special">,</span> <span class="identifier">A0</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a0</span><span class="special">,</span> <span class="special">...,</span> <span class="identifier">AN</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">aN</span><span class="special">)</span> <span class="special">;</span>
</pre>
<p>
In-place factories can be used generically by the wrapper and user as follows:
</p>
<pre class="programlisting">
<span class="keyword">class</span> <span class="identifier">W</span>
<span class="special">{</span>
<span class="identifier">X</span> <span class="identifier">wrapped_</span> <span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">W</span> <span class="special">(</span> <span class="identifier">X</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span> <span class="special">)</span> <span class="special">:</span> <span class="identifier">wrapped_</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">{}</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">InPlaceFactory</span> <span class="special">&gt;</span>
<span class="identifier">W</span> <span class="special">(</span> <span class="identifier">InPlaceFactory</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">fac</span> <span class="special">)</span> <span class="special">{</span> <span class="identifier">fac</span><span class="special">.</span><span class="keyword">template</span> <span class="special">&lt;</span><span class="identifier">X</span><span class="special">&gt;</span><span class="identifier">construct</span><span class="special">(&amp;</span><span class="identifier">wrapped_</span><span class="special">)</span> <span class="special">;</span> <span class="special">}</span>
<span class="special">}</span> <span class="special">;</span>
<span class="keyword">void</span> <span class="identifier">foo</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Wrapped object constructed in-place via a InPlaceFactory.
</span> <span class="comment">// No temporary created.
</span> <span class="identifier">W</span> <span class="special">(</span> <span class="identifier">in_place</span><span class="special">(</span><span class="number">123</span><span class="special">,</span><span class="string">"hello"</span><span class="special">)</span> <span class="special">)</span> <span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
The factories are implemented in the headers: <a href="../../../../../boost/utility/in_place_factory.hpp" target="_top">in_place_factory.hpp</a>
and <a href="../../../../../boost/utility/typed_in_place_factory.hpp" target="_top">typed_in_place_factory.hpp</a>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="rebinding_semantics_for_assignment_of_optional_references.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="a_note_about_optional_bool_.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,82 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Optional references</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="examples.html" title="Examples">
<link rel="next" href="rebinding_semantics_for_assignment_of_optional_references.html" title="Rebinding
semantics for assignment of optional references">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="examples.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="rebinding_semantics_for_assignment_of_optional_references.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.optional_references"></a><a href="optional_references.html" title="Optional references">Optional references</a>
</h2></div></div></div>
<p>
This library allows the template parameter <code class="computeroutput"><span class="identifier">T</span></code>
to be of reference type: <code class="computeroutput"><span class="identifier">T</span><span class="special">&amp;</span></code>, and to some extent, <code class="computeroutput"><span class="identifier">T</span>
<span class="keyword">const</span><span class="special">&amp;</span></code>.
</p>
<p>
However, since references are not real objects some restrictions apply and
some operations are not available in this case:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
Converting constructors
</li>
<li>
Converting assignment
</li>
<li>
InPlace construction
</li>
<li>
InPlace assignment
</li>
<li>
Value-access via pointer
</li>
</ul></div>
<p>
Also, even though <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&amp;&gt;</span></code>
treats it wrapped pseudo-object much as a real value, a true real reference
is stored so aliasing will ocurr:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
Copies of <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&amp;&gt;</span></code>
will copy the references but all these references will nonetheless reefer
to the same object.
</li>
<li>
Value-access will actually provide access to the referenced object rather
than the reference itself.
</li>
</ul></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="examples.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="rebinding_semantics_for_assignment_of_optional_references.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,151 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Rebinding
semantics for assignment of optional references</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="optional_references.html" title="Optional references">
<link rel="next" href="in_place_factories.html" title="In-Place Factories">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="optional_references.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="in_place_factories.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.rebinding_semantics_for_assignment_of_optional_references"></a><a href="rebinding_semantics_for_assignment_of_optional_references.html" title="Rebinding
semantics for assignment of optional references">Rebinding
semantics for assignment of optional references</a>
</h2></div></div></div>
<p>
If you assign to an <span class="emphasis"><em>uninitialized </em></span> <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&amp;&gt;</span></code>
the effect is to bind (for the first time) to the object. Clearly, there is
no other choice.
</p>
<pre class="programlisting">
<span class="keyword">int</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">1</span> <span class="special">;</span>
<span class="keyword">int</span><span class="special">&amp;</span> <span class="identifier">rx</span> <span class="special">=</span> <span class="identifier">x</span> <span class="special">;</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&amp;&gt;</span> <span class="identifier">ora</span> <span class="special">;</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&amp;&gt;</span> <span class="identifier">orb</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">;</span>
<span class="identifier">ora</span> <span class="special">=</span> <span class="identifier">orb</span> <span class="special">;</span> <span class="comment">// now 'ora' is bound to 'x' through 'rx'
</span><span class="special">*</span><span class="identifier">ora</span> <span class="special">=</span> <span class="number">2</span> <span class="special">;</span> <span class="comment">// Changes value of 'x' through 'ora'
</span><span class="identifier">assert</span><span class="special">(</span><span class="identifier">x</span><span class="special">==</span><span class="number">2</span><span class="special">);</span>
</pre>
<p>
If you assign to a bare C++ reference, the assignment is forwarded to the referenced
object; it's value changes but the reference is never rebound.
</p>
<pre class="programlisting">
<span class="keyword">int</span> <span class="identifier">a</span> <span class="special">=</span> <span class="number">1</span> <span class="special">;</span>
<span class="keyword">int</span><span class="special">&amp;</span> <span class="identifier">ra</span> <span class="special">=</span> <span class="identifier">a</span> <span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">b</span> <span class="special">=</span> <span class="number">2</span> <span class="special">;</span>
<span class="keyword">int</span><span class="special">&amp;</span> <span class="identifier">rb</span> <span class="special">=</span> <span class="identifier">b</span> <span class="special">;</span>
<span class="identifier">ra</span> <span class="special">=</span> <span class="identifier">rb</span> <span class="special">;</span> <span class="comment">// Changes the value of 'a' to 'b'
</span><span class="identifier">assert</span><span class="special">(</span><span class="identifier">a</span><span class="special">==</span><span class="identifier">b</span><span class="special">);</span>
<span class="identifier">b</span> <span class="special">=</span> <span class="number">3</span> <span class="special">;</span>
<span class="identifier">assert</span><span class="special">(</span><span class="identifier">ra</span><span class="special">!=</span><span class="identifier">b</span><span class="special">);</span> <span class="comment">// 'ra' is not rebound to 'b'
</span></pre>
<p>
Now, if you assign to an <span class="emphasis"><em>initialized </em></span> <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&amp;&gt;</span></code>,
the effect is to <span class="bold"><strong>rebind</strong></span> to the new object
instead of assigning the referee. This is unlike bare C++ references.
</p>
<pre class="programlisting">
<span class="keyword">int</span> <span class="identifier">a</span> <span class="special">=</span> <span class="number">1</span> <span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">b</span> <span class="special">=</span> <span class="number">2</span> <span class="special">;</span>
<span class="keyword">int</span><span class="special">&amp;</span> <span class="identifier">ra</span> <span class="special">=</span> <span class="identifier">a</span> <span class="special">;</span>
<span class="keyword">int</span><span class="special">&amp;</span> <span class="identifier">rb</span> <span class="special">=</span> <span class="identifier">b</span> <span class="special">;</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&amp;&gt;</span> <span class="identifier">ora</span><span class="special">(</span><span class="identifier">ra</span><span class="special">)</span> <span class="special">;</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&amp;&gt;</span> <span class="identifier">orb</span><span class="special">(</span><span class="identifier">rb</span><span class="special">)</span> <span class="special">;</span>
<span class="identifier">ora</span> <span class="special">=</span> <span class="identifier">orb</span> <span class="special">;</span> <span class="comment">// 'ora' is rebound to 'b'
</span><span class="special">*</span><span class="identifier">ora</span> <span class="special">=</span> <span class="number">3</span> <span class="special">;</span> <span class="comment">// Changes value of 'b' (not 'a')
</span><span class="identifier">assert</span><span class="special">(</span><span class="identifier">a</span><span class="special">==</span><span class="number">1</span><span class="special">);</span>
<span class="identifier">assert</span><span class="special">(</span><span class="identifier">b</span><span class="special">==</span><span class="number">3</span><span class="special">);</span>
</pre>
<a name="boost_optional.rebinding_semantics_for_assignment_of_optional_references.rationale"></a><h4>
<a name="id2639932"></a>
<a href="rebinding_semantics_for_assignment_of_optional_references.html#boost_optional.rebinding_semantics_for_assignment_of_optional_references.rationale">Rationale</a>
</h4>
<p>
Rebinding semantics for the assignment of <span class="emphasis"><em>initialized </em></span>
<code class="computeroutput"><span class="identifier">optional</span></code> references has been
chosen to provide <span class="bold"><strong>consistency among initialization states</strong></span>
even at the expense of lack of consistency with the semantics of bare C++ references.
It is true that <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">U</span><span class="special">&gt;</span></code> strives
to behave as much as possible as <code class="computeroutput"><span class="identifier">U</span></code>
does whenever it is initialized; but in the case when <code class="computeroutput"><span class="identifier">U</span></code>
is <code class="computeroutput"><span class="identifier">T</span><span class="special">&amp;</span></code>,
doing so would result in inconsistent behavior w.r.t to the lvalue initialization
state.
</p>
<p>
Imagine <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&amp;&gt;</span></code>
forwarding assignment to the referenced object (thus changing the referenced
object value but not rebinding), and consider the following code:
</p>
<pre class="programlisting">
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&amp;&gt;</span> <span class="identifier">a</span> <span class="special">=</span> <span class="identifier">get</span><span class="special">();</span>
<span class="keyword">int</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">1</span> <span class="special">;</span>
<span class="keyword">int</span><span class="special">&amp;</span> <span class="identifier">rx</span> <span class="special">=</span> <span class="identifier">x</span> <span class="special">;</span>
<span class="identifier">optional</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&amp;&gt;</span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">rx</span><span class="special">);</span>
<span class="identifier">a</span> <span class="special">=</span> <span class="identifier">b</span> <span class="special">;</span>
</pre>
<p>
What does the assignment do?
</p>
<p>
If <code class="computeroutput"><span class="identifier">a</span></code> is <span class="emphasis"><em>uninitialized</em></span>,
the answer is clear: it binds to <code class="computeroutput"><span class="identifier">x</span></code>
(we now have another reference to <code class="computeroutput"><span class="identifier">x</span></code>).
But what if <code class="computeroutput"><span class="identifier">a</span></code> is already <span class="emphasis"><em>initialized</em></span>?
it would change the value of the referenced object (whatever that is); which
is inconsistent with the other possible case.
</p>
<p>
If <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&amp;&gt;</span></code>
would assign just like <code class="computeroutput"><span class="identifier">T</span><span class="special">&amp;</span></code>
does, you would never be able to use Optional's assignment without explicitly
handling the previous initialization state unless your code is capable of functioning
whether after the assignment, <code class="computeroutput"><span class="identifier">a</span></code>
aliases the same object as <code class="computeroutput"><span class="identifier">b</span></code>
or not.
</p>
<p>
That is, you would have to discriminate in order to be consistency.
</p>
<p>
If in your code rebinding to another object is not an option, then is very
likely that binding for the fist time isn't either. In such case, assignment
to an <span class="emphasis"><em>uninitialized </em></span> <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&amp;&gt;</span></code>
shall be prohibited. It is quite possible that in such scenario the precondition
that the lvalue must be already initialized exist. If it doesn't, then binding
for the first time is OK while rebinding is not which is IMO very unlikely.
In such scenario, you can assign the value itself directly, as in:
</p>
<pre class="programlisting">
<span class="identifier">assert</span><span class="special">(!!</span><span class="identifier">opt</span><span class="special">);</span>
<span class="special">*</span><span class="identifier">opt</span><span class="special">=</span><span class="identifier">value</span><span class="special">;</span>
</pre>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="optional_references.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="in_place_factories.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,147 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Synopsis</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="development.html" title="Development">
<link rel="next" href="detailed_semantics.html" title="Detailed Semantics">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="development.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="detailed_semantics.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.synopsis"></a><a href="synopsis.html" title="Synopsis">Synopsis</a>
</h2></div></div></div>
<pre class="programlisting">
<span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">optional</span>
<span class="special">{</span>
<span class="keyword">public</span> <span class="special">:</span>
<span class="comment">// (If T is of reference type, the parameters and results by reference are by value)
</span>
<span class="identifier">optional</span> <span class="special">()</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_constructor"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">optional</span> <span class="special">(</span> <span class="identifier">none_t</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_constructor_none_t"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">optional</span> <span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">v</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_constructor_value"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="comment">// [new in 1.34]
</span> <span class="identifier">optional</span> <span class="special">(</span> <span class="keyword">bool</span> <span class="identifier">condition</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">v</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_constructor_bool_value"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">optional</span> <span class="special">(</span> <span class="identifier">optional</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rhs</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_constructor_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span> <span class="keyword">explicit</span> <span class="identifier">optional</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">U</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rhs</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_constructor_other_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">InPlaceFactory</span><span class="special">&gt;</span> <span class="keyword">explicit</span> <span class="identifier">optional</span> <span class="special">(</span> <span class="identifier">InPlaceFactory</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">f</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_constructor_factory"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">TypedInPlaceFactory</span><span class="special">&gt;</span> <span class="keyword">explicit</span> <span class="identifier">optional</span> <span class="special">(</span> <span class="identifier">TypedInPlaceFactory</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">f</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_constructor_factory"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">optional</span><span class="special">&amp;</span> <span class="keyword">operator</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">none_t</span> <span class="special">)</span> <span class="special">;</span>
<span class="identifier">optional</span><span class="special">&amp;</span> <span class="keyword">operator</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">v</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_operator_equal_value"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">optional</span><span class="special">&amp;</span> <span class="keyword">operator</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">optional</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rhs</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_operator_equal_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span> <span class="identifier">optional</span><span class="special">&amp;</span> <span class="keyword">operator</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">U</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rhs</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_operator_equal_other_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">InPlaceFactory</span><span class="special">&gt;</span> <span class="identifier">optional</span><span class="special">&amp;</span> <span class="keyword">operator</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">InPlaceFactory</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">f</span> <span class="special">)</span> <span class="special">;</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">TypedInPlaceFactory</span><span class="special">&gt;</span> <span class="identifier">optional</span><span class="special">&amp;</span> <span class="keyword">operator</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">TypedInPlaceFactory</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">f</span> <span class="special">)</span> <span class="special">;</span>
<span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">get</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">get</span><span class="special">()</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="comment">// [new in 1.34]
</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">get_value_or</span><span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="keyword">default</span> <span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get_value_or_value"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">T</span> <span class="keyword">const</span><span class="special">*</span> <span class="keyword">operator</span> <span class="special">-&gt;()</span> <span class="keyword">const</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_operator_arrow"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">T</span><span class="special">*</span> <span class="keyword">operator</span> <span class="special">-&gt;()</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_operator_arrow"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="keyword">operator</span> <span class="special">*()</span> <span class="keyword">const</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">T</span><span class="special">&amp;</span> <span class="keyword">operator</span> <span class="special">*()</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">T</span> <span class="keyword">const</span><span class="special">*</span> <span class="identifier">get_ptr</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get_ptr"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="identifier">T</span><span class="special">*</span> <span class="identifier">get_ptr</span><span class="special">()</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get_ptr"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">operator</span> <span class="identifier">unspecified</span><span class="special">-</span><span class="keyword">bool</span><span class="special">-</span><span class="identifier">type</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_operator_bool"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">bool</span> <span class="keyword">operator</span><span class="special">!()</span> <span class="keyword">const</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_operator_not"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="comment">// deprecated methods
</span>
<span class="comment">// (deprecated)
</span> <span class="keyword">void</span> <span class="identifier">reset</span><span class="special">()</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_reset"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="comment">// (deprecated)
</span> <span class="keyword">void</span> <span class="identifier">reset</span> <span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_reset_value"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="comment">// (deprecated)
</span> <span class="keyword">bool</span> <span class="identifier">is_initialized</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_is_initialized"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="special">};</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="keyword">bool</span> <span class="keyword">operator</span> <span class="special">==</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">y</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_operator_compare_equal_optional_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="keyword">bool</span> <span class="keyword">operator</span> <span class="special">!=</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">y</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_operator_compare_not_equal_optional_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="keyword">bool</span> <span class="keyword">operator</span> <span class="special">&lt;</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">y</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_operator_compare_less_optional_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="keyword">bool</span> <span class="keyword">operator</span> <span class="special">&gt;</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">y</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_operator_compare_greater_optional_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="keyword">bool</span> <span class="keyword">operator</span> <span class="special">&lt;=</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">y</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_operator_compare_less_or_equal_optional_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="keyword">bool</span> <span class="keyword">operator</span> <span class="special">&gt;=</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">y</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_operator_compare_greater_or_equal_optional_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="comment">// [new in 1.34]
</span><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">make_optional</span> <span class="special">(</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">v</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_make_optional_value"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="comment">// [new in 1.34]
</span><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">make_optional</span> <span class="special">(</span> <span class="keyword">bool</span> <span class="identifier">condition</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">v</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_make_optional_bool_value"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="comment">// [new in 1.34]
</span><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">get_optional_value_or</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">opt</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="keyword">default</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get_value_or_value"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">get</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">opt</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">get</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&amp;</span> <span class="identifier">opt</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">*</span> <span class="identifier">get</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">*</span> <span class="identifier">opt</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">get</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;*</span> <span class="identifier">opt</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">T</span> <span class="keyword">const</span><span class="special">*</span> <span class="identifier">get_pointer</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">opt</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get_ptr"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">get_pointer</span> <span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&amp;</span> <span class="identifier">opt</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_optional_get_ptr"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">inline</span> <span class="keyword">void</span> <span class="identifier">swap</span><span class="special">(</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;&amp;</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;&amp;</span> <span class="identifier">y</span> <span class="special">)</span> <span class="special">;</span> <a href="detailed_semantics.html#reference_swap_optional_optional"><span class="inlinemediaobject"><img src="../images/callouts/R.png" alt="R"></span></a>
<span class="special">}</span> <span class="comment">// namespace boost
</span></pre>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="development.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="detailed_semantics.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,50 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Type requirements</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="up" href="../index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="prev" href="exception_safety_guarantees.html" title="Exception Safety
Guarantees">
<link rel="next" href="implementation_notes.html" title="Implementation Notes">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.htm">Home</a></td>
<td align="center"><a href="../libraries.html">Libraries</a></td>
<td align="center"><a href="../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="exception_safety_guarantees.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="implementation_notes.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="boost_optional.type_requirements"></a><a href="type_requirements.html" title="Type requirements">Type requirements</a>
</h2></div></div></div>
<p>
In general, <code class="computeroutput"><span class="identifier">T</span></code> must be <a href="../../../../utility/CopyConstructible.html" target="_top">Copy Constructible</a> and
have a no-throw destructor. The copy-constructible requirement is not needed
if <span class="bold"><strong>InPlaceFactories</strong></span> are used.
</p>
<p>
<code class="computeroutput"><span class="identifier">T</span></code> <span class="underline">is
not</span> required to be <a href="http://www.sgi.com/tech/stl/DefaultConstructible.html" target="_top">Default
Constructible</a>.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="exception_safety_guarantees.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="implementation_notes.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>

View File

@ -1,582 +0,0 @@
/*=============================================================================
Copyright (c) 2004 Joel de Guzman
http://spirit.sourceforge.net/
Use, modification and distribution is subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
/*=============================================================================
Body defaults
=============================================================================*/
body
{
margin: 1em;
font-family: sans-serif;
}
/*=============================================================================
Paragraphs
=============================================================================*/
p
{
text-align: left;
font-size: 10pt;
line-height: 1.15;
}
/*=============================================================================
Program listings
=============================================================================*/
/* Code on paragraphs */
p tt.computeroutput
{
font-size: 10pt;
}
pre.synopsis
{
font-size: 10pt;
margin: 1pc 4% 0pc 4%;
padding: 0.5pc 0.5pc 0.5pc 0.5pc;
}
.programlisting,
.screen
{
font-size: 10pt;
display: block;
margin: 1pc 4% 0pc 4%;
padding: 0.5pc 0.5pc 0.5pc 0.5pc;
}
/* Program listings in tables don't get borders */
td .programlisting,
td .screen
{
margin: 0pc 0pc 0pc 0pc;
padding: 0pc 0pc 0pc 0pc;
}
/*=============================================================================
Headings
=============================================================================*/
h1, h2, h3, h4, h5, h6
{
text-align: left;
margin: 1em 0em 0.5em 0em;
font-weight: bold;
}
h1 { font: 140% }
h2 { font: bold 140% }
h3 { font: bold 130% }
h4 { font: bold 120% }
h5 { font: italic 110% }
h6 { font: italic 100% }
/* Top page titles */
title,
h1.title,
h2.title
h3.title,
h4.title,
h5.title,
h6.title,
.refentrytitle
{
font-weight: bold;
margin-bottom: 1pc;
}
h1.title { font-size: 140% }
h2.title { font-size: 140% }
h3.title { font-size: 130% }
h4.title { font-size: 120% }
h5.title { font-size: 110% }
h6.title { font-size: 100% }
.section h1
{
margin: 0em 0em 0.5em 0em;
font-size: 140%;
}
.section h2 { font-size: 140% }
.section h3 { font-size: 130% }
.section h4 { font-size: 120% }
.section h5 { font-size: 110% }
.section h6 { font-size: 100% }
/* Code on titles */
h1 tt.computeroutput { font-size: 140% }
h2 tt.computeroutput { font-size: 140% }
h3 tt.computeroutput { font-size: 130% }
h4 tt.computeroutput { font-size: 120% }
h5 tt.computeroutput { font-size: 110% }
h6 tt.computeroutput { font-size: 100% }
/*=============================================================================
Author
=============================================================================*/
h3.author
{
font-size: 100%
}
/*=============================================================================
Lists
=============================================================================*/
li
{
font-size: 10pt;
line-height: 1.3;
}
/* Unordered lists */
ul
{
text-align: left;
}
/* Ordered lists */
ol
{
text-align: left;
}
/*=============================================================================
Links
=============================================================================*/
a
{
text-decoration: none; /* no underline */
}
a:hover
{
text-decoration: underline;
}
/*=============================================================================
Spirit style navigation
=============================================================================*/
.spirit-nav
{
text-align: right;
}
.spirit-nav a
{
color: white;
padding-left: 0.5em;
}
.spirit-nav img
{
border-width: 0px;
}
/*=============================================================================
Table of contents
=============================================================================*/
.toc
{
margin: 1pc 4% 0pc 4%;
padding: 0.1pc 1pc 0.1pc 1pc;
font-size: 10pt;
line-height: 1.15;
}
.toc-main
{
text-align: center;
margin: 3pc 16% 3pc 16%;
padding: 3pc 1pc 3pc 1pc;
line-height: 0.1;
}
.boost-toc
{
float: right;
padding: 0.5pc;
}
/*=============================================================================
Tables
=============================================================================*/
.table-title,
div.table p.title
{
margin-left: 4%;
padding-right: 0.5em;
padding-left: 0.5em;
}
.informaltable table,
.table table
{
width: 92%;
margin-left: 4%;
margin-right: 4%;
}
div.informaltable table,
div.table table
{
padding: 4px;
}
/* Table Cells */
div.informaltable table tr td,
div.table table tr td
{
padding: 0.5em;
text-align: left;
}
div.informaltable table tr th,
div.table table tr th
{
padding: 0.5em 0.5em 0.5em 0.5em;
border: 1pt solid white;
font-size: 120%;
}
/*=============================================================================
Blurbs
=============================================================================*/
div.note,
div.tip,
div.important,
div.caution,
div.warning,
div.sidebar
{
font-size: 10pt;
line-height: 1.2;
display: block;
margin: 1pc 4% 0pc 4%;
padding: 0.5pc 0.5pc 0.5pc 0.5pc;
}
div.sidebar img
{
padding: 1pt;
}
/*=============================================================================
Callouts
=============================================================================*/
.line_callout_bug img
{
float: left;
position:relative;
left: 4px;
top: -12px;
clear: left;
margin-left:-22px;
}
.callout_bug img
{
}
/*=============================================================================
Variable Lists
=============================================================================*/
/* Make the terms in definition lists bold */
div.variablelist dl dt,
span.term
{
font-weight: bold;
font-size: 10pt;
}
div.variablelist table tbody tr td
{
text-align: left;
vertical-align: top;
padding: 0em 2em 0em 0em;
font-size: 10pt;
margin: 0em 0em 0.5em 0em;
line-height: 1;
}
/* Make the terms in definition lists bold */
div.variablelist dl dt
{
margin-bottom: 0.2em;
}
div.variablelist dl dd
{
margin: 0em 0em 0.5em 2em;
font-size: 10pt;
}
div.variablelist table tbody tr td p
div.variablelist dl dd p
{
margin: 0em 0em 0.5em 0em;
line-height: 1;
}
/*=============================================================================
Misc
=============================================================================*/
/* Title of books and articles in bibliographies */
span.title
{
font-style: italic;
}
span.underline
{
text-decoration: underline;
}
span.strikethrough
{
text-decoration: line-through;
}
/* Copyright, Legal Notice */
div div.legalnotice p
{
text-align: left
}
/*=============================================================================
Colors
=============================================================================*/
@media screen
{
/* Links */
a
{
color: #0C7445;
}
a:visited
{
color: #663974;
}
h1 a, h2 a, h3 a, h4 a, h5 a, h6 a,
h1 a:hover, h2 a:hover, h3 a:hover, h4 a:hover, h5 a:hover, h6 a:hover,
h1 a:visited, h2 a:visited, h3 a:visited, h4 a:visited, h5 a:visited, h6 a:visited
{
text-decoration: none; /* no underline */
color: #000000;
}
/* Syntax Highlighting */
.keyword { color: #0000AA; }
.identifier { color: #000000; }
.special { color: #707070; }
.preprocessor { color: #402080; }
.char { color: teal; }
.comment { color: #800000; }
.string { color: teal; }
.number { color: teal; }
.white_bkd { background-color: #E8FBE9; }
.dk_grey_bkd { background-color: #A0DAAC; }
/* Copyright, Legal Notice */
.copyright
{
color: #666666;
font-size: small;
}
div div.legalnotice p
{
color: #666666;
}
/* Program listing */
pre.synopsis
{
border: 1px solid #DCDCDC;
border-bottom: 3px solid #9D9D9D;
border-right: 3px solid #9D9D9D;
background-color: #FAFFFB;
}
.programlisting,
.screen
{
border: 1px solid #DCDCDC;
border-bottom: 3px solid #9D9D9D;
border-right: 3px solid #9D9D9D;
background-color: #FAFFFB;
}
td .programlisting,
td .screen
{
border: 0px solid #DCDCDC;
}
/* Blurbs */
div.note,
div.tip,
div.important,
div.caution,
div.warning,
div.sidebar
{
border: 1px solid #DCDCDC;
border-bottom: 3px solid #9D9D9D;
border-right: 3px solid #9D9D9D;
background-color: #FAFFFB;
}
/* Table of contents */
.toc
{
border: 1px solid #DCDCDC;
border-bottom: 3px solid #9D9D9D;
border-right: 3px solid #9D9D9D;
background-color: #FAFFFB;
}
/* Table of contents */
.toc-main
{
border: 1px solid #DCDCDC;
border-bottom: 3px solid #9D9D9D;
border-right: 3px solid #9D9D9D;
background-color: #FAFFFB;
}
/* Tables */
div.informaltable table tr td,
div.table table tr td
{
border: 1px solid #DCDCDC;
background-color: #FAFFFB;
}
div.informaltable table tr th,
div.table table tr th
{
background-color: #E3F9E4;
border: 1px solid #DCDCDC;
}
/* Misc */
span.highlight
{
color: #00A000;
}
}
@media print
{
/* Links */
a
{
color: black;
}
a:visited
{
color: black;
}
.spirit-nav
{
display: none;
}
/* Program listing */
pre.synopsis
{
border: 1px solid gray;
background-color: #FAFFFB;
}
.programlisting,
.screen
{
border: 1px solid gray;
background-color: #FAFFFB;
}
td .programlisting,
td .screen
{
border: 0px solid #DCDCDC;
}
/* Table of contents */
.toc
{
border: 1px solid #DCDCDC;
border-bottom: 3px solid #9D9D9D;
border-right: 3px solid #9D9D9D;
background-color: #FAFFFB;
}
/* Table of contents */
.toc-main
{
border: 1px solid #DCDCDC;
border-bottom: 3px solid #9D9D9D;
border-right: 3px solid #9D9D9D;
background-color: #FAFFFB;
}
.informaltable table,
.table table
{
border: 1px solid #DCDCDC;
border-bottom: 3px solid #9D9D9D;
border-right: 3px solid #9D9D9D;
border-collapse: collapse;
background-color: #FAFFFB;
}
/* Tables */
div.informaltable table tr td,
div.table table tr td
{
border: 1px solid #DCDCDC;
background-color: #FAFFFB;
}
div.informaltable table tr th,
div.table table tr th
{
border: 1px solid #DCDCDC;
background-color: #FAFFFB;
}
/* Misc */
span.highlight
{
font-weight: bold;
}
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 391 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 485 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 410 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 488 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 509 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 499 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 507 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 446 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 431 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 441 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 423 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 431 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 397 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 434 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 420 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 293 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 768 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 741 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 766 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

View File

@ -1,168 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Chapter<EFBFBD>1.<2E>Boost.Optional</title>
<link rel="stylesheet" href="boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.1">
<link rel="start" href="index.html" title="Chapter<65>1.<2E>Boost.Optional">
<link rel="next" href="boost_optional/development.html" title="Development">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../boost.png"></td>
<td align="center"><a href="../../index.htm">Home</a></td>
<td align="center"><a href="libraries.html">Libraries</a></td>
<td align="center"><a href="../../people/people.htm">People</a></td>
<td align="center"><a href="../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav"><a accesskey="n" href="boost_optional/development.html"><img src="images/next.png" alt="Next"></a></div>
<div class="chapter" lang="en">
<div class="titlepage"><div>
<div><h2 class="title">
<a name="optional"></a>Chapter<EFBFBD>1.<2E>Boost.Optional</h2></div>
<div><div class="author"><h3 class="author">
<span class="firstname">Fernando Luis</span> <span class="surname">Cacciola Carballal</span>
</h3></div></div>
<div><p class="copyright">Copyright <20> 2003 -2007 Fernando Luis Cacciola Carballal</p></div>
<div><div class="legalnotice">
<a name="id2604804"></a><p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></div>
</div></div>
<div class="toc">
<p><b>Table of Contents</b></p>
<dl>
<dt><span class="section"><a href="index.html#optional.motivation">Motivation</a></span></dt>
<dt><span class="section"><a href="boost_optional/development.html">Development</a></span></dt>
<dt><span class="section"><a href="boost_optional/synopsis.html">Synopsis</a></span></dt>
<dt><span class="section"><a href="boost_optional/detailed_semantics.html">Detailed Semantics</a></span></dt>
<dt><span class="section"><a href="boost_optional/examples.html">Examples</a></span></dt>
<dt><span class="section"><a href="boost_optional/optional_references.html">Optional references</a></span></dt>
<dt><span class="section"><a href="boost_optional/rebinding_semantics_for_assignment_of_optional_references.html">Rebinding
semantics for assignment of optional references</a></span></dt>
<dt><span class="section"><a href="boost_optional/in_place_factories.html">In-Place Factories</a></span></dt>
<dt><span class="section"><a href="boost_optional/a_note_about_optional_bool_.html">A note about
optional&lt;bool&gt;</a></span></dt>
<dt><span class="section"><a href="boost_optional/exception_safety_guarantees.html">Exception Safety
Guarantees</a></span></dt>
<dt><span class="section"><a href="boost_optional/type_requirements.html">Type requirements</a></span></dt>
<dt><span class="section"><a href="boost_optional/implementation_notes.html">Implementation Notes</a></span></dt>
<dt><span class="section"><a href="boost_optional/dependencies_and_portability.html">Dependencies
and Portability</a></span></dt>
<dt><span class="section"><a href="boost_optional/acknowledgments.html">Acknowledgments</a></span></dt>
</dl>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="optional.motivation"></a><a href="index.html#optional.motivation" title="Motivation">Motivation</a>
</h2></div></div></div>
<p>
Consider these functions which should return a value but which might not have
a value to return:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
(A) <code class="computeroutput"><span class="keyword">double</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">n</span>
<span class="special">);</span></code>
</li>
<li>
(B) <code class="computeroutput"><span class="keyword">char</span> <span class="identifier">get_async_input</span><span class="special">();</span></code>
</li>
<li>
(C) <code class="computeroutput"><span class="identifier">point</span> <span class="identifier">polygon</span><span class="special">::</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span></code>
</li>
</ul></div>
<p>
There are different approaches to the issue of not having a value to return.
</p>
<p>
A typical approach is to consider the existence of a valid return value as
a postcondition, so that if the function cannot compute the value to return,
it has either undefined behavior (and can use assert in a debug build) or uses
a runtime check and throws an exception if the postcondition is violated. This
is a reasonable choice for example, for function (A), because the lack of a
proper return value is directly related to an invalid parameter (out of domain
argument), so it is appropriate to require the callee to supply only parameters
in a valid domain for execution to continue normally.
</p>
<p>
However, function (B), because of its asynchronous nature, does not fail just
because it can't find a value to return; so it is incorrect to consider such
a situation an error and assert or throw an exception. This function must return,
and somehow, must tell the callee that it is not returning a meaningful value.
</p>
<p>
A similar situation occurs with function (C): it is conceptually an error to
ask a <span class="emphasis"><em>null-area</em></span> polygon to return a point inside itself,
but in many applications, it is just impractical for performance reasons to
treat this as an error (because detecting that the polygon has no area might
be too expensive to be required to be tested previously), and either an arbitrary
point (typically at infinity) is returned, or some efficient way to tell the
callee that there is no such point is used.
</p>
<p>
There are various mechanisms to let functions communicate that the returned
value is not valid. One such mechanism, which is quite common since it has
zero or negligible overhead, is to use a special value which is reserved to
communicate this. Classical examples of such special values are <code class="computeroutput"><span class="identifier">EOF</span></code>, <code class="computeroutput"><span class="identifier">string</span><span class="special">::</span><span class="identifier">npos</span></code>, points
at infinity, etc...
</p>
<p>
When those values exist, i.e. the return type can hold all meaningful values
<span class="emphasis"><em>plus</em></span> the <span class="emphasis"><em>signal</em></span> value, this mechanism
is quite appropriate and well known. Unfortunately, there are cases when such
values do not exist. In these cases, the usual alternative is either to use
a wider type, such as <code class="computeroutput"><span class="keyword">int</span></code> in place
of <code class="computeroutput"><span class="keyword">char</span></code>; or a compound type, such
as <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span></code>.
</p>
<p>
Returning a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span></code>, thus attaching a boolean flag to the result
which indicates if the result is meaningful, has the advantage that can be
turned into a consistent idiom since the first element of the pair can be whatever
the function would conceptually return. For example, the last two functions
could have the following interface:
</p>
<pre class="programlisting">
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">get_async_input</span><span class="special">();</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">polygon</span><span class="special">::</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span>
</pre>
<p>
These functions use a consistent interface for dealing with possibly inexistent
results:
</p>
<pre class="programlisting">
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">poly</span><span class="special">.</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span>
<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">p</span><span class="special">.</span><span class="identifier">second</span> <span class="special">)</span>
<span class="identifier">flood_fill</span><span class="special">(</span><span class="identifier">p</span><span class="special">.</span><span class="identifier">first</span><span class="special">);</span>
</pre>
<p>
However, not only is this quite a burden syntactically, it is also error prone
since the user can easily use the function result (first element of the pair)
without ever checking if it has a valid value.
</p>
<p>
Clearly, we need a better idiom.
</p>
</div>
<p>
</p>
<a name="optional_refassign"></a><p>
</p>
<a name="optional_in_place_factories"></a><p>
</p>
<a name="optional_implementation_notes"></a><p>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"><small><p>Last revised: May 29, 2007 at 06:31:03 GMT</p></small></td>
<td align="right"><small></small></td>
</tr></table>
<hr>
<div class="spirit-nav"><a accesskey="n" href="boost_optional/development.html"><img src="images/next.png" alt="Next"></a></div>
</body>
</html>

View File

@ -1,28 +0,0 @@
[/
Boost.Optional
Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[#optional_implementation_notes]
[section Implementation Notes]
`optional<T>` is currently implemented using a custom aligned storage facility
built from `alignment_of` and `type_with_alignment` (both from Type Traits). It
uses a separate boolean flag to indicate the initialization state.
Placement new with `T`'s copy constructor and `T`'s destructor are explicitly used
to initialize,copy and destroy optional values.
As a result, `T`'s default constructor is effectively by-passed, but the exception
guarantees are basic.
It is planned to replace the current implementation with another with stronger
exception safety, such as a future `boost::variant`.
[endsect]

View File

@ -3,6 +3,7 @@
<HTML>
<HEAD>
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-1252">
@ -23,6 +24,7 @@ HREF="../../../boost/optional/optional.hpp">boost/optional/optional.hpp</A>&gt;
<DT><A HREF="#examples">Examples</A></DT>
<DT><A HREF="#ref">Optional references</A></DT>
<DT><A HREF="#refassign">Rebinding semantics for assignment of optional references</A></DT>
<DT><A HREF="#none">none_t and none</A></DT>
<DT><A HREF="#inplace">In-Place Factories</A></DT>
<DT><A HREF="#bool">A note about optional&lt;bool&gt;</A></DT>
<DT><A HREF="#exsafety">Exception Safety Guarantees</A></DT>
@ -138,7 +140,7 @@ necessary in order to do so.</p>
<u>purpose</u> of optional&lt;T&gt; suggests
an alternative model: a <i>container</i> that either has a value of T or nothing.
</p>
<p>As of this writing I don't know of any precedence for a variable-size fixed-capacity (of 1)
<p>As of this writing I don't know of any precedent for a variable-size fixed-capacity (of 1)
stack-based container model for optional values, yet I believe this is the consequence of
the lack of practical implementations of such a container rather than an inherent shortcoming
of the container model.</p>
@ -348,7 +350,7 @@ class optional
T const& get() const ;
T& get() ;
T<span lang="es"> const&amp;</span> get_value_or( T const&amp; default ) const ; <u><i>[new in 1.34]</u></i>
T const&amp; get_value_or( T const&amp; default ) const ; <u><i>[new in 1.34]</u></i>
T const* operator -&gt;() const ;
T* operator -&gt;() ;
@ -383,11 +385,59 @@ template&lt;class T&gt; inline bool operator <= ( optional&lt;T&gt; const& x, op
template&lt;class T&gt; inline bool operator >= ( optional&lt;T&gt; const& x, optional&lt;T&gt; const& y ) ;
template&lt;class T&gt; inline bool operator == ( optional&lt;T&gt; const& x, T const& n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator != ( optional&lt;T&gt; const& x, T const& n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator < ( optional&lt;T&gt; const& x, T const& n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator > ( optional&lt;T&gt; const& x, T const& n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator <= ( optional&lt;T&gt; const& x, T const& n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator >= ( optional&lt;T&gt; const& x, T const& n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator == ( T const& n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator != ( T const& n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator < ( T const& n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator > ( T const& n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator <= ( T const& n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator >= ( T const& n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator == ( optional&lt;T&gt; const& x, none_t n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator != ( optional&lt;T&gt; const& x, none_t n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator < ( optional&lt;T&gt; const& x, none_t n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator > ( optional&lt;T&gt; const& x, none_t n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator <= ( optional&lt;T&gt; const& x, none_t n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator >= ( optional&lt;T&gt; const& x, none_t n ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator == ( none_t n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator != ( none_t n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator < ( none_t n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator > ( none_t n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator <= ( none_t n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline bool operator >= ( none_t n, optional&lt;T&gt; const& y ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline optional&lt;T&gt; make_optional ( T const& v ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline optional&lt;T&gt; make_optional ( bool condition, T const& v ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline T <span lang="es">const&amp; </span>get_<span lang="es">optional_</span>value_or ( optional&lt;T&gt; const& opt, T const& default ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline T const&amp; get_optional_value_or ( optional&lt;T&gt; const& opt, T const& default ) ; <u><i>[new in 1.34]</u></i>
template&lt;class T&gt; inline T const& get ( optional&lt;T&gt; const& opt ) ;
@ -457,9 +507,11 @@ used as the parameter.</p>
</blockquote>
<p><b>Example:</b></p>
<blockquote>
<pre>#include &lt;boost/none.hpp&gt;</pre>
<pre>optional&lt;T&gt; n(none) ;
assert ( !n ) ;</pre>
<pre>
#include &lt;boost/none.hpp&gt;
optional&lt;int&gt; n(boost::none) ;
assert ( !n ) ;
</pre>
</blockquote>
</blockquote>
@ -476,9 +528,11 @@ in that case, this constructor has no effect.
</p>
<p><b>Example:</b></p>
<blockquote>
<pre>T v;
<pre>
T v;
optional&lt;T&gt; opt(v);
assert ( *opt == v ) ;</pre>
assert ( *opt == v ) ;
</pre>
</blockquote>
</blockquote>
@ -492,29 +546,32 @@ instance of an internal type wrapping the reference 'ref'.</p>
<p><b>Throws:</b> Nothing.</p>
<p><b>Example:</b></p>
<blockquote>
<pre>T v;
<pre>
T v;
T&amp; vref = v ;
optional&lt;T&amp;&gt; opt(vref);
assert ( *opt == v ) ;
++ v ; // mutate referee
assert (*opt == v); </pre>
assert (*opt == v);
</pre>
</blockquote>
</blockquote>
<HR>
<pre>optional&lt;T <i>(not a ref)</i>&gt;::optional( bool condition, T const&amp; v ) ;
optional&lt;T&amp;&gt; <span lang="es"> </span>::optional( bool condition, T&amp; <span lang="es"> </span> v ) ;
optional&lt;T&amp;&gt; ::optional( bool condition, T&amp; v ) ;
</pre>
<blockquote>
<p>If <i>condition</i> is <code>true</code>, same as:</p>
<pre>optional&lt;T <i>(not a ref)</i>&gt;::optional( T const&amp; v )
optional&lt;T&amp;&gt;<span lang="es"> </span>::optional( T&amp;<span lang="es"> </span> v )
optional&lt;T&amp;&gt; ::optional( T&amp; v )
</pre>
<p>otherwise, same as:</p>
<pre>optional&lt;T <i>(not a ref)</i>&gt;::optional()
optional&lt;T&amp;&gt;<span lang="es"> </span>::optional()
<pre>
optional&lt;T <i>(not a ref)</i>&gt;::optional()
optional&lt;T&amp;&gt; ::optional()
</pre>
</blockquote>
@ -533,7 +590,8 @@ in that case, this constructor has no effect.
</p>
<p><b>Example:</b></p>
<blockquote>
<pre>optional&lt;T&gt; uninit ;
<pre>
optional&lt;T&gt; uninit ;
assert (!uninit);
optional&lt;T&gt; uinit2 ( uninit ) ;
@ -562,7 +620,8 @@ is uninitialized.</p>
reefer to the same object<b> </b>(they alias).</p>
<p><b>Example:</b></p>
<blockquote>
<pre>optional&lt;T&amp;&gt; uninit ;
<pre>
optional&lt;T&amp;&gt; uninit ;
assert (!uninit);
optional&lt;T&amp;&gt; uinit2 ( uninit ) ;
@ -605,7 +664,8 @@ in that case, this constructor has no effect.
<p><b>Example:</b></p>
<blockquote>
<pre>optional&lt;double&gt; x(123.4);
<pre>
optional&lt;double&gt; x(123.4);
assert ( *x == 123.4 ) ;
optional&lt;int&gt; y(x) ;
@ -633,7 +693,8 @@ in that case, this constructor has no effect.
<p><b>Example:</b></p>
<blockquote>
<pre>class C { C ( char, double, std::string ) ; } ;
<pre>
class C { C ( char, double, std::string ) ; } ;
C v('A',123.4,&quot;hello&quot;);
@ -649,6 +710,27 @@ assert ( *y == v ) ;
<HR>
<pre>optional&amp; optional&lt;T</i>&gt;::operator= ( none_t n ) ;</pre>
<blockquote>
<p><b>Effect:</b> Same as opeator=(optional const&amp; rhs), when rhs is default-constructed (uninitialized).</p>
<p><b>Postconditions:</b> <b>*this</b> is uninitialized</p>
<p><b>Example:</b></p>
<blockquote>
<pre>
#include &lt;boost/none.hpp&gt;
optional&lt;int&gt; def ;
optional&lt;int&gt; opt(123) ;
opt = boost::none ;
assert ( opt == def ) ;
</pre>
</blockquote>
</blockquote>
<HR>
<pre>optional&amp; optional&lt;T <i>(not a ref)</i>&gt;::operator= ( T const&amp; rhs ) ;</pre>
<blockquote>
<p><b>Effect:</b> Assigns the value 'rhs' to an <b>optional</b>.</p>
@ -664,7 +746,8 @@ uninitialized and T's <i>copy constructor</i> fails, <b>*this</b> is left
properly uninitialized]</p>
<p><b>Example:</b></p>
<blockquote>
<pre>T x;
<pre>
T x;
optional&lt;T&gt; def ;
optional&lt;T&gt; opt(x) ;
@ -687,7 +770,8 @@ and it references the same object referenced by <b>rhs.</b></p>
new object. See <A HREF="#refassign">here</a> for details on this behavior.</p>
<p><b>Example:</b></p>
<blockquote>
<pre>int a = 1 ;
<pre>
int a = 1 ;
int b = 2 ;
T&amp; ra = a ;
T&amp; rb = b ;
@ -817,7 +901,7 @@ assert ( *opt1 == static_cast&lt;U&gt;(v) ) ;
<HR>
<pre>void optional&lt;T&gt;::reset() ;</pre>
<blockquote>
<p><b>Deprecated: </b>Same as operator=( detail::none_t );</p>
<p><b>Deprecated: </b>Same as operator=( none_t n);</p>
</blockquote>
<HR>
@ -852,32 +936,6 @@ assert ( *opt == w ) ;
<HR>
<pre>T const&amp; optional&lt;T <i>(not a ref)</i>&gt;::get_value_or( T const&amp; default) const ;
T&amp; optional&lt;T <i>(not a ref)</i>&gt;::get_value_or( T&amp; default ) ;
inline T const&amp; get_optional_value_or ( optional&lt;T<i> (not a ref)</i>&gt; const&amp; o, T const&amp; default ) ;
inline T&amp; get_optional_value_or ( optional&lt;T <i>(not a ref)</i>&gt;&amp; o, T&amp; default ) ;
</pre>
<blockquote>
<p><b>Returns:</b> A reference to the contained value, if any, or <code>default</code></p>
<p><b>Throws:</b> Nothing.</p>
<p><b>Example:</b></p>
<blockquote>
<pre>T v, z ;
optional&lt;T&gt; def;
T const&amp; y = def.get_value_or(z);
assert ( y == z ) ;
optional&lt;T&gt; opt ( v );
T const&amp; u = get_optional_value_or(opt,z);
assert ( u == v ) ;
assert ( u != z ) ;
</pre>
</blockquote>
<pre></pre>
</blockquote>
<HR>
<pre>T const&amp; optional&lt;T&amp;&gt;::operator*() const ;
T &amp; optional&lt;T<i>&amp;</i>&gt;::operator*();</pre>
@ -907,29 +965,66 @@ assert ( *opt == v ) ;</pre>
<HR>
<pre>T const* optional&lt;T <i>(not a ref)</i>&gt;::get_ptr() const ;
T* optional&lt;T <i>(not a ref)</i>&gt;::get_ptr() ;
<pre>T const&amp; optional&lt;T&gt;::get_value_or( T const&amp; default) const ;
T&amp; optional&lt;T&gt;::get_value_or( T&amp; default ) ;
inline T const* get_pointer ( optional&lt;T <i>(not a ref)</i>&gt; const&amp; ) ;
inline T* get_pointer ( optional&lt;T <i>(not a ref)</i>&gt; &amp;) ;
inline T const&amp; get_optional_value_or ( optional&lt;T&gt; const&amp; o, T const&amp; default ) ;
inline T&amp; get_optional_value_or ( optional&lt;T&gt;&amp; o, T&amp; default ) ;
</pre>
<blockquote>
<p><b>Returns:</b> A reference to the contained value (which can be itself a reference), if any, or <code>default</code></p>
<p><b>Throws:</b> Nothing.</p>
<p><b>Example:</b></p>
<blockquote>
<pre>T v, z ;
optional&lt;T&gt; def;
T const&amp; y = def.get_value_or(z);
assert ( y == z ) ;
optional&lt;T&gt; opt ( v );
T const&amp; u = get_optional_value_or(opt,z);
assert ( u == v ) ;
assert ( u != z ) ;
</pre>
</blockquote>
<pre></pre>
</blockquote>
<HR>
<pre>T const* optional&lt;T&gt;::get_ptr() const ;
T* optional&lt;T&gt;::get_ptr() ;
inline T const* get_pointer ( optional&lt;T&gt; const&amp; ) ;
inline T* get_pointer ( optional&lt;T&gt; &amp;) ;
</pre>
<blockquote>
<p><b>Returns:</b> If <b>*this</b> is initialized, a pointer to the contained
value; else 0 (<i>null</i>).
</p>
<p><b>Throws:</b> Nothing.</p>
<p><b>Notes:</b> If T is a reference type, the pointer is to the referenced object</p>
<p><b>Notes:</b> The contained value is permanently stored within *this, so
you should not hold nor delete this pointer
you should not hold nor delete this pointer.
</p>
<p><b>Example:</b></p>
<blockquote>
<pre>T v;
optional&lt;T&gt; opt(v);
optional&lt;T&gt; const copt(v);
T* p = opt.get_ptr() ;
T const* cp = copt.get_ptr();
<pre>int v=123;
optional&lt;int&gt; opt(v);
optional&lt;int&gt; const copt(v);
int* p = opt.get_ptr() ;
int const* cp = copt.get_ptr();
assert ( p == get_pointer(opt) );
assert ( cp == get_pointer(copt) ) ;
int& rv = v ;
optional&lt;int&amp;&gt; optr(rv);
*(optr.get_ptr()) = 456 ;
assert ( v == 456 );
</pre>
</blockquote>
</blockquote>
@ -938,13 +1033,14 @@ assert ( cp == get_pointer(copt) ) ;
<HR>
<pre>T const* optional&lt;T <i>(not a ref)</i>&gt;::operator -&gt;() const ;
T* optional&lt;T <i>(not a ref)</i>&gt;::operator -&gt;() ;
<pre>T const* optional&lt;T&gt;::operator -&gt;() const ;
T* optional&lt;T&gt;::operator -&gt;() ;
</pre>
<blockquote>
<p><b>Requirements: *this</b> is initialized.</p>
<p><b>Returns:</b> A pointer to the contained value.</p>
<p><b>Throws:</b> Nothing.</p>
<p><b>Notes:</b> If T is a reference type, the pointer is to the referenced object</p>
<p><b>Notes:</b> The requirement is asserted via BOOST_ASSERT().</p>
<p><b>Example:</b></p>
<blockquote>
@ -952,6 +1048,14 @@ T* optional&lt;T <i>(not a ref)</i>&gt;::operator -&gt;() ;
X x ;
optional&lt;X&gt; opt (x);
opt-&gt;mdata = 2 ;
X& rx = x ;
optional&lt;X&amp;&gt; optr (rx);
optr-&gt;mdata = 4 ;
assert ( x.mdata = 4 )
</pre>
</blockquote>
</blockquote>
@ -1154,13 +1258,50 @@ assert ( optX != optZ ) ;
<p><b>Throws:</b> Nothing.</p>
</blockquote>
<HR>
<pre>
bool operator == ( optional&lt;T&gt; const&amp; x, T const&amp; n );
bool operator != ( optional&lt;T&gt; const&amp; x, T const&amp; n );
bool operator &lt; ( optional&lt;T&gt; const&amp; x, T const&amp; n );
bool operator &gt; ( optional&lt;T&gt; const&amp; x, T const&amp; n );
bool operator &lt;= ( optional&lt;T&gt; const&amp; x, T const&amp; n );
bool operator &gt;= ( optional&lt;T&gt; const&amp; x, T const&amp; n );
bool operator == ( T const&amp; n, optional&lt;T&gt; const&amp; y );
bool operator != ( T const&amp; n, optional&lt;T&gt; const&amp; y );
bool operator &lt; ( T const&amp; n, optional&lt;T&gt; const&amp; y );
bool operator &gt; ( T const&amp; n, optional&lt;T&gt; const&amp; y );
bool operator &lt;= ( T const&amp; n, optional&lt;T&gt; const&amp; y );
bool operator &gt;= ( T const&amp; n, optional&lt;T&gt; const&amp; y );
</pre>
<blockquote>
<p><b>Returns:</b> The result obtained by replacing the argument 'n' by optional&lt;T&gt;(n).</p>
</blockquote>
<HR>
<pre>
bool operator == ( optional&lt;T&gt; const&amp; x, none_t n );
bool operator != ( optional&lt;T&gt; const&amp; x, none_t n );
bool operator &lt; ( optional&lt;T&gt; const&amp; x, none_t n );
bool operator &gt; ( optional&lt;T&gt; const&amp; x, none_t n );
bool operator &lt;= ( optional&lt;T&gt; const&amp; x, none_t n );
bool operator &gt;= ( optional&lt;T&gt; const&amp; x, none_t n );
bool operator == ( none_t n, optional&lt;T&gt; const&amp; y );
bool operator != ( none_t n, optional&lt;T&gt; const&amp; y );
bool operator &lt; ( none_t n, optional&lt;T&gt; const&amp; y );
bool operator &gt; ( none_t n, optional&lt;T&gt; const&amp; y );
bool operator &lt;= ( none_t n, optional&lt;T&gt; const&amp; y );
bool operator &gt;= ( none_t n, optional&lt;T&gt; const&amp; y );
</pre>
<blockquote>
<p><b>Returns:</b> The result obtained by replacing the argument 'n' by optional&lt;T&gt;().</p>
</blockquote>
<HR>
<pre>void swap ( optional&lt;T&gt;&amp x, optional&lt;T&gt&amp y );</pre>
<blockquote>
<p><b>Effect:</b> If both <b>x</b> and <b>y</b> are initialized, calls <code>swap(*x,*y)</code> using std::swap.<br>
If only one is initialized, say x, calls: <code>y.reset(*x); x.reset();</code><br>
If only one is initialized, say x, calls: <code>y = *x; x = boost:none;</code><br>
If none is initialized, does nothing. </p>
<p><b>Postconditions:</b> The states of x and y interchanged.</p>
<p><b>Throws:</b> If both are initialized, whatever swap(T&amp;,T&amp;) throws.
@ -1169,7 +1310,7 @@ If only one is initialized, whatever T::T ( T const&amp; ) throws. </p>
If only one is initialized, T::~T() and T::T( T const& ) is called. </p>
<p><b>Exception Safety:</b> If both are initialized, this operation has the exception
safety guarantees of swap(T&,T&).<br>
If only one is initialized, it has the same <b>basic</b> guarantee as optional&lt;T&gt;::reset( T const& ). </p>
If only one is initialized, it has the same <b>basic</b> guarantee as optional&lt;T&gt;::operator=( T const& ). </p>
<p><b>Example:</b></p>
<blockquote>
<pre>T x(12);
@ -1219,12 +1360,12 @@ void receive_async_message()
<pre>optional&lt;string&gt; name ;
if ( database.open() )
{
&nbsp; name.reset ( database.lookup(employer_name) ) ;
&nbsp; name = database.lookup(employer_name) ;
}
else
{
&nbsp; if ( can_ask_user )
&nbsp;&nbsp;&nbsp; name.reset ( user.ask(employer_name) ) ;
&nbsp;&nbsp;&nbsp; name = user.ask(employer_name) ;
}
if ( name )
@ -1245,7 +1386,7 @@ else print(&quot;employer's name not found!&quot;);
&nbsp;&nbsp;&nbsp; void clip_in_rect ( rect const&amp; rect )
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; {
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ....
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; m_clipping_rect.reset ( rect ) ; // initialized here.
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; m_clipping_rect = rect ; // initialized here.
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; }
&nbsp;&nbsp;&nbsp; void draw ( canvas& cvs )
@ -1289,16 +1430,17 @@ some operations are not available in this case:</p>
<li>Converting assignment</li>
<li>InPlace construction</li>
<li>InPlace assignment</li>
<li>Value-access via pointer</li>
</ul>
<p>Also, even though optional&lt;T&amp;&gt; treats it wrapped pseudo-object much as a real
value, a true real reference is stored so aliasing will ocurr: </p>
value, a true real reference is stored, thus aliasing can ocurr: </p>
<ul>
<li>Copies of optional&lt;T&amp;&gt; will copy the references but all these references
<li>Copies of optional&lt;T&amp;&gt; copies the reference, but all copied references
will nonetheless reefer to the same object.</li>
<li>Value-access will actually provide access to the referenced object rather
<li>Value-access provides access to the referenced object rather
than the reference itself.</li>
<li>Pointer-access provides a pointer to the referenced object rather
than a pointer to the reference itself.</li>
</ul>
<HR>
@ -1309,7 +1451,7 @@ Clearly, there is no other choice.</p>
<pre>int x = 1 ;
int&amp; rx = x ;
optional&lt;int&amp;&gt; ora ;
optional&lt;int&amp;&gt; orb(x) ;
optional&lt;int&amp;&gt; orb(rx) ;
ora = orb ; // now 'ora'&nbsp;is bound to 'x' through 'rx'
*ora = 2 ; // Changes value of 'x' through 'ora'
assert(x==2);
@ -1320,7 +1462,7 @@ referenced object; it's value changes but the reference is never rebound.</p>
int&amp; ra = a ;
int b = 2 ;
int&amp; rb = b ;
ra = rb ; // Changes the value of 'a' to 'b'
ra = rb ; // Changes the VALUE of 'a' to that of 'b'
assert(a==b);
b = 3 ;
assert(ra!=b); // 'ra' is not rebound to 'b'
@ -1346,38 +1488,68 @@ C++ references.<br>
It is true that optional&lt;U&gt; strives to behave as much as possible as U does
whenever it is initialized; but in the case when U is T&amp;, doing so would result
in inconsistent behavior w.r.t to the lvalue initialization state.</p>
<p>Imagine optional&lt;T&amp;&gt; forwarding assignment to the referenced object (thus
changing the referenced object value but not rebinding), and consider the
following code :</p>
<pre>&nbsp; optional&lt;int&amp;&gt; a = get();
&nbsp; int x = 1 ;
&nbsp; int&amp; rx = x ;
&nbsp; optional&lt;int&amp;&gt; b(rx);
&nbsp; a = b ;
<p>Consider the following code :</p>
<pre>
int x = 1 ;
int& rx = x ;
void foo ( optional&lt;int&amp;&gt; & outer )
{
optional&lt;int&amp;&gt; b(rx);
outer = b ;
}
</pre>
<p>What should the assignment to 'outer' do?<br>
If 'outer' is <i>uninitialized</i>, the answer is clear: it should bind to 'x' (so we now have
a second reference to 'x').<br>
But what if 'outer' is already <i>initialized?</i><br>
The assignment could change the value of the
referenced object (whatever that is), but doing that would be inconsistent with the uninitialized case
and then you wouldn't be able to reason at compile time about all the references to x since
the appearance of a new reference to it would depend on wheter the lvalue ('outer')
is initialized or not.</p>
<p>Arguably, if rebinding the reference to another object is wrong for your code, then is
likely that binding it for the fist time via assignment instead of intialization is also wrong.
In that case, you can always just assign the value to the referenced object directly via
the access operator <code>*opt=value</code>.</p>
<p>If rebinding is wrong but first-time binding
isn't (via assignment), you can always work around the rebinding semantics using a discriminator:</p>
<pre>
if ( !opt )
opt = value ; // first-time binding
else *opt = value ; // assign to referee without rebinding
</pre>
<HR>
<H2><A NAME="none">none_t and none</A></H2>
<p>optional&lt;T&gt; supports uninitialized states with a convenient syntax via a constant of
the <i>implementation-defined</i> type <code>boost::none_t</code>, identified as <code>boost::none</code>.</p>
<p>Starting with Boost version 1.34.0, both <code>boost::none_t</code> and <code>boost::none</code> are
included in <code>boost/none.hpp</code>, which is automatically included by <code>boost/optional/optional.hpp</code>
</p>
<p>This contant is similar in purpose to NULL, except that is not a <i>null pointer value</i>. You can use it to initialize
an optional&lt;T&gt; instance, which has the same effect of a default constructor, and you can assign it which has the
effect of reseting the optional&lt;T&gt; instance. You can also use it in relational operators to make the predicate expression
more clear.</p>
<p>Here are some typical examples:</p>
<pre>
#include "boost/optional/optional.hpp" // boost/none.hpp is included automatically
boost::optional&lt;int&gt; foo ( int a )
{
return some_condition(a) ? boost::make_optional(a) : boost::none ;
// NOTE: in real code you can just use this: make_optional(some_condition(a), a )
}
boost::optional&lt;int&gt; opt = boost::none ;
if ( opt == boost::none )
opt = foo(123);
opt = boost::none ;
</pre>
<p>What does the assignment do?<br>
If 'a' is <i>uninitialized</i>, the answer is clear: it binds to 'x' (we now have
another reference to 'x').<br>
But what if 'a' is already <i>initialized? </i>it would change the value of the
referenced object (whatever that is); which is inconsistent with the other
possible case.</p>
<p>If optional&lt;T&amp;&gt; would assign just like T&amp; does, you would never be able to
use Optional's assignment without explicitly handling the previous
initialization state unless your code is capable of functioning whether after
the assignment, 'a'
aliases the same object as 'b' or not.</p>
<p>That is, you would have to discriminate in order to be consistency.<br>
<br>
If in your code rebinding to another object is not an option, then is very
likely that binding for the fist time isn't either. In such case, assignment to
an <i>uninitialized</i> optional&lt;T&amp;&gt; shall be prohibited. It is quite
possible that in such scenario the precondition that the lvalue must be already
initialized exist. If it doesn't, then binding for the first time is OK while
rebinding is not which is IMO
very unlikely.<br>
In such scenario, you can assign the value itself directly, as in:</p>
<pre>assert(!!opt);
*opt=value; </pre>
<HR>
@ -1506,9 +1678,8 @@ public:
the <i>maybe</i> state <u>represents a valid value</u>, unlike the corresponding state
of an uninitialized optional&lt;bool&gt;.<br>
It should be carefully considered if an optional&lt;bool&gt; instead of a tribool is really needed</p>
<p>Second, optional&lt;&gt; provides an implicit conversion to bool. This conversion
refers to the initialization state and not to the contained value.<br>
Using optional&lt;bool&gt; can lead to subtle errors due to the implicit bool conversion:</p>
<p>Second, optional&lt;&gt; provides a simple way to test initialization state: an implicit conversion to a type that evaluates as a 'bool' in a boolean context.<br>
Using optional&lt;bool&gt; can lead to subtle errors due to this implicit conversion:</p>
<pre>void foo ( bool v ) ;
void bar()
{
@ -1524,7 +1695,9 @@ void bar()
integral promotions don't apply (i.e. if foo() takes an 'int' instead, it won't compile). <HR>
<H2><A NAME="exsafety">Exception Safety Guarantees</A></H2>
<H3><u>Assignment and Reset:</u></H3>
<H3><u>Assignment:</u></H3>
<p><i>IMPORTANT NOTE: This changed in 1.33.1 with respect to previous versions</i></p>
<p>Because of the current implementation (see <A HREF="#impl">Implementation Notes</A>), all
of the assignment methods:</p>
<ul>
@ -1537,60 +1710,17 @@ of the assignment methods:</p>
InPlaceFactory const&amp; ) </code></li>
<li> <code>template&lt;class TypedInPlaceFactory&gt; optional&lt;T&gt;::operator= (
TypedInPlaceFactory const&amp; ) </code></li>
<li> <code>optional&lt;T&gt;:::reset ( T const&amp;)</code></li>
</ul>
<p>Can only <i>guarantee</i> the <u>basic exception safety</u>: The lvalue optional is left <u>uninitialized</u> if an exception is thrown (any previous value is <i>first</i> destroyed using T::~T())</p>
<p>cannot offer any <i>exception safety guarantee</i> beyond that provided by <code>T::operator=( T const&amp; )</code></p>
<p>On the other hand, the <i>uninitializing</i> methods:</p>
<ul>
<li><code>optional&lt;T&gt;::operator= ( detail::none_t ) </code></li>
<li><code>optional&lt;T&gt;::reset()</code></li>
</ul>
<p>Provide the no-throw guarantee (assuming a no-throw T::~T())</p>
<p>However, since <code>optional&lt&gt</code> itself doesn't throw any exceptions,
the only source for exceptions here are T's constructor, so if you know the exception guarantees
for T::T ( T const&amp; ), you know that optional's assignment and reset has the same guarantees.</p>
<pre>//
// Case 1: Exception thrown during assignment.
//
T v0(123);
optional&ltT&gt opt0(v0);
try
{
&nbsp; T v1(456);
&nbsp; optional&ltT&gt opt1(v1);
&nbsp; opt0 = opt1 ;
<p>Provides the no-throw guarantee (assuming a no-throw T::~T()) becuse it only destroys the stored object.</p>
&nbsp; // If no exception was thrown, assignment succeeded.
&nbsp; assert( *opt0 == v1 ) ;
}
catch(...)
{
&nbsp; // If any exception was thrown, 'opt0' is reset to uninitialized.
&nbsp; assert( !opt0 ) ;
}
//
// Case 2: Exception thrown during reset(v)
//
T v0(123);
optional&ltT&gt opt(v0);
try
{
&nbsp; T v1(456);
&nbsp; opt.reset ( v1 ) ;
&nbsp; // If no exception was thrown, reset succeeded.
&nbsp; assert( *opt == v1 ) ;
}
catch(...)
{
&nbsp; // If any exception was thrown, 'opt' is reset to uninitialized.
&nbsp; assert( !opt ) ;
}
</pre>
<H3><u>Swap:</u></H3>
<p><code>void swap( optional&lt;T&gt;&amp;, optional&lt;T&gt;&amp; )</code> has the same exception guarantee as <code>swap(T&amp;,T&amp;)</code> when both optionals are initialized.<br>
If only one of the optionals is initialized, it gives the same <i>basic</i> exception guarantee as <code>optional&lt;T&gt;::reset( T const&amp; )</code> (since <code>optional&lt;T&gt;::reset()</code> doesn't throw).<br>
If only one of the optionals is initialized, it gives the same exception guarantee as <code>T::operator=( T const&amp; )</code> (since <code>optional&lt;T&gt;::operator=( none_t )</code> doesn't throw).<br>
If none of the optionals is initialized, it has no-throw guarantee since it is a no-op. </p>
<HR>
@ -1604,14 +1734,11 @@ T <u>is not</u> required to be <a href="http://www.sgi.com/tech/stl/DefaultConst
<H2><A NAME="impl">Implementation Notes</A></H2>
<p>optional&lt;T&gt; is currently implemented
using a custom aligned storage facility built from <code>alignment_of</code> and <code>type_with_alignment</code> (both from Type Traits).
It uses a separate boolean flag to indicate the initialization state.<br>
Placement new with T's copy constructor and T's destructor
are explicitly used to initialize,copy and destroy optional values.<br>
As a result, T's default constructor is effectively by-passed, but the exception
guarantees are basic.<br>
It is planned to replace the current implementation with another with
stronger exception safety, such as a future boost::variant<T,nil_t>. </p>
using a custom aligned storage facility built from <code>alignment_of</code> and <code>type_with_alignment</code> (both from Type Traits).
It uses a separate boolean flag to indicate the initialization state.</p>
<p>Placement new with T's copy constructor and T's destructor
is explicitly used to initialize and destroy optional values. This allows T's default constructor to be effectively by-passed.</p>
<p>If assignment is used and the lvalue optional is uninitialized, T's copy constructor is used. However, if it is already initialized, T's assignment operator is used. This prevents optional from offering any exception guarantee stronger than the one offered by the type T itself</p>
<HR>
@ -1665,12 +1792,12 @@ T <u>is not</u> required to be <a href="http://www.sgi.com/tech/stl/DefaultConst
</blockquote>
<HR>
<P>Revised April 21, 2005</P>
<p><EFBFBD> Copyright Fernando Luis Cacciola Carballal, 2003,2004,2005</p>
<P>Revised March 27, 2007</P>
<p><EFBFBD> Copyright Fernando Luis Cacciola Carballal, 2003-2007</p>
<p> Use, modification, and distribution are subject to the Boost Software
License, Version 1.0. (See accompanying file <a href="../../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/LICENSE_1_0.txt</a>)</p>
<P>Developed by <A HREF="mailto:fernando_cacciola@hotmail.com">Fernando Cacciola</A>,
the latest version of this file can be found at <A
HREF="http://www.boost.org">www.boost.org</A>, and the boost <A HREF="http://www.boost.org/more/mailing_lists.htm#main">discussion lists</A></P>
</pre></BODY>
</HTML>
</HTML>

View File

@ -1,131 +0,0 @@
[library Boost.Optional
[quickbook 1.4]
[authors [Cacciola Carballal, Fernando Luis]]
[copyright 2003-2007 Fernando Luis Cacciola Carballal]
[category miscellaneous]
[id optional]
[dirname optional]
[purpose
Discriminated-union wrapper for optional values
]
[source-mode c++]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
]
[/ Macros will be used for links so we have a central place to change them ]
[/ Cited Boost resources ]
[def __BOOST_VARIANT__ [@../../../variant/index.html Boost.Variant]]
[def __BOOST_TRIBOOL__ [@../../../tribool/index.html boost::tribool]]
[def __OPTIONAL_POINTEE__ [@../../../utility/OptionalPointee.html OptionalPointee]]
[def __COPY_CONSTRUCTIBLE__ [@../../../utility/CopyConstructible.html Copy Constructible]]
[def __FUNCTION_EQUAL_POINTEES__ [@../../../utility/OptionalPointee.html#equal `equal_pointees()`]]
[def __FUNCTION_LESS_POINTEES__ [@../../../utility/OptionalPointee.html#less `less_pointees()`]]
[def __IN_PLACE_FACTORY_HPP__ [@../../../../boost/utility/in_place_factory.hpp in_place_factory.hpp]]
[def __TYPED_IN_PLACE_FACTORY_HPP__ [@../../../../boost/utility/typed_in_place_factory.hpp typed_in_place_factory.hpp]]
[/ Other web resources ]
[def __HASKELL__ [@http://www.haskell.org/ Haskell]]
[def __SGI_DEFAULT_CONSTRUCTIBLE__ [@http://www.sgi.com/tech/stl/DefaultConstructible.html Default Constructible]]
[/ Icons ]
[def __NOTE__ [$images/note.png]]
[def __ALERT__ [$images/caution.png]]
[def __DETAIL__ [$images/note.png]]
[def __TIP__ [$images/tip.png]]
[def __QUESTION_MARK__ [$images/question.png]]
[def __SPACE__ [$images/space.png]]
[def __GO_TO__ [$images/callouts/R.png]]
[section Motivation]
Consider these functions which should return a value but which might not have
a value to return:
* (A) `double sqrt(double n );`
* (B) `char get_async_input();`
* (C) `point polygon::get_any_point_effectively_inside();`
There are different approaches to the issue of not having a value to return.
A typical approach is to consider the existence of a valid return value as a
postcondition, so that if the function cannot compute the value to return, it
has either undefined behavior (and can use assert in a debug build) or uses a
runtime check and throws an exception if the postcondition is violated. This
is a reasonable choice for example, for function (A), because the lack of a
proper return value is directly related to an invalid parameter (out of domain
argument), so it is appropriate to require the callee to supply only parameters
in a valid domain for execution to continue normally.
However, function (B), because of its asynchronous nature, does not fail just
because it can't find a value to return; so it is incorrect to consider such
a situation an error and assert or throw an exception. This function must
return, and somehow, must tell the callee that it is not returning a meaningful
value.
A similar situation occurs with function (C): it is conceptually an error to
ask a ['null-area] polygon to return a point inside itself, but in many
applications, it is just impractical for performance reasons to treat this as
an error (because detecting that the polygon has no area might be too expensive
to be required to be tested previously), and either an arbitrary point
(typically at infinity) is returned, or some efficient way to tell the callee
that there is no such point is used.
There are various mechanisms to let functions communicate that the returned
value is not valid. One such mechanism, which is quite common since it has
zero or negligible overhead, is to use a special value which is reserved to
communicate this. Classical examples of such special values are `EOF`,
`string::npos`, points at infinity, etc...
When those values exist, i.e. the return type can hold all meaningful values
['plus] the ['signal] value, this mechanism is quite appropriate and well known.
Unfortunately, there are cases when such values do not exist. In these cases,
the usual alternative is either to use a wider type, such as `int` in place of
`char`; or a compound type, such as `std::pair<point,bool>`.
Returning a `std::pair<T,bool>`, thus attaching a boolean flag to the result
which indicates if the result is meaningful, has the advantage that can be
turned into a consistent idiom since the first element of the pair can be
whatever the function would conceptually return. For example, the last two
functions could have the following interface:
std::pair<char,bool> get_async_input();
std::pair<point,bool> polygon::get_any_point_effectively_inside();
These functions use a consistent interface for dealing with possibly inexistent
results:
std::pair<point,bool> p = poly.get_any_point_effectively_inside();
if ( p.second )
flood_fill(p.first);
However, not only is this quite a burden syntactically, it is also error prone
since the user can easily use the function result (first element of the pair)
without ever checking if it has a valid value.
Clearly, we need a better idiom.
[endsect]
[include development.qbk]
[include reference.qbk]
[include examples.qbk]
[include special_cases.qbk]
[include implementation_notes.qbk]
[include dependencies.qbk]
[include acknowledgments.qbk]

View File

@ -1,880 +0,0 @@
[/
Boost.Optional
Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[section Synopsis]
namespace boost {
template<class T>
class optional
{
public :
// (If T is of reference type, the parameters and results by reference are by value)
optional () ; ``[link reference_optional_constructor __GO_TO__]``
optional ( none_t ) ; ``[link reference_optional_constructor_none_t __GO_TO__]``
optional ( T const& v ) ; ``[link reference_optional_constructor_value __GO_TO__]``
// [new in 1.34]
optional ( bool condition, T const& v ) ; ``[link reference_optional_constructor_bool_value __GO_TO__]``
optional ( optional const& rhs ) ; ``[link reference_optional_constructor_optional __GO_TO__]``
template<class U> explicit optional ( optional<U> const& rhs ) ; ``[link reference_optional_constructor_other_optional __GO_TO__]``
template<class InPlaceFactory> explicit optional ( InPlaceFactory const& f ) ; ``[link reference_optional_constructor_factory __GO_TO__]``
template<class TypedInPlaceFactory> explicit optional ( TypedInPlaceFactory const& f ) ; ``[link reference_optional_constructor_factory __GO_TO__]``
optional& operator = ( none_t ) ; ``[/[link reference_optional_operator_equal_none_t __GO_TO__]]``
optional& operator = ( T const& v ) ; ``[link reference_optional_operator_equal_value __GO_TO__]``
optional& operator = ( optional const& rhs ) ; ``[link reference_optional_operator_equal_optional __GO_TO__]``
template<class U> optional& operator = ( optional<U> const& rhs ) ; ``[link reference_optional_operator_equal_other_optional __GO_TO__]``
template<class InPlaceFactory> optional& operator = ( InPlaceFactory const& f ) ; ``[/[link reference_optional_operator_equal_factory __GO_TO__]]``
template<class TypedInPlaceFactory> optional& operator = ( TypedInPlaceFactory const& f ) ; ``[/[link reference_optional_operator_equal_factory __GO_TO__]]``
T const& get() const ; ``[link reference_optional_get __GO_TO__]``
T& get() ; ``[link reference_optional_get __GO_TO__]``
// [new in 1.34]
T const& get_value_or( T const& default ) const ; ``[link reference_optional_get_value_or_value __GO_TO__]``
T const* operator ->() const ; ``[link reference_optional_operator_arrow __GO_TO__]``
T* operator ->() ; ``[link reference_optional_operator_arrow __GO_TO__]``
T const& operator *() const ; ``[link reference_optional_get __GO_TO__]``
T& operator *() ; ``[link reference_optional_get __GO_TO__]``
T const* get_ptr() const ; ``[link reference_optional_get_ptr __GO_TO__]``
T* get_ptr() ; ``[link reference_optional_get_ptr __GO_TO__]``
operator unspecified-bool-type() const ; ``[link reference_optional_operator_bool __GO_TO__]``
bool operator!() const ; ``[link reference_optional_operator_not __GO_TO__]``
// deprecated methods
// (deprecated)
void reset() ; ``[link reference_optional_reset __GO_TO__]``
// (deprecated)
void reset ( T const& ) ; ``[link reference_optional_reset_value __GO_TO__]``
// (deprecated)
bool is_initialized() const ; ``[link reference_optional_is_initialized __GO_TO__]``
};
template<class T> inline bool operator == ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_equal_optional_optional __GO_TO__]``
template<class T> inline bool operator != ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_not_equal_optional_optional __GO_TO__]``
template<class T> inline bool operator < ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_less_optional_optional __GO_TO__]``
template<class T> inline bool operator > ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_greater_optional_optional __GO_TO__]``
template<class T> inline bool operator <= ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_less_or_equal_optional_optional __GO_TO__]``
template<class T> inline bool operator >= ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_greater_or_equal_optional_optional __GO_TO__]``
// [new in 1.34]
template<class T> inline optional<T> make_optional ( T const& v ) ; ``[link reference_make_optional_value __GO_TO__]``
// [new in 1.34]
template<class T> inline optional<T> make_optional ( bool condition, T const& v ) ; ``[link reference_make_optional_bool_value __GO_TO__]``
// [new in 1.34]
template<class T> inline T const& get_optional_value_or ( optional<T> const& opt, T const& default ) ; ``[link reference_optional_get_value_or_value __GO_TO__]``
template<class T> inline T const& get ( optional<T> const& opt ) ; ``[link reference_optional_get __GO_TO__]``
template<class T> inline T& get ( optional<T> & opt ) ; ``[link reference_optional_get __GO_TO__]``
template<class T> inline T const* get ( optional<T> const* opt ) ; ``[link reference_optional_get __GO_TO__]``
template<class T> inline T* get ( optional<T>* opt ) ; ``[link reference_optional_get __GO_TO__]``
template<class T> inline T const* get_pointer ( optional<T> const& opt ) ; ``[link reference_optional_get_ptr __GO_TO__]``
template<class T> inline T* get_pointer ( optional<T> & opt ) ; ``[link reference_optional_get_ptr __GO_TO__]``
template<class T> inline void swap( optional<T>& x, optional<T>& y ) ; ``[link reference_swap_optional_optional __GO_TO__]``
} // namespace boost
[endsect]
[section Detailed Semantics]
Because `T` might be of reference type, in the sequel, those entries whose
semantic depends on `T` being of reference type or not will be distinguished
using the following convention:
* If the entry reads: `optional<T`['(not a ref)]`>`, the description
corresponds only to the case where `T` is not of reference type.
* If the entry reads: `optional<T&>`, the description corresponds only to
the case where `T` is of reference type.
* If the entry reads: `optional<T>`, the description is the same for both
cases.
[note
The following section contains various `assert()` which are used only to show
the postconditions as sample code. It is not implied that the type `T` must
support each particular expression but that if the expression is supported,
the implied condition holds.
]
__SPACE__
[heading optional class member functions]
__SPACE__
[#reference_optional_constructor]
[: `optional<T>::optional();`]
* [*Effect:] Default-Constructs an `optional`.
* [*Postconditions:] `*this` is [_uninitialized].
* [*Throws:] Nothing.
* Notes: T's default constructor [_is not] called.
* [*Example:]
``
optional<T> def ;
assert ( !def ) ;
``
__SPACE__
[#reference_optional_constructor_none_t]
[: `optional<T>::optional( none_t );`]
* [*Effect:] Constructs an `optional` uninitialized.
* [*Postconditions:] `*this` is [_uninitialized].
* [*Throws:] Nothing.
* [*Notes:] `T`'s default constructor [_is not] called. The expression
`boost::none` denotes an instance of `boost::none_t` that can be used as
the parameter.
* [*Example:]
``
#include <boost/none.hpp>
optional<T> n(none) ;
assert ( !n ) ;
``
__SPACE__
[#reference_optional_constructor_value]
[: `optional<T `['(not a ref)]`>::optional( T const& v )`]
* [*Effect:] Directly-Constructs an `optional`.
* [*Postconditions:] `*this` is [_initialized] and its value is a['copy]
of `v`.
* [*Throws:] Whatever `T::T( T const& )` throws.
* [*Notes: ] `T::T( T const& )` is called.
* [*Exception Safety:] Exceptions can only be thrown during
`T::T( T const& );` in that case, this constructor has no effect.
* [*Example:]
``
T v;
optional<T> opt(v);
assert ( *opt == v ) ;
``
__SPACE__
[: `optional<T&>::optional( T& ref )`]
* [*Effect:] Directly-Constructs an `optional`.
* [*Postconditions:] `*this` is [_initialized] and its value is an instance
of an internal type wrapping the reference `ref`.
* [*Throws:] Nothing.
* [*Example:]
``
T v;
T& vref = v ;
optional<T&> opt(vref);
assert ( *opt == v ) ;
++ v ; // mutate referee
assert (*opt == v);
``
__SPACE__
[#reference_optional_constructor_bool_value]
[: `optional<T` ['(not a ref)]`>::optional( bool condition, T const& v ) ;` ]
[: `optional<T&> ::optional( bool condition, T& v ) ;` ]
* If condition is true, same as:
[: `optional<T` ['(not a ref)]`>::optional( T const& v )`]
[: `optional<T&> ::optional( T& v )`]
* otherwise, same as:
[: `optional<T ['(not a ref)]>::optional()`]
[: `optional<T&> ::optional()`]
__SPACE__
[#reference_optional_constructor_optional]
[: `optional<T `['(not a ref)]`>::optional( optional const& rhs );`]
* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If rhs is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs`; else `*this` is uninitialized.
* [*Throws:] Whatever `T::T( T const& )` throws.
* [*Notes:] If rhs is initialized, `T::T(T const& )` is called.
* [*Exception Safety:] Exceptions can only be thrown during
`T::T( T const& );` in that case, this constructor has no effect.
* [*Example:]
``
optional<T> uninit ;
assert (!uninit);
optional<T> uinit2 ( uninit ) ;
assert ( uninit2 == uninit );
optional<T> init( T(2) );
assert ( *init == T(2) ) ;
optional<T> init2 ( init ) ;
assert ( init2 == init ) ;
``
__SPACE__
[: `optional<T&>::optional( optional const& rhs );`]
* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its
value is another reference to the same object referenced by `*rhs`; else
`*this` is uninitialized.
* [*Throws:] Nothing.
* [*Notes:] If `rhs` is initialized, both `*this` and `*rhs` will reefer to the
same object (they alias).
* [*Example:]
``
optional<T&> uninit ;
assert (!uninit);
optional<T&> uinit2 ( uninit ) ;
assert ( uninit2 == uninit );
T v = 2 ; T& ref = v ;
optional<T> init(ref);
assert ( *init == v ) ;
optional<T> init2 ( init ) ;
assert ( *init2 == v ) ;
v = 3 ;
assert ( *init == 3 ) ;
assert ( *init2 == 3 ) ;
``
__SPACE__
[#reference_optional_constructor_other_optional]
[: `template<U> explicit optional<T` ['(not a ref)]`>::optional( optional<U> const& rhs );`]
* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its
value is a ['copy] of the value of rhs converted to type `T`; else `*this` is
uninitialized.
* [*Throws:] Whatever `T::T( U const& )` throws.
* [*Notes: ] `T::T( U const& )` is called if `rhs` is initialized, which requires a
valid conversion from `U` to `T`.
* [*Exception Safety:] Exceptions can only be thrown during `T::T( U const& );`
in that case, this constructor has no effect.
* [*Example:]
``
optional<double> x(123.4);
assert ( *x == 123.4 ) ;
optional<int> y(x) ;
assert( *y == 123 ) ;
``
__SPACE__
[#reference_optional_constructor_factory]
[: `template<InPlaceFactory> explicit optional<T` ['(not a ref)]`>::optional( InPlaceFactory const& f );`]
[: `template<TypedInPlaceFactory> explicit optional<T` ['(not a ref)]`>::optional( TypedInPlaceFactory const& f );`]
* [*Effect:] Constructs an `optional` with a value of `T` obtained from the
factory.
* [*Postconditions: ] `*this` is [_initialized] and its value is ['directly given]
from the factory `f` (i.e., the value [_is not copied]).
* [*Throws:] Whatever the `T` constructor called by the factory throws.
* [*Notes:] See [link optional_in_place_factories In-Place Factories]
* [*Exception Safety:] Exceptions can only be thrown during the call to
the `T` constructor used by the factory; in that case, this constructor has
no effect.
* [*Example:]
``
class C { C ( char, double, std::string ) ; } ;
C v('A',123.4,"hello");
optional<C> x( in_place ('A', 123.4, "hello") ); // InPlaceFactory used
optional<C> y( in_place<C>('A', 123.4, "hello") ); // TypedInPlaceFactory used
assert ( *x == v ) ;
assert ( *y == v ) ;
``
__SPACE__
[#reference_optional_operator_equal_value]
[: `optional& optional<T` ['(not a ref)]`>::operator= ( T const& rhs ) ;`]
* [*Effect:] Assigns the value `rhs` to an `optional`.
* [*Postconditions: ] `*this` is initialized and its value is a ['copy] of `rhs`.
* [*Throws:] Whatever `T::operator=( T const& )` or `T::T(T const&)` throws.
* [*Notes:] If `*this` was initialized, `T`'s assignment operator is used,
otherwise, its copy-constructor is used.
* [*Exception Safety:] In the event of an exception, the initialization
state of `*this` is unchanged and its value unspecified as far as `optional`
is concerned (it is up to `T`'s `operator=()`). If `*this` is initially
uninitialized and `T`'s ['copy constructor] fails, `*this` is left properly
uninitialized.
* [*Example:]
``
T x;
optional<T> def ;
optional<T> opt(x) ;
T y;
def = y ;
assert ( *def == y ) ;
opt = y ;
assert ( *opt == y ) ;
``
__SPACE__
[: `optional<T&>& optional<T&>::operator= ( T& const& rhs ) ;`]
* [*Effect:] (Re)binds thee wrapped reference.
* [*Postconditions: ] `*this` is initialized and it references the same
object referenced by `rhs`.
* [*Notes:] If `*this` was initialized, is is ['rebound] to the new object.
See [link optional_refassign here] for details on this behavior.
* [*Example:]
``
int a = 1 ;
int b = 2 ;
T& ra = a ;
T& rb = b ;
optional<int&> def ;
optional<int&> opt(ra) ;
def = rb ; // binds 'def' to 'b' through 'rb'
assert ( *def == b ) ;
*def = a ; // changes the value of 'b' to a copy of the value of 'a'
assert ( b == a ) ;
int c = 3;
int& rc = c ;
opt = rc ; // REBINDS to 'c' through 'rc'
c = 4 ;
assert ( *opt == 4 ) ;
``
__SPACE__
[#reference_optional_operator_equal_optional]
[: `optional& optional<T` ['(not a ref)]`>::operator= ( optional const& rhs ) ;`]
* [*Effect:] Assigns another `optional` to an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs`; else `*this` is uninitialized.
* [*Throws:] Whatever `T::operator( T const&)` or `T::T( T const& )` throws.
* [*Notes:] If both `*this` and `rhs` are initially initialized, `T`'s
['assignment operator] is used. If `*this` is initially initialized but `rhs` is
uninitialized, `T`'s [destructor] is called. If `*this` is initially uninitialized
but `rhs` is initialized, `T`'s ['copy constructor] is called.
* [*Exception Safety:] In the event of an exception, the initialization state of
`*this` is unchanged and its value unspecified as far as optional is concerned
(it is up to `T`'s `operator=()`). If `*this` is initially uninitialized and
`T`'s ['copy constructor] fails, `*this` is left properly uninitialized.
* [*Example:]
``
T v;
optional<T> opt(v);
optional<T> def ;
opt = def ;
assert ( !def ) ;
// previous value (copy of 'v') destroyed from within 'opt'.
``
__SPACE__
[: `optional<T&> & optional<T&>::operator= ( optional<T&> const& rhs ) ;`]
* [*Effect:] (Re)binds thee wrapped reference.
* [*Postconditions:] If `*rhs` is initialized, `*this` is initialized and it
references the same object referenced by `*rhs`; otherwise, `*this` is
uninitialized (and references no object).
* [*Notes:] If `*this` was initialized and so is *rhs, this is is ['rebound] to
the new object. See [link optional_refassign here] for details on this behavior.
* [*Example:]
``
int a = 1 ;
int b = 2 ;
T& ra = a ;
T& rb = b ;
optional<int&> def ;
optional<int&> ora(ra) ;
optional<int&> orb(rb) ;
def = orb ; // binds 'def' to 'b' through 'rb' wrapped within 'orb'
assert ( *def == b ) ;
*def = ora ; // changes the value of 'b' to a copy of the value of 'a'
assert ( b == a ) ;
int c = 3;
int& rc = c ;
optional<int&> orc(rc) ;
ora = orc ; // REBINDS ora to 'c' through 'rc'
c = 4 ;
assert ( *ora == 4 ) ;
``
__SPACE__
[#reference_optional_operator_equal_other_optional]
[: `template<U> optional& optional<T` ['(not a ref)]`>::operator= ( optional<U> const& rhs ) ;`]
* [*Effect:] Assigns another convertible optional to an optional.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs` ['converted] to type `T`; else
`*this` is uninitialized.
* [*Throws:] Whatever `T::operator=( U const& )` or `T::T( U const& )` throws.
* [*Notes:] If both `*this` and rhs are initially initialized, `T`'s
['assignment operator] (from `U`) is used. If `*this` is initially initialized
but `rhs` is uninitialized, `T`'s ['destructor] is called. If `*this` is
initially uninitialized but rhs is initialized, `T`'s ['converting constructor]
(from `U`) is called.
* [*Exception Safety:] In the event of an exception, the initialization state
of `*this` is unchanged and its value unspecified as far as optional is
concerned (it is up to `T`'s `operator=()`). If `*this` is initially
uninitialized and `T`'s converting constructor fails, `*this` is left properly
uninitialized.
* [*Example:]
``
T v;
optional<T> opt0(v);
optional<U> opt1;
opt1 = opt0 ;
assert ( *opt1 == static_cast<U>(v) ) ;
``
__SPACE__
[#reference_optional_reset_value]
[: `void optional<T` ['(not a ref)]`>::reset( T const& v ) ;`]
* [*Deprecated:] same as `operator= ( T const& v) ;`
__SPACE__
[#reference_optional_reset]
[: `void optional<T>::reset() ;`]
* [*Deprecated:] Same as `operator=( detail::none_t );`
__SPACE__
[#reference_optional_get]
[: `T const& optional<T` ['(not a ref)]`>::operator*() const ;`]
[: `T& optional<T` ['(not a ref)]`>::operator*();`]
[: `T const& optional<T` ['(not a ref)]`>::get() const ;`]
[: `T& optional<T` ['(not a ref)]`>::get() ;`]
[: `inline T const& get ( optional<T` ['(not a ref)]`> const& ) ;`]
[: `inline T& get ( optional<T` ['(not a ref)]`> &) ;`]
* [*Requirements:] `*this` is initialized
* [*Returns:] A reference to the contained value
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
T v ;
optional<T> opt ( v );
T const& u = *opt;
assert ( u == v ) ;
T w ;
*opt = w ;
assert ( *opt == w ) ;
``
__SPACE__
[#reference_optional_get_value_or_value]
[: `T const& optional<T` ['(not a ref)]`>::get_value_or( T const& default) const ;`]
[: `T& optional<T` ['(not a ref)]`>::get_value_or( T& default ) ;`]
[: `inline T const& get_optional_value_or ( optional<T` ['(not a ref)]`> const& o, T const& default ) ;`]
[: `inline T& get_optional_value_or ( optional<T` ['(not a ref)]`>& o, T& default ) ;`]
* [*Returns:] A reference to the contained value, if any, or `default`.
* [*Throws:] Nothing.
* [*Example:]
``
T v, z ;
optional<T> def;
T const& y = def.get_value_or(z);
assert ( y == z ) ;
optional<T> opt ( v );
T const& u = get_optional_value_or(opt,z);
assert ( u == v ) ;
assert ( u != z ) ;
``
__SPACE__
[: `T const& optional<T&>::operator*() const ;`]
[: `T & optional<T&>::operator*();`]
[: `T const& optional<T&>::get() const ;`]
[: `T& optional<T&>::get() ;`]
[: `inline T const& get ( optional<T&> const& ) ;`]
[: `inline T& get ( optional<T&> &) ;`]
* [*Requirements: ] `*this` is initialized
* [*Returns:] [_The] reference contained.
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
T v ;
T& vref = v ;
optional<T&> opt ( vref );
T const& vref2 = *opt;
assert ( vref2 == v ) ;
++ v ;
assert ( *opt == v ) ;
``
__SPACE__
[#reference_optional_get_ptr]
[: `T const* optional<T` ['(not a ref)]`>::get_ptr() const ;`]
[: `T* optional<T` ['(not a ref)]`>::get_ptr() ;`]
[: `inline T const* get_pointer ( optional<T` ['(not a ref)]`> const& ) ;`]
[: `inline T* get_pointer ( optional<T` ['(not a ref)]`> &) ;`]
* [*Returns:] If `*this` is initialized, a pointer to the contained value;
else `0` (['null]).
* [*Throws:] Nothing.
* [*Notes:] The contained value is permanently stored within `*this`, so you
should not hold nor delete this pointer
* [*Example:]
``
T v;
optional<T> opt(v);
optional<T> const copt(v);
T* p = opt.get_ptr() ;
T const* cp = copt.get_ptr();
assert ( p == get_pointer(opt) );
assert ( cp == get_pointer(copt) ) ;
``
__SPACE__
[#reference_optional_operator_arrow]
[: `T const* optional<T` ['(not a ref)]`>::operator ->() const ;`]
[: `T* optional<T` ['(not a ref)]`>::operator ->() ;`]
* [*Requirements: ] `*this` is initialized.
* [*Returns:] A pointer to the contained value.
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
struct X { int mdata ; } ;
X x ;
optional<X> opt (x);
opt->mdata = 2 ;
``
__SPACE__
[#reference_optional_operator_bool]
[: `optional<T>::operator `['unspecified-bool-type]`() const ;`]
* [*Returns:] An unspecified value which if used on a boolean context
is equivalent to (`get() != 0`)
* [*Throws:] Nothing.
* [*Example:]
``
optional<T> def ;
assert ( def == 0 );
optional<T> opt ( v ) ;
assert ( opt );
assert ( opt != 0 );
``
__SPACE__
[#reference_optional_operator_not]
[: `bool optional<T>::operator!() ;`]
* [*Returns:] If `*this` is uninitialized, `true`; else `false`.
* [*Throws:] Nothing.
* [*Notes:] This operator is provided for those compilers which can't
use the ['unspecified-bool-type operator] in certain boolean contexts.
* [*Example:]
``
optional<T> opt ;
assert ( !opt );
*opt = some_T ;
// Notice the "double-bang" idiom here.
assert ( !!opt ) ;
``
__SPACE__
[#reference_optional_is_initialized]
[: `bool optional<T>::is_initialized() const ;`]
* [*Returns: ] `true` if the `optional` is initialized, `false` otherwise.
* [*Throws:] Nothing.
* [*Example:]
``
optional<T> def ;
assert ( !def.is_initialized() );
optional<T> opt ( v ) ;
assert ( opt.is_initialized() );
``
__SPACE__
[heading Free functions]
__SPACE__
[#reference_make_optional_value]
[: `optional<T` ['(not a ref)]`> make_optional( T const& v )`]
* [*Returns: ] `optional<T>(v)` for the ['deduced] type `T` of `v`.
* [*Example:]
``
template<class T> void foo ( optional<T> const& opt ) ;
foo ( make_optional(1+1) ) ; // Creates an optional<int>
``
__SPACE__
[#reference_make_optional_bool_value]
[: `optional<T` ['(not a ref)]`> make_optional( bool condition, T const& v )`]
* [*Returns: ] `optional<T>(condition,v)` for the ['deduced] type `T` of `v`.
* [*Example:]
``
optional<double> calculate_foo()
{
double val = compute_foo();
return make_optional(is_not_nan_and_finite(val),val);
}
optional<double> v = calculate_foo();
if ( !v )
error("foo wasn't computed");
``
__SPACE__
[#reference_operator_compare_equal_optional_optional]
[: `bool operator == ( optional<T> const& x, optional<T> const& y );`]
* [*Returns:] If both `x` and `y` are initialized, `(*x == *y)`. If only
`x` or `y` is initialized, `false`. If both are uninitialized, `true`.
* [*Throws:] Nothing.
* [*Notes:] Pointers have shallow relational operators while `optional` has
deep relational operators. Do not use `operator ==` directly in generic
code which expect to be given either an `optional<T>` or a pointer; use
__FUNCTION_EQUAL_POINTEES__ instead
* [*Example:]
``
T x(12);
T y(12);
T z(21);
optional<T> def0 ;
optional<T> def1 ;
optional<T> optX(x);
optional<T> optY(y);
optional<T> optZ(z);
// Identity always hold
assert ( def0 == def0 );
assert ( optX == optX );
// Both uninitialized compare equal
assert ( def0 == def1 );
// Only one initialized compare unequal.
assert ( def0 != optX );
// Both initialized compare as (*lhs == *rhs)
assert ( optX == optY ) ;
assert ( optX != optZ ) ;
``
__SPACE__
[#reference_operator_compare_less_optional_optional]
[: `bool operator < ( optional<T> const& x, optional<T> const& y );`]
* [*Returns:] If `y` is not initialized, `false`. If `y` is initialized
and `x` is not initialized, `true`. If both `x` and `y` are initialized,
`(*x < *y)`.
* [*Throws:] Nothing.
* [*Notes:] Pointers have shallow relational operators while `optional` has
deep relational operators. Do not use `operator <` directly in generic code
which expect to be given either an `optional<T>` or a pointer; use __FUNCTION_LESS_POINTEES__ instead.
* [*Example:]
``
T x(12);
T y(34);
optional<T> def ;
optional<T> optX(x);
optional<T> optY(y);
// Identity always hold
assert ( !(def < def) );
assert ( optX == optX );
// Both uninitialized compare equal
assert ( def0 == def1 );
// Only one initialized compare unequal.
assert ( def0 != optX );
// Both initialized compare as (*lhs == *rhs)
assert ( optX == optY ) ;
assert ( optX != optZ ) ;
``
__SPACE__
[#reference_operator_compare_not_equal_optional_optional]
[: `bool operator != ( optional<T> const& x, optional<T> const& y );`]
* [*Returns: ] `!( x == y );`
* [*Throws:] Nothing.
__SPACE__
[#reference_operator_compare_greater_optional_optional]
[: `bool operator > ( optional<T> const& x, optional<T> const& y );`]
* [*Returns: ] `( y < x );`
* [*Throws:] Nothing.
__SPACE__
[#reference_operator_compare_less_or_equal_optional_optional]
[: `bool operator <= ( optional<T> const& x, optional<T> const& y );`]
* [*Returns: ] `!( y<x );`
* [*Throws:] Nothing.
__SPACE__
[#reference_operator_compare_greater_or_equal_optional_optional]
[: `bool operator >= ( optional<T> const& x, optional<T> const& y );`]
* [*Returns: ] `!( x<y );`
* [*Throws:] Nothing.
__SPACE__
[#reference_swap_optional_optional]
[: `void swap ( optional<T>& x, optional<T>& y );`]
* [*Effect:] If both `x` and `y` are initialized, calls `swap(*x,*y)`
using `std::swap`. If only one is initialized, say `x`, calls:
`y.reset(*x); x.reset();` If none is initialized, does nothing.
* [*Postconditions:] The states of `x` and `y` interchanged.
* [*Throws:] If both are initialized, whatever `swap(T&,T&)` throws. If only
one is initialized, whatever `T::T ( T const& )` throws.
* [*Notes:] If both are initialized, `swap(T&,T&)` is used unqualified but
with `std::swap` introduced in scope.
If only one is initialized, `T::~T()` and `T::T( T const& )` is called.
* [*Exception Safety:] If both are initialized, this operation has the
exception safety guarantees of `swap(T&,T&)`.
If only one is initialized, it has the same basic guarantee as
`optional<T>::reset( T const& )`.
* [*Example:]
``
T x(12);
T y(21);
optional<T> def0 ;
optional<T> def1 ;
optional<T> optX(x);
optional<T> optY(y);
boost::swap(def0,def1); // no-op
boost::swap(def0,optX);
assert ( *def0 == x );
assert ( !optX );
boost::swap(def0,optX); // Get back to original values
boost::swap(optX,optY);
assert ( *optX == y );
assert ( *optY == x );
``
[endsect]

View File

@ -1,376 +0,0 @@
[section Optional references]
This library allows the template parameter `T` to be of reference type:
`T&`, and to some extent, `T const&`.
However, since references are not real objects some restrictions apply and
some operations are not available in this case:
* Converting constructors
* Converting assignment
* InPlace construction
* InPlace assignment
* Value-access via pointer
Also, even though `optional<T&>` treats it wrapped pseudo-object much as
a real value, a true real reference is stored so aliasing will ocurr:
* Copies of `optional<T&>` will copy the references but all these references
will nonetheless reefer to the same object.
* Value-access will actually provide access to the referenced object
rather than the reference itself.
[endsect]
[#optional_refassign]
[section Rebinding semantics for assignment of optional references]
If you assign to an ['uninitialized ] `optional<T&>` the effect is to bind (for
the first time) to the object. Clearly, there is no other choice.
int x = 1 ;
int& rx = x ;
optional<int&> ora ;
optional<int&> orb(x) ;
ora = orb ; // now 'ora' is bound to 'x' through 'rx'
*ora = 2 ; // Changes value of 'x' through 'ora'
assert(x==2);
If you assign to a bare C++ reference, the assignment is forwarded to the
referenced object; it's value changes but the reference is never rebound.
int a = 1 ;
int& ra = a ;
int b = 2 ;
int& rb = b ;
ra = rb ; // Changes the value of 'a' to 'b'
assert(a==b);
b = 3 ;
assert(ra!=b); // 'ra' is not rebound to 'b'
Now, if you assign to an ['initialized ] `optional<T&>`, the effect is to
[*rebind] to the new object instead of assigning the referee. This is unlike
bare C++ references.
int a = 1 ;
int b = 2 ;
int& ra = a ;
int& rb = b ;
optional<int&> ora(ra) ;
optional<int&> orb(rb) ;
ora = orb ; // 'ora' is rebound to 'b'
*ora = 3 ; // Changes value of 'b' (not 'a')
assert(a==1);
assert(b==3);
[heading Rationale]
Rebinding semantics for the assignment of ['initialized ] `optional` references has
been chosen to provide [*consistency among initialization states] even at the
expense of lack of consistency with the semantics of bare C++ references.
It is true that `optional<U>` strives to behave as much as possible as `U`
does whenever it is initialized; but in the case when `U` is `T&`, doing so would
result in inconsistent behavior w.r.t to the lvalue initialization state.
Imagine `optional<T&>` forwarding assignment to the referenced object (thus
changing the referenced object value but not rebinding), and consider the
following code:
optional<int&> a = get();
int x = 1 ;
int& rx = x ;
optional<int&> b(rx);
a = b ;
What does the assignment do?
If `a` is ['uninitialized], the answer is clear: it binds to `x` (we now have
another reference to `x`).
But what if `a` is already ['initialized]? it would change the value of the
referenced object (whatever that is); which is inconsistent with the other
possible case.
If `optional<T&>` would assign just like `T&` does, you would never be able to
use Optional's assignment without explicitly handling the previous
initialization state unless your code is capable of functioning whether
after the assignment, `a` aliases the same object as `b` or not.
That is, you would have to discriminate in order to be consistency.
If in your code rebinding to another object is not an option, then is very
likely that binding for the fist time isn't either. In such case, assignment
to an ['uninitialized ] `optional<T&>` shall be prohibited. It is quite possible
that in such scenario the precondition that the lvalue must be already
initialized exist. If it doesn't, then binding for the first time is OK
while rebinding is not which is IMO very unlikely.
In such scenario, you can assign the value itself directly, as in:
assert(!!opt);
*opt=value;
[endsect]
[#optional_in_place_factories]
[section In-Place Factories]
One of the typical problems with wrappers and containers is that their
interfaces usually provide an operation to initialize or assign the
contained object as a copy of some other object. This not only requires the
underlying type to be __COPY_CONSTRUCTIBLE__, but also requires the existence of
a fully constructed object, often temporary, just to follow the copy from:
struct X
{
X ( int, std:::string ) ;
} ;
class W
{
X wrapped_ ;
public:
W ( X const& x ) : wrapped_(x) {}
} ;
void foo()
{
// Temporary object created.
W ( X(123,"hello") ) ;
}
A solution to this problem is to support direct construction of the
contained object right in the container's storage.
In this scheme, the user only needs to supply the arguments to the
constructor to use in the wrapped object construction.
class W
{
X wrapped_ ;
public:
W ( X const& x ) : wrapped_(x) {}
W ( int a0, std::string a1) : wrapped_(a0,a1) {}
} ;
void foo()
{
// Wrapped object constructed in-place
// No temporary created.
W (123,"hello") ;
}
A limitation of this method is that it doesn't scale well to wrapped
objects with multiple constructors nor to generic code were the constructor
overloads are unknown.
The solution presented in this library is the family of [*InPlaceFactories]
and [*TypedInPlaceFactories].
These factories are a family of classes which encapsulate an increasing
number of arbitrary constructor parameters and supply a method to construct
an object of a given type using those parameters at an address specified by
the user via placement new.
For example, one member of this family looks like:
template<class T,class A0, class A1>
class TypedInPlaceFactory2
{
A0 m_a0 ; A1 m_a1 ;
public:
TypedInPlaceFactory2( A0 const& a0, A1 const& a1 ) : m_a0(a0), m_a1(a1) {}
void construct ( void* p ) { new (p) T(m_a0,m_a1) ; }
} ;
A wrapper class aware of this can use it as:
class W
{
X wrapped_ ;
public:
W ( X const& x ) : wrapped_(x) {}
W ( TypedInPlaceFactory2 const& fac ) { fac.construct(&wrapped_) ; }
} ;
void foo()
{
// Wrapped object constructed in-place via a TypedInPlaceFactory.
// No temporary created.
W ( TypedInPlaceFactory2<X,int,std::string&rt(123,"hello")) ;
}
The factories are divided in two groups:
* [_TypedInPlaceFactories]: those which take the target type as a primary
template parameter.
* [_InPlaceFactories]: those with a template `construct(void*)` member
function taking the target type.
Within each group, all the family members differ only in the number of
parameters allowed.
This library provides an overloaded set of helper template functions to
construct these factories without requiring unnecessary template parameters:
template<class A0,...,class AN>
InPlaceFactoryN <A0,...,AN> in_place ( A0 const& a0, ..., AN const& aN) ;
template<class T,class A0,...,class AN>
TypedInPlaceFactoryN <T,A0,...,AN> in_place ( T const& a0, A0 const& a0, ..., AN const& aN) ;
In-place factories can be used generically by the wrapper and user as follows:
class W
{
X wrapped_ ;
public:
W ( X const& x ) : wrapped_(x) {}
template< class InPlaceFactory >
W ( InPlaceFactory const& fac ) { fac.template <X>construct(&wrapped_) ; }
} ;
void foo()
{
// Wrapped object constructed in-place via a InPlaceFactory.
// No temporary created.
W ( in_place(123,"hello") ) ;
}
The factories are implemented in the headers: __IN_PLACE_FACTORY_HPP__ and __TYPED_IN_PLACE_FACTORY_HPP__
[endsect]
[section A note about optional<bool>]
`optional<bool>` should be used with special caution and consideration.
First, it is functionally similar to a tristate boolean (false,maybe,true)
—such as __BOOST_TRIBOOL__— except that in a tristate boolean, the maybe state
[_represents a valid value], unlike the corresponding state of an uninitialized
`optional<bool>`.
It should be carefully considered if an `optional<bool>` instead of a `tribool`
is really needed.
Second, `optional<>` provides an implicit conversion to `bool`. This
conversion refers to the initialization state and not to the contained value.
Using `optional<bool>` can lead to subtle errors due to the implicit `bool`
conversion:
void foo ( bool v ) ;
void bar()
{
optional<bool> v = try();
// The following intended to pass the value of 'v' to foo():
foo(v);
// But instead, the initialization state is passed
// due to a typo: it should have been foo(*v).
}
The only implicit conversion is to `bool`, and it is safe in the sense that
typical integral promotions don't apply (i.e. if `foo()` takes an `int`
instead, it won't compile).
[endsect]
[section Exception Safety Guarantees]
Because of the current implementation (see [link optional_implementation_notes Implementation Notes]), all of the assignment methods:
* `optional<T>::operator= ( optional<T> const& )`
* `optional<T>::operator= ( T const& )`
* `template<class U> optional<T>::operator= ( optional<U> const& )`
* `template<class InPlaceFactory> optional<T>::operator= ( InPlaceFactory const& )`
* `template<class TypedInPlaceFactory> optional<T>::operator= ( TypedInPlaceFactory const& ) `
* `optional<T>:::reset ( T const&)`
Can only ['guarantee] the [_basic exception safety]: The lvalue optional is
left [_uninitialized] if an exception is thrown (any previous value is ['first]
destroyed using `T::~T()`)
On the other hand, the ['uninitializing] methods:
* `optional<T>::operator= ( detail::none_t )`
* `optional<T>::reset()`
Provide the no-throw guarantee (assuming a no-throw `T::~T()`)
However, since `optional<>` itself doesn't throw any exceptions, the only
source for exceptions here are `T`'s constructor, so if you know the exception
guarantees for `T::T ( T const& )`, you know that `optional`'s assignment and
reset has the same guarantees.
//
// Case 1: Exception thrown during assignment.
//
T v0(123);
optional<T> opt0(v0);
try
{
T v1(456);
optional<T> opt1(v1);
opt0 = opt1 ;
// If no exception was thrown, assignment succeeded.
assert( *opt0 == v1 ) ;
}
catch(...)
{
// If any exception was thrown, 'opt0' is reset to uninitialized.
assert( !opt0 ) ;
}
//
// Case 2: Exception thrown during reset(v)
//
T v0(123);
optional<T> opt(v0);
try
{
T v1(456);
opt.reset ( v1 ) ;
// If no exception was thrown, reset succeeded.
assert( *opt == v1 ) ;
}
catch(...)
{
// If any exception was thrown, 'opt' is reset to uninitialized.
assert( !opt ) ;
}
[heading Swap]
`void swap( optional<T>&, optional<T>& )` has the same exception guarantee
as `swap(T&,T&)` when both optionals are initialized.
If only one of the optionals is initialized, it gives the same ['basic]
exception guarantee as `optional<T>::reset( T const& )` (since
`optional<T>::reset()` doesn't throw).
If none of the optionals is initialized, it has no-throw guarantee
since it is a no-op.
[endsect]
[section Type requirements]
In general, `T` must be __COPY_CONSTRUCTIBLE__ and have a no-throw destructor.
The copy-constructible requirement is not needed if [*InPlaceFactories] are used.
`T` [_is not] required to be __SGI_DEFAULT_CONSTRUCTIBLE__.
[endsect]

View File

@ -1,4 +1,6 @@
// Copyright (C) 2003, Fernando Luis Cacciola Carballal.
// Copyright (C) 2007, Anthony Williams
// Copyright (C) 2007, Steven Watanabe, Richard Smith
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
@ -7,22 +9,35 @@
// See http://www.boost.org/lib/optional/ for documentation.
//
// You are welcome to contact the author at:
// fernando_cacciola@hotmail.com
// fernando.cacciola@gmail.com
//
#ifndef BOOST_NONE_17SEP2003_HPP
#define BOOST_NONE_17SEP2003_HPP
#include "boost/none_t.hpp"
namespace boost
{
namespace detail
{
class none_helper;
}
// NOTE: Borland users have to include this header outside any precompiled headers
// (bcc<=5.64 cannot include instance data in a precompiled header)
// -- * To be verified, now that there's no unnamed namespace
inline void none(detail::none_helper);
namespace boost {
namespace detail
{
class none_helper
{
private:
none_helper( none_helper const& ) {}
friend void boost::none(none_helper);
};
}
none_t const none = ((none_t)0) ;
typedef void (*none_t)(detail::none_helper);
} // namespace boost
inline void none(detail::none_helper) {}
}
#endif

View File

@ -1,24 +0,0 @@
// Copyright (C) 2003, Fernando Luis Cacciola Carballal.
//
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/lib/optional for documentation.
//
// You are welcome to contact the author at:
// fernando_cacciola@hotmail.com
//
#ifndef BOOST_NONE_T_17SEP2003_HPP
#define BOOST_NONE_T_17SEP2003_HPP
namespace boost {
namespace detail { struct none_helper{}; }
typedef int detail::none_helper::*none_t ;
} // namespace boost
#endif

View File

@ -26,7 +26,7 @@
#include "boost/mpl/bool.hpp"
#include "boost/mpl/not.hpp"
#include "boost/detail/reference_content.hpp"
#include "boost/none_t.hpp"
#include "boost/none.hpp"
#include "boost/utility/compare_pointees.hpp"
#include "boost/optional/optional_fwd.hpp"
@ -76,6 +76,19 @@
#define BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
#endif
// Daniel Wallin discovered that bind/apply.hpp badly interacts with the apply<>
// member template of a factory as used in the optional<> implementation.
// He proposed this simple fix which is to move the call to apply<> outside
// namespace boost.
namespace boost_optional_detail
{
template <class T, class Factory>
void construct(Factory const& factory, void* address)
{
factory.BOOST_NESTED_TEMPLATE apply<T>(address);
}
}
namespace boost {
@ -173,7 +186,7 @@ class optional_base : public optional_tag
// Creates an optional<T> uninitialized.
// No-throw
optional_base ( none_t const& )
optional_base ( none_t )
:
m_initialized(false) {}
@ -266,7 +279,7 @@ class optional_base : public optional_tag
// Assigns from "none", destroying the current value, if any, leaving this UNINITIALIZED
// No-throw (assuming T::~T() doesn't)
void assign ( none_t const& ) { destroy(); }
void assign ( none_t ) { destroy(); }
#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
template<class Expr>
@ -309,7 +322,7 @@ class optional_base : public optional_tag
void construct ( Expr const& factory, in_place_factory_base const* )
{
BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
factory.BOOST_NESTED_TEMPLATE apply<value_type>(m_storage.address()) ;
boost_optional_detail::construct<value_type>(factory, m_storage.address());
m_initialized = true ;
}
@ -428,6 +441,8 @@ class optional_base : public optional_tag
// the following olverloads are used to filter out the case and guarantee an error in case of T being a reference.
pointer_const_type cast_ptr( internal_type const* p, is_not_reference_tag ) const { return p ; }
pointer_type cast_ptr( internal_type * p, is_not_reference_tag ) { return p ; }
pointer_const_type cast_ptr( internal_type const* p, is_reference_tag ) const { return &p->get() ; }
pointer_type cast_ptr( internal_type * p, is_reference_tag ) { return &p->get() ; }
bool m_initialized ;
storage_type m_storage ;
@ -459,7 +474,7 @@ class optional : public optional_detail::optional_base<T>
// Creates an optional<T> uninitialized.
// No-throw
optional( none_t const& none_ ) : base(none_) {}
optional( none_t none_ ) : base(none_) {}
// Creates an optional<T> initialized with 'val'.
// Can throw if T::T(T const&) does
@ -550,7 +565,7 @@ class optional : public optional_detail::optional_base<T>
// Assigns from a "none"
// Which destroys the current value, if any, leaving this UNINITIALIZED
// No-throw (assuming T::~T() doesn't)
optional& operator= ( none_t const& none_ )
optional& operator= ( none_t none_ )
{
this->assign( none_ ) ;
return *this ;
@ -678,6 +693,11 @@ get_pointer ( optional<T>& opt )
// optional's relational operators ( ==, !=, <, >, <=, >= ) have deep-semantics (compare values).
// WARNING: This is UNLIKE pointers. Use equal_pointees()/less_pointess() in generic code instead.
//
// optional<T> vs optional<T> cases
//
template<class T>
inline
bool operator == ( optional<T> const& x, optional<T> const& y )
@ -708,64 +728,141 @@ inline
bool operator >= ( optional<T> const& x, optional<T> const& y )
{ return !( x < y ) ; }
//
// optional<T> vs T cases
//
template<class T>
inline
bool operator == ( optional<T> const& x, none_t const& )
bool operator == ( optional<T> const& x, T const& y )
{ return equal_pointees(x, optional<T>(y)); }
template<class T>
inline
bool operator < ( optional<T> const& x, T const& y )
{ return less_pointees(x, optional<T>(y)); }
template<class T>
inline
bool operator != ( optional<T> const& x, T const& y )
{ return !( x == y ) ; }
template<class T>
inline
bool operator > ( optional<T> const& x, T const& y )
{ return y < x ; }
template<class T>
inline
bool operator <= ( optional<T> const& x, T const& y )
{ return !( y < x ) ; }
template<class T>
inline
bool operator >= ( optional<T> const& x, T const& y )
{ return !( x < y ) ; }
//
// T vs optional<T> cases
//
template<class T>
inline
bool operator == ( T const& x, optional<T> const& y )
{ return equal_pointees( optional<T>(x), y ); }
template<class T>
inline
bool operator < ( T const& x, optional<T> const& y )
{ return less_pointees( optional<T>(x), y ); }
template<class T>
inline
bool operator != ( T const& x, optional<T> const& y )
{ return !( x == y ) ; }
template<class T>
inline
bool operator > ( T const& x, optional<T> const& y )
{ return y < x ; }
template<class T>
inline
bool operator <= ( T const& x, optional<T> const& y )
{ return !( y < x ) ; }
template<class T>
inline
bool operator >= ( T const& x, optional<T> const& y )
{ return !( x < y ) ; }
//
// optional<T> vs none cases
//
template<class T>
inline
bool operator == ( optional<T> const& x, none_t )
{ return equal_pointees(x, optional<T>() ); }
template<class T>
inline
bool operator < ( optional<T> const& x, none_t const& )
bool operator < ( optional<T> const& x, none_t )
{ return less_pointees(x,optional<T>() ); }
template<class T>
inline
bool operator != ( optional<T> const& x, none_t const& y )
bool operator != ( optional<T> const& x, none_t y )
{ return !( x == y ) ; }
template<class T>
inline
bool operator > ( optional<T> const& x, none_t const& y )
bool operator > ( optional<T> const& x, none_t y )
{ return y < x ; }
template<class T>
inline
bool operator <= ( optional<T> const& x, none_t const& y )
bool operator <= ( optional<T> const& x, none_t y )
{ return !( y < x ) ; }
template<class T>
inline
bool operator >= ( optional<T> const& x, none_t const& y )
bool operator >= ( optional<T> const& x, none_t y )
{ return !( x < y ) ; }
//
// none vs optional<T> cases
//
template<class T>
inline
bool operator == ( none_t const& x, optional<T> const& y )
bool operator == ( none_t x, optional<T> const& y )
{ return equal_pointees(optional<T>() ,y); }
template<class T>
inline
bool operator < ( none_t const& x, optional<T> const& y )
bool operator < ( none_t x, optional<T> const& y )
{ return less_pointees(optional<T>() ,y); }
template<class T>
inline
bool operator != ( none_t const& x, optional<T> const& y )
bool operator != ( none_t x, optional<T> const& y )
{ return !( x == y ) ; }
template<class T>
inline
bool operator > ( none_t const& x, optional<T> const& y )
bool operator > ( none_t x, optional<T> const& y )
{ return y < x ; }
template<class T>
inline
bool operator <= ( none_t const& x, optional<T> const& y )
bool operator <= ( none_t x, optional<T> const& y )
{ return !( y < x ) ; }
template<class T>
inline
bool operator >= ( none_t const& x, optional<T> const& y )
bool operator >= ( none_t x, optional<T> const& y )
{ return !( x < y ) ; }
//

View File

@ -22,11 +22,9 @@ import testing ;
[ run optional_test_inplace.cpp ]
[ run optional_test_io.cpp ]
[ compile-fail optional_test_fail1.cpp ]
[ compile-fail optional_test_fail2.cpp ]
[ compile-fail optional_test_fail3a.cpp ]
[ compile-fail optional_test_fail3b.cpp ]
[ compile-fail optional_test_ref_fail1.cpp ]
[ compile-fail optional_test_ref_fail2.cpp ]
[ compile-fail optional_test_ref_fail3.cpp ]
[ compile-fail optional_test_ref_fail4.cpp ]
[ compile-fail optional_test_inplace_fail.cpp ]

View File

@ -704,16 +704,16 @@ void test_relops( T const* )
{
TRACE( std::endl << BOOST_CURRENT_FUNCTION );
T v0(18);
T v1(19);
T v2(19);
T v0(0);
T v1(1);
T v2(1);
optional<T> def0 ;
optional<T> def1 ;
optional<T> opt0(v0);
optional<T> opt1(v1);
optional<T> opt2(v2);
// Check identity
BOOST_CHECK ( def0 == def0 ) ;
BOOST_CHECK ( opt0 == opt0 ) ;
@ -751,6 +751,33 @@ void test_relops( T const* )
BOOST_CHECK ( opt1 > opt0 ) ;
BOOST_CHECK ( opt1 <= opt2 ) ;
BOOST_CHECK ( opt1 >= opt0 ) ;
// Compare against a value directly
BOOST_CHECK ( opt0 == v0 ) ;
BOOST_CHECK ( opt0 != v1 ) ;
BOOST_CHECK ( opt1 == v2 ) ;
BOOST_CHECK ( opt0 < v1 ) ;
BOOST_CHECK ( opt1 > v0 ) ;
BOOST_CHECK ( opt1 <= v2 ) ;
BOOST_CHECK ( opt1 >= v0 ) ;
BOOST_CHECK ( v0 != opt1 ) ;
BOOST_CHECK ( v1 == opt2 ) ;
BOOST_CHECK ( v0 < opt1 ) ;
BOOST_CHECK ( v1 > opt0 ) ;
BOOST_CHECK ( v1 <= opt2 ) ;
BOOST_CHECK ( v1 >= opt0 ) ;
BOOST_CHECK ( def0 != v0 ) ;
BOOST_CHECK ( !(def0 == v0) ) ;
BOOST_CHECK ( def0 < v0 ) ;
BOOST_CHECK ( !(def0 > v0) ) ;
BOOST_CHECK ( def0 <= v0 ) ;
BOOST_CHECK ( !(def0 >= v0) ) ;
BOOST_CHECK ( v0 != def0 ) ;
BOOST_CHECK ( !(v0 == def0) ) ;
BOOST_CHECK ( !(v0 < def0) ) ;
BOOST_CHECK ( v0 > def0 ) ;
BOOST_CHECK ( !(v0 <= def0) ) ;
BOOST_CHECK ( v0 >= opt0 ) ;
}
template<class T>
@ -767,6 +794,10 @@ void test_none( T const* )
BOOST_CHECK ( def0 == none ) ;
BOOST_CHECK ( non_def != none ) ;
BOOST_CHECK ( !def1 ) ;
BOOST_CHECK ( !(non_def < none) ) ;
BOOST_CHECK ( non_def > none ) ;
BOOST_CHECK ( !(non_def <= none) ) ;
BOOST_CHECK ( non_def >= none ) ;
non_def = none ;
BOOST_CHECK ( !non_def ) ;
@ -774,6 +805,24 @@ void test_none( T const* )
test_default_implicit_construction(T(1),none);
}
template<class T>
void test_arrow( T const* )
{
TRACE( std::endl << BOOST_CURRENT_FUNCTION );
T a(1234);
optional<T> oa(a) ;
optional<T> const coa(a) ;
BOOST_CHECK ( coa->V() == 1234 ) ;
oa->V() = 4321 ;
BOOST_CHECK ( a.V() = 1234 ) ;
BOOST_CHECK ( (*oa).V() = 4321 ) ;
}
void test_with_builtin_types()
{
TRACE( std::endl << BOOST_CURRENT_FUNCTION );
@ -804,6 +853,7 @@ void test_with_class_type()
test_throwing_swap( ARG(X) );
test_relops( ARG(X) ) ;
test_none( ARG(X) ) ;
test_arrow( ARG(X) ) ;
BOOST_CHECK ( X::count == 0 ) ;
}

View File

@ -299,6 +299,23 @@ void test_none( T const* )
BOOST_CHECK ( !non_def ) ;
}
template<class T>
void test_arrow( T const* )
{
TRACE( std::endl << BOOST_CURRENT_FUNCTION );
T a(1234);
optional<T&> oa(a) ;
optional<T&> const coa(a) ;
BOOST_CHECK ( coa->V() == 1234 ) ;
oa->V() = 4321 ;
BOOST_CHECK ( a.V() = 4321 ) ;
}
void test_with_builtin_types()
{
TRACE( std::endl << BOOST_CURRENT_FUNCTION );
@ -315,6 +332,7 @@ void test_with_class_type()
test_basics( ARG(X) );
test_relops( ARG(X) ) ;
test_none ( ARG(X) ) ;
test_arrow ( ARG(X) ) ;
BOOST_CHECK ( X::count == 0 ) ;
}

View File

@ -1,23 +0,0 @@
// Copyright (C) 2003, Fernando Luis Cacciola Carballal.
//
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/lib/optional for documentation.
//
// You are welcome to contact the author at:
// fernando_cacciola@hotmail.com
//
#include "boost/optional.hpp"
//
// THIS TEST SHOULD FAIL TO COMPILE
//
void optional_reference__test_no_ptr_access()
{
boost::optional<int&> opt ;
opt.get_ptr();
}