Compare commits

...

220 Commits

Author SHA1 Message Date
nobody
4b44b80743 This commit was manufactured by cvs2svn to create tag
'Version_1_30_0'.

[SVN r18026]
2003-03-20 02:53:48 +00:00
nobody
86ba6efa8f This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17693]
2003-03-01 19:43:06 +00:00
Peter Dimov
deab8ca1bb Added link to enable_shared_from_this.html.
[SVN r17397]
2003-02-14 10:55:20 +00:00
Peter Dimov
300f8f7b9a Finished Techniques page, added links to it.
[SVN r17380]
2003-02-13 19:07:20 +00:00
Peter Dimov
d7c841484a Further edits, predestructor technique removed.
[SVN r17374]
2003-02-13 18:35:13 +00:00
Peter Dimov
f4dce1cb88 More prose.
[SVN r17369]
2003-02-13 16:56:07 +00:00
Peter Dimov
b400d34bec Added copyright to Jamfiles.
[SVN r17363]
2003-02-13 15:41:26 +00:00
Peter Dimov
8f0bdd48f8 Minor edits.
[SVN r17335]
2003-02-12 19:11:52 +00:00
Peter Dimov
6d6bcc7be9 Some prose added.
[SVN r17331]
2003-02-12 17:11:29 +00:00
Peter Dimov
851d87a1bb get_shared_ptr renamed to weak_ptr::lock.
[SVN r17307]
2003-02-10 15:56:36 +00:00
Peter Dimov
34f423f811 atomic_count and lightweight_mutex now report an #error on unknown threading configs.
[SVN r17303]
2003-02-10 12:58:50 +00:00
Peter Dimov
190893a1ce BOOST_ENABLE_SP_DEBUG_HOOKS -> BOOST_SP_ENABLE_DEBUG_HOOKS
[SVN r17301]
2003-02-10 12:54:43 +00:00
Peter Dimov
4244992d4d Split winapi.hpp across win32-specific headers, added BOOST_USE_WINDOWS_H option.
[SVN r17277]
2003-02-08 16:05:46 +00:00
Peter Dimov
4b502993b5 Added BOOST_QA_PAGE_SIZE.
[SVN r17270]
2003-02-07 18:43:48 +00:00
Peter Dimov
a24ec3988a Quick_allocator updates.
[SVN r17267]
2003-02-07 15:08:52 +00:00
Peter Dimov
23f7532a9f Disabled some watnings.
[SVN r17255]
2003-02-06 17:16:06 +00:00
Peter Dimov
a790191bc5 Small fixes.
[SVN r17251]
2003-02-06 14:54:15 +00:00
Peter Dimov
86e9a322ba Documentation fixes, make_shared -> get_shared_ptr.
[SVN r17230]
2003-02-05 12:56:48 +00:00
Peter Dimov
98fa979aef Added copyright.
[SVN r17197]
2003-02-04 13:35:06 +00:00
Peter Dimov
be0267f9a3 Enabled copy assignment on all Borland versions (for Kylix) and g++ (for -Wsynth, report by Wolfgang Bangerth)
[SVN r17173]
2003-02-03 13:48:33 +00:00
Dave Abrahams
44afc7e5cd really prevent shared_ptr_alloc_test building from status/.
[SVN r17097]
2003-01-30 20:57:34 +00:00
Dave Abrahams
d2c7febd26 cleanup, add shared_ptr_alloc_test.
[SVN r17095]
2003-01-30 18:20:51 +00:00
Peter Dimov
ddf1f0fdcc Fixed a deadlock in free_unreachable_objects.
[SVN r17090]
2003-01-30 15:06:32 +00:00
Peter Dimov
cd41426fe9 Dave's quick_allocator added, #define BOOST_SP_USE_QUICK_ALLOCATOR to make shared_ptr use it.
[SVN r17087]
2003-01-30 14:20:22 +00:00
Peter Dimov
89ea2156bc intrusive_ptr_test.cpp added.
[SVN r17051]
2003-01-27 14:09:21 +00:00
Peter Dimov
fabd6e5755 Moved 'garbage collector' to sp_collector.cpp, collector_test.cpp added.
[SVN r17050]
2003-01-27 14:02:00 +00:00
Peter Dimov
b60de38d28 Fixed broken links.
[SVN r17044]
2003-01-25 17:58:01 +00:00
Peter Dimov
2dbfc89d4e Removed redundant copy constructor and copy assignment.
[SVN r17043]
2003-01-25 16:51:45 +00:00
Peter Dimov
abb0d9e725 Moved smart_ptr contents to subdirectories, switched to a local test/Jamfile.
[SVN r17042]
2003-01-25 16:17:17 +00:00
Peter Dimov
d030182e87 intrusive_ptr_test added.
[SVN r16993]
2003-01-22 15:22:30 +00:00
Peter Dimov
bd39e2eded intrusive_ptr.html added.
[SVN r16981]
2003-01-21 17:21:24 +00:00
Peter Dimov
d04757128c shared_ptr techniques initial commit
[SVN r16978]
2003-01-21 15:55:59 +00:00
Beman Dawes
868062e81d Add TOC and References sections
[SVN r16912]
2003-01-15 16:35:48 +00:00
Peter Dimov
6bd66fe054 detail::counted_base renamed to sp_counted_base.
[SVN r16900]
2003-01-14 15:13:53 +00:00
Peter Dimov
c5bae28eeb use_count() postconditions added; enable_..._test.cpp renamed.
[SVN r16896]
2003-01-13 18:32:16 +00:00
Peter Dimov
78a47d7619 Algorithm improvements, free_unreachable_objects() added.
[SVN r16894]
2003-01-13 17:11:28 +00:00
Beman Dawes
8eaf187dbd fix bookmarks
[SVN r16827]
2003-01-09 13:37:41 +00:00
Beman Dawes
d36a215554 fix invalid bookmarks
[SVN r16824]
2003-01-09 13:11:10 +00:00
Peter Dimov
8448bbf0b9 Fixes.
[SVN r16795]
2003-01-08 15:01:04 +00:00
Peter Dimov
1dee6e0229 Small optimization.
[SVN r16790]
2003-01-07 23:12:02 +00:00
Peter Dimov
e3f2329c14 report_unreachable_objects() added to sp_debug_hooks.cpp
[SVN r16780]
2003-01-07 15:34:56 +00:00
Peter Dimov
3e616752c9 weak_ptr documentation updated; still a work in progress.
[SVN r16748]
2003-01-04 14:24:14 +00:00
Peter Dimov
987a7d32fb Documentation updated to reflect changes to shared_ptr
[SVN r16739]
2003-01-03 16:53:04 +00:00
Dave Abrahams
fafd9a863b Workarounds for vc6-stlport
[SVN r16706]
2002-12-26 18:23:11 +00:00
Dave Abrahams
51e9783a21 Factor out get_pointer, supply an overload for std::auto_ptr.
[SVN r16672]
2002-12-20 18:15:01 +00:00
Peter Dimov
eee96e8059 Borland 5.6.1 still broken.
[SVN r16666]
2002-12-19 18:15:53 +00:00
Peter Dimov
1ef2a5b059 More weak_ptr tests.
[SVN r16487]
2002-12-03 13:27:35 +00:00
Peter Dimov
c5f7c973d9 Bug in get_deleter fixed.
[SVN r16477]
2002-12-02 14:34:06 +00:00
Peter Dimov
572a97d3c4 Casts renamed.
[SVN r16457]
2002-11-29 14:05:22 +00:00
Peter Dimov
a3d87ff623 Comeau-specific fix.
[SVN r16456]
2002-11-28 13:42:44 +00:00
Peter Dimov
468f63261a weak_ptr_test.cpp added.
[SVN r16427]
2002-11-26 16:01:17 +00:00
Peter Dimov
e60c1f9b49 Some versions of g++ 2.9x don't have basic_ostream.
[SVN r16406]
2002-11-25 13:52:42 +00:00
Peter Dimov
72bcb8ff46 More tests added.
[SVN r16405]
2002-11-25 13:51:56 +00:00
Peter Dimov
12b1871136 operator<< added, as the conversion to 'bool' implicitly defines one anyway.
[SVN r16403]
2002-11-25 12:27:11 +00:00
Peter Dimov
9632464c45 Test w/ NULL pointer to enabled_... object added; bug fixed.
[SVN r16402]
2002-11-25 12:17:56 +00:00
Peter Dimov
1311731e24 Moved the old shared_ptr tests into shared_ptr_basic_test.cpp
[SVN r16401]
2002-11-25 12:12:45 +00:00
Peter Dimov
980307a90a Reintroduced weak_ptr converting constructor; map<weak_ptr<>, ...> is important.
[SVN r16400]
2002-11-25 12:09:13 +00:00
Peter Dimov
1f9908be69 Borland C++ 5.6 still needs the workaround.
[SVN r16379]
2002-11-23 19:18:05 +00:00
Peter Dimov
0aaca2fffe More operator< tests.
[SVN r16377]
2002-11-23 12:59:01 +00:00
Peter Dimov
5dd2c62132 weak_ptr converting constructor removed; operator< can now take different types to aid ownership tests.
[SVN r16376]
2002-11-23 12:47:38 +00:00
Peter Dimov
fadc0716ce get_deleter_test added; associated fixes.
[SVN r16373]
2002-11-22 16:29:51 +00:00
Peter Dimov
ea285b4231 Fixed the previous weak_ptr 'fix'.
[SVN r16370]
2002-11-22 14:41:22 +00:00
Peter Dimov
8d6517484c Stricter tests; associated bug fixes. ;-)
[SVN r16369]
2002-11-22 13:49:54 +00:00
Peter Dimov
66a8e8b3c1 get_deleter<> added.
[SVN r16365]
2002-11-21 14:46:45 +00:00
Peter Dimov
c697e2ef21 Sample implementation of the smart pointer debug hooks.
[SVN r16364]
2002-11-21 13:23:15 +00:00
Peter Dimov
2e53e2e5d7 More tests added.
[SVN r16363]
2002-11-21 13:20:46 +00:00
Peter Dimov
8283ec826b Changed debug hook names, reverted weak_ptr() to have use_count of zero.
[SVN r16362]
2002-11-21 13:14:04 +00:00
Peter Dimov
e32b2adfda Debug hook support, removed self-reset, fixed #%20links.
[SVN r16361]
2002-11-21 13:10:18 +00:00
Peter Dimov
e555d33695 Added array versions of the hooks.
[SVN r16346]
2002-11-20 16:18:13 +00:00
Peter Dimov
de68e6ed1e A missing 'inline' added.
[SVN r16343]
2002-11-20 13:34:18 +00:00
Peter Dimov
804b1483c7 enable_shared_from_this-related fixes.
[SVN r16341]
2002-11-20 12:38:51 +00:00
Peter Dimov
4b200e9847 Borland fix (thanks to Fernando Cacciola)
[SVN r16331]
2002-11-19 18:21:32 +00:00
Peter Dimov
f34866e8a5 License added.
[SVN r16326]
2002-11-19 16:23:01 +00:00
Peter Dimov
45c799f40c Debug hook support moved to shared_count.
[SVN r16325]
2002-11-19 16:18:58 +00:00
Peter Dimov
11a046f628 BOOST_ASSERTs added.
[SVN r16324]
2002-11-19 16:18:18 +00:00
Peter Dimov
b632f1ef20 Debug hooks, general cleanup.
[SVN r16323]
2002-11-19 16:11:21 +00:00
Peter Dimov
7f30268b10 Assignment tests added.
[SVN r16322]
2002-11-19 16:10:38 +00:00
Peter Dimov
7504eff5af A missing Returns clause added.
[SVN r16321]
2002-11-19 16:10:07 +00:00
Peter Dimov
8752c00ebf enable_shared_from_this documentation added.
[SVN r16319]
2002-11-19 14:22:58 +00:00
Peter Dimov
d0c5e83def Test for enable_shared_from_this added.
[SVN r16318]
2002-11-19 13:45:33 +00:00
Peter Dimov
f6b7ff4b34 Major changes to shared_ptr and weak_ptr
[SVN r16314]
2002-11-18 14:37:02 +00:00
Peter Dimov
2314f20c4e element_type added
[SVN r16264]
2002-11-15 19:44:48 +00:00
Peter Dimov
ff7410cad2 Fixed a subtle problem in counted_base::release (report and test case by Per Kristensen)
[SVN r16211]
2002-11-12 13:14:50 +00:00
Peter Dimov
57c0ad44f3 Changed typename to class; some libraries helpfully #define typename
[SVN r15970]
2002-10-23 13:55:18 +00:00
Peter Dimov
ae60bcaffb Small fixes.
[SVN r15951]
2002-10-17 13:23:11 +00:00
Peter Dimov
f2f616a95c BOOST_SP_USE_STD_ALLOCATOR support
[SVN r15807]
2002-10-08 16:37:33 +00:00
Peter Dimov
a8bb455df7 Fixes, notes.
[SVN r15486]
2002-09-23 13:22:38 +00:00
Peter Dimov
9dcbc46225 Minor fix
[SVN r15437]
2002-09-18 13:00:38 +00:00
Peter Dimov
024f918b86 More documentation fixes reflecting Dave Abrahams' comments
[SVN r15411]
2002-09-17 13:59:17 +00:00
Peter Dimov
0f05f41306 Documentation fixes (reflecting Dave Abrahams' comments)
[SVN r15382]
2002-09-16 15:26:52 +00:00
Peter Dimov
4ea6decc7d scoped_ptr::reset changed to copy+swap (problem reported by Thomas Witt)
[SVN r15239]
2002-09-09 17:44:33 +00:00
Peter Dimov
f79b8cb7ae Tabs removed.
[SVN r15175]
2002-09-06 12:50:02 +00:00
Peter Dimov
275cb77378 Fixed broken links.
[SVN r15123]
2002-08-31 13:04:52 +00:00
Peter Dimov
b916445dd8 weak_ptr documentation updates; get() declared deprecated.
[SVN r15111]
2002-08-29 15:18:04 +00:00
Douglas Gregor
c02fee7013 *_ptr.hpp:
- Revert addition of is_pointerlike_helper

weak_ptr.hpp:
  - Revert addition of get_pointer


[SVN r15108]
2002-08-29 13:49:05 +00:00
Douglas Gregor
e77889679f intrusive_ptr.hpp:
scoped_ptr.hpp:
  - include <boost/type_traits/ice.hpp>


[SVN r15104]
2002-08-27 13:33:22 +00:00
Douglas Gregor
b9dceb2340 *_ptr.hpp:
- Added detail::is_pointerlike_helper function templates for Signals

weak_ptr.hpp:
  - Added get_pointer function template for weak_ptr


[SVN r15099]
2002-08-26 15:27:23 +00:00
John Maddock
e84eb3f1ba Added #pragma's to fix codeguard errors.
[SVN r14984]
2002-08-20 11:08:11 +00:00
Peter Dimov
92999be436 Corrected the shared_ptr(auto_ptr<Y> &) postcondition (reported by Maciej Sobczak)
[SVN r14953]
2002-08-19 16:23:07 +00:00
Peter Dimov
bd4f575567 HPUX 10.20 patch (problem reported by Tom Matelich)
[SVN r14943]
2002-08-17 13:33:41 +00:00
Peter Dimov
09016db3c3 Note added to shared_ptr(Y*, D).
[SVN r14942]
2002-08-17 13:05:25 +00:00
Peter Dimov
c2ee5172b0 Switched to <boost/detail/lightweight_test.hpp> for testing.
[SVN r14932]
2002-08-16 16:41:16 +00:00
Peter Dimov
8436c4d271 #pragma option -pc around use_count_is_zero added for Borland 5.5.1, to enable compilation with -ps set.
[SVN r14927]
2002-08-16 15:55:19 +00:00
Peter Dimov
a09c2e556f BOOST_NO_EXCEPTIONS support added.
[SVN r14835]
2002-08-14 12:27:22 +00:00
Peter Dimov
e650c7ff16 Changed BOOST_TEST(p) to BOOST_TEST(p? true: false) to make sure the right thing is being tested.
[SVN r14834]
2002-08-14 11:59:13 +00:00
Peter Dimov
c06b4206f2 #include <iostream> added.
[SVN r14813]
2002-08-13 15:58:12 +00:00
Peter Dimov
89435a6287 get_pointer added.
[SVN r14628]
2002-07-27 16:02:26 +00:00
Peter Dimov
5328674c2d Minor scoped_* fix (px -> ptr) (Thanks to Bertolt Mildner)
[SVN r14619]
2002-07-26 14:18:21 +00:00
Peter Dimov
927fe73093 Changed #ifdefs so that member templates aren't disabled by an empty config.hpp.
[SVN r14589]
2002-07-24 15:36:25 +00:00
Peter Dimov
053aa108e3 Tabs. Grrr.
[SVN r14588]
2002-07-24 14:14:17 +00:00
Peter Dimov
b5e5c35696 Minor updates.
[SVN r14580]
2002-07-24 10:20:30 +00:00
Peter Dimov
77ad156c52 Design notes updated.
[SVN r14575]
2002-07-23 19:12:40 +00:00
Peter Dimov
018c401e47 Best practices section, thread safety section, design notes added.
[SVN r14572]
2002-07-23 15:19:22 +00:00
Peter Dimov
f586d3f83e shared_ptr<void const> support added.
[SVN r14570]
2002-07-23 12:33:11 +00:00
Peter Dimov
3f0ebd4c71 'shared_from_this' added.
[SVN r14561]
2002-07-22 16:36:52 +00:00
Peter Dimov
33077bda71 Win64 patch (Tim Fenders)
[SVN r14537]
2002-07-19 20:06:35 +00:00
Peter Dimov
547888d507 Consistent 'bool' conversions; scoped_ptr(auto_ptr); get_pointer(scoped_ptr) added.
[SVN r14496]
2002-07-17 15:15:39 +00:00
Peter Dimov
af6fe18c9d Minor fixes.
[SVN r14464]
2002-07-15 12:52:29 +00:00
Peter Dimov
dca9628be3 Disabled some Borland warnings (David B. Held)
[SVN r14368]
2002-07-09 12:06:46 +00:00
Peter Dimov
d84fa738ef Sleep(0) changed to Sleep(1) to (hopefully) avoid livelocks.
[SVN r14226]
2002-06-22 15:55:01 +00:00
Peter Dimov
a322dc54dc Platform-specific spinlocks disabled by default unless BOOST_LWM_USE_SPINLOCK is defined.
[SVN r14213]
2002-06-20 15:16:03 +00:00
Peter Dimov
951c2b7e83 counted_base is now smaller
[SVN r14212]
2002-06-20 14:56:10 +00:00
Peter Dimov
23f68a5657 Added libstdc++ v3 specific lightweight_mutex and atomic_count (contributed by Lars Gullik Bjønnes)
[SVN r13999]
2002-05-21 16:48:20 +00:00
Peter Dimov
ecb0b4478b Typo fixed.
[SVN r13770]
2002-05-09 11:16:29 +00:00
Peter Dimov
70255d46bb Documented templated pointer constructors, revised the intro a bit.
[SVN r13665]
2002-05-04 14:27:21 +00:00
Peter Dimov
4653c3673b shared_ptr now autodetects counted_bases; minor test updates; intrusive_ptr no longer calls addref/release for NULL pointers.
[SVN r13602]
2002-05-01 11:22:22 +00:00
Peter Dimov
11eacab70e Made shared_ptr::share_ptr(Y * p) a member template.
[SVN r13551]
2002-04-23 14:56:42 +00:00
Peter Dimov
110c0021e2 counted_base default constructor added
[SVN r13542]
2002-04-22 18:01:19 +00:00
Peter Dimov
4c5e355a0b Bugfixes.
[SVN r13541]
2002-04-22 09:37:08 +00:00
Peter Dimov
fbc9028313 intrusive_ptr.hpp added (still experimental)
[SVN r13526]
2002-04-19 19:34:16 +00:00
Peter Dimov
9b800d4f84 Added more mem_fn, shared_ptr tests.
[SVN r13432]
2002-04-10 16:04:53 +00:00
Peter Dimov
513752eee5 Worked around an MSVC 6 bug (Markus Schoepflin)
[SVN r13430]
2002-04-10 14:12:12 +00:00
Beman Dawes
9eb1ba7e9f test_main args must be *[] not ** for new rev of test tools
[SVN r13381]
2002-04-06 21:44:37 +00:00
Peter Dimov
fb5b1a20d2 Small modifications.
[SVN r13212]
2002-03-15 22:03:56 +00:00
Peter Dimov
b89945d36a Added winapi.hpp and a CRITICAL_SECTION lightweight_mutex variant.
[SVN r13211]
2002-03-15 22:00:10 +00:00
Peter Dimov
220f35a0f1 Casts removed as unsafe, added intro paragraph about make_shared.
[SVN r13180]
2002-03-12 14:39:22 +00:00
Peter Dimov
72f83165e0 Removed casts as unsafe.
[SVN r13179]
2002-03-12 14:02:38 +00:00
Peter Dimov
c17f8c36c1 weak_ptr::expired() added; weak_ptr documentation updated.
[SVN r13141]
2002-03-08 16:56:16 +00:00
Peter Dimov
8e604a9da9 Disabled the linux-specific versions since using kernel headers is problematic. #define BOOST_USE_ASM_ATOMIC_H to get them back.
[SVN r12995]
2002-03-01 16:17:08 +00:00
Darin Adler
3e0233a26c Minor text updates in history section.
[SVN r12956]
2002-02-27 17:03:30 +00:00
Peter Dimov
aa98e2b37e Added lwm_irix.hpp (contributed by Dan Gohman)
[SVN r12955]
2002-02-27 16:35:15 +00:00
Peter Dimov
7b53c0040c More output.
[SVN r12852]
2002-02-18 12:39:32 +00:00
Peter Dimov
e6605637f8 BOOST_LWM_WIN32_USE_CRITICAL_SECTION option.
[SVN r12842]
2002-02-16 18:45:20 +00:00
Peter Dimov
6dfe0896e3 Untabified.
[SVN r12838]
2002-02-16 16:14:16 +00:00
Peter Dimov
9f295cbb48 Threaded test added.
[SVN r12837]
2002-02-16 16:09:08 +00:00
Peter Dimov
76c19e6111 Enabled lwm_linux.hpp in lightweight_mutex.hpp.
[SVN r12834]
2002-02-16 15:00:55 +00:00
Peter Dimov
6e6a2a013a Added lwm_linux.hpp
[SVN r12833]
2002-02-16 14:34:34 +00:00
Peter Dimov
2482e00224 Modified scoped_* to use checked_delete; HP aCC doesn't like the inline assertions.
[SVN r12832]
2002-02-16 13:23:01 +00:00
Peter Dimov
7981b647c3 lwm_nop fixed to not emit warnings on g++; locking code #ifdef'ed since compilers sometimes have trouble removing it.
[SVN r12822]
2002-02-15 18:07:42 +00:00
Peter Dimov
875bab352c Added a timing test for the single/multi threaded perf ratio (~2:1)
[SVN r12821]
2002-02-15 18:06:17 +00:00
Peter Dimov
862dc0001f Documented the bool conversion.
[SVN r12817]
2002-02-15 14:46:53 +00:00
Peter Dimov
adc3ec3851 Fixes.
[SVN r12816]
2002-02-15 14:19:30 +00:00
Peter Dimov
5a6cd1cf3e Added a default constructor to shared_count and shared_ptr for incomplete types (void).
[SVN r12815]
2002-02-15 13:31:58 +00:00
Douglas Gregor
5e2f514140 Added forward declaration of 'weak_count' class, which is referenced in
shared_count; the friend declaration does not suffice to forward-declare the
name.


[SVN r12813]
2002-02-14 23:08:30 +00:00
Peter Dimov
309e6dd82e Revised to match the style of the C++ standard.
[SVN r12806]
2002-02-14 17:12:07 +00:00
Peter Dimov
6c5d296722 Modified weak_ptr to reflect list comments.
[SVN r12793]
2002-02-13 13:16:15 +00:00
Peter Dimov
b1a1ab99aa Bug fixes.
[SVN r12787]
2002-02-12 20:38:31 +00:00
Peter Dimov
1b69c14f45 weak_ptr made thread safe, shared->weak conversions, lightweight_mutex added.
[SVN r12786]
2002-02-12 16:55:25 +00:00
Darin Adler
cd8dea78e6 Don't reinclude, since everything we need to include is already taken
care of by <boost/shared_ptr.hpp>.


[SVN r12776]
2002-02-09 17:18:38 +00:00
Peter Dimov
d77b35f333 Fix the g++ 2.9x operator!= ambiguity.
[SVN r12772]
2002-02-09 15:45:29 +00:00
Peter Dimov
6f7b927641 weak_ptr::operator< is now stable, shared_ptr_test has much better coverage.
[SVN r12769]
2002-02-09 12:34:05 +00:00
Darin Adler
d2e20cf56c Remove obsolete paragraph
[SVN r12767]
2002-02-09 02:54:00 +00:00
Darin Adler
a6126b1370 Fixed some broken internal links.
[SVN r12766]
2002-02-09 01:18:00 +00:00
Peter Dimov
87f0accb23 Minor fixes.
[SVN r12763]
2002-02-08 20:45:04 +00:00
Darin Adler
7add76dae8 Always say "private noncopyable" to avoid warnings.
[SVN r12762]
2002-02-08 20:08:15 +00:00
Peter Dimov
2a2f10fddd Borland 5.5.1 fix
[SVN r12761]
2002-02-08 18:40:49 +00:00
Darin Adler
0dd3285d56 New casts for smart pointers.
[SVN r12743]
2002-02-06 19:42:04 +00:00
Darin Adler
f9782387d9 Tweaks.
[SVN r12715]
2002-02-04 22:52:48 +00:00
Peter Dimov
e1567707b1 Tab removed :-)
[SVN r12701]
2002-02-04 19:45:11 +00:00
Beman Dawes
08df55159b Fix broken links
[SVN r12697]
2002-02-04 18:51:16 +00:00
Peter Dimov
c29cc62d66 Minor tweaks.
[SVN r12684]
2002-02-04 11:15:40 +00:00
Darin Adler
6ed07733cb Fix atomic_count.hpp includes, convert Macintosh newlines to Unix ones,
since Metrowerks supports either and the rest of Boost uses Unix ones.


[SVN r12683]
2002-02-04 08:00:20 +00:00
Darin Adler
ee3d3bd1e1 Mention thread safety feature.
[SVN r12676]
2002-02-03 17:50:11 +00:00
Darin Adler
758954a93f Documentation updates.
[SVN r12675]
2002-02-03 17:46:08 +00:00
Douglas Gregor
590757e2b2 Don't give default arguments to function parameters what subsequent parameters do not have default arguments
[SVN r12670]
2002-02-03 15:21:41 +00:00
Douglas Gregor
ddd6d54426 Need to include utility.hpp to get noncopyable
[SVN r12669]
2002-02-03 15:19:04 +00:00
Darin Adler
1a7cd887e4 New smart pointer documentation. Related clean-up of the smart pointer
library. Changing includes to include the new individual smart pointer
headers. Replacing old smart pointer library with an include of the new
smart pointer headers. Simplify ifdefs that involve the member templates
macros now that BOOST_MSVC6_MEMBER_TEMPLATES is also guaranteed to bet
set for platforms that have full member templates.


[SVN r12647]
2002-02-02 18:36:12 +00:00
Peter Dimov
d3c76575f9 templated copy constructor added.
[SVN r12644]
2002-02-02 16:19:45 +00:00
Peter Dimov
b224270cc0 auto_ptr& constructor now has no effects when exception is thrown
[SVN r12643]
2002-02-02 16:18:04 +00:00
Peter Dimov
8b5b780c2c better weak_ptr coverage
[SVN r12624]
2002-02-01 19:34:31 +00:00
Peter Dimov
39c10f739d added an auto_ptr & constructor to shared_count
[SVN r12623]
2002-02-01 18:40:35 +00:00
Darin Adler
4fdc84f29e Make the non-threads version work.
[SVN r12597]
2002-01-31 06:52:58 +00:00
Peter Dimov
a8efe20862 Comments added.
[SVN r12510]
2002-01-25 16:10:26 +00:00
Peter Dimov
58c5711b47 Added tests for the new smart pointers.
[SVN r12500]
2002-01-25 13:54:30 +00:00
Darin Adler
5d564a2f01 Add a self-assignment assert to reset(). Also add an overload of reset to
allow resetting to a new pointer with a new deletion function.


[SVN r12491]
2002-01-24 19:16:12 +00:00
Peter Dimov
09c1476063 Smart pointer enhancements, initial commit
[SVN r12439]
2002-01-22 13:38:52 +00:00
Beman Dawes
f255439ece add eof newline
[SVN r12358]
2002-01-19 15:54:28 +00:00
Peter Dimov
b104e9ae78 smart_ptr.hpp less<> fixed, partial specialization enabled on Sun 5.3
[SVN r12334]
2002-01-17 12:46:45 +00:00
Beman Dawes
4f964ce6ad Add FAQ: why no release()
[SVN r12286]
2002-01-11 20:20:07 +00:00
Beman Dawes
11ec515378 Fix broken link
[SVN r12285]
2002-01-11 16:15:09 +00:00
Beman Dawes
1a9b1dd123 1.25.0 Final runup
[SVN r11315]
2001-10-01 15:54:23 +00:00
Beman Dawes
a93dfc1837 Fix broken hyperlink
[SVN r10896]
2001-08-19 15:08:33 +00:00
Beman Dawes
c5846378ab More FAQ entries added.
[SVN r10605]
2001-07-13 16:32:34 +00:00
Beman Dawes
aea7d0c9c8 Add FAQ why use_count()?
[SVN r10604]
2001-07-13 14:07:08 +00:00
Beman Dawes
65c3f2dc85 Add table of contents, improve the FAQ
[SVN r10599]
2001-07-12 19:51:53 +00:00
Beman Dawes
5fbc553611 Reorder shared_ptr code so VC++ 6 member templates work, allowing polymorphic pointers to now work with that compiler (Gary Powell)
[SVN r10548]
2001-07-06 13:23:07 +00:00
Beman Dawes
c41b060618 Initial checkin
[SVN r10221]
2001-05-24 18:43:24 +00:00
Beman Dawes
c17921c417 Documentation and example program improvements
[SVN r10220]
2001-05-24 18:42:25 +00:00
Beman Dawes
94287044ba Oops! Fix boo boo from prior fix
[SVN r10206]
2001-05-24 01:32:07 +00:00
Beman Dawes
7c09884eac Move MS VC++ pragmas to workaround compiler crash reported by several people with SP4 and SP5.
[SVN r10204]
2001-05-23 20:14:15 +00:00
Beman Dawes
a90a157ea6 Smart pointer and utility changes related to adding checked_delere and checked_array_delete
[SVN r10189]
2001-05-22 18:58:21 +00:00
Beman Dawes
ac8d0f5505 Fix doc errors, add shared_ptr_example program
[SVN r10165]
2001-05-21 14:58:07 +00:00
Beman Dawes
8f23f07740 Fix transitive dependency bug
[SVN r10164]
2001-05-21 14:56:51 +00:00
Beman Dawes
3b183163c9 Clarify rationale for noncopyability
[SVN r10085]
2001-05-10 16:00:49 +00:00
Beman Dawes
55a377b446 Change all eGroups references to YahooGroups
[SVN r9979]
2001-04-25 00:24:50 +00:00
Beman Dawes
2d342f0ddf Comment corrected (thanks to Joe Gottman)
[SVN r9582]
2001-03-19 12:34:12 +00:00
Beman Dawes
060ea4a573 Add a couple of comments to cut down on FAQ's
[SVN r9581]
2001-03-18 22:25:51 +00:00
Beman Dawes
6a12efb77b 1.21.1 run up, including new download instructions and fix broken hyperlinks
[SVN r9557]
2001-03-14 15:11:55 +00:00
Beman Dawes
e57d3f4bc1 Fix revision date
[SVN r9069]
2001-02-10 12:47:02 +00:00
Beman Dawes
16902b1f4f Add example
[SVN r9054]
2001-02-09 14:39:43 +00:00
Dave Abrahams
cb1b1b7cc0 Suppress some useless warnings with MSVC
[SVN r8704]
2001-01-22 04:53:38 +00:00
Beman Dawes
26fe4c4078 Fix typo shared_array should have read shared_ptr in one place (Ed Brey)
[SVN r8392]
2000-12-06 14:46:44 +00:00
John Maddock
4e832788bf Fix for egcs 1.1.1 problems with std::auto_ptr
[SVN r8225]
2000-11-16 11:17:22 +00:00
Beman Dawes
db43d160b4 libraries.htm and people.htm moved to sub-directories to make root directory cleaner.
[SVN r8166]
2000-11-10 15:39:05 +00:00
Beman Dawes
1412e40490 Make shared_ptr ctor from auto_ptr explicit. (Robert Vugts)
[SVN r8012]
2000-10-19 21:16:46 +00:00
Beman Dawes
00c5642eb4 1.17.0 release candidate runup
[SVN r7683]
2000-08-03 15:26:16 +00:00
Beman Dawes
d3347b6d08 Initial HTML commit
[SVN r7640]
2000-07-27 14:27:00 +00:00
Beman Dawes
ed7e13da9f Initial commit
[SVN r7638]
2000-07-27 14:18:23 +00:00
Beman Dawes
90b7ec19d1 Changed throw() to // never throws.
[SVN r7628]
2000-07-24 16:21:10 +00:00
Beman Dawes
468c41041b This commit was generated by cvs2svn to compensate for changes in r4,
which included commits to RCS files with non-trunk default branches.


[SVN r7621]
2000-07-07 16:04:40 +00:00
62 changed files with 14038 additions and 0 deletions

105
compatibility.htm Normal file
View File

@@ -0,0 +1,105 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Smart Pointer Changes</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">Smart
Pointer Changes</h1>
<p>The February 2002 change to the Boost smart pointers introduced a number
of changes. Since the previous version of the smart pointers was in use for
a long time, it's useful to have a detailed list of what changed from a library
user's point of view.</p>
<p>Note that for compilers that don't support member templates well enough,
a separate implementation is used that lacks many of the new features and is
more like the old version.</p>
<h2>Features Requiring Code Changes to Take Advantage</h2>
<ul>
<li>The smart pointer class templates now each have their own header file.
For compatibility, the
<a href="../../boost/smart_ptr.hpp">&lt;boost/smart_ptr.hpp&gt;</a>
header now includes the headers for the four classic smart pointer class templates.</li>
<li>The <b>weak_ptr</b> template was added.</li>
<li>The new <b>shared_ptr</b> and <b>shared_array</b> relax the requirement that the pointed-to object's
destructor must be visible when instantiating the <b>shared_ptr</b> destructor.
This makes it easier to have shared_ptr members in classes without explicit destructors.</li>
<li>A custom deallocator can be passed in when creating a <b>shared_ptr</b> or <b>shared_array</b>.</li>
<li><b>shared_static_cast</b> and <b>shared_dynamic_cast</b> function templates are
provided which work for <b>shared_ptr</b> and <b>weak_ptr</b> as <b>static_cast</b> and
<b>dynamic_cast</b> do for pointers.</li>
<li>The self-assignment misfeature has been removed from <b>shared_ptr::reset</b>,
although it is still present in <b>scoped_ptr</b>, and in <b>std::auto_ptr</b>.
Calling <b>reset</b> with a pointer to the object that's already owned by the
<b>shared_ptr</b> results in undefined behavior
(an assertion, or eventually a double-delete if assertions are off).</li>
<li>The <b>BOOST_SMART_PTR_CONVERSION</b> feature has been removed.</li>
<li><b>shared_ptr&lt;void&gt;</b> is now allowed.</li>
</ul>
<h2>Features That Improve Robustness</h2>
<ul>
<li>The manipulation of use counts is now <a name="threadsafe">thread safe</a> on Windows, Linux, and platforms
that support pthreads. See the
<a href="../../boost/detail/atomic_count.hpp">&lt;boost/detail/atomic_count.hpp&gt;</a>
file for details</li>
<li>The new shared_ptr will always delete the object using the pointer it was originally constructed with.
This prevents subtle problems that could happen if the last <b>shared_ptr</b> was a pointer to a sub-object
of a class that did not have a virtual destructor.</li>
</ul>
<h2>Implementation Details</h2>
<ul>
<li>Some bugs in the assignment operator implementations and in <b>reset</b>
have been fixed by using the &quot;copy and swap&quot; idiom.</li>
<li>Assertions have been added to check preconditions of various functions;
however, since these use the new
<a href="../../boost/assert.hpp">&lt;boost/assert.hpp&gt;</a>
header, the assertions are disabled by default.</li>
<li>The partial specialization of <b>std::less</b> has been replaced by <b>operator&lt;</b>
overloads which accomplish the same thing without relying on undefined behavior.</li>
<li>The incorrect overload of <b>std::swap</b> has been replaced by <b>boost::swap</b>, which
has many of the same advantages for generic programming but does not violate the C++ standard.</li>
</ul>
<hr>
<p>Revised 1 February 2002</p>
<p>Copyright 2002 Darin Adler.
Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>

View File

@@ -0,0 +1,93 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Boost: enable_shared_from_this.hpp documentation</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="white" style="MARGIN-LEFT: 5%; MARGIN-RIGHT: 5%">
<table border="0" width="100%">
<tr>
<td width="277">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86">
</td>
<td align="middle">
<h1>enable_shared_from_this.hpp</h1>
</td>
</tr>
<tr>
<td colspan="2" height="64">&nbsp;</td>
</tr>
</table>
<h3><a name="Purpose">Purpose</a></h3>
<p>
The header <STRONG>&lt;boost/enable_shared_from_this.hpp&gt;</STRONG> defines
the class template <STRONG>enable_shared_from_this</STRONG>. It is used as a
base class that allows a <A href="shared_ptr.htm">shared_ptr</A> to the current
object to be obtained from within a member function.
</p>
<P><STRONG>enable_shared_from_this&lt;T&gt;</STRONG> defines two member functions
called <STRONG>shared_from_this</STRONG> that return a <STRONG>shared_ptr&lt;T&gt;</STRONG>
and <STRONG>shared_ptr&lt;T const&gt;</STRONG>, depending on constness, to <STRONG>this</STRONG>.</P>
<h3><a name="Example">Example</a></h3>
<pre>
class Y: public enable_shared_from_this&lt;Y&gt;
{
public:
shared_ptr&lt;Y&gt; f()
{
return shared_from_this();
}
}
int main()
{
shared_ptr&lt;Y&gt; p(new Y);
shared_ptr&lt;Y&gt; q = p-&gt;f();
assert(p == q);
assert(!(p &lt; q || q &lt; p)); // p and q must share ownership
}
</pre>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>
namespace boost
{
template&lt;class T&gt; class enable_shared_from_this
{
public:
shared_ptr&lt;T&gt; shared_from_this();
shared_ptr&lt;T const&gt; shared_from_this() const;
}
}
</pre>
<h4>template&lt;class T&gt; shared_ptr&lt;T&gt;
enable_shared_from_this&lt;T&gt;::shared_from_this();</h4>
<h4>template&lt;class T&gt; shared_ptr&lt;T const&gt;
enable_shared_from_this&lt;T&gt;::shared_from_this() const;</h4>
<blockquote>
<p>
<b>Requires:</b> <STRONG>enable_shared_from_this&lt;T&gt;</STRONG> must be an
accessible base class of <b>T</b>. <STRONG>*this</STRONG> must be a subobject
of an instance <STRONG>t</STRONG> of type <STRONG>T</STRONG> . There must exist
at least one <STRONG>shared_ptr</STRONG> instance <STRONG>p</STRONG> that <EM>owns</EM>
<STRONG>t</STRONG>.
</p>
<p>
<b>Returns:</b> A <b>shared_ptr&lt;T&gt;</b> instance <b>r</b> that shares
ownership with <b>p</b>.
</p>
<p>
<b>Postconditions:</b> <tt>r.get() == this</tt>.
</p>
</blockquote>
<p>
<br>
<small>Copyright <20> 2002, 2003 by Peter Dimov. Permission to copy, use, modify, sell
and distribute this document is granted provided this copyright notice appears
in all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</small></p>
</body>
</html>

View File

@@ -0,0 +1,24 @@
// Boost scoped_ptr_example implementation file -----------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
#include "scoped_ptr_example.hpp"
#include <iostream>
class example::implementation
{
public:
~implementation() { std::cout << "destroying implementation\n"; }
};
example::example() : _imp( new implementation ) {}
void example::do_something() { std::cout << "did something\n"; }
example::~example() {}

View File

@@ -0,0 +1,30 @@
// Boost scoped_ptr_example header file ------------------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
#include <boost/utility.hpp>
#include <boost/scoped_ptr.hpp>
// The point of this example is to prove that even though
// example::implementation is an incomplete type in translation units using
// this header, scoped_ptr< implementation > is still valid because the type
// is complete where it counts - in the inplementation translation unit where
// destruction is actually instantiated.
class example : private boost::noncopyable
{
public:
example();
~example();
void do_something();
private:
class implementation;
boost::scoped_ptr< implementation > _imp; // hide implementation details
};

View File

@@ -0,0 +1,18 @@
// Boost scoped_ptr_example_test main program -------------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
#include "scoped_ptr_example.hpp"
int main()
{
example my_example;
my_example.do_something();
return 0;
}

View File

@@ -0,0 +1,96 @@
// Boost shared_ptr_example.cpp --------------------------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 May 01 Initial complete version (Beman Dawes)
// The original code for this example appeared in the shared_ptr documentation.
// Ray Gallimore pointed out that foo_set was missing a Compare template
// argument, so would not work as intended. At that point the code was
// turned into an actual .cpp file so it could be compiled and tested.
#include <vector>
#include <set>
#include <iostream>
#include <algorithm>
#include <boost/shared_ptr.hpp>
// The application will produce a series of
// objects of type Foo which later must be
// accessed both by occurrence (std::vector)
// and by ordering relationship (std::set).
struct Foo
{
Foo( int _x ) : x(_x) {}
~Foo() { std::cout << "Destructing a Foo with x=" << x << "\n"; }
int x;
/* ... */
};
typedef boost::shared_ptr<Foo> FooPtr;
struct FooPtrOps
{
bool operator()( const FooPtr & a, const FooPtr & b )
{ return a->x > b->x; }
void operator()( const FooPtr & a )
{ std::cout << a->x << "\n"; }
};
int main()
{
std::vector<FooPtr> foo_vector;
std::set<FooPtr,FooPtrOps> foo_set; // NOT multiset!
FooPtr foo_ptr( new Foo( 2 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset( new Foo( 1 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset( new Foo( 3 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset ( new Foo( 2 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
std::cout << "foo_vector:\n";
std::for_each( foo_vector.begin(), foo_vector.end(), FooPtrOps() );
std::cout << "\nfoo_set:\n";
std::for_each( foo_set.begin(), foo_set.end(), FooPtrOps() );
std::cout << "\n";
// Expected output:
//
// foo_vector:
// 2
// 1
// 3
// 2
//
// foo_set:
// 3
// 2
// 1
//
// Destructing a Foo with x=2
// Destructing a Foo with x=1
// Destructing a Foo with x=3
// Destructing a Foo with x=2
return 0;
}

View File

@@ -0,0 +1,23 @@
// Boost shared_ptr_example2 implementation file -----------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
#include "shared_ptr_example2.hpp"
#include <iostream>
class example::implementation
{
public:
~implementation() { std::cout << "destroying implementation\n"; }
};
example::example() : _imp( new implementation ) {}
void example::do_something()
{ std::cout << "use_count() is " << _imp.use_count() << "\n"; }

View File

@@ -0,0 +1,32 @@
// Boost shared_ptr_example2 header file -----------------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
#include <boost/shared_ptr.hpp>
// This example demonstrates the handle/body idiom (also called pimpl and
// several other names). It separates the interface (in this header file)
// from the implementation (in shared_ptr_example2.cpp).
// Note that even though example::implementation is an incomplete type in
// some translation units using this header, shared_ptr< implementation >
// is still valid because the type is complete where it counts - in the
// shared_ptr_example2.cpp translation unit where functions requiring a
// complete type are actually instantiated.
class example
{
public:
example();
void do_something();
private:
class implementation;
boost::shared_ptr< implementation > _imp; // hide implementation details
};

View File

@@ -0,0 +1,23 @@
// Boost shared_ptr_example2_test main program ------------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
#include "shared_ptr_example2.hpp"
int main()
{
example a;
a.do_something();
example b(a);
b.do_something();
example c;
c = a;
c.do_something();
return 0;
}

BIN
gccspeed.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.4 KiB

View File

@@ -0,0 +1,112 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/atomic_count.hpp - thread/SMP safe reference counter
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// typedef <implementation-defined> boost::detail::atomic_count;
//
// atomic_count a(n);
//
// (n is convertible to long)
//
// Effects: Constructs an atomic_count with an initial value of n
//
// a;
//
// Returns: (long) the current value of a
//
// ++a;
//
// Effects: Atomically increments the value of a
// Returns: nothing
//
// --a;
//
// Effects: Atomically decrements the value of a
// Returns: (long) zero if the new value of a is zero,
// unspecified non-zero value otherwise (usually the new value)
//
// Important note: when --a returns zero, it must act as a
// read memory barrier (RMB); i.e. the calling thread must
// have a synchronized view of the memory
//
// On Intel IA-32 (x86) memory is always synchronized, so this
// is not a problem.
//
// On many architectures the atomic instructions already act as
// a memory barrier.
//
// This property is necessary for proper reference counting, since
// a thread can update the contents of a shared object, then
// release its reference, and another thread may immediately
// release the last reference causing object destruction.
//
// The destructor needs to have a synchronized view of the
// object to perform proper cleanup.
//
// Original example by Alexander Terekhov:
//
// Given:
//
// - a mutable shared object OBJ;
// - two threads THREAD1 and THREAD2 each holding
// a private smart_ptr object pointing to that OBJ.
//
// t1: THREAD1 updates OBJ (thread-safe via some synchronization)
// and a few cycles later (after "unlock") destroys smart_ptr;
//
// t2: THREAD2 destroys smart_ptr WITHOUT doing any synchronization
// with respect to shared mutable object OBJ; OBJ destructors
// are called driven by smart_ptr interface...
//
// Note: atomic_count_linux.hpp has been disabled by default; see the
// comments inside for more info.
#include <boost/config.hpp>
#ifndef BOOST_HAS_THREADS
namespace boost
{
namespace detail
{
typedef long atomic_count;
}
}
#elif defined(BOOST_USE_ASM_ATOMIC_H)
# include <boost/detail/atomic_count_linux.hpp>
#elif defined(BOOST_AC_USE_PTHREADS)
# include <boost/detail/atomic_count_pthreads.hpp>
#elif defined(WIN32) || defined(_WIN32) || defined(__WIN32__)
# include <boost/detail/atomic_count_win32.hpp>
#elif defined(__GLIBCPP__)
# include <boost/detail/atomic_count_gcc.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# define BOOST_AC_USE_PTHREADS
# include <boost/detail/atomic_count_pthreads.hpp>
#else
// Use #define BOOST_DISABLE_THREADS to avoid the error
#error Unrecognized threading platform
#endif
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED

View File

@@ -0,0 +1,61 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED
//
// boost/detail/atomic_count_gcc.hpp
//
// atomic_count for GNU libstdc++ v3
//
// http://gcc.gnu.org/onlinedocs/porting/Thread-safety.html
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2002 Lars Gullik Bj<42>nnes <larsbj@lyx.org>
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <bits/atomicity.h>
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count(long v) : value_(v) {}
void operator++()
{
__atomic_add(&value_, 1);
}
long operator--()
{
return !__exchange_and_add(&value_, -1);
}
operator long() const
{
return __exchange_and_add(&value_, 0);
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
_Atomic_word value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED

View File

@@ -0,0 +1,70 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_LINUX_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_LINUX_HPP_INCLUDED
//
// boost/detail/atomic_count_linux.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//
// This implementation uses <asm/atomic.h>. This is a kernel header;
// using kernel headers in a user program may cause a number of problems,
// and not all flavors of Linux provide the atomic instructions.
//
// This file is only provided because the performance of this implementation
// is significantly higher than the pthreads version. Use at your own risk
// (by defining BOOST_USE_ASM_ATOMIC_H.)
//
#include <asm/atomic.h>
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count(long v)
{
atomic_t init = ATOMIC_INIT(v);
value_ = init;
}
void operator++()
{
atomic_inc(&value_);
}
long operator--()
{
return !atomic_dec_and_test(&value_);
}
operator long() const
{
return atomic_read(&value_);
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
atomic_t value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_LINUX_HPP_INCLUDED

View File

@@ -0,0 +1,97 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED
//
// boost/detail/atomic_count_pthreads.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <pthread.h>
//
// The generic pthread_mutex-based implementation sometimes leads to
// inefficiencies. Example: a class with two atomic_count members
// can get away with a single mutex.
//
// Users can detect this situation by checking BOOST_AC_USE_PTHREADS.
//
namespace boost
{
namespace detail
{
class atomic_count
{
private:
class scoped_lock
{
public:
scoped_lock(pthread_mutex_t & m): m_(m)
{
pthread_mutex_lock(&m_);
}
~scoped_lock()
{
pthread_mutex_unlock(&m_);
}
private:
pthread_mutex_t & m_;
};
public:
explicit atomic_count(long v): value_(v)
{
pthread_mutex_init(&mutex_, 0);
}
~atomic_count()
{
pthread_mutex_destroy(&mutex_);
}
void operator++()
{
scoped_lock lock(mutex_);
++value_;
}
long operator--()
{
scoped_lock lock(mutex_);
return --value_;
}
operator long() const
{
scoped_lock lock(mutex_);
return value_;
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
mutable pthread_mutex_t mutex_;
long value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED

View File

@@ -0,0 +1,96 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/atomic_count_win32.hpp
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#ifdef BOOST_USE_WINDOWS_H
# include <windows.h>
#endif
namespace boost
{
namespace detail
{
#ifndef BOOST_USE_WINDOWS_H
#ifdef _WIN64
// Intel 6.0 on Win64 version, posted by Tim Fenders to [boost-users]
extern "C" long_type __cdecl _InterlockedIncrement(long volatile *);
extern "C" long_type __cdecl _InterlockedDecrement(long volatile *);
#pragma intrinsic(_InterlockedIncrement)
#pragma intrinsic(_InterlockedDecrement)
inline long InterlockedIncrement(long volatile * lp)
{
return _InterlockedIncrement(lp);
}
inline long InterlockedDecrement(long volatile* lp)
{
return _InterlockedDecrement(lp);
}
#else // _WIN64
extern "C" __declspec(dllimport) long __stdcall InterlockedIncrement(long volatile *);
extern "C" __declspec(dllimport) long __stdcall InterlockedDecrement(long volatile *);
#endif // _WIN64
#endif // #ifndef BOOST_USE_WINDOWS_H
class atomic_count
{
public:
explicit atomic_count(long v): value_(v)
{
}
long operator++()
{
// Some older <windows.h> versions do not accept volatile
return InterlockedIncrement(const_cast<long*>(&value_));
}
long operator--()
{
return InterlockedDecrement(const_cast<long*>(&value_));
}
operator long() const
{
return value_;
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
volatile long value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED

View File

@@ -0,0 +1,89 @@
#ifndef BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
#define BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lightweight_mutex.hpp - lightweight mutex
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// typedef <unspecified> boost::detail::lightweight_mutex;
//
// boost::detail::lightweight_mutex meets a subset of the Mutex concept
// requirements: http://www.boost.org/libs/thread/doc/mutex_concept.html#Mutex
//
// * Used by the smart pointer library
// * Performance oriented
// * Header-only implementation
// * Small memory footprint
// * Not a general purpose mutex, use boost::mutex, CRITICAL_SECTION or
// pthread_mutex instead.
// * Never spin in a tight lock/do-something/unlock loop, since
// lightweight_mutex does not guarantee fairness.
// * Never keep a lightweight_mutex locked for long periods.
//
// The current implementation can use a pthread_mutex, a CRITICAL_SECTION,
// or a platform-specific spinlock.
//
// You can force a particular implementation by defining BOOST_LWM_USE_PTHREADS,
// BOOST_LWM_USE_CRITICAL_SECTION, or BOOST_LWM_USE_SPINLOCK.
//
// If neither macro has been defined, the default is to use a spinlock on Win32,
// and a pthread_mutex otherwise.
//
// Note that a spinlock is not a general synchronization primitive. In particular,
// it is not guaranteed to be a memory barrier, and it is possible to "livelock"
// if a lower-priority thread has acquired the spinlock but a higher-priority
// thread is spinning trying to acquire the same lock.
//
// For these reasons, spinlocks have been disabled by default except on Windows,
// where a spinlock can be several orders of magnitude faster than a CRITICAL_SECTION.
// Note: lwm_linux.hpp has been disabled by default; see the comments
// inside for more info.
#include <boost/config.hpp>
// Note to implementors: if you write a platform-specific spinlock
// for a platform that supports pthreads, be sure to test its performance
// against the pthreads-based version using shared_ptr_timing_test.cpp and
// shared_ptr_mt_test.cpp. Custom versions are usually not worth the trouble
// _unless_ the performance gains are substantial.
//
// Be sure to compare against a "real" pthreads library;
// shared_ptr_timing_test.cpp will compile succesfully with a stub do-nothing
// pthreads library, since it doesn't create any threads.
#ifndef BOOST_HAS_THREADS
# include <boost/detail/lwm_nop.hpp>
#elif defined(BOOST_LWM_USE_SPINLOCK) && defined(BOOST_USE_ASM_ATOMIC_H)
# include <boost/detail/lwm_linux.hpp>
#elif defined(BOOST_LWM_USE_CRITICAL_SECTION)
# include <boost/detail/lwm_win32_cs.hpp>
#elif defined(BOOST_LWM_USE_PTHREADS)
# include <boost/detail/lwm_pthreads.hpp>
#elif defined(WIN32) || defined(_WIN32) || defined(__WIN32__)
# include <boost/detail/lwm_win32.hpp>
#elif defined(BOOST_LWM_USE_SPINLOCK) && defined(__sgi)
# include <boost/detail/lwm_irix.hpp>
#elif defined(BOOST_LWM_USE_SPINLOCK) && defined(__GLIBCPP__)
# include <boost/detail/lwm_gcc.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# define BOOST_LWM_USE_PTHREADS
# include <boost/detail/lwm_pthreads.hpp>
#else
// Use #define BOOST_DISABLE_THREADS to avoid the error
# error Unrecognized threading platform
#endif
#endif // #ifndef BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED

View File

@@ -0,0 +1,78 @@
#ifndef BOOST_DETAIL_LWM_GCC_HPP_INCLUDED
#define BOOST_DETAIL_LWM_GCC_HPP_INCLUDED
//
// boost/detail/lwm_gcc.hpp
//
// lightweight_mutex for GNU libstdc++ v3
//
// http://gcc.gnu.org/onlinedocs/porting/Thread-safety.html
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2002 Lars Gullik Bj<42>nnes <larsbj@lyx.org>
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <bits/atomicity.h>
#include <sched.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
_Atomic_word a_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex(): a_(1)
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( !__exchange_and_add(&m_.a_, -1) )
{
__atomic_add(&m_.a_, 1);
sched_yield();
}
}
~scoped_lock()
{
__atomic_add(&m_.a_, 1);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_GCC_HPP_INCLUDED

View File

@@ -0,0 +1,78 @@
#ifndef BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED
#define BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_irix.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2002 Dan Gohman
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <sgidefs.h>
#include <mutex.h>
#include <sched.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
__uint32_t l_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex(): l_(0)
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( test_and_set32(&m_.l_, 1) )
{
sched_yield();
}
}
~scoped_lock()
{
m_.l_ = 0;
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED

View File

@@ -0,0 +1,89 @@
#ifndef BOOST_DETAIL_LWM_LINUX_HPP_INCLUDED
#define BOOST_DETAIL_LWM_LINUX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_linux.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//
// This implementation uses <asm/atomic.h>. This is a kernel header;
// using kernel headers in a user program may cause a number of problems,
// and not all flavors of Linux provide the atomic instructions.
//
// This file is only provided because the performance of this implementation
// is about 3.5 times higher than the pthreads version. Use at your own risk
// (by defining BOOST_USE_ASM_ATOMIC_H.)
//
#include <asm/atomic.h>
#include <sched.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
atomic_t a_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
atomic_t a = ATOMIC_INIT(1);
a_ = a;
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( !atomic_dec_and_test(&m_.a_) )
{
atomic_inc(&m_.a_);
sched_yield();
}
}
~scoped_lock()
{
atomic_inc(&m_.a_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_LINUX_HPP_INCLUDED

View File

@@ -0,0 +1,36 @@
#ifndef BOOST_DETAIL_LWM_NOP_HPP_INCLUDED
#define BOOST_DETAIL_LWM_NOP_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_nop.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
namespace boost
{
namespace detail
{
class lightweight_mutex
{
public:
typedef lightweight_mutex scoped_lock;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_NOP_HPP_INCLUDED

View File

@@ -0,0 +1,85 @@
#ifndef BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED
#define BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_pthreads.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <pthread.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
pthread_mutex_t m_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
// HPUX 10.20 / DCE has a nonstandard pthread_mutex_init
#if defined(__hpux) && defined(_DECTHREADS_)
pthread_mutex_init(&m_, pthread_mutexattr_default);
#else
pthread_mutex_init(&m_, 0);
#endif
}
~lightweight_mutex()
{
pthread_mutex_destroy(&m_);
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
pthread_mutex_t & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
scoped_lock(lightweight_mutex & m): m_(m.m_)
{
pthread_mutex_lock(&m_);
}
~scoped_lock()
{
pthread_mutex_unlock(&m_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED

View File

@@ -0,0 +1,121 @@
#ifndef BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED
#define BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_win32.hpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#ifdef BOOST_USE_WINDOWS_H
# include <windows.h>
#endif
#ifdef __BORLANDC__
# pragma warn -8027 // Functions containing while are not expanded inline
#endif
namespace boost
{
namespace detail
{
#ifndef BOOST_USE_WINDOWS_H
#ifdef _WIN64
// Intel 6.0 on Win64 version, posted by Tim Fenders to [boost-users]
extern "C" long_type __cdecl _InterlockedExchange(long volatile *, long);
#pragma intrinsic(_InterlockedExchange)
inline long InterlockedExchange(long volatile* lp, long l)
{
return _InterlockedExchange(lp, l);
}
#else // _WIN64
extern "C" __declspec(dllimport) long __stdcall InterlockedExchange(long volatile *, long);
#endif // _WIN64
extern "C" __declspec(dllimport) void __stdcall Sleep(unsigned long);
#endif // #ifndef BOOST_USE_WINDOWS_H
class lightweight_mutex
{
private:
long l_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex(): l_(0)
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( InterlockedExchange(&m_.l_, 1) )
{
// Note: changed to Sleep(1) from Sleep(0).
// According to MSDN, Sleep(0) will never yield
// to a lower-priority thread, whereas Sleep(1)
// will. Performance seems not to be affected.
Sleep(1);
}
}
~scoped_lock()
{
InterlockedExchange(&m_.l_, 0);
// Note: adding a yield here will make
// the spinlock more fair and will increase the overall
// performance of some applications substantially in
// high contention situations, but will penalize the
// low contention / single thread case up to 5x
}
};
};
} // namespace detail
} // namespace boost
#ifdef __BORLANDC__
# pragma warn .8027 // Functions containing while are not expanded inline
#endif
#endif // #ifndef BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED

View File

@@ -0,0 +1,103 @@
#ifndef BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED
#define BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_win32_cs.hpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#ifdef BOOST_USE_WINDOWS_H
# include <windows.h>
#endif
namespace boost
{
namespace detail
{
#ifndef BOOST_USE_WINDOWS_H
struct CRITICAL_SECTION
{
struct critical_section_debug * DebugInfo;
long LockCount;
long RecursionCount;
void * OwningThread;
void * LockSemaphore;
#if defined(_WIN64)
unsigned __int64 SpinCount;
#else
unsigned long SpinCount;
#endif
};
extern "C" __declspec(dllimport) void __stdcall InitializeCriticalSection(CRITICAL_SECTION *);
extern "C" __declspec(dllimport) void __stdcall EnterCriticalSection(CRITICAL_SECTION *);
extern "C" __declspec(dllimport) void __stdcall LeaveCriticalSection(CRITICAL_SECTION *);
extern "C" __declspec(dllimport) void __stdcall DeleteCriticalSection(CRITICAL_SECTION *);
#endif // #ifndef BOOST_USE_WINDOWS_H
class lightweight_mutex
{
private:
CRITICAL_SECTION cs_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
InitializeCriticalSection(&cs_);
}
~lightweight_mutex()
{
DeleteCriticalSection(&cs_);
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
EnterCriticalSection(&m_.cs_);
}
~scoped_lock()
{
LeaveCriticalSection(&m_.cs_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED

View File

@@ -0,0 +1,152 @@
#ifndef BOOST_DETAIL_SHARED_ARRAY_NMT_HPP_INCLUDED
#define BOOST_DETAIL_SHARED_ARRAY_NMT_HPP_INCLUDED
//
// detail/shared_array_nmt.hpp - shared_array.hpp without member templates
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/shared_array.htm for documentation.
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/detail/atomic_count.hpp>
#include <cstddef> // for std::ptrdiff_t
#include <algorithm> // for std::swap
#include <functional> // for std::less
#include <new> // for std::bad_alloc
namespace boost
{
template<class T> class shared_array
{
private:
typedef detail::atomic_count count_type;
public:
typedef T element_type;
explicit shared_array(T * p = 0): px(p)
{
#ifndef BOOST_NO_EXCEPTIONS
try // prevent leak if new throws
{
pn = new count_type(1);
}
catch(...)
{
boost::checked_array_delete(p);
throw;
}
#else
pn = new count_type(1);
if(pn == 0)
{
boost::checked_array_delete(p);
boost::throw_exception(std::bad_alloc());
}
#endif
}
~shared_array()
{
if(--*pn == 0)
{
boost::checked_array_delete(px);
delete pn;
}
}
shared_array(shared_array const & r) : px(r.px) // never throws
{
pn = r.pn;
++*pn;
}
shared_array & operator=(shared_array const & r)
{
shared_array(r).swap(*this);
return *this;
}
void reset(T * p = 0)
{
BOOST_ASSERT(p == 0 || p != px);
shared_array(p).swap(*this);
}
T * get() const // never throws
{
return px;
}
T & operator[](std::ptrdiff_t i) const // never throws
{
BOOST_ASSERT(px != 0);
BOOST_ASSERT(i >= 0);
return px[i];
}
long use_count() const // never throws
{
return *pn;
}
bool unique() const // never throws
{
return *pn == 1;
}
void swap(shared_array<T> & other) // never throws
{
std::swap(px, other.px);
std::swap(pn, other.pn);
}
private:
T * px; // contained pointer
count_type * pn; // ptr to reference counter
}; // shared_array
template<class T, class U> inline bool operator==(shared_array<T> const & a, shared_array<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(shared_array<T> const & a, shared_array<U> const & b)
{
return a.get() != b.get();
}
template<class T> inline bool operator<(shared_array<T> const & a, shared_array<T> const & b)
{
return std::less<T*>()(a.get(), b.get());
}
template<class T> void swap(shared_array<T> & a, shared_array<T> & b)
{
a.swap(b);
}
} // namespace boost
#endif // #ifndef BOOST_DETAIL_SHARED_ARRAY_NMT_HPP_INCLUDED

View File

@@ -0,0 +1,552 @@
#ifndef BOOST_DETAIL_SHARED_COUNT_HPP_INCLUDED
#define BOOST_DETAIL_SHARED_COUNT_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// detail/shared_count.hpp
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/config.hpp>
#if defined(BOOST_SP_USE_STD_ALLOCATOR) && defined(BOOST_SP_USE_QUICK_ALLOCATOR)
# error BOOST_SP_USE_STD_ALLOCATOR and BOOST_SP_USE_QUICK_ALLOCATOR are incompatible.
#endif
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/detail/lightweight_mutex.hpp>
#if defined(BOOST_SP_USE_QUICK_ALLOCATOR)
#include <boost/detail/quick_allocator.hpp>
#endif
#include <memory> // std::auto_ptr, std::allocator
#include <functional> // std::less
#include <exception> // std::exception
#include <new> // std::bad_alloc
#include <typeinfo> // std::type_info in get_deleter
#include <cstddef> // std::size_t
#ifdef __BORLANDC__
# pragma warn -8026 // Functions with excep. spec. are not expanded inline
# pragma warn -8027 // Functions containing try are not expanded inline
#endif
namespace boost
{
// Debug hooks
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
void sp_scalar_constructor_hook(void * px, std::size_t size, void * pn);
void sp_array_constructor_hook(void * px);
void sp_scalar_destructor_hook(void * px, std::size_t size, void * pn);
void sp_array_destructor_hook(void * px);
#endif
// The standard library that comes with Borland C++ 5.5.1
// defines std::exception and its members as having C calling
// convention (-pc). When the definition of bad_weak_ptr
// is compiled with -ps, the compiler issues an error.
// Hence, the temporary #pragma option -pc below. The version
// check is deliberately conservative.
#if defined(__BORLANDC__) && __BORLANDC__ == 0x551
# pragma option push -pc
#endif
class bad_weak_ptr: public std::exception
{
public:
virtual char const * what() const throw()
{
return "boost::bad_weak_ptr";
}
};
#if defined(__BORLANDC__) && __BORLANDC__ == 0x551
# pragma option pop
#endif
namespace detail
{
class sp_counted_base
{
private:
typedef detail::lightweight_mutex mutex_type;
public:
sp_counted_base(): use_count_(1), weak_count_(1)
{
}
virtual ~sp_counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
virtual void dispose() = 0; // nothrow
// destruct() is called when weak_count_ drops to zero.
virtual void destruct() // nothrow
{
delete this;
}
virtual void * get_deleter(std::type_info const & ti) = 0;
void add_ref()
{
#if defined(BOOST_HAS_THREADS)
mutex_type::scoped_lock lock(mtx_);
#endif
if(use_count_ == 0 && weak_count_ != 0) boost::throw_exception(boost::bad_weak_ptr());
++use_count_;
++weak_count_;
}
void release() // nothrow
{
{
#if defined(BOOST_HAS_THREADS)
mutex_type::scoped_lock lock(mtx_);
#endif
long new_use_count = --use_count_;
if(new_use_count != 0)
{
--weak_count_;
return;
}
}
dispose();
weak_release();
}
void weak_add_ref() // nothrow
{
#if defined(BOOST_HAS_THREADS)
mutex_type::scoped_lock lock(mtx_);
#endif
++weak_count_;
}
void weak_release() // nothrow
{
long new_weak_count;
{
#if defined(BOOST_HAS_THREADS)
mutex_type::scoped_lock lock(mtx_);
#endif
new_weak_count = --weak_count_;
}
if(new_weak_count == 0)
{
destruct();
}
}
long use_count() const // nothrow
{
#if defined(BOOST_HAS_THREADS)
mutex_type::scoped_lock lock(mtx_);
#endif
return use_count_;
}
private:
sp_counted_base(sp_counted_base const &);
sp_counted_base & operator= (sp_counted_base const &);
// inv: use_count_ <= weak_count_
long use_count_;
long weak_count_;
#if defined(BOOST_HAS_THREADS)
mutable mutex_type mtx_;
#endif
};
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
template<class T> void cbi_call_constructor_hook(sp_counted_base * pn, T * px, checked_deleter<T> const &, int)
{
boost::sp_scalar_constructor_hook(px, sizeof(T), pn);
}
template<class T> void cbi_call_constructor_hook(sp_counted_base *, T * px, checked_array_deleter<T> const &, int)
{
boost::sp_array_constructor_hook(px);
}
template<class P, class D> void cbi_call_constructor_hook(sp_counted_base *, P const &, D const &, long)
{
}
template<class T> void cbi_call_destructor_hook(sp_counted_base * pn, T * px, checked_deleter<T> const &, int)
{
boost::sp_scalar_destructor_hook(px, sizeof(T), pn);
}
template<class T> void cbi_call_destructor_hook(sp_counted_base *, T * px, checked_array_deleter<T> const &, int)
{
boost::sp_array_destructor_hook(px);
}
template<class P, class D> void cbi_call_destructor_hook(sp_counted_base *, P const &, D const &, long)
{
}
#endif
//
// Borland's Codeguard trips up over the -Vx- option here:
//
#ifdef __CODEGUARD__
# pragma option push -Vx-
#endif
template<class P, class D> class sp_counted_base_impl: public sp_counted_base
{
private:
P ptr; // copy constructor must not throw
D del; // copy constructor must not throw
sp_counted_base_impl(sp_counted_base_impl const &);
sp_counted_base_impl & operator= (sp_counted_base_impl const &);
typedef sp_counted_base_impl<P, D> this_type;
public:
// pre: initial_use_count <= initial_weak_count, d(p) must not throw
sp_counted_base_impl(P p, D d): ptr(p), del(d)
{
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
detail::cbi_call_constructor_hook(this, p, d, 0);
#endif
}
virtual void dispose() // nothrow
{
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
detail::cbi_call_destructor_hook(this, ptr, del, 0);
#endif
del(ptr);
}
virtual void * get_deleter(std::type_info const & ti)
{
return ti == typeid(D)? &del: 0;
}
#if defined(BOOST_SP_USE_STD_ALLOCATOR)
void * operator new(std::size_t)
{
return std::allocator<this_type>().allocate(1, static_cast<this_type *>(0));
}
void operator delete(void * p)
{
std::allocator<this_type>().deallocate(static_cast<this_type *>(p), 1);
}
#endif
#if defined(BOOST_SP_USE_QUICK_ALLOCATOR)
void * operator new(std::size_t)
{
return quick_allocator<this_type>::alloc();
}
void operator delete(void * p)
{
quick_allocator<this_type>::dealloc(p);
}
#endif
};
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
int const shared_count_id = 0x2C35F101;
int const weak_count_id = 0x298C38A4;
#endif
class weak_count;
class shared_count
{
private:
sp_counted_base * pi_;
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
int id_;
#endif
friend class weak_count;
public:
shared_count(): pi_(0) // nothrow
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
}
template<class P, class D> shared_count(P p, D d): pi_(0)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
#ifndef BOOST_NO_EXCEPTIONS
try
{
pi_ = new sp_counted_base_impl<P, D>(p, d);
}
catch(...)
{
d(p); // delete p
throw;
}
#else
pi_ = new sp_counted_base_impl<P, D>(p, d);
if(pi_ == 0)
{
d(p); // delete p
boost::throw_exception(std::bad_alloc());
}
#endif
}
#ifndef BOOST_NO_AUTO_PTR
// auto_ptr<Y> is special cased to provide the strong guarantee
template<class Y>
explicit shared_count(std::auto_ptr<Y> & r): pi_(new sp_counted_base_impl< Y *, checked_deleter<Y> >(r.get(), checked_deleter<Y>()))
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
r.release();
}
#endif
~shared_count() // nothrow
{
if(pi_ != 0) pi_->release();
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
id_ = 0;
#endif
}
shared_count(shared_count const & r): pi_(r.pi_) // nothrow
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
if(pi_ != 0) pi_->add_ref();
}
explicit shared_count(weak_count const & r); // throws bad_weak_ptr when r.use_count() == 0
shared_count & operator= (shared_count const & r) // nothrow
{
sp_counted_base * tmp = r.pi_;
if(tmp != 0) tmp->add_ref();
if(pi_ != 0) pi_->release();
pi_ = tmp;
return *this;
}
void swap(shared_count & r) // nothrow
{
sp_counted_base * tmp = r.pi_;
r.pi_ = pi_;
pi_ = tmp;
}
long use_count() const // nothrow
{
return pi_ != 0? pi_->use_count(): 0;
}
bool unique() const // nothrow
{
return use_count() == 1;
}
friend inline bool operator==(shared_count const & a, shared_count const & b)
{
return a.pi_ == b.pi_;
}
friend inline bool operator<(shared_count const & a, shared_count const & b)
{
return std::less<sp_counted_base *>()(a.pi_, b.pi_);
}
void * get_deleter(std::type_info const & ti) const
{
return pi_? pi_->get_deleter(ti): 0;
}
};
#ifdef __CODEGUARD__
# pragma option pop
#endif
class weak_count
{
private:
sp_counted_base * pi_;
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
int id_;
#endif
friend class shared_count;
public:
weak_count(): pi_(0) // nothrow
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(weak_count_id)
#endif
{
}
weak_count(shared_count const & r): pi_(r.pi_) // nothrow
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
if(pi_ != 0) pi_->weak_add_ref();
}
weak_count(weak_count const & r): pi_(r.pi_) // nothrow
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
if(pi_ != 0) pi_->weak_add_ref();
}
~weak_count() // nothrow
{
if(pi_ != 0) pi_->weak_release();
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
id_ = 0;
#endif
}
weak_count & operator= (shared_count const & r) // nothrow
{
sp_counted_base * tmp = r.pi_;
if(tmp != 0) tmp->weak_add_ref();
if(pi_ != 0) pi_->weak_release();
pi_ = tmp;
return *this;
}
weak_count & operator= (weak_count const & r) // nothrow
{
sp_counted_base * tmp = r.pi_;
if(tmp != 0) tmp->weak_add_ref();
if(pi_ != 0) pi_->weak_release();
pi_ = tmp;
return *this;
}
void swap(weak_count & r) // nothrow
{
sp_counted_base * tmp = r.pi_;
r.pi_ = pi_;
pi_ = tmp;
}
long use_count() const // nothrow
{
return pi_ != 0? pi_->use_count(): 0;
}
friend inline bool operator==(weak_count const & a, weak_count const & b)
{
return a.pi_ == b.pi_;
}
friend inline bool operator<(weak_count const & a, weak_count const & b)
{
return std::less<sp_counted_base *>()(a.pi_, b.pi_);
}
};
inline shared_count::shared_count(weak_count const & r): pi_(r.pi_)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
if(pi_ != 0)
{
pi_->add_ref();
}
else
{
boost::throw_exception(boost::bad_weak_ptr());
}
}
} // namespace detail
} // namespace boost
#ifdef __BORLANDC__
# pragma warn .8027 // Functions containing try are not expanded inline
# pragma warn .8026 // Functions with excep. spec. are not expanded inline
#endif
#endif // #ifndef BOOST_DETAIL_SHARED_COUNT_HPP_INCLUDED

View File

@@ -0,0 +1,183 @@
#ifndef BOOST_DETAIL_SHARED_PTR_NMT_HPP_INCLUDED
#define BOOST_DETAIL_SHARED_PTR_NMT_HPP_INCLUDED
//
// detail/shared_ptr_nmt.hpp - shared_ptr.hpp without member templates
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/shared_ptr.htm for documentation.
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/detail/atomic_count.hpp>
#ifndef BOOST_NO_AUTO_PTR
# include <memory> // for std::auto_ptr
#endif
#include <algorithm> // for std::swap
#include <functional> // for std::less
#include <new> // for std::bad_alloc
namespace boost
{
template<class T> class shared_ptr
{
private:
typedef detail::atomic_count count_type;
public:
typedef T element_type;
typedef T value_type;
explicit shared_ptr(T * p = 0): px(p)
{
#ifndef BOOST_NO_EXCEPTIONS
try // prevent leak if new throws
{
pn = new count_type(1);
}
catch(...)
{
boost::checked_delete(p);
throw;
}
#else
pn = new count_type(1);
if(pn == 0)
{
boost::checked_delete(p);
boost::throw_exception(std::bad_alloc());
}
#endif
}
~shared_ptr()
{
if(--*pn == 0)
{
boost::checked_delete(px);
delete pn;
}
}
shared_ptr(shared_ptr const & r): px(r.px) // never throws
{
pn = r.pn;
++*pn;
}
shared_ptr & operator=(shared_ptr const & r)
{
shared_ptr(r).swap(*this);
return *this;
}
#ifndef BOOST_NO_AUTO_PTR
explicit shared_ptr(std::auto_ptr<T> & r)
{
pn = new count_type(1); // may throw
px = r.release(); // fix: moved here to stop leak if new throws
}
shared_ptr & operator=(std::auto_ptr<T> & r)
{
shared_ptr(r).swap(*this);
return *this;
}
#endif
void reset(T * p = 0)
{
BOOST_ASSERT(p == 0 || p != px);
shared_ptr(p).swap(*this);
}
T & operator*() const // never throws
{
BOOST_ASSERT(px != 0);
return *px;
}
T * operator->() const // never throws
{
BOOST_ASSERT(px != 0);
return px;
}
T * get() const // never throws
{
return px;
}
long use_count() const // never throws
{
return *pn;
}
bool unique() const // never throws
{
return *pn == 1;
}
void swap(shared_ptr<T> & other) // never throws
{
std::swap(px, other.px);
std::swap(pn, other.pn);
}
private:
T * px; // contained pointer
count_type * pn; // ptr to reference counter
};
template<class T, class U> inline bool operator==(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a.get() != b.get();
}
template<class T> inline bool operator<(shared_ptr<T> const & a, shared_ptr<T> const & b)
{
return std::less<T*>()(a.get(), b.get());
}
template<class T> void swap(shared_ptr<T> & a, shared_ptr<T> & b)
{
a.swap(b);
}
// get_pointer() enables boost::mem_fn to recognize shared_ptr
template<class T> inline T * get_pointer(shared_ptr<T> const & p)
{
return p.get();
}
} // namespace boost
#endif // #ifndef BOOST_DETAIL_SHARED_PTR_NMT_HPP_INCLUDED

View File

@@ -0,0 +1,49 @@
#ifndef BOOST_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED
#define BOOST_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED
//
// enable_shared_from_this.hpp
//
// Copyright (c) 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// http://www.boost.org/libs/smart_ptr/enable_shared_from_this.html
//
#include <boost/weak_ptr.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/assert.hpp>
#include <boost/config.hpp>
namespace boost
{
template<class T> class enable_shared_from_this
{
public:
shared_ptr<T> shared_from_this()
{
shared_ptr<T> p(_internal_weak_this);
BOOST_ASSERT(p.get() == this);
return p;
}
shared_ptr<T const> shared_from_this() const
{
shared_ptr<T const> p(_internal_weak_this);
BOOST_ASSERT(p.get() == this);
return p;
}
typedef T _internal_element_type; // for bcc 5.5.1
weak_ptr<_internal_element_type> _internal_weak_this;
};
} // namespace boost
#endif // #ifndef BOOST_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED

View File

@@ -0,0 +1,30 @@
// Copyright Peter Dimov and David Abrahams 2002. Permission to copy,
// use, modify, sell and distribute this software is granted provided
// this copyright notice appears in all copies of the source. This
// software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
#ifndef GET_POINTER_DWA20021219_HPP
# define GET_POINTER_DWA20021219_HPP
# include <memory>
namespace boost {
// get_pointer(p) extracts a ->* capable pointer from p
template<class T> T * get_pointer(T * p)
{
return p;
}
// get_pointer(shared_ptr<T> const & p) has been moved to shared_ptr.hpp
template<class T> T * get_pointer(std::auto_ptr<T> const& p)
{
return p.get();
}
} // namespace boost
#endif // GET_POINTER_DWA20021219_HPP

View File

@@ -0,0 +1,247 @@
#ifndef BOOST_INTRUSIVE_PTR_HPP_INCLUDED
#define BOOST_INTRUSIVE_PTR_HPP_INCLUDED
//
// intrusive_ptr.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/intrusive_ptr.html for documentation.
//
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
# pragma warning(disable:4284) // odd return type for operator->
#endif
#include <boost/assert.hpp>
#include <boost/detail/workaround.hpp>
#include <functional> // for std::less
#include <iosfwd> // for std::basic_ostream
namespace boost
{
//
// intrusive_ptr
//
// A smart pointer that uses intrusive reference counting.
//
// Relies on unqualified calls to
//
// void intrusive_ptr_add_ref(T * p);
// void intrusive_ptr_release(T * p);
//
// (p != 0)
//
// The object is responsible for destroying itself.
//
template<class T> class intrusive_ptr
{
private:
typedef intrusive_ptr this_type;
public:
typedef T element_type;
intrusive_ptr(): p_(0)
{
}
intrusive_ptr(T * p, bool add_ref = true): p_(p)
{
if(p_ != 0 && add_ref) intrusive_ptr_add_ref(p_);
}
#if !defined(BOOST_NO_MEMBER_TEMPLATES) || defined(BOOST_MSVC6_MEMBER_TEMPLATES)
template<class U> intrusive_ptr(intrusive_ptr<U> const & rhs): p_(rhs.get())
{
if(p_ != 0) intrusive_ptr_add_ref(p_);
}
#endif
intrusive_ptr(intrusive_ptr const & rhs): p_(rhs.p_)
{
if(p_ != 0) intrusive_ptr_add_ref(p_);
}
~intrusive_ptr()
{
if(p_ != 0) intrusive_ptr_release(p_);
}
#if !defined(BOOST_NO_MEMBER_TEMPLATES) || defined(BOOST_MSVC6_MEMBER_TEMPLATES)
template<class U> intrusive_ptr & operator=(intrusive_ptr<U> const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
#endif
intrusive_ptr & operator=(intrusive_ptr const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
intrusive_ptr & operator=(T * rhs)
{
this_type(rhs).swap(*this);
return *this;
}
T * get() const
{
return p_;
}
T & operator*() const
{
return *p_;
}
T * operator->() const
{
return p_;
}
typedef T * (intrusive_ptr::*unspecified_bool_type) () const;
operator unspecified_bool_type () const
{
return p_ == 0? 0: &intrusive_ptr::get;
}
// operator! is a Borland-specific workaround
bool operator! () const
{
return p_ == 0;
}
void swap(intrusive_ptr & rhs)
{
T * tmp = p_;
p_ = rhs.p_;
rhs.p_ = tmp;
}
private:
T * p_;
};
template<class T, class U> inline bool operator==(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b)
{
return a.get() != b.get();
}
template<class T> inline bool operator==(intrusive_ptr<T> const & a, T * b)
{
return a.get() == b;
}
template<class T> inline bool operator!=(intrusive_ptr<T> const & a, T * b)
{
return a.get() != b;
}
template<class T> inline bool operator==(T * a, intrusive_ptr<T> const & b)
{
return a == b.get();
}
template<class T> inline bool operator!=(T * a, intrusive_ptr<T> const & b)
{
return a != b.get();
}
#if __GNUC__ == 2 && __GNUC_MINOR__ <= 96
// Resolve the ambiguity between our op!= and the one in rel_ops
template<class T> inline bool operator!=(intrusive_ptr<T> const & a, intrusive_ptr<T> const & b)
{
return a.get() != b.get();
}
#endif
template<class T> inline bool operator<(intrusive_ptr<T> const & a, intrusive_ptr<T> const & b)
{
return std::less<T *>()(a.get(), b.get());
}
template<class T> void swap(intrusive_ptr<T> & lhs, intrusive_ptr<T> & rhs)
{
lhs.swap(rhs);
}
// mem_fn support
template<class T> T * get_pointer(intrusive_ptr<T> const & p)
{
return p.get();
}
template<class T, class U> intrusive_ptr<T> static_pointer_cast(intrusive_ptr<U> const & p)
{
return static_cast<T *>(p.get());
}
template<class T, class U> intrusive_ptr<T> dynamic_pointer_cast(intrusive_ptr<U> const & p)
{
return dynamic_cast<T *>(p.get());
}
// operator<<
#if defined(__GNUC__) && (__GNUC__ < 3)
template<class Y> std::ostream & operator<< (std::ostream & os, intrusive_ptr<Y> const & p)
{
os << p.get();
return os;
}
#else
# if BOOST_WORKAROUND(BOOST_MSVC, <= 1200 && __SGI_STL_PORT)
// MSVC6 has problems finding std::basic_ostream through the using declaration in namespace _STL
using std::basic_ostream;
template<class E, class T, class Y> basic_ostream<E, T> & operator<< (basic_ostream<E, T> & os, intrusive_ptr<Y> const & p)
# else
template<class E, class T, class Y> std::basic_ostream<E, T> & operator<< (std::basic_ostream<E, T> & os, intrusive_ptr<Y> const & p)
# endif
{
os << p.get();
return os;
}
#endif
} // namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#endif // #ifndef BOOST_INTRUSIVE_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,114 @@
#ifndef BOOST_SCOPED_ARRAY_HPP_INCLUDED
#define BOOST_SCOPED_ARRAY_HPP_INCLUDED
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// http://www.boost.org/libs/smart_ptr/scoped_array.htm
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/config.hpp> // in case ptrdiff_t not in std
#include <cstddef> // for std::ptrdiff_t
namespace boost
{
// Debug hooks
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
void sp_array_constructor_hook(void * p);
void sp_array_destructor_hook(void * p);
#endif
// scoped_array extends scoped_ptr to arrays. Deletion of the array pointed to
// is guaranteed, either on destruction of the scoped_array or via an explicit
// reset(). Use shared_array or std::vector if your needs are more complex.
template<class T> class scoped_array // noncopyable
{
private:
T * ptr;
scoped_array(scoped_array const &);
scoped_array & operator=(scoped_array const &);
typedef scoped_array<T> this_type;
public:
typedef T element_type;
explicit scoped_array(T * p = 0) : ptr(p) // never throws
{
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
boost::sp_array_constructor_hook(ptr);
#endif
}
~scoped_array() // never throws
{
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
boost::sp_array_destructor_hook(ptr);
#endif
boost::checked_array_delete(ptr);
}
void reset(T * p = 0) // never throws
{
BOOST_ASSERT(p == 0 || p != ptr); // catch self-reset errors
this_type(p).swap(*this);
}
T & operator[](std::ptrdiff_t i) const // never throws
{
BOOST_ASSERT(ptr != 0);
BOOST_ASSERT(i >= 0);
return ptr[i];
}
T * get() const // never throws
{
return ptr;
}
// implicit conversion to "bool"
typedef T * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{
return ptr == 0? 0: &this_type::get;
}
bool operator! () const // never throws
{
return ptr == 0;
}
void swap(scoped_array & b) // never throws
{
T * tmp = b.ptr;
b.ptr = ptr;
ptr = tmp;
}
};
template<class T> inline void swap(scoped_array<T> & a, scoped_array<T> & b) // never throws
{
a.swap(b);
}
} // namespace boost
#endif // #ifndef BOOST_SCOPED_ARRAY_HPP_INCLUDED

View File

@@ -0,0 +1,139 @@
#ifndef BOOST_SCOPED_PTR_HPP_INCLUDED
#define BOOST_SCOPED_PTR_HPP_INCLUDED
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// http://www.boost.org/libs/smart_ptr/scoped_ptr.htm
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#ifndef BOOST_NO_AUTO_PTR
# include <memory> // for std::auto_ptr
#endif
namespace boost
{
// Debug hooks
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
void sp_scalar_constructor_hook(void * p);
void sp_scalar_destructor_hook(void * p);
#endif
// scoped_ptr mimics a built-in pointer except that it guarantees deletion
// of the object pointed to, either on destruction of the scoped_ptr or via
// an explicit reset(). scoped_ptr is a simple solution for simple needs;
// use shared_ptr or std::auto_ptr if your needs are more complex.
template<class T> class scoped_ptr // noncopyable
{
private:
T * ptr;
scoped_ptr(scoped_ptr const &);
scoped_ptr & operator=(scoped_ptr const &);
typedef scoped_ptr<T> this_type;
public:
typedef T element_type;
explicit scoped_ptr(T * p = 0): ptr(p) // never throws
{
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
boost::sp_scalar_constructor_hook(ptr);
#endif
}
#ifndef BOOST_NO_AUTO_PTR
explicit scoped_ptr(std::auto_ptr<T> p): ptr(p.release()) // never throws
{
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
boost::sp_scalar_constructor_hook(ptr);
#endif
}
#endif
~scoped_ptr() // never throws
{
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
boost::sp_scalar_destructor_hook(ptr);
#endif
boost::checked_delete(ptr);
}
void reset(T * p = 0) // never throws
{
BOOST_ASSERT(p == 0 || p != ptr); // catch self-reset errors
this_type(p).swap(*this);
}
T & operator*() const // never throws
{
BOOST_ASSERT(ptr != 0);
return *ptr;
}
T * operator->() const // never throws
{
BOOST_ASSERT(ptr != 0);
return ptr;
}
T * get() const // never throws
{
return ptr;
}
// implicit conversion to "bool"
typedef T * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{
return ptr == 0? 0: &this_type::get;
}
bool operator! () const // never throws
{
return ptr == 0;
}
void swap(scoped_ptr & b) // never throws
{
T * tmp = b.ptr;
b.ptr = ptr;
ptr = tmp;
}
};
template<class T> inline void swap(scoped_ptr<T> & a, scoped_ptr<T> & b) // never throws
{
a.swap(b);
}
// get_pointer(p) is a generic way to say p.get()
template<class T> inline T * get_pointer(scoped_ptr<T> const & p)
{
return p.get();
}
} // namespace boost
#endif // #ifndef BOOST_SCOPED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,156 @@
#ifndef BOOST_SHARED_ARRAY_HPP_INCLUDED
#define BOOST_SHARED_ARRAY_HPP_INCLUDED
//
// shared_array.hpp
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/shared_array.htm for documentation.
//
#include <boost/config.hpp> // for broken compiler workarounds
#if defined(BOOST_NO_MEMBER_TEMPLATES) && !defined(BOOST_MSVC6_MEMBER_TEMPLATES)
#include <boost/detail/shared_array_nmt.hpp>
#else
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/detail/shared_count.hpp>
#include <cstddef> // for std::ptrdiff_t
#include <algorithm> // for std::swap
#include <functional> // for std::less
namespace boost
{
//
// shared_array
//
// shared_array extends shared_ptr to arrays.
// The array pointed to is deleted when the last shared_array pointing to it
// is destroyed or reset.
//
template<class T> class shared_array
{
private:
// Borland 5.5.1 specific workarounds
typedef checked_array_deleter<T> deleter;
typedef shared_array<T> this_type;
public:
typedef T element_type;
explicit shared_array(T * p = 0): px(p), pn(p, deleter())
{
}
//
// Requirements: D's copy constructor must not throw
//
// shared_array will release p by calling d(p)
//
template<class D> shared_array(T * p, D d): px(p), pn(p, d)
{
}
// generated copy constructor, assignment, destructor are fine
void reset(T * p = 0)
{
BOOST_ASSERT(p == 0 || p != px);
this_type(p).swap(*this);
}
template <class D> void reset(T * p, D d)
{
this_type(p, d).swap(*this);
}
T & operator[] (std::ptrdiff_t i) const // never throws
{
BOOST_ASSERT(px != 0);
BOOST_ASSERT(i >= 0);
return px[i];
}
T * get() const // never throws
{
return px;
}
// implicit conversion to "bool"
typedef T * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{
return px == 0? 0: &this_type::get;
}
bool operator! () const // never throws
{
return px == 0;
}
bool unique() const // never throws
{
return pn.unique();
}
long use_count() const // never throws
{
return pn.use_count();
}
void swap(shared_array<T> & other) // never throws
{
std::swap(px, other.px);
pn.swap(other.pn);
}
private:
T * px; // contained pointer
detail::shared_count pn; // reference counter
}; // shared_array
template<class T> inline bool operator==(shared_array<T> const & a, shared_array<T> const & b) // never throws
{
return a.get() == b.get();
}
template<class T> inline bool operator!=(shared_array<T> const & a, shared_array<T> const & b) // never throws
{
return a.get() != b.get();
}
template<class T> inline bool operator<(shared_array<T> const & a, shared_array<T> const & b) // never throws
{
return std::less<T*>()(a.get(), b.get());
}
template<class T> void swap(shared_array<T> & a, shared_array<T> & b) // never throws
{
a.swap(b);
}
} // namespace boost
#endif // #if defined(BOOST_NO_MEMBER_TEMPLATES) && !defined(BOOST_MSVC6_MEMBER_TEMPLATES)
#endif // #ifndef BOOST_SHARED_ARRAY_HPP_INCLUDED

View File

@@ -0,0 +1,433 @@
#ifndef BOOST_SHARED_PTR_HPP_INCLUDED
#define BOOST_SHARED_PTR_HPP_INCLUDED
//
// shared_ptr.hpp
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/shared_ptr.htm for documentation.
//
#include <boost/config.hpp> // for broken compiler workarounds
#if defined(BOOST_NO_MEMBER_TEMPLATES) && !defined(BOOST_MSVC6_MEMBER_TEMPLATES)
#include <boost/detail/shared_ptr_nmt.hpp>
#else
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/detail/shared_count.hpp>
#include <boost/detail/workaround.hpp>
#include <memory> // for std::auto_ptr
#include <algorithm> // for std::swap
#include <functional> // for std::less
#include <typeinfo> // for std::bad_cast
#include <iosfwd> // for std::basic_ostream
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
# pragma warning(disable:4284) // odd return type for operator->
#endif
namespace boost
{
template<class T> class weak_ptr;
template<class T> class enable_shared_from_this;
namespace detail
{
struct static_cast_tag {};
struct dynamic_cast_tag {};
struct polymorphic_cast_tag {};
template<class T> struct shared_ptr_traits
{
typedef T & reference;
};
template<> struct shared_ptr_traits<void>
{
typedef void reference;
};
#if !defined(BOOST_NO_CV_VOID_SPECIALIZATIONS)
template<> struct shared_ptr_traits<void const>
{
typedef void reference;
};
#endif
// enable_shared_from_this support
template<class T, class Y> void sp_enable_shared_from_this(boost::enable_shared_from_this<T> * pe, Y * px, shared_count const & pn)
{
if(pe != 0) pe->_internal_weak_this._internal_assign(px, pn);
}
inline void sp_enable_shared_from_this(void const *, void const *, shared_count const &)
{
}
} // namespace detail
//
// shared_ptr
//
// An enhanced relative of scoped_ptr with reference counted copy semantics.
// The object pointed to is deleted when the last shared_ptr pointing to it
// is destroyed or reset.
//
template<class T> class shared_ptr
{
private:
// Borland 5.5.1 specific workaround
typedef shared_ptr<T> this_type;
public:
typedef T element_type;
typedef T value_type;
typedef T * pointer;
typedef typename detail::shared_ptr_traits<T>::reference reference;
shared_ptr(): px(0), pn() // never throws in 1.30+
{
}
template<class Y>
explicit shared_ptr(Y * p): px(p), pn(p, checked_deleter<Y>()) // Y must be complete
{
detail::sp_enable_shared_from_this(p, p, pn);
}
//
// Requirements: D's copy constructor must not throw
//
// shared_ptr will release p by calling d(p)
//
template<class Y, class D> shared_ptr(Y * p, D d): px(p), pn(p, d)
{
detail::sp_enable_shared_from_this(p, p, pn);
}
// generated copy constructor, assignment, destructor are fine...
// except that Borland C++ has a bug, and g++ with -Wsynth warns
#if defined(__BORLANDC__) || defined(__GNUC__)
shared_ptr & operator=(shared_ptr const & r) // never throws
{
px = r.px;
pn = r.pn; // shared_count::op= doesn't throw
return *this;
}
#endif
template<class Y>
explicit shared_ptr(weak_ptr<Y> const & r): pn(r.pn) // may throw
{
// it is now safe to copy r.px, as pn(r.pn) did not throw
px = r.px;
}
template<class Y>
shared_ptr(shared_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws
{
}
template<class Y>
shared_ptr(shared_ptr<Y> const & r, detail::static_cast_tag): px(static_cast<element_type *>(r.px)), pn(r.pn)
{
}
template<class Y>
shared_ptr(shared_ptr<Y> const & r, detail::dynamic_cast_tag): px(dynamic_cast<element_type *>(r.px)), pn(r.pn)
{
if(px == 0) // need to allocate new counter -- the cast failed
{
pn = detail::shared_count();
}
}
template<class Y>
shared_ptr(shared_ptr<Y> const & r, detail::polymorphic_cast_tag): px(dynamic_cast<element_type *>(r.px)), pn(r.pn)
{
if(px == 0)
{
boost::throw_exception(std::bad_cast());
}
}
#ifndef BOOST_NO_AUTO_PTR
template<class Y>
explicit shared_ptr(std::auto_ptr<Y> & r): px(r.get()), pn()
{
Y * tmp = r.get();
pn = detail::shared_count(r);
detail::sp_enable_shared_from_this(tmp, tmp, pn);
}
#endif
#if !defined(BOOST_MSVC) || (BOOST_MSVC > 1200)
template<class Y>
shared_ptr & operator=(shared_ptr<Y> const & r) // never throws
{
px = r.px;
pn = r.pn; // shared_count::op= doesn't throw
return *this;
}
#endif
#ifndef BOOST_NO_AUTO_PTR
template<class Y>
shared_ptr & operator=(std::auto_ptr<Y> & r)
{
this_type(r).swap(*this);
return *this;
}
#endif
void reset() // never throws in 1.30+
{
this_type().swap(*this);
}
template<class Y> void reset(Y * p) // Y must be complete
{
BOOST_ASSERT(p == 0 || p != px); // catch self-reset errors
this_type(p).swap(*this);
}
template<class Y, class D> void reset(Y * p, D d)
{
this_type(p, d).swap(*this);
}
reference operator* () const // never throws
{
BOOST_ASSERT(px != 0);
return *px;
}
T * operator-> () const // never throws
{
BOOST_ASSERT(px != 0);
return px;
}
T * get() const // never throws
{
return px;
}
// implicit conversion to "bool"
typedef T * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{
return px == 0? 0: &this_type::get;
}
// operator! is redundant, but some compilers need it
bool operator! () const // never throws
{
return px == 0;
}
bool unique() const // never throws
{
return pn.unique();
}
long use_count() const // never throws
{
return pn.use_count();
}
void swap(shared_ptr<T> & other) // never throws
{
std::swap(px, other.px);
pn.swap(other.pn);
}
template<class Y> bool _internal_less(shared_ptr<Y> const & rhs) const
{
return pn < rhs.pn;
}
void * _internal_get_deleter(std::type_info const & ti) const
{
return pn.get_deleter(ti);
}
// Tasteless as this may seem, making all members public allows member templates
// to work in the absence of member template friends. (Matthew Langston)
#ifndef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
private:
template<class Y> friend class shared_ptr;
template<class Y> friend class weak_ptr;
#endif
T * px; // contained pointer
detail::shared_count pn; // reference counter
}; // shared_ptr
template<class T, class U> inline bool operator==(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a.get() != b.get();
}
#if __GNUC__ == 2 && __GNUC_MINOR__ <= 96
// Resolve the ambiguity between our op!= and the one in rel_ops
template<class T> inline bool operator!=(shared_ptr<T> const & a, shared_ptr<T> const & b)
{
return a.get() != b.get();
}
#endif
template<class T, class U> inline bool operator<(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a._internal_less(b);
}
template<class T> inline void swap(shared_ptr<T> & a, shared_ptr<T> & b)
{
a.swap(b);
}
template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::static_cast_tag());
}
template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::dynamic_cast_tag());
}
// shared_*_cast names are deprecated. Use *_pointer_cast instead.
template<class T, class U> shared_ptr<T> shared_static_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::static_cast_tag());
}
template<class T, class U> shared_ptr<T> shared_dynamic_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::dynamic_cast_tag());
}
template<class T, class U> shared_ptr<T> shared_polymorphic_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::polymorphic_cast_tag());
}
template<class T, class U> shared_ptr<T> shared_polymorphic_downcast(shared_ptr<U> const & r)
{
BOOST_ASSERT(dynamic_cast<T *>(r.get()) == r.get());
return shared_static_cast<T>(r);
}
// get_pointer() enables boost::mem_fn to recognize shared_ptr
template<class T> inline T * get_pointer(shared_ptr<T> const & p)
{
return p.get();
}
// operator<<
#if defined(__GNUC__) && (__GNUC__ < 3)
template<class Y> std::ostream & operator<< (std::ostream & os, shared_ptr<Y> const & p)
{
os << p.get();
return os;
}
#else
# if BOOST_WORKAROUND(BOOST_MSVC, <= 1200 && __SGI_STL_PORT)
// MSVC6 has problems finding std::basic_ostream through the using declaration in namespace _STL
using std::basic_ostream;
template<class E, class T, class Y> basic_ostream<E, T> & operator<< (basic_ostream<E, T> & os, shared_ptr<Y> const & p)
# else
template<class E, class T, class Y> std::basic_ostream<E, T> & operator<< (std::basic_ostream<E, T> & os, shared_ptr<Y> const & p)
# endif
{
os << p.get();
return os;
}
#endif
// get_deleter (experimental)
#if defined(__GNUC__) && (__GNUC__ < 3)
// g++ 2.9x doesn't allow static_cast<X const *>(void *)
template<class D, class T> D * get_deleter(shared_ptr<T> const & p)
{
void const * q = p._internal_get_deleter(typeid(D));
return const_cast<D *>(static_cast<D const *>(q));
}
#else
template<class D, class T> D * get_deleter(shared_ptr<T> const & p)
{
return static_cast<D *>(p._internal_get_deleter(typeid(D)));
}
#endif
} // namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#endif // #if defined(BOOST_NO_MEMBER_TEMPLATES) && !defined(BOOST_MSVC6_MEMBER_TEMPLATES)
#endif // #ifndef BOOST_SHARED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,20 @@
//
// smart_ptr.hpp
//
// For compatibility, this header includes the headers for the four "classic"
// smart pointer class templates.
//
// Copyright (c) 1998-2002 boost.org
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// http://www.boost.org/libs/smart_ptr/smart_ptr.htm
//
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/shared_array.hpp>

193
include/boost/weak_ptr.hpp Normal file
View File

@@ -0,0 +1,193 @@
#ifndef BOOST_WEAK_PTR_HPP_INCLUDED
#define BOOST_WEAK_PTR_HPP_INCLUDED
//
// weak_ptr.hpp
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/weak_ptr.htm for documentation.
//
#include <boost/shared_ptr.hpp>
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
# pragma warning(disable:4284) // odd return type for operator->
#endif
namespace boost
{
template<class T> class weak_ptr
{
private:
// Borland 5.5.1 specific workarounds
typedef weak_ptr<T> this_type;
public:
typedef T element_type;
weak_ptr(): px(0), pn() // never throws in 1.30+
{
}
// generated copy constructor, assignment, destructor are fine
//
// The "obvious" converting constructor implementation:
//
// template<class Y>
// weak_ptr(weak_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws
// {
// }
//
// has a serious problem.
//
// r.px may already have been invalidated. The px(r.px)
// conversion may require access to *r.px (virtual inheritance).
//
// It is not possible to avoid spurious access violations since
// in multithreaded programs r.px may be invalidated at any point.
//
template<class Y>
weak_ptr(weak_ptr<Y> const & r): pn(r.pn) // never throws
{
px = r.lock().get();
}
template<class Y>
weak_ptr(shared_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws
{
}
#if !defined(BOOST_MSVC) || (BOOST_MSVC > 1200)
template<class Y>
weak_ptr & operator=(weak_ptr<Y> const & r) // never throws
{
px = r.lock().get();
pn = r.pn;
return *this;
}
template<class Y>
weak_ptr & operator=(shared_ptr<Y> const & r) // never throws
{
px = r.px;
pn = r.pn;
return *this;
}
#endif
shared_ptr<T> lock() const // never throws
{
#if defined(BOOST_HAS_THREADS)
// optimization: avoid throw overhead
if(expired())
{
return shared_ptr<element_type>();
}
try
{
return shared_ptr<element_type>(*this);
}
catch(bad_weak_ptr const &)
{
// Q: how can we get here?
// A: another thread may have invalidated r after the use_count test above.
return shared_ptr<element_type>();
}
#else
// optimization: avoid try/catch overhead when single threaded
return expired()? shared_ptr<element_type>(): shared_ptr<element_type>(*this);
#endif
}
long use_count() const // never throws
{
return pn.use_count();
}
bool expired() const // never throws
{
return pn.use_count() == 0;
}
void reset() // never throws in 1.30+
{
this_type().swap(*this);
}
void swap(this_type & other) // never throws
{
std::swap(px, other.px);
pn.swap(other.pn);
}
void _internal_assign(T * px2, detail::shared_count const & pn2)
{
px = px2;
pn = pn2;
}
template<class Y> bool _internal_less(weak_ptr<Y> const & rhs) const
{
return pn < rhs.pn;
}
// Tasteless as this may seem, making all members public allows member templates
// to work in the absence of member template friends. (Matthew Langston)
#ifndef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
private:
template<class Y> friend class weak_ptr;
template<class Y> friend class shared_ptr;
#endif
T * px; // contained pointer
detail::weak_count pn; // reference counter
}; // weak_ptr
template<class T, class U> inline bool operator<(weak_ptr<T> const & a, weak_ptr<U> const & b)
{
return a._internal_less(b);
}
template<class T> void swap(weak_ptr<T> & a, weak_ptr<T> & b)
{
a.swap(b);
}
// deprecated, provided for backward compatibility
template<class T> shared_ptr<T> make_shared(weak_ptr<T> const & r)
{
return r.lock();
}
} // namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#endif // #ifndef BOOST_WEAK_PTR_HPP_INCLUDED

51
index.htm Normal file
View File

@@ -0,0 +1,51 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Boost Smart Pointer Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table border="1" bgcolor="#007F7F" cellpadding="2">
<tr>
<td bgcolor="#FFFFFF"><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86"></td>
<td><a href="../../index.htm"><font face="Arial" color="#FFFFFF"><big>Home</big></font></a></td>
<td><a href="../libraries.htm"><font face="Arial" color="#FFFFFF"><big>Libraries</big></font></a></td>
<td><a href="../../people/people.htm"><font face="Arial" color="#FFFFFF"><big>People</big></font></a></td>
<td><a href="../../more/faq.htm"><font face="Arial" color="#FFFFFF"><big>FAQ</big></font></a></td>
<td><a href="../../more/index.htm"><font face="Arial" color="#FFFFFF"><big>More</big></font></a></td>
</tr>
</table>
<h1>Smart Pointer Library</h1>
<p>The smart pointer library includes five smart pointer class templates. Smart
pointers ease the management of memory dynamically allocated with C++ <b>new</b>
expressions. In addition, <b>scoped_ptr</b> can ease the management of memory
dynamically allocated in other ways.</p>
<ul>
<li>
<a href="smart_ptr.htm">Documentation</a> (HTML).</li>
<li>
Header <a href="../../boost/scoped_ptr.hpp">scoped_ptr.hpp</a>.</li>
<li>
Header <a href="../../boost/scoped_array.hpp">scoped_array.hpp</a>.</li>
<li>
Header <a href="../../boost/shared_ptr.hpp">shared_ptr.hpp</a>.</li>
<li>
Header <a href="../../boost/shared_array.hpp">shared_array.hpp</a>.</li>
<li>
Header <a href="../../boost/weak_ptr.hpp">weak_ptr.hpp</a>.</li>
<li>
Header <a href="../../boost/enable_shared_from_this.hpp">enable_shared_from_this.hpp</a>.</li>
<li>
Header <a href="../../boost/intrusive_ptr.hpp">intrusive_ptr.hpp</a>.</li>
<li>
Test program <a href="test/smart_ptr_test.cpp">smart_ptr_test.cpp</a>.</li>
<li>
Originally submitted by <a href="../../people/greg_colvin.htm">Greg Colvin</a> and
<a href="../../people/beman_dawes.html">Beman Dawes</a>, currently maintained
by <a href="../../people/peter_dimov.htm">Peter Dimov</a> and <a href="../../people/darin_adler.htm">
Darin Adler</a>.</li>
</ul>
<hr>
<p>$Date$</p>
</body>
</html>

276
intrusive_ptr.html Normal file
View File

@@ -0,0 +1,276 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>intrusive_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body text="#000000" bgColor="#ffffff">
<h1><IMG height="86" alt="c++boost.gif (8819 bytes)" src="../../c++boost.gif" width="277" align="middle">intrusive_ptr
class template</h1>
<p>
<A href="#Introduction">Introduction</A><br>
<A href="#Synopsis">Synopsis</A><br>
<A href="#Members">Members</A><br>
<A href="#functions">Free Functions</A><br>
</p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <b>intrusive_ptr</b> class template stores a pointer to an object with an
embedded reference count. Every new <b>intrusive_ptr</b> instance increments
the reference count by using an unqualified call to the function <STRONG>intrusive_ptr_add_ref</STRONG>,
passing it the pointer as an argument. Similarly, when an <STRONG>intrusive_ptr</STRONG>
is destroyed, it calls <STRONG>intrusive_ptr_release</STRONG>; this function is
responsible for destroying the object when its reference count drops to zero.
The user is expected to provide suitable definitions of these two functions. On
compilers that support argument-dependent lookup, <STRONG>intrusive_ptr_add_ref</STRONG>
and <STRONG>intrusive_ptr_release</STRONG> should be defined in the namespace
that corresponds to their parameter; otherwise, the definitions need to go in
namespace <STRONG>boost</STRONG>.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <STRONG>intrusive_ptr&lt;T&gt;</STRONG> can be implicitly converted to <STRONG>intrusive_ptr&lt;U&gt;</STRONG>
whenever <STRONG>T*</STRONG> can be implicitly converted to <STRONG>U*</STRONG>.</p>
<P>The main reasons to use <STRONG>intrusive_ptr</STRONG> are:</P>
<UL>
<LI>
Some existing frameworks or OSes provide objects with embedded reference
counts;</LI>
<LI>
The memory footprint of <STRONG>intrusive_ptr</STRONG> is the same as the
corresponding raw pointer;</LI>
<LI>
<STRONG>intrusive_ptr&lt;T&gt;</STRONG> can be constructed from an arbitrary
raw pointer of type <STRONG>T *</STRONG>.</LI></UL>
<P>As a general rule, if it isn't obvious whether <STRONG>intrusive_ptr</STRONG> better
fits your needs than <STRONG>shared_ptr</STRONG>, try a <STRONG>shared_ptr</STRONG>-based
design first.</P>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
template&lt;class T&gt; class intrusive_ptr {
public:
typedef T <A href="#element_type" >element_type</A>;
<A href="#constructors" >intrusive_ptr</A>(); // never throws
<A href="#constructors" >intrusive_ptr</A>(T * p, bool add_ref = true);
<A href="#constructors" >intrusive_ptr</A>(intrusive_ptr const &amp; r);
template&lt;class Y&gt; <A href="#constructors" >intrusive_ptr</A>(intrusive_ptr&lt;Y&gt; const &amp; r);
<A href="#destructor" >~intrusive_ptr</A>();
intrusive_ptr &amp; <A href="#assignment" >operator=</A>(intrusive_ptr const &amp; r);
template&lt;class Y&gt; intrusive_ptr &amp; <A href="#assignment" >operator=</A>(intrusive_ptr&lt;Y&gt; const &amp; r);
template&lt;class Y&gt; intrusive_ptr &amp; <A href="#assignment" >operator=</A>(T * r);
T &amp; <A href="#indirection" >operator*</A>() const; // never throws
T * <A href="#indirection" >operator-&gt;</A>() const; // never throws
T * <A href="#get" >get</A>() const; // never throws
operator <A href="#conversions" ><i>unspecified-bool-type</i></A>() const; // never throws
void <A href="#swap" >swap</A>(intrusive_ptr &amp; b); // never throws
};
template&lt;class T, class U&gt;
bool <A href="#comparison" >operator==</A>(intrusive_ptr&lt;T&gt; const &amp; a, intrusive_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;class T, class U&gt;
bool <A href="#comparison" >operator!=</A>(intrusive_ptr&lt;T&gt; const &amp; a, intrusive_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;class T&gt;
bool <A href="#comparison" >operator==</A>(intrusive_ptr&lt;T&gt; const &amp; a, T * b); // never throws
template&lt;class T&gt;
bool <A href="#comparison" >operator!=</A>(intrusive_ptr&lt;T&gt; const &amp; a, T * b); // never throws
template&lt;class T&gt;
bool <A href="#comparison" >operator==</A>(T * a, intrusive_ptr&lt;T&gt; const &amp; b); // never throws
template&lt;class T&gt;
bool <A href="#comparison" >operator!=</A>(T * a, intrusive_ptr&lt;T&gt; const &amp; b); // never throws
template&lt;class T, class U&gt;
bool <A href="#comparison" >operator&lt;</A>(intrusive_ptr&lt;T&gt; const &amp; a, intrusive_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;class T&gt; void <A href="#free-swap" >swap</A>(intrusive_ptr&lt;T&gt; &amp; a, intrusive_ptr&lt;T&gt; &amp; b); // never throws
template&lt;class T&gt; T * <A href="#get_pointer" >get_pointer</A>(intrusive_ptr&lt;T&gt; const &amp; p); // never throws
template&lt;class T, class U&gt;
intrusive_ptr&lt;T&gt; <A href="#static_pointer_cast" >static_pointer_cast</A>(intrusive_ptr&lt;U&gt; const &amp; r); // never throws
template&lt;class T, class U&gt;
intrusive_ptr&lt;T&gt; <A href="#dynamic_pointer_cast" >dynamic_pointer_cast</A>(intrusive_ptr&lt;U&gt; const &amp; r); // never throws
template&lt;class E, class T, class Y&gt;
std::basic_ostream&lt;E, T&gt; &amp; <A href="#insertion-operator" >operator&lt;&lt;</A> (std::basic_ostream&lt;E, T&gt; &amp; os, intrusive_ptr&lt;Y&gt; const &amp; p);
}</pre>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<blockquote>
<p>Provides the type of the template parameter T.</p>
</blockquote>
<h3><a name="constructors">constructors</a></h3>
<pre>intrusive_ptr(); // never throws</pre>
<blockquote>
<p><b>Postconditions:</b> <code>get() == 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>intrusive_ptr(T * p, bool add_ref = true);</pre>
<blockquote>
<p><b>Effects:</b> <code>if(p != 0 &amp;&amp; add_ref) intrusive_ptr_add_ref(p);</code>.</p>
<p><b>Postconditions:</b> <code>get() == p</code>.</p>
</blockquote>
<pre>intrusive_ptr(intrusive_ptr const &amp; r); // never throws
template&lt;class Y&gt; intrusive_ptr(intrusive_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> <code>if(r.get() != 0) intrusive_ptr_add_ref(r.get());</code>.</p>
<p><b>Postconditions:</b> <code>get() == r.get()</code>.</p>
</blockquote>
<h3><a name="destructor">destructor</a></h3>
<pre>~intrusive_ptr();</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> <code>if(get() != 0) intrusive_ptr_release(get());</code>.</P>
</BLOCKQUOTE>
<H3><a name="assignment">assignment</a></H3>
<pre>intrusive_ptr &amp; operator=(intrusive_ptr const &amp; r); // never throws
template&lt;class Y&gt; intrusive_ptr &amp; operator=(intrusive_ptr&lt;Y&gt; const &amp; r); // never throws
intrusive_ptr &amp; operator=(T * r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>intrusive_ptr(r).swap(*this)</code>.</P>
<P><B>Returns:</B> <code>*this</code>.</P>
</BLOCKQUOTE>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> <code>get() != 0</code>.</p>
<p><b>Returns:</b> <code>*get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>T * operator-&gt;() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> <code>get() != 0</code>.</p>
<p><b>Returns:</b> <code>get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="conversions">conversions</a></h3>
<pre>operator <i>unspecified-bool-type</i> () const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> an unspecified value that, when used in boolean contexts, is
equivalent to <code>get() != 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> This conversion operator allows <b>intrusive_ptr</b> objects to be
used in boolean contexts, like <code>if (p &amp;&amp; p-&gt;valid()) {}</code>.
The actual target type is typically a pointer to a member function, avoiding
many of the implicit conversion pitfalls.</P>
</blockquote>
<h3><a name="swap">swap</a></h3>
<pre>void swap(intrusive_ptr &amp; b); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Exchanges the contents of the two smart pointers.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;class T, class U&gt;
bool operator==(intrusive_ptr&lt;T&gt; const &amp; a, intrusive_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() == b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class T, class U&gt;
bool operator!=(intrusive_ptr&lt;T&gt; const &amp; a, intrusive_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() != b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class T&gt;
bool operator==(intrusive_ptr&lt;T&gt; const &amp; a, T * b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() == b</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class T&gt;
bool operator!=(intrusive_ptr&lt;T&gt; const &amp; a, T * b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() != b</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class T&gt;
bool operator==(T * a, intrusive_ptr&lt;T&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a == b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class T&gt;
bool operator!=(T * a, intrusive_ptr&lt;T&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a != b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class T, class U&gt;
bool operator&lt;(intrusive_ptr&lt;T&gt; const &amp; a, intrusive_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>std::less&lt;T *&gt;()(a.get(), b.get())</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Allows <STRONG>intrusive_ptr</STRONG> objects to be used as keys
in associative containers.</P>
</blockquote>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;class T&gt;
void swap(intrusive_ptr&lt;T&gt; &amp; a, intrusive_ptr&lt;T&gt; &amp; b); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>a.swap(b)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Matches the interface of <B>std::swap</B>. Provided as an aid to
generic programming.</P>
</BLOCKQUOTE>
<h3><a name="get_pointer">get_pointer</a></h3>
<pre>template&lt;class T&gt;
T * get_pointer(intrusive_ptr&lt;T&gt; const &amp; p); // never throws</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> <code>p.get()</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Provided as an aid to generic programming. Used by <A href="../bind/mem_fn.html">
mem_fn</A>.</P>
</BLOCKQUOTE>
<h3><a name="static_pointer_cast">static_pointer_cast</a></h3>
<pre>template&lt;class T, class U&gt;
intrusive_ptr&lt;T&gt; static_pointer_cast(intrusive_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> <code>intrusive_ptr&lt;T&gt;(static_cast&lt;T*&gt;(r.get()))</code>.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<h3><a name="dynamic_pointer_cast">dynamic_pointer_cast</a></h3>
<pre>template&lt;class T, class U&gt;
intrusive_ptr&lt;T&gt; dynamic_pointer_cast(intrusive_ptr&lt;U&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> <code>intrusive_ptr&lt;T&gt;(dynamic_cast&lt;T*&gt;(r.get()))</code>.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<h3><a name="insertion-operator">operator&lt;&lt;</a></h3>
<pre>template&lt;class E, class T, class Y&gt;
std::basic_ostream&lt;E, T&gt; &amp; operator&lt;&lt; (std::basic_ostream&lt;E, T&gt; &amp; os, intrusive_ptr&lt;Y&gt; const &amp; p);</pre>
<BLOCKQUOTE>
<p><STRONG>Effects:</STRONG> <code>os &lt;&lt; p.get();</code>.</p>
<P><B>Returns:</B> <code>os</code>.</P>
</BLOCKQUOTE>
<hr>
<p>
$Date$</p>
<p>
<small>Copyright <20> 2003 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</small></p>
</body>
</html>

BIN
msvcspeed.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

111
scoped_array.htm Normal file
View File

@@ -0,0 +1,111 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>scoped_array</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86"><a name="scoped_array">scoped_array</a>
class template</h1>
<p>The <b>scoped_array</b> class template stores a pointer to a dynamically
allocated array. (Dynamically allocated arrays are allocated with the C++ <b>new[]</b>
expression.) The array pointed to is guaranteed to be deleted, either on
destruction of the <b>scoped_array</b>, or via an explicit <b>reset</b>.</p>
<p>The <b>scoped_array</b> template is a simple solution for simple needs. It
supplies a basic "resource acquisition is initialization" facility, without
shared-ownership or transfer-of-ownership semantics. Both its name and
enforcement of semantics (by being
<a href="../utility/utility.htm#Class_noncopyable">noncopyable</a>) signal its intent to retain ownership solely within the
current scope. Because it is
<a href="../utility/utility.htm#Class_noncopyable">noncopyable</a>,
it is safer than <b>shared_array</b> for pointers which should not be copied.</p>
<p>Because <b>scoped_array</b> is so simple, in its usual implementation every
operation is as fast as a built-in array pointer and it has no more space
overhead that a built-in array pointer.</p>
<p>It cannot be used in C++ standard library containers. See <a href="shared_array.htm">
<b>shared_array</b></a> if <b>scoped_array</b> does not meet your needs.</p>
<p>It cannot correctly hold a pointer to a single object. See <a href="scoped_ptr.htm"><b>scoped_ptr</b></a>
for that usage.</p>
<p>A <b>std::vector</b> is an alternative to a <b>scoped_array</b> that is a bit
heavier duty but far more flexible. A <b>boost::array</b> is an alternative
that does not use dynamic allocation.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#common_requirements">
common requirements</a>.</p>
<h2>Synopsis</h2>
<pre>namespace boost {
template&lt;class T&gt; class scoped_array : <a href="../utility/utility.htm#Class_noncopyable">noncopyable</a> {
public:
typedef T <a href="#element_type">element_type</a>;
explicit <a href="#ctor">scoped_array</a>(T * p = 0); // never throws
<a href="#destructor">~scoped_array</a>(); // never throws
void <a href="#reset">reset</a>(T * p = 0); // never throws
T &amp; <a href="#operator[]">operator[]</a>(std::ptrdiff_t i) const; // never throws
T * <a href="#get">get</a>() const; // never throws
void <a href="#swap">swap</a>(scoped_array &amp; b); // never throws
};
template&lt;class T&gt; void <a href="#free-swap">swap</a>(scoped_array&lt;T&gt; &amp; a, scoped_array&lt;T&gt; &amp; b); // never throws
}</pre>
<h2>Members</h2>
<h3>
<a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="ctor">constructors</a></h3>
<pre>explicit scoped_array(T * p = 0); // never throws</pre>
<p>Constructs a <b>scoped_array</b>, storing a copy of <b>p</b>, which must have
been allocated via a C++ <b>new</b>[] expression or be 0. <b>T</b> is not
required be a complete type. See the smart pointer <a href="smart_ptr.htm#common_requirements">
common requirements</a>.</p>
<h3><a name="destructor">destructor</a></h3>
<pre>~scoped_array(); // never throws</pre>
<p>Deletes the array pointed to by the stored pointer. Note that <b>delete[]</b> on
a pointer with a value of 0 is harmless. The guarantee that this does not throw
exceptions depends on the requirement that the deleted array's objects'
destructors do not throw exceptions. See the smart pointer <a href="smart_ptr.htm#common_requirements">
common requirements</a>.</p>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0); // never throws</pre>
<p>
Deletes the array pointed to by the stored pointer and then stores a copy of p,
which must have been allocated via a C++ <b>new[]</b> expression or be 0. The
guarantee that this does not throw exceptions depends on the requirement that
the deleted array's objects' destructors do not throw exceptions. See the smart
pointer <a href="smart_ptr.htm#common_requirements">common requirements</a>.</p>
<h3><a name="operator[]">subscripting</a></h3>
<pre>T &amp; operator[](std::ptrdiff_t i) const; // never throws</pre>
<p>Returns a reference to element <b>i</b> of the array pointed to by the stored
pointer. Behavior is undefined and almost certainly undesirable if the stored
pointer is 0, or if <b>i</b> is less than 0 or is greater than or equal to the
number of elements in the array.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#common_requirements">common requirements</a>.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(scoped_array &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#common_requirements">common
requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;class T&gt; void swap(scoped_array&lt;T&gt; &amp; a, scoped_array&lt;T&gt; &amp; b); // never throws</pre>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan-->09 January 2003<!--webbot bot="Timestamp" endspan i-checksum="32310"--></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>

176
scoped_ptr.htm Normal file
View File

@@ -0,0 +1,176 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>scoped_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86"><a name="scoped_ptr">scoped_ptr</a>
class template</h1>
<p>The <b>scoped_ptr</b> class template stores a pointer to a dynamically allocated
object. (Dynamically allocated objects are allocated with the C++ <b>new</b> expression.)
The object pointed to is guaranteed to be deleted, either on destruction of the <b>scoped_ptr</b>,
or via an explicit <b>reset</b>. See the <a href="#example">example</a>.</p>
<p>The <b>scoped_ptr</b> template is a simple solution for simple needs. It
supplies a basic "resource acquisition is initialization" facility, without
shared-ownership or transfer-of-ownership semantics. Both its name and
enforcement of semantics (by being <a href="../utility/utility.htm#Class_noncopyable">
noncopyable</a>) signal its intent to retain ownership solely within the
current scope. Because it is <a href="../utility/utility.htm#Class_noncopyable">noncopyable</a>,
it is safer than <b>shared_ptr</b> or <b>std::auto_ptr</b> for pointers which
should not be copied.</p>
<p>Because <b>scoped_ptr</b> is simple, in its usual implementation every operation
is as fast as for a built-in pointer and it has no more space overhead that a
built-in pointer.</p>
<p><STRONG>scoped_ptr</STRONG> cannot be used in C++ Standard Library containers.
Use <a href="shared_ptr.htm"><b>shared_ptr</b></a> if you need a smart pointer
that can.</p>
<p><STRONG>scoped_ptr</STRONG> cannot correctly hold a pointer to a dynamically
allocated array. See <a href="scoped_array.htm"><b>scoped_array</b></a> for
that usage.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#common_requirements">
common requirements</a>.</p>
<h2>Synopsis</h2>
<pre>namespace boost {
template&lt;class T&gt; class scoped_ptr : <a href="../utility/utility.htm#Class_noncopyable">noncopyable</a> {
public:
typedef T <a href="#element_type">element_type</a>;
explicit <a href="#constructors">scoped_ptr</a>(T * p = 0); // never throws
<a href="#destructor">~scoped_ptr</a>(); // never throws
void <a href="#reset">reset</a>(T * p = 0); // never throws
T &amp; <a href="#indirection">operator*</a>() const; // never throws
T * <a href="#indirection">operator-&gt;</a>() const; // never throws
T * <a href="#get">get</a>() const; // never throws
void <a href="#swap">swap</a>(scoped_ptr &amp; b); // never throws
};
template&lt;class T&gt; void <a href="#free-swap">swap</a>(scoped_ptr&lt;T&gt; &amp; a, scoped_ptr&lt;T&gt; &amp; b); // never throws
}</pre>
<h2>Members</h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit scoped_ptr(T * p = 0); // never throws</pre>
<p>Constructs a <b>scoped_ptr</b>, storing a copy of <b>p</b>, which must have been
allocated via a C++ <b>new</b> expression or be 0. <b>T</b> is not required be
a complete type. See the smart pointer <a href="smart_ptr.htm#common_requirements">common
requirements</a>.</p>
<h3><a name="destructor">destructor</a></h3>
<pre>~scoped_ptr(); // never throws</pre>
<p>Destroys the object pointed to by the stored pointer, if any, as if by using <tt>delete
this-&gt;get()</tt>.</p>
<P>
The guarantee that this does not throw exceptions depends on the requirement
that the deleted object's destructor does not throw exceptions. See the smart
pointer <a href="smart_ptr.htm#common_requirements">common requirements</a>.</P>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0); // never throws</pre>
<p>
Deletes the object pointed to by the stored pointer and then stores a copy of
p, which must have been allocated via a C++ <b>new</b> expression or be 0. The
guarantee that this does not throw exceptions depends on the requirement that
the deleted object's destructor does not throw exceptions. See the smart
pointer <a href="smart_ptr.htm#common_requirements">common requirements</a>.</p>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<p>Returns a reference to the object pointed to by the stored pointer. Behavior is
undefined if the stored pointer is 0.</p>
<pre>T * operator-&gt;() const; // never throws</pre>
<p>Returns the stored pointer. Behavior is undefined if the stored pointer is 0.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#common_requirements">common requirements</a>.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(scoped_ptr &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#common_requirements">common
requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;class T&gt; void swap(scoped_ptr&lt;T&gt; &amp; a, scoped_ptr&lt;T&gt; &amp; b); // never throws</pre>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<h2><a name="example">Example</a></h2>
<p>Here's an example that uses <b>scoped_ptr</b>.</p>
<blockquote>
<pre>#include &lt;boost/scoped_ptr.hpp&gt;
#include &lt;iostream&gt;
struct Shoe { ~Shoe() { std::cout &lt;&lt; "Buckle my shoe\n"; } };
class MyClass {
boost::scoped_ptr&lt;int&gt; ptr;
public:
MyClass() : ptr(new int) { *ptr = 0; }
int add_one() { return ++*ptr; }
};
void main()
{
boost::scoped_ptr&lt;Shoe&gt; x(new Shoe);
MyClass my_instance;
std::cout &lt;&lt; my_instance.add_one() &lt;&lt; '\n';
std::cout &lt;&lt; my_instance.add_one() &lt;&lt; '\n';
}</pre>
</blockquote>
<p>The example program produces the beginning of a child's nursery rhyme:</p>
<blockquote>
<pre>1
2
Buckle my shoe</pre>
</blockquote>
<h2>Rationale</h2>
<p>The primary reason to use <b>scoped_ptr</b> rather than <b>auto_ptr</b> is to
let readers of your code know that you intend "resource acquisition is
initialization" to be applied only for the current scope, and have no intent to
transfer ownership.</p>
<p>A secondary reason to use <b>scoped_ptr</b> is to prevent a later maintenance
programmer from adding a function that transfers ownership by returning the <b>auto_ptr</b>,
because the maintenance programmer saw <b>auto_ptr</b>, and assumed ownership
could safely be transferred.</p>
<p>Think of <b>bool</b> vs <b>int</b>. We all know that under the covers <b>bool</b>
is usually just an <b>int</b>. Indeed, some argued against including <b>bool</b>
in the C++ standard because of that. But by coding <b>bool</b> rather than <b>int</b>,
you tell your readers what your intent is. Same with <b>scoped_ptr</b>; by
using it you are signaling intent.</p>
<p>It has been suggested that <b>scoped_ptr&lt;T&gt;</b> is equivalent to <b>std::auto_ptr&lt;T&gt;
const</b>. Ed Brey pointed out, however, that <b>reset</b> will not work on
a <b>std::auto_ptr&lt;T&gt; const.</b></p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>scoped_ptr</b> is to implement a handle/body (also called
pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <a href="example/scoped_ptr_example_test.cpp">scoped_ptr_example_test.cpp</a> sample
program includes a header file, <a href="example/scoped_ptr_example.hpp">scoped_ptr_example.hpp</a>,
which uses a <b>scoped_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The instantiation of member functions which require a complete
type occurs in the <a href="example/scoped_ptr_example.cpp">scoped_ptr_example.cpp</a>
implementation file.</p>
<h2>Frequently Asked Questions</h2>
<p><b>Q</b>. Why doesn't <b>scoped_ptr</b> have a release() member?<br>
<b>A</b>. When reading source code, it is valuable to be able to draw
conclusions about program behavior based on the types being used. If <STRONG>scoped_ptr</STRONG>
had a release() member, it would become possible to transfer ownership of the
held pointer, weakening its role as a way of limiting resource lifetime to a
given context. Use <STRONG>std::auto_ptr</STRONG> where transfer of ownership
is required. (supplied by Dave Abrahams)</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->
09 January 2003<!--webbot bot="Timestamp" endspan i-checksum="32310" --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>

180
shared_array.htm Normal file
View File

@@ -0,0 +1,180 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>shared_array</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">shared_array
class template</h1>
<p>The <b>shared_array</b> class template stores a pointer to a dynamically
allocated array. (Dynamically allocated array are allocated with the C++ <b>new[]</b>
expression.) The object pointed to is guaranteed to be deleted when the last <b>shared_array</b>
pointing to it is destroyed or reset.</p>
<p>Every <b>shared_array</b> meets the <b>CopyConstructible</b> and <b>Assignable</b>
requirements of the C++ Standard Library, and so can be used in standard
library containers. Comparison operators are supplied so that <b>shared_array</b>
works with the standard library's associative containers.</p>
<p>Normally, a <b>shared_array</b> cannot correctly hold a pointer to an object
that has been allocated with the non-array form of <STRONG>new</STRONG>. See <a href="shared_ptr.htm">
<b>shared_ptr</b></a> for that usage.</p>
<p>Because the implementation uses reference counting, cycles of <b>shared_array</b>
instances will not be reclaimed. For example, if <b>main()</b> holds a <b>shared_array</b>
to <b>A</b>, which directly or indirectly holds a <b>shared_array</b> back to <b>A</b>,
<b>A</b>'s use count will be 2. Destruction of the original <b>shared_array</b>
will leave <b>A</b> dangling with a use count of 1.</p>
<p>A <b>shared_ptr</b> to a <b>std::vector</b> is an alternative to a <b>shared_array</b>
that is a bit heavier duty but far more flexible.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#common_requirements">
common requirements</a>.</p>
<h2>Synopsis</h2>
<pre>namespace boost {
template&lt;class T&gt; class shared_array {
public:
typedef T <a href="#element_type">element_type</a>;
explicit <a href="#constructors">shared_array</a>(T * p = 0);
template&lt;class D&gt; <a href="#constructors">shared_array</a>(T * p, D d);
<a href="#destructor">~shared_array</a>(); // never throws
<a href="#constructors">shared_array</a>(shared_array const &amp; r); // never throws
shared_array &amp; <a href="#assignment">operator=</a>(shared_array const &amp; r); // never throws
void <a href="#reset">reset</a>(T * p = 0);
template&lt;class D&gt; void <a href="#reset">reset</a>(T * p, D d);
T &amp; <a href="#indexing">operator[]</a>(std::ptrdiff_t i) const() const; // never throws
T * <a href="#get">get</a>() const; // never throws
bool <a href="#unique">unique</a>() const; // never throws
long <a href="#use_count">use_count</a>() const; // never throws
void <a href="#swap">swap</a>(shared_array&lt;T&gt; &amp; b); // never throws
};
template&lt;class T&gt;
bool <a href="#comparison">operator==</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;class T&gt;
bool <a href="#comparison">operator!=</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;class T&gt;
bool <a href="#comparison">operator&lt;</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;class T&gt; void <a href="#free-swap">swap</a>(shared_array&lt;T&gt; &amp; a, shared_array&lt;T&gt; &amp; b); // never throws
}</pre>
<h2>Members</h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit shared_array(T * p = 0);</pre>
<p>Constructs a <b>shared_array</b>, storing a copy of <b>p</b>, which must be a
pointer to an array that was allocated via a C++ <b>new[]</b> expression or be
0. Afterwards, the <a href="#use_count">use count</a> is 1 (even if p == 0; see <a href="#destructor">
~shared_array</a>). The only exception which may be thrown by this
constructor is <b>std::bad_alloc</b>. If an exception is thrown, <b>delete[] p</b>
is called.</p>
<pre>template&lt;class D&gt; shared_array(T * p, D d);</pre>
<p>Constructs a <b>shared_array</b>, storing a copy of <b>p</b> and of <b>d</b>.
Afterwards, the <a href="#use_count">use count</a> is 1. <b>D</b>'s copy
constructor and destructor must not throw. When the the time comes to delete
the array pointed to by <b>p</b>, the object <b>d</b> is used in the statement <b>d(p)</b>.
Invoking the object <b>d</b> with parameter <b>p</b> in this way must not
throw. The only exception which may be thrown by this constructor is <b>std::bad_alloc</b>.
If an exception is thrown, <b>d(p)</b> is called.</p>
<pre>shared_array(shared_array const &amp; r); // never throws</pre>
<p>Constructs a <b>shared_array</b>, as if by storing a copy of the pointer stored
in <b>r</b>. Afterwards, the <a href="#use_count">use count</a> for all copies
is 1 more than the initial use count.</p>
<h3><a name="destructor">destructor</a></h3>
<pre>~shared_array(); // never throws</pre>
<p>Decrements the <a href="#use_count">use count</a>. Then, if the use count is 0,
deletes the array pointed to by the stored pointer. Note that <b>delete[]</b> on
a pointer with a value of 0 is harmless. <b>T</b> need not be a complete type.
The guarantee that this does not throw exceptions depends on the requirement
that the deleted object's destructor does not throw exceptions. See the smart
pointer <a href="smart_ptr.htm#common_requirements">common requirements</a>.</p>
<h3><a name="assignment">assignment</a></h3>
<pre>shared_array &amp; operator=(shared_array const &amp; r); // never throws</pre>
<p>Constructs a new <b>shared_array</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_array</b> with the new one, destroying the
replaced object.</p>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0);</pre>
<p>Constructs a new <b>shared_array</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_array</b> with the new one, destroying the
replaced object. The only exception which may be thrown is <b>std::bad_alloc</b>.
If an exception is thrown, <b>delete[] p</b> is called.</p>
<pre>template&lt;class D&gt; void reset(T * p, D d);</pre>
<p>Constructs a new <b>shared_array</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_array</b> with the new one, destroying the
replaced object. <b>D</b>'s copy constructor must not throw. The only exception
which may be thrown is <b>std::bad_alloc</b>. If an exception is thrown, <b>d(p)</b>
is called.</p>
<h3><a name="indexing">indexing</a></h3>
<pre>T &amp; operator[](std::ptrdiff_t i) const; // never throws</pre>
<p>Returns a reference to element <b>i</b> of the array pointed to by the stored
pointer. Behavior is undefined and almost certainly undesirable if the stored
pointer is 0, or if <b>i</b> is less than 0 or is greater than or equal to the
number of elements in the array.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#common_requirements">common requirements</a>.</p>
<h3><a name="unique">unique</a></h3>
<pre>bool unique() const; // never throws</pre>
<p>Returns true if no other <b>shared_array</b> is sharing ownership of the stored
pointer, false otherwise. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#common_requirements">common requirements</a>.</p>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<p>Returns the number of <b>shared_array</b> objects sharing ownership of the
stored pointer. <b>T</b> need not be a complete type. See the smart pointer <a href="smart_ptr.htm#common_requirements">
common requirements</a>.</p>
<p>Because <b>use_count</b> is not necessarily efficient to implement for
implementations of <b>shared_array</b> that do not use an explicit reference
count, it might be removed from some future version. Thus it should be used for
debugging purposes only, and not production code.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(shared_ptr &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#common_requirements">common
requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;class T&gt;
bool operator==(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;class T&gt;
bool operator!=(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;class T&gt;
bool operator&lt;(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws</pre>
<p>Compares the stored pointers of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#common_requirements">common
requirements</a>.</p>
<p>The <b>operator&lt;</b> overload is provided to define an ordering so that <b>shared_array</b>
objects can be used in associative containers such as <b>std::map</b>. The
implementation uses <b>std::less&lt;T *&gt;</b> to perform the comparison. This
ensures that the comparison is handled correctly, since the standard mandates
that relational operations on pointers are unspecified (5.9 [expr.rel]
paragraph 2) but <b>std::less&lt;&gt;</b> on pointers is well-defined (20.3.3
[lib.comparisons] paragraph 8).</p>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;class T&gt;
void swap(shared_array&lt;T&gt; &amp; a, shared_array&lt;T&gt; &amp; b) // never throws</pre>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->
09 January 2003<!--webbot bot="Timestamp" endspan i-checksum="32310" --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>

681
shared_ptr.htm Normal file
View File

@@ -0,0 +1,681 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>shared_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body text="#000000" bgColor="#ffffff">
<h1><IMG height="86" alt="c++boost.gif (8819 bytes)" src="../../c++boost.gif" width="277" align="middle">shared_ptr
class template</h1>
<p><A href="#Introduction">Introduction</A><br>
<A href="#BestPractices">Best Practices</A><br>
<A href="#Synopsis">Synopsis</A><br>
<A href="#Members">Members</A><br>
<A href="#functions">Free Functions</A><br>
<A href="#example">Example</A><br>
<A href="#Handle/Body">Handle/Body Idiom</A><br>
<A href="#ThreadSafety">Thread Safety</A><br>
<A href="#FAQ">Frequently Asked Questions</A><br>
<A href="smarttests.htm">Smart Pointer Timings</A><br>
<A href="sp_techniques.html">Programming Techniques</A></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <b>shared_ptr</b> class template stores a pointer to a dynamically allocated
object, typically with a C++ <EM>new-expression</EM> . The object pointed to is
guaranteed to be deleted when the last <b>shared_ptr</b> pointing to it is
destroyed or reset. See the <A href="#example">example</A>.</p>
<p>Every <b>shared_ptr</b> meets the <b>CopyConstructible</b> and <b>Assignable</b>
requirements of the C++ Standard Library, and so can be used in standard
library containers. Comparison operators are supplied so that <b>shared_ptr</b>
works with the standard library's associative containers.</p>
<p>Normally, a <b>shared_ptr</b> cannot correctly hold a pointer to a dynamically
allocated array. See <A href="shared_array.htm"><b>shared_array</b></A> for
that usage.</p>
<p>Because the implementation uses reference counting, cycles of <b>shared_ptr</b> instances
will not be reclaimed. For example, if <b>main()</b> holds a <b>shared_ptr</b> to
<b>A</b>, which directly or indirectly holds a <b>shared_ptr</b> back to <b>A</b>,
<b>A</b>'s use count will be 2. Destruction of the original <b>shared_ptr</b> will
leave <b>A</b> dangling with a use count of 1. Use <A href="weak_ptr.htm">weak_ptr</A>
to "break cycles."</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <STRONG>shared_ptr</STRONG> and most of its member functions place no
requirements on <STRONG>T</STRONG>; it is allowed to be an incomplete type, or <STRONG>
void</STRONG>. Member functions that do place additional requirements (<A href="#constructors">constructors</A>,
<A href="#reset">reset</A>) are explicitly documented below.</p>
<P><STRONG>shared_ptr&lt;T&gt;</STRONG> can be implicitly converted to <STRONG>shared_ptr&lt;U&gt;</STRONG>
whenever <STRONG>T*</STRONG> can be implicitly converted to <STRONG>U*</STRONG>.
In particular, <STRONG>shared_ptr&lt;T&gt;</STRONG> is implicitly convertible
to <STRONG>shared_ptr&lt;T const&gt;</STRONG>, to <STRONG>shared_ptr&lt;U&gt;</STRONG>
where <STRONG>U</STRONG> is an accessible base of <STRONG>T</STRONG>, and to <STRONG>
shared_ptr&lt;void&gt;</STRONG>.</P>
<h2><a name="BestPractices">Best Practices</a></h2>
<P>A simple guideline that nearly eliminates the possibility of memory leaks is:
always use a named smart pointer variable to hold the result of <STRONG>new. </STRONG>
Every occurence of the <STRONG>new</STRONG> keyword in the code should have the
form:</P>
<PRE>shared_ptr&lt;T&gt; p(new Y);</PRE>
<P>It is, of course, acceptable to use another smart pointer in place of <STRONG>shared_ptr</STRONG>
above; having <STRONG>T</STRONG> and <STRONG>Y</STRONG> be the same type, or
passing arguments to <STRONG>Y</STRONG>'s constructor is also OK.</P>
<P>If you observe this guideline, it naturally follows that you will have no
explicit <STRONG>delete</STRONG>s; <STRONG>try/catch</STRONG> constructs will
be rare.</P>
<P>Avoid using unnamed <STRONG>shared_ptr</STRONG> temporaries to save typing; to
see why this is dangerous, consider this example:</P>
<PRE>void f(shared_ptr&lt;int&gt;, int);
int g();
void ok()
{
shared_ptr&lt;int&gt; p(new int(2));
f(p, g());
}
void bad()
{
f(shared_ptr&lt;int&gt;(new int(2)), g());
}
</PRE>
<P>The function <STRONG>ok</STRONG> follows the guideline to the letter, whereas <STRONG>
bad</STRONG> constructs the temporary <STRONG>shared_ptr</STRONG> in place,
admitting the possibility of a memory leak. Since function arguments are
evaluated in unspecified order, it is possible for <STRONG>new int(2)</STRONG> to
be evaluated first, <STRONG>g()</STRONG> second, and we may never get to the <STRONG>
shared_ptr </STRONG>constructor if <STRONG>g</STRONG> throws an exception.
See <A href="http://www.gotw.ca/gotw/056.htm">Herb Sutter's treatment</A> (also <A href="http://www.cuj.com/reference/articles/2002/0212/0212_sutter.htm">
here</A>) of the issue for more information.</P>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
class bad_weak_ptr: public std::exception;
template&lt;class T&gt; class <A href="weak_ptr.htm" >weak_ptr</A>;
template&lt;class T&gt; class shared_ptr {
public:
typedef T <A href="#element_type" >element_type</A>;
<A href="#constructors" >shared_ptr</A>(); // never throws
template&lt;class Y&gt; explicit <A href="#constructors" >shared_ptr</A>(Y * p);
template&lt;class Y, class D&gt; <A href="#constructors" >shared_ptr</A>(Y * p, D d);
<A href="#destructor" >~shared_ptr</A>(); // never throws
<A href="#constructors" >shared_ptr</A>(shared_ptr const &amp; r); // never throws
template&lt;class Y&gt; <A href="#constructors" >shared_ptr</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;class Y&gt; explicit <A href="#constructors" >shared_ptr</A>(<A href="weak_ptr.htm" >weak_ptr</A>&lt;Y&gt; const &amp; r);
template&lt;class Y&gt; explicit <A href="#constructors" >shared_ptr</A>(std::auto_ptr&lt;Y&gt; &amp; r);
shared_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr const &amp; r); // never throws
template&lt;class Y&gt; shared_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;class Y&gt; shared_ptr &amp; <A href="#assignment" >operator=</A>(std::auto_ptr&lt;Y&gt; &amp; r);
void <A href="#reset" >reset</A>(); // never throws
template&lt;class Y&gt; void <A href="#reset" >reset</A>(Y * p);
template&lt;class Y, class D&gt; void <A href="#reset" >reset</A>(Y * p, D d);
T &amp; <A href="#indirection" >operator*</A>() const; // never throws
T * <A href="#indirection" >operator-&gt;</A>() const; // never throws
T * <A href="#get" >get</A>() const; // never throws
bool <A href="#unique" >unique</A>() const; // never throws
long <A href="#use_count" >use_count</A>() const; // never throws
operator <A href="#conversions" ><i>unspecified-bool-type</i></A>() const; // never throws
void <A href="#swap" >swap</A>(shared_ptr &amp; b); // never throws
};
template&lt;class T, class U&gt;
bool <A href="#comparison" >operator==</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;class T, class U&gt;
bool <A href="#comparison" >operator!=</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;class T, class U&gt;
bool <A href="#comparison" >operator&lt;</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;class T&gt; void <A href="#free-swap" >swap</A>(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b); // never throws
template&lt;class T&gt; T * <A href="#get_pointer" >get_pointer</A>(shared_ptr&lt;T&gt; const &amp; p); // never throws
template&lt;class T, class U&gt;
shared_ptr&lt;T&gt; <A href="#static_pointer_cast" >static_pointer_cast</A>(shared_ptr&lt;U&gt; const &amp; r); // never throws
template&lt;class T, class U&gt;
shared_ptr&lt;T&gt; <A href="#dynamic_pointer_cast" >dynamic_pointer_cast</A>(shared_ptr&lt;U&gt; const &amp; r); // never throws
template&lt;class E, class T, class Y&gt;
std::basic_ostream&lt;E, T&gt; &amp; <A href="#insertion-operator" >operator&lt;&lt;</A> (std::basic_ostream&lt;E, T&gt; &amp; os, shared_ptr&lt;Y&gt; const &amp; p);
template&lt;class D, class T&gt;
D * <A href="#get_deleter">get_deleter</A>(shared_ptr&lt;T&gt; const &amp; p);
}</pre>
<P><EM>[It might be convenient to relax the requirements on <STRONG>shared_ptr</STRONG>'s
signature, allowing an additional, defaulted, template parameter; the parameter
can encode the threading model, for example. This would help in detecting
possible ODR violations.</EM></P>
<P><EM>On the other hand, using <STRONG>shared_ptr</STRONG> as an argument to a
template template parameter requires an exact signature match. </EM><EM>Metaprogramming
experts tend to deemphasize template template parameters as they are too
inflexible, but the alternative is typically an std::allocator::rebind-type
"hack".]</EM></P>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<blockquote>
<p>Provides the type of the template parameter T.</p>
</blockquote>
<h3><a name="constructors">constructors</a></h3>
<pre>shared_ptr(); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Constructs an <EM>empty</EM> <b>shared_ptr</b>. <EM>Empty</EM> <STRONG>
shared_ptr</STRONG> objects have an unspecified <A href="#use_count">use_count</A>.</p>
<p><b>Postconditions:</b> <code>get() == 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<P><EM>[The nothrow guarantee is important, since <STRONG>reset()</STRONG> is specified
in terms of the default constructor; this implies that the constructor must not
allocate memory.</EM></P>
<P><EM>There are two possible implementations, one stores 0 as a pointer to the
reference count, the other uses a single statically allocated count for all
default-constructed <STRONG>shared_ptr</STRONG>s. The second option is
difficult to achieve in the current header-only reference implementation due to
thread safety issues and initialization order, but it should not be precluded
by the specification. That's why the use_count() has been left unspecified.</EM></P>
<P><EM>A future release may enable <STRONG>shared_ptr</STRONG> construction from a
literal zero, for consistency with built-in pointers. It is not clear yet
whether this constructor should be left implicit, enabling <STRONG>0</STRONG> to
be used as a shorthand for <STRONG>shared_ptr&lt;T&gt;().</STRONG>]</EM></P>
<pre>template&lt;class Y&gt; explicit shared_ptr(Y * p);</pre>
<blockquote>
<p><b>Requirements:</b> <b>p</b> must be convertible to <b>T *</b>. <STRONG>Y</STRONG>
must be a complete type. The expression <code>delete p</code> must be
well-formed, must not invoke undefined behavior, and must not throw exceptions.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b> that <EM>owns</EM> the pointer <b>p</b>.</p>
<p><b>Postconditions:</b> <code>use_count() == 1 &amp;&amp; get() == p</code>.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b> or an implementation-defined exception when
a resource other than memory could not be obtained.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>delete p</code> is
called.</p>
<P><STRONG>Notes:</STRONG> <B>p</B> must be a pointer to an object that was
allocated via a C++ <B>new</B> expression or be 0. The postcondition that <A href="#use_count">
use count</A> is 1 holds even if <b>p</b> is 0; invoking <STRONG>delete</STRONG>
on a pointer that has a value of 0 is harmless.</P>
</blockquote>
<P><EM>[This constructor has been changed to a template in order to remember the actual
pointer type passed. The destructor will call <STRONG>delete</STRONG> with the
same pointer, complete with its original type, even when <STRONG>T</STRONG> does
not have a virtual destructor, or is <STRONG>void</STRONG>.</EM></P>
<P><EM>The optional intrusive counting support has been dropped as it exposes too much
implementation details and doesn't interact well with <STRONG>weak_ptr</STRONG>.
The current implementation uses a different mechanism, <A href="enable_shared_from_this.html">
enable_shared_from_this</A>, to solve the "<STRONG>shared_ptr</STRONG> from <STRONG>
this</STRONG>" problem.</EM><EM>]</EM></P>
<pre>template&lt;class Y, class D&gt; shared_ptr(Y * p, D d);</pre>
<blockquote>
<p><b>Requirements:</b> <B>p</B> must be convertible to <B>T *</B>. <STRONG>D</STRONG>
must be <STRONG>CopyConstructible</STRONG>. The copy constructor and destructor
of <b>D</b> must not throw. The expression <code>d(p)</code> must be
well-formed, must not invoke undefined behavior, and must not throw exceptions.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b> that <EM>owns</EM> the pointer <STRONG>
p</STRONG> and the deleter <b>d</b>.</p>
<p><b>Postconditions:</b> <code>use_count() == 1 &amp;&amp; get() == p</code>.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b> or an implementation-defined exception when
a resource other than memory could not be obtained.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>d(p)</code> is called.</p>
<p><b>Notes:</b> When the the time comes to delete the object pointed to by <b>p</b>,
the stored copy of <STRONG>d</STRONG> is invoked with the stored copy of <STRONG>p</STRONG>
as an argument.</p>
</blockquote>
<P><EM>[Custom deallocators allow a factory function returning a <STRONG>shared_ptr</STRONG>
to insulate the user from its memory allocation strategy. Since the deallocator
is not part of the type, changing the allocation strategy does not break source
or binary compatibility, and does not require a client recompilation. For
example, a "no-op" deallocator is useful when returning a <STRONG>shared_ptr</STRONG>
to a statically allocated object, and other variations allow a <STRONG>shared_ptr</STRONG>
to be used as a wrapper for another smart pointer, easing interoperability.</EM></P>
<P><EM>The support for custom deallocators does not impose significant overhead. Other <STRONG>
shared_ptr</STRONG> features still require a deallocator to be kept.</EM></P>
<P><EM>The requirement that the copy constructor of <b>D</b> does not throw comes from
the pass by value. If the copy constructor throws, the pointer is leaked.
Removing the requirement requires a pass by (const) reference.</EM></P>
<P><EM>Pass by reference is problematic since (1) pass by value conveniently changes
functions (function references) to function pointers (this has to be performed
manually otherwise and some compilers may not be able to do it) and (2) const
references don't currently (per the standard) bind to functions. This can be
solved (I think) but it requires an overload set that breaks on many compilers
due to 14.5.5.2 problems (and of course it will break on compilers that don't
do partial ordering at all.)</EM></P>
<P><EM>The main problem with pass by reference, though, lies in its interaction with
rvalues. A const reference may still cause a copy, and will require a const
operator(). A non-const reference won't bind to an rvalue at all. A good
solution to this problem is the rvalue reference proposed in <A href="http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2002/n1377.htm">
N1377</A>/<A href="http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2002/n1385.htm">N1385</A>.]</EM></P>
<pre>shared_ptr(shared_ptr const &amp; r); // never throws
template&lt;class Y&gt; shared_ptr(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> If <b>r</b> is <EM>empty</EM>, constructs an <EM>empty</EM> <b>shared_ptr</b>;
otherwise, constructs a <b>shared_ptr</b> that <EM>shares ownership</EM> with <b>r</b>.</p>
<p><b>Postconditions:</b> <code>get() == r.get() &amp;&amp; use_count() ==
r.use_count()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class Y&gt; explicit shared_ptr(<A href="weak_ptr.htm" >weak_ptr</A>&lt;Y&gt; const &amp; r);</pre>
<blockquote>
<p><b>Effects:</b> If <b>r</b> is <EM>empty</EM>, constructs an <EM>empty</EM> <b>shared_ptr</b>;
otherwise, constructs a <b>shared_ptr</b> that <EM>shares ownership</EM> with <b>r</b>
and stores a copy of the pointer stored in <STRONG>r</STRONG>.</p>
<p><b>Postconditions:</b> <code>use_count() == r.use_count()</code>.</p>
<p><b>Throws:</b> <b>bad_weak_ptr</b> when <code>r.use_count() == 0</code>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
</blockquote>
<pre>template&lt;class Y&gt; shared_ptr(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Constructs a <B>shared_ptr</B>, as if by storing a copy of <STRONG>r.release()</STRONG>.</P>
<p><b>Postconditions:</b> <code>use_count() == 1</code>.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b> or an implementation-defined exception when
a resource other than memory could not be obtained.</p>
<P><B>Exception safety:</B> If an exception is thrown, the constructor has no
effect.</P>
</BLOCKQUOTE>
<P><EM>[This constructor takes a the source <STRONG>auto_ptr</STRONG> by reference and
not by value, and cannot accept <STRONG>auto_ptr</STRONG> temporaries. This is
by design, as the constructor offers the strong guarantee; an rvalue reference
would solve this problem, too.]</EM></P>
<h3><a name="destructor">destructor</a></h3>
<pre>~shared_ptr(); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B></P>
<UL>
<LI>
If <STRONG>*this</STRONG> is <EM>empty</EM>, or <EM>shares ownership</EM> with
another <STRONG>shared_ptr</STRONG> instance (<code>use_count() &gt; 1</code>),
there are no side effects.
<LI>
Otherwise, if <STRONG>*this</STRONG> <EM>owns</EM> a pointer <STRONG>p</STRONG>
and a deleter <STRONG>d</STRONG>, <code>d(p)</code>
is called.
<LI>
Otherwise, <STRONG>*this</STRONG> <EM>owns</EM> a pointer <STRONG>p</STRONG>,
and <code>delete p</code> is called.</LI></UL>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<H3><a name="assignment">assignment</a></H3>
<pre>shared_ptr &amp; operator=(shared_ptr const &amp; r); // never throws
template&lt;class Y&gt; shared_ptr &amp; operator=(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;class Y&gt; shared_ptr &amp; operator=(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(r).swap(*this)</code>.</P>
<P><B>Returns:</B> <code>*this</code>.</P>
<P><B>Notes:</B> The use count updates caused by the temporary object construction
and destruction are not considered observable side effects, and the
implementation is free to meet the effects (and the implied guarantees) via
different means, without creating a temporary. In particular, in the example:</P>
<pre>shared_ptr&lt;int&gt; p(new int);
shared_ptr&lt;void&gt; q(p);
p = p;
q = p;
</pre>
<p>both assignments may be no-ops.</p>
</BLOCKQUOTE>
<P><EM>[Some experts consider the note to be redundant, as it appears to essentially
mirror the "as if" rule. However, experience suggests that when C++ code is
used to describe effects, it is often misinterpreted as required
implementation. In addition, it is not entirely clear whether the "as if" rule
actually applies here, so it's better to be explicit about the possible
optimizations.]</EM></P>
<h3><a name="reset">reset</a></h3>
<pre>void reset(); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr().swap(*this)</code>.</P>
</BLOCKQUOTE>
<pre>template&lt;class Y&gt; void reset(Y * p);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(p).swap(*this)</code>.</P>
</BLOCKQUOTE>
<pre>template&lt;class Y, class D&gt; void reset(Y * p, D d);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(p, d).swap(*this)</code>.</P>
</BLOCKQUOTE>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> The stored pointer must not be 0.</p>
<p><b>Returns:</b> a reference to the object pointed to by the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>T * operator-&gt;() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> The stored pointer must not be 0.</p>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="unique">unique</a></h3>
<pre>bool unique() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>use_count() == 1</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>unique()</code> may be faster than <code>use_count()</code>.
If you are using <code>unique()</code> to implement copy on write, do not rely
on a specific value when the stored pointer is zero.</P>
</blockquote>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the number of <b>shared_ptr</b> objects, <STRONG>*this</STRONG> included,
that <i>share ownership</i> with <b>*this</b>, or an unspecified nonnegative
value when <STRONG>*this</STRONG> is <EM>empty</EM>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>use_count()</code> is not necessarily efficient. Use only
for debugging and testing purposes, not for production code.</P>
</blockquote>
<h3><a name="conversions">conversions</a></h3>
<pre>operator <i>unspecified-bool-type</i> () const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> an unspecified value that, when used in boolean contexts, is
equivalent to <code>get() != 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> This conversion operator allows <b>shared_ptr</b> objects to be
used in boolean contexts, like <code>if (p &amp;&amp; p-&gt;valid()) {}</code>.
The actual target type is typically a pointer to a member function, avoiding
many of the implicit conversion pitfalls.</P>
</blockquote>
<P><EM>[The conversion to bool is not merely syntactic sugar. It allows <STRONG>shared_ptr</STRONG>s
to be declared in conditions when using <A href="#dynamic_pointer_cast">dynamic_pointer_cast</A>
or <A href="weak_ptr.htm#lock">weak_ptr::lock</A>.]</EM></P>
<h3><a name="swap">swap</a></h3>
<pre>void swap(shared_ptr &amp; b); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Exchanges the contents of the two smart pointers.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;class T, class U&gt;
bool operator==(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() == b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class T, class U&gt;
bool operator!=(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() != b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;class T, class U&gt;
bool operator&lt;(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> an unspecified value such that</p>
<UL>
<LI>
<b>operator&lt;</b> is a strict weak ordering as described in section 25.3 <code>[lib.alg.sorting]</code>
of the C++ standard;
<LI>
under the equivalence relation defined by <STRONG>operator&lt;</STRONG>, <code>!(a
&lt; b) &amp;&amp; !(b &lt; a)</code>, two <STRONG>shared_ptr</STRONG> instances
are equivalent if and only if they <EM>share ownership</EM>.</LI></UL>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Allows <STRONG>shared_ptr</STRONG> objects to be used as keys in
associative containers.</P>
</blockquote>
<P><EM>[<STRONG>Operator&lt;</STRONG> has been preferred over a <STRONG>std::less </STRONG>
specialization for consistency and legality reasons, as <STRONG>std::less</STRONG>
is required to return the results of <STRONG>operator&lt;</STRONG>, and many
standard algorithms use <STRONG>operator&lt;</STRONG> instead of <STRONG>std::less</STRONG>
for comparisons when a predicate is not supplied. Composite objects, like <STRONG>std::pair</STRONG>,
also implement their <STRONG>operator&lt;</STRONG> in terms of their contained
subobjects' <STRONG>operator&lt;</STRONG>.</EM></P>
<P><EM>The rest of the comparison operators are omitted by design.]</EM></P>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;class T&gt;
void swap(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>a.swap(b)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Matches the interface of <B>std::swap</B>. Provided as an aid to
generic programming.</P>
</BLOCKQUOTE>
<P><EM>[<STRONG>swap</STRONG> is defined in the same namespace as <STRONG>shared_ptr</STRONG>
as this is currently the only legal way to supply a <STRONG>swap</STRONG> function
that has a chance to be used by the standard library.]</EM></P>
<h3><a name="get_pointer">get_pointer</a></h3>
<pre>template&lt;class T&gt;
T * get_pointer(shared_ptr&lt;T&gt; const &amp; p); // never throws</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> <code>p.get()</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Provided as an aid to generic programming. Used by <A href="../bind/mem_fn.html">
mem_fn</A>.</P>
</BLOCKQUOTE>
<h3><a name="static_pointer_cast">static_pointer_cast</a></h3>
<pre>template&lt;class T, class U&gt;
shared_ptr&lt;T&gt; static_pointer_cast(shared_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<P><STRONG>Requires:</STRONG> The expression <code>static_cast&lt;T*&gt;(r.get())</code>
must be well-formed.</P>
<P><B>Returns:</B> If <b>r</b> is <i>empty</i>, an <i>empty</i> <b>shared_ptr&lt;T&gt;</b>;
otherwise, a <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy of <code>
static_cast&lt;T*&gt;(r.get())</code> and <i>shares ownership</i> with <b>r</b>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> the seemingly equivalent expression</P>
<p><code>shared_ptr&lt;T&gt;(static_cast&lt;T*&gt;(r.get()))</code></p>
<p>will eventually result in undefined behavior, attempting to delete the same
object twice.</p>
</BLOCKQUOTE>
<h3><a name="dynamic_pointer_cast">dynamic_pointer_cast</a></h3>
<pre>template&lt;class T, class U&gt;
shared_ptr&lt;T&gt; dynamic_pointer_cast(shared_ptr&lt;U&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<P><STRONG>Requires:</STRONG> The expression <CODE>dynamic_cast&lt;T*&gt;(r.get())</CODE>
must be well-formed and its behavior defined.</P>
<P><B>Returns:</B></P>
<UL>
<LI>
When <CODE>dynamic_cast&lt;T*&gt;(r.get())</CODE> returns a nonzero value, a <STRONG>
shared_ptr&lt;T&gt;</STRONG> object that stores a copy of it and <i>shares
ownership</i> with <STRONG>r</STRONG>;
<LI>
Otherwise, an <i>empty</i> <STRONG>shared_ptr&lt;T&gt;</STRONG> object.</LI></UL>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> the seemingly equivalent expression</P>
<P><CODE>shared_ptr&lt;T&gt;(dynamic_cast&lt;T*&gt;(r.get()))</CODE></P>
<P>will eventually result in undefined behavior, attempting to delete the same
object twice.</P>
</BLOCKQUOTE>
<h3><a name="insertion-operator">operator&lt;&lt;</a></h3>
<pre>template&lt;class E, class T, class Y&gt;
std::basic_ostream&lt;E, T&gt; &amp; operator&lt;&lt; (std::basic_ostream&lt;E, T&gt; &amp; os, shared_ptr&lt;Y&gt; const &amp; p);</pre>
<BLOCKQUOTE>
<p><STRONG>Effects:</STRONG> <code>os &lt;&lt; p.get();</code>.</p>
<P><B>Returns:</B> <b>os</b>.</P>
</BLOCKQUOTE>
<h3><a name="get_deleter">get_deleter</a></h3>
<pre>template&lt;class D, class T&gt;
D * get_deleter(shared_ptr&lt;T&gt; const &amp; p);</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> If <STRONG>*this</STRONG> <EM>owns</EM> a deleter <STRONG>d</STRONG>
of type (cv-unqualified) <STRONG>D</STRONG>, returns <code>&amp;d</code>;
otherwise returns 0.</P>
</BLOCKQUOTE>
<h2><a name="example">Example</a></h2>
<p>See <A href="example/shared_ptr_example.cpp">shared_ptr_example.cpp</A> for a
complete example program. The program builds a <b>std::vector</b> and <b>std::set</b>
of <b>shared_ptr</b> objects.</p>
<p>Note that after the containers have been populated, some of the <b>shared_ptr</b>
objects will have a use count of 1 rather than a use count of 2, since the set
is a <b>std::set</b> rather than a <b>std::multiset</b>, and thus does not
contain duplicate entries. Furthermore, the use count may be even higher at
various times while <b>push_back</b> and <b>insert</b> container operations are
performed. More complicated yet, the container operations may throw exceptions
under a variety of circumstances. Getting the memory management and exception
handling in this example right without a smart pointer would be a nightmare.</p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>shared_ptr</b> is to implement a handle/body (also called
pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <A href="example/shared_ptr_example2_test.cpp">shared_ptr_example2_test.cpp</A>
sample program includes a header file, <A href="example/shared_ptr_example2.hpp">shared_ptr_example2.hpp</A>,
which uses a <b>shared_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The instantiation of member functions which require a complete
type occurs in the <A href="example/shared_ptr_example2.cpp">shared_ptr_example2.cpp</A>
implementation file. Note that there is no need for an explicit destructor.
Unlike ~scoped_ptr, ~shared_ptr does not require that <b>T</b> be a complete
type.</p>
<h2><a name="ThreadSafety">Thread Safety</a></h2>
<p><STRONG>shared_ptr</STRONG> objects offer the same level of thread safety as
built-in types. A <STRONG>shared_ptr</STRONG> instance can be "read" (accessed
using only const operations) simultaneously by multiple threads. Different <STRONG>shared_ptr</STRONG>
instances can be "written to" (accessed using mutable operations such as <STRONG>operator=
</STRONG>or <STRONG>reset</STRONG>) simultaneosly by multiple threads (even
when these instances are copies, and share the same reference count
underneath.)</p>
<P>Any other simultaneous accesses result in undefined behavior.</P>
<P>Examples:</P>
<pre>shared_ptr&lt;int&gt; p(new int(42));
//--- Example 1 ---
// thread A
shared_ptr&lt;int&gt; p2(p); // reads p
// thread B
shared_ptr&lt;int&gt; p3(p); // OK, multiple reads are safe
//--- Example 2 ---
// thread A
p.reset(new int(1912)); // writes p
// thread B
p2.reset(); // OK, writes p2
//--- Example 3 ---
// thread A
p = p3; // reads p3, writes p
// thread B
p3.reset(); // writes p3; undefined, simultaneous read/write
//--- Example 4 ---
// thread A
p3 = p2; // reads p2, writes p3
// thread B
// p2 goes out of scope: undefined, the destructor is considered a "write access"
//--- Example 5 ---
// thread A
p3.reset(new int(1));
// thread B
p3.reset(new int(2)); // undefined, multiple writes
</pre>
<p><STRONG>shared_ptr</STRONG> uses <A href="../config/config.htm">Boost.Config</A>
to detect whether the implementation supports threads. If your program is
single-threaded, but your platform is autodetected by <STRONG>Boost.Config</STRONG>
as supporting multiple threads, <STRONG>#define BOOST_DISABLE_THREADS</STRONG> to
eliminate the thread safety overhead.</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<P><B>Q.</B> There are several variations of shared pointers, with different
tradeoffs; why does the smart pointer library supply only a single
implementation? It would be useful to be able to experiment with each type so
as to find the most suitable for the job at hand?</P>
<P>
<b>A.</b> An important goal of <STRONG>shared_ptr</STRONG> is to provide a
standard shared-ownership pointer. Having a single pointer type is important
for stable library interfaces, since different shared pointers typically cannot
interoperate, i.e. a reference counted pointer (used by library A) cannot share
ownership with a linked pointer (used by library B.)<BR>
</P>
<P><B>Q.</B> Why doesn't <B>shared_ptr</B> have template parameters supplying
traits or policies to allow extensive user customization?</P>
<P>
<B>A.</B> Parameterization discourages users. The <B>shared_ptr</B> template is
carefully crafted to meet common needs without extensive parameterization. Some
day a highly configurable smart pointer may be invented that is also very easy
to use and very hard to misuse. Until then, <B>shared_ptr</B> is the smart
pointer of choice for a wide range of applications. (Those interested in policy
based smart pointers should read <A href="http://cseng.aw.com/book/0,,0201704315,00.html">
Modern C++ Design</A> by Andrei Alexandrescu.)<BR>
</P>
<P><B>Q.</B> I am not convinced. Default parameters can be used where appropriate
to hide the complexity. Again, why not policies?</P>
<P>
<B>A.</B> Template parameters affect the type. See the answer to the first
question above.<BR>
</P>
<P><B>Q.</B> Why doesn't <b>shared_ptr</b> use a linked list implementation?</P>
<P>
<b>A.</b> A linked list implementation does not offer enough advantages to
offset the added cost of an extra pointer. See <A href="smarttests.htm">timings</A>
page. In addition, it is expensive to make a linked list implementation thread
safe.<BR>
</P>
<P><b>Q.</b> Why doesn't <b>shared_ptr</b> (or any of the other Boost smart
pointers) supply an automatic conversion to <b>T*</b>?</P>
<P>
<b>A.</b> Automatic conversion is believed to be too error prone.<BR>
</P>
<P><B>Q.</B> Why does <b>shared_ptr</b> supply use_count()?</P>
<P>
<b>A.</b> As an aid to writing test cases and debugging displays. One of the
progenitors had use_count(), and it was useful in tracking down bugs in a
complex project that turned out to have cyclic-dependencies.<BR>
</P>
<P><B>Q.</B> Why doesn't <b>shared_ptr</b> specify complexity requirements?</P>
<P>
<b>A.</b> Because complexity requirements limit implementors and complicate the
specification without apparent benefit to <b>shared_ptr</b> users. For example,
error-checking implementations might become non-conforming if they had to meet
stringent complexity requirements.<BR>
</P>
<P><b>Q.</b> Why doesn't <b>shared_ptr</b> provide a release() function?</P>
<P>
<b>A.</b> <b>shared_ptr</b> cannot give away ownership unless it's unique()
because the other copy will still destroy the object.</P>
<p>Consider:</p>
<blockquote><pre>shared_ptr&lt;int&gt; a(new int);
shared_ptr&lt;int&gt; b(a); // a.use_count() == b.use_count() == 2
int * p = a.release();
// Who owns p now? b will still call delete on it in its destructor.</pre>
</blockquote>
<p>Furthermore, the pointer returned by <code>release()</code> would be difficult
to deallocate reliably, as the source <b>shared_ptr</b> could have been created
with a custom deleter.<BR>
</p>
<P><b>Q.</b> Why is <code>operator-&gt;()</code> const, but its return value is a
non-const pointer to the element type?</P>
<P>
<b>A.</b> Shallow copy pointers, including raw pointers, typically don't
propagate constness. It makes little sense for them to do so, as you can always
obtain a non-const pointer from a const one and then proceed to modify the
object through it.<b>shared_ptr</b> is "as close to raw pointers as possible
but no closer".<BR>
<BR>
</P>
<hr>
<p>
$Date$</p>
<p><small>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002, 2003 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</small></p>
</body>
</html>

186
smart_ptr.htm Normal file
View File

@@ -0,0 +1,186 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Smart Pointers</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">Smart
Pointers</h1>
<p><a href="#Introduction">Introduction</a><br>
<a href="#common_requirements">Common Requirements</a><br>
<a href="#Exception_Safety">Exception Safety</a><br>
<a href="#Exception-specifications">Exception-specifications</a><br>
<a href="#History">History and Acknowledgements</a><br>
<a href="#References">References</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>Smart pointers are objects which store pointers to dynamically allocated (heap)
objects. They behave much like built-in C++ pointers except that they
automatically delete the object pointed to at the appropriate time. Smart
pointers are particularly useful in the face of exceptions as they ensure
proper destruction of dynamically allocated objects. They can also be used to
keep track of dynamically allocated objects shared by multiple owners.</p>
<p>Conceptually, smart pointers are seen as owning the object pointed to, and thus
responsible for deletion of the object when it is no longer needed.</p>
<p>The smart pointer library provides five smart pointer class templates:</p>
<div align="left">
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<td><a href="scoped_ptr.htm"><b>scoped_ptr</b></a></td>
<td><a href="../../boost/scoped_ptr.hpp">&lt;boost/scoped_ptr.hpp&gt;</a></td>
<td>Simple sole ownership of single objects. Noncopyable.</td>
</tr>
<tr>
<td><a href="scoped_array.htm"><b>scoped_array</b></a></td>
<td><a href="../../boost/scoped_array.hpp">&lt;boost/scoped_array.hpp&gt;</a></td>
<td>Simple sole ownership of arrays. Noncopyable.</td>
</tr>
<tr>
<td><a href="shared_ptr.htm"><b>shared_ptr</b></a></td>
<td><a href="../../boost/shared_ptr.hpp">&lt;boost/shared_ptr.hpp&gt;</a></td>
<td>Object ownership shared among multiple pointers</td>
</tr>
<tr>
<td><a href="shared_array.htm"><b>shared_array</b></a></td>
<td><a href="../../boost/shared_array.hpp">&lt;boost/shared_array.hpp&gt;</a></td>
<td>Array ownership shared among multiple pointers.</td>
</tr>
<tr>
<td><a href="weak_ptr.htm"><b>weak_ptr</b></a></td>
<td><a href="../../boost/weak_ptr.hpp">&lt;boost/weak_ptr.hpp&gt;</a></td>
<td>Non-owning observers of an object owned by <b>shared_ptr</b>.</td>
</tr>
<tr>
<td><a href="intrusive_ptr.html"><b>intrusive_ptr</b></a></td>
<td><a href="../../boost/intrusive_ptr.hpp">&lt;boost/intrusive_ptr.hpp&gt;</a></td>
<td>Shared ownership of objects with an embedded reference count.</td>
</tr>
</table>
</div>
<p>These templates are designed to complement the <b>std::auto_ptr</b> template.</p>
<p>They are examples of the "resource acquisition is initialization" idiom
described in Bjarne Stroustrup's "The C++ Programming Language", 3rd edition,
Section 14.4, Resource Management.</p>
<p>A test program, <a href="test/smart_ptr_test.cpp">smart_ptr_test.cpp</a>, is
provided to verify correct operation.</p>
<p>A page on <a href="compatibility.htm">compatibility</a> with older versions of
the Boost smart pointer library describes some of the changes since earlier
versions of the smart pointer implementation.</p>
<p>A page on <a href="smarttests.htm">smart pointer timings</a> will be of interest
to those curious about performance issues.</p>
<P>A page on <A href="sp_techniques.html">smart pointer programming techniques</A> lists
some advanced applications of <code>shared_ptr</code> and <code>weak_ptr</code>.</P>
<h2><a name="common_requirements">Common Requirements</a></h2>
<p>These smart pointer class templates have a template parameter, <b>T</b>, which
specifies the type of the object pointed to by the smart pointer. The behavior
of the smart pointer templates is undefined if the destructor or <b>operator delete</b>
for objects of type <b>T</b> throw exceptions.</p>
<p><b>T</b> may be an incomplete type at the point of smart pointer declaration.
Unless otherwise specified, it is required that <b>T</b> be a complete type at
points of smart pointer instantiation. Implementations are required to diagnose
(treat as an error) all violations of this requirement, including deletion of
an incomplete type. See the description of the <a href="../utility/utility.htm#checked_delete">
<b>checked_delete</b></a> function template.</p>
<P>Note that <STRONG>shared_ptr</STRONG> does not have this restriction, as most of
its member functions do not require <STRONG>T</STRONG> to be a complete type.</P>
<h3>Rationale</h3>
<p>The requirements on <b>T</b> are carefully crafted to maximize safety yet allow
handle-body (also called pimpl) and similar idioms. In these idioms a smart
pointer may appear in translation units where <b>T</b> is an incomplete type.
This separates interface from implementation and hides implementation from
translation units which merely use the interface. Examples described in the
documentation for specific smart pointers illustrate use of smart pointers in
these idioms.</p>
<p>Note that <b>scoped_ptr</b> requires that <b>T</b> be a complete type at
destruction time, but <b>shared_ptr</b> does not.</p>
<h2><a name="Exception_Safety">Exception Safety</a></h2>
<p>Several functions in these smart pointer classes are specified as having "no
effect" or "no effect except such-and-such" if an exception is thrown. This
means that when an exception is thrown by an object of one of these classes,
the entire program state remains the same as it was prior to the function call
which resulted in the exception being thrown. This amounts to a guarantee that
there are no detectable side effects. Other functions never throw exceptions.
The only exception ever thrown by functions which do throw (assuming <b>T</b> meets
the <a href="#common_requirements">common requirements</a>) is <b>std::bad_alloc</b>,
and that is thrown only by functions which are explicitly documented as
possibly throwing <b>std::bad_alloc</b>.</p>
<h2><a name="Exception-specifications">Exception-specifications</a></h2>
<p>Exception-specifications are not used; see <a href="../../more/lib_guide.htm#Exception-specification">
exception-specification rationale</a>.</p>
<p>All the smart pointer templates contain member functions which can never throw
exceptions, because they neither throw exceptions themselves nor call other
functions which may throw exceptions. These members are indicated by a comment: <code>
// never throws</code>.
</p>
<p>Functions which destroy objects of the pointed to type are prohibited from
throwing exceptions by the <a href="#common_requirements">common requirements</a>.</p>
<h2><a name="History">History</a> and Acknowledgements</h2>
<p>January 2002. Peter Dimov reworked all four classes, adding features, fixing
bugs, and splitting them into four separate headers, and added <b>weak_ptr</b>.
See the <a href="compatibility.htm">compatibility</a> page for a summary of the
changes.</p>
<p>May 2001. Vladimir Prus suggested requiring a complete type on destruction.
Refinement evolved in discussions including Dave Abrahams, Greg Colvin, Beman
Dawes, Rainer Deyke, Peter Dimov, John Maddock, Vladimir Prus, Shankar Sai, and
others.</p>
<p>November 1999. Darin Adler provided <b>operator ==</b>, <b>operator !=</b>, and <b>std::swap</b>
and <b>std::less</b> specializations for shared types.</p>
<p>September 1999. Luis Coelho provided <b>shared_ptr::swap</b> and <b>shared_array::swap</b></p>
<p>May 1999. In April and May, 1999, Valentin Bonnard and David Abrahams made a
number of suggestions resulting in numerous improvements.</p>
<p>October 1998. Beman Dawes proposed reviving the original semantics under the
names <b>safe_ptr</b> and <b>counted_ptr</b>, meeting of Per Andersson, Matt
Austern, Greg Colvin, Sean Corfield, Pete Becker, Nico Josuttis, Dietmar K<>hl,
Nathan Myers, Chichiang Wan and Judy Ward. During the discussion, the four new
class names were finalized, it was decided that there was no need to exactly
follow the <b>std::auto_ptr</b> interface, and various function signatures and
semantics were finalized.</p>
<p>Over the next three months, several implementations were considered for <b>shared_ptr</b>,
and discussed on the <a href="http://www.boost.org">boost.org</a> mailing list.
The implementation questions revolved around the reference count which must be
kept, either attached to the pointed to object, or detached elsewhere. Each of
those variants have themselves two major variants:
<ul>
<li>
Direct detached: the shared_ptr contains a pointer to the object, and a pointer
to the count.
<li>
Indirect detached: the shared_ptr contains a pointer to a helper object, which
in turn contains a pointer to the object and the count.
<li>
Embedded attached: the count is a member of the object pointed to.
<li>
Placement attached: the count is attached via operator new manipulations.</li>
</ul>
<p>Each implementation technique has advantages and disadvantages. We went so far
as to run various timings of the direct and indirect approaches, and found that
at least on Intel Pentium chips there was very little measurable difference.
Kevlin Henney provided a paper he wrote on "Counted Body Techniques." Dietmar
K<>hl suggested an elegant partial template specialization technique to allow
users to choose which implementation they preferred, and that was also
experimented with.</p>
<p>But Greg Colvin and Jerry Schwarz argued that "parameterization will discourage
users", and in the end we choose to supply only the direct implementation.</p>
<p>Summer, 1994. Greg Colvin proposed to the C++ Standards Committee classes named <b>auto_ptr</b>
and <b>counted_ptr</b> which were very similar to what we now call <b>scoped_ptr</b>
and <b>shared_ptr</b>. <a href="#Col-94">[Col-94]</a> In one of the very few
cases where the Library Working Group's recommendations were not followed by
the full committee, <b>counted_ptr</b> was rejected and surprising
transfer-of-ownership semantics were added to <b>auto_ptr</b>.</p>
<h2><a name="References">References</a></h2>
<p>[<a name="Col-94">Col-94</a>] Gregory Colvin, <a href="http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/1994/N0555.pdf">
Exception Safe Smart Pointers</a>, C++ committee document 94-168/N0555,
July, 1994.</p>
<p>[<a name="E&amp;D-94">E&amp;D-94</a>] John R. Ellis &amp; David L. Detlefs, <a href="http://www.usenix.org/publications/library/proceedings/c++94/full_papers/ellis.a">
Safe, Efficient Garbage Collection for C++</a>, Usenix Proceedings,
February, 1994. This paper includes an extensive discussion of weak pointers
and an extensive bibliography.</p>
<hr>
<p>$Date$</p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>

BIN
smarttest.zip Normal file

Binary file not shown.

543
smarttests.htm Normal file
View File

@@ -0,0 +1,543 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Smart Pointer Timings</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#FFFFFF">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" WIDTH="277" HEIGHT="86">Smart Pointer Timings</h1>
<p>In late January 2000, Mark Borgerding put forward a suggestion to boost for
a new design of smart pointer whereby an intrusive doubly linked list is used
to join together all instances of smart pointers sharing a given raw pointer.
This allowed avoidance of the costly heap allocation of a reference count that
occurred in the initial construction of the then current version of boost::shared_ptr.
Of course, nothing is for free and the benefit here was gained at the expense
of increased size and more costly copy operations. A debate ensued on the boost
mailing list and the tests which this page describes were performed to provide
a guide for current and future investigations into smart pointer implementation
strategies.</p>
<p>Thanks are due to <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>,
Gavin Collings,
<a href="../../people/greg_colvin.htm">Greg Colvin</a> and
<a href="../../people/beman_dawes.html">Beman Dawes</a>
for test code and trial implementations, the final version of which can be found
in .zip format <a href="smarttest.zip">here</a>.</p>
<h2>Description</h2>
<p>Two tests were run: the first aimed to obtain timings for two basic individual
operations:</p>
<ol type="i">
<li> Initial construction from raw pointer.</li>
<li> An amortized copy operation consisting of half an assignment and half a
copy construction - designed to reflect average usage.</li>
</ol>
<p>The second attempted to gain more insight into normal usage by timing the fill
and sort algorithms for vectors and lists filled with the various smart pointers.</p>
<p>Five smart pointer implementation strategies were tested:</p>
<ol type="i">
<li>Counted pointer using a heap allocated reference count, this is referred
to as <b>simple counted</b>.</li>
<li>Counted pointer using a special purpose allocator for the reference count
- <b>special counted</b>.</li>
<li>Counted pointer using an intrusive reference count - <b>intrusive</b>.</li>
<li>Linked pointer as described above - <b>linked</b>.</li>
<li>Cyclic pointer, a counted implementation using a std::deque for allocation
with provision for weak pointers and garbage collection of cycles of pointers
- <b>cyclic</b>.</li>
</ol>
<p>on two compilers:</p>
<ol type="i">
<li>MSVC 6.0 service pack 3, using default release optimization mode (/O2 -
optimized for speed, no inlining of functions defined outside a class body
unless specified as inline).</li>
<li>gcc 2.95.2 using full optimization (-O3 -DNDEBUG).</li>
</ol>
<p>Additionally, generated pointer sizes (taking into account struct alignment)
were compared, as were generated code sizes for MSVC mainly by manual inspection
of generated assembly code - a necessity due to function inlining.</p>
<p>All tests were run on a PII-200 running Windows NT version 4.0</p>
<h2>&nbsp;</h2>
<h2>Operation Timing Test Results</h2>
<p>The following graphs show the overall time in nanoseconds to acquire a pointer
(default construction) perform n amortized copy operations on it and finally
release it. The initial allocation time for the contained pointer is not included,
although the time for it's deallocation is. The contained pointer pointed to
a trivial class, but for the inclusion of an intrusive reference count for the
benefit of the intrusive counted shared pointer. A dumb pointer (i.e. a smart
pointer that simply acquires and releases its contained pointer with no extra
overhead) and a raw pointer were also included for comparison.</p>
<table border="0" align="center">
<tr>
<td width="20" height="20">&nbsp;</td>
<td>&nbsp;</td>
<td width="20">&nbsp;</td>
</tr>
<tr>
<td width="20">&nbsp; </td>
<td><img src="msvcspeed.gif" width="560" height="355" alt="MSVC speed graph"></td>
<td width="20">&nbsp;</td>
</tr>
<tr>
<td height="20">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td><img src="gccspeed.gif" width="560" height="355" alt="GCC speed graph"></td>
<td>&nbsp;</td>
</tr>
<tr>
<td height="20">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
</table>
<p>&nbsp;</p>
<p>Fitting straight lines to the above plots gives the following figures for initialization
and amortized copy operation for the two compilers (times in nanoseconds, errors
at two standard deviations) : -</p>
<p>&nbsp;</p>
<h4 align="center">MSVC</h4>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="400">
<tr>
<th width="120">
<div align="right"></div>
</th>
<th class="codetabletop" width="120">
<div align="center">initialization</div>
</th>
<th class="codetabletop" width="120">copy operation</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">3000 +/- 170</td>
<td class="codetablecell" align="center">104 +/- 31</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center">1330 +/- 50</td>
<td class="codetablecell" align="center">85 +/- 9</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center">1000 +/- 20</td>
<td class="codetablecell" align="center">71 +/- 3</td>
</tr>
<tr>
<th class="codetableleft" align="right">linked</th>
<td class="codetablecell" align="center">970 +/- 60</td>
<td class="codetablecell" align="center">136 +/- 10</td>
</tr>
<tr>
<th class="codetableleft" align="right">cyclic</th>
<td class="codetablecell" align="center">1290 +/- 70</td>
<td class="codetablecell" align="center">112 +/- 12</td>
</tr>
<tr>
<th class="codetableleft" align="right">dumb</th>
<td class="codetablecell" align="center">1020 +/- 20</td>
<td class="codetablecell" align="center">10 +/- 4</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">raw</div>
</th>
<td class="codetablecell" align="center">1038 +/- 30</td>
<td class="codetablecell" align="center">10 +/- 5</td>
</tr>
</table>
<h4 align="center">&nbsp;</h4>
<h4 align="center">GCC</h4>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="400">
<tr>
<th width="120">
<div align="right"></div>
</th>
<th class="codetabletop" width="120">
<div align="center">initialization</div>
</th>
<th class="codetabletop" width="120">copy operation</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">4620 +/- 150</td>
<td class="codetablecell" align="center">301 +/- 28</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center">1990 +/- 40</td>
<td class="codetablecell" align="center">264 +/- 7</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center">1590 +/- 70</td>
<td class="codetablecell" align="center">181 +/- 12</td>
</tr>
<tr>
<th class="codetableleft" align="right">linked</th>
<td class="codetablecell" align="center">1470 +/- 140</td>
<td class="codetablecell" align="center">345 +/- 26</td>
</tr>
<tr>
<th class="codetableleft" align="right">cyclic</th>
<td class="codetablecell" align="center">2180 +/- 100</td>
<td class="codetablecell" align="center">330 +/- 18</td>
</tr>
<tr>
<th class="codetableleft" align="right">dumb</th>
<td class="codetablecell" align="center">1590 +/- 70</td>
<td class="codetablecell" align="center">74 +/- 12</td>
</tr>
<tr>
<th class="codetableleft" align="right">
<div align="right">raw</div>
</th>
<td class="codetablecell" align="center">1430 +/- 60</td>
<td class="codetablecell" align="center">27 +/- 11</td>
</tr>
</table>
<p>Note that the above times include a certain amount of loop overhead etc. for
each operation. An estimate of the pure smart pointer operation time 'overhead'
can be obtained by subtracting the dumb or raw figure from the smart pointer
time of interest.</p>
<h3>Detail</h3>
<p>The test involved iterating a loop which creates raw pointers. These were then
shared among a varying number (set size) of smart pointers. A range of set sizes
was used and then a line fitted to get a linear relation with number of initializations
and copy-operations. A spreadsheet was used for the line fit, and to produce
the performance graphs above.</p>
<h2>&nbsp;</h2>
<h2>Container Test Results</h2>
<p>To gain some insight in to operation within real life programs, this test was
devised. Smart pointers were used to fill standard containers which were then
sorted.</p>
<p>In this case, the contained pointer pointed to a class which initializes a
private data member to a random value in its default constructor. This value
is used subsequently for the sort comparison test. The class also contains an
intrusive reference count for the benefit of the intrusive counted pointer.</p>
<p> All times are in seconds for 300,000 contained pointers.</p>
<h4 align="center">GCC</h4>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="500">
<tr>
<th>&nbsp;</th>
<th class="codetabletop" colspan="2">vector</th>
<th class="codetabletop" colspan="2">list</th>
</tr>
<tr>
<th width="120">
<div align="right"></div>
</th>
<th class="codetabletop2" width="80">
<div align="center">fill</div>
</th>
<th class="codetabletop2" width="80">sort</th>
<th class="codetabletop2" width="80">fill</th>
<th class="codetabletop2" width="80">sort</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">46.54</td>
<td class="codetablecell" align="center">2.44</td>
<td class="codetablecell" align="center">47.09</td>
<td class="codetablecell" align="center">3.22</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center">14.02</td>
<td class="codetablecell" align="center">2.83</td>
<td class="codetablecell" align="center">7.28</td>
<td class="codetablecell" align="center">3.21</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center">12.15</td>
<td class="codetablecell" align="center">1.91</td>
<td class="codetablecell" align="center">7.99</td>
<td class="codetablecell" align="center">3.08</td>
</tr>
<tr>
<th class="codetableleft" align="right">linked</th>
<td class="codetablecell" align="center">12.46</td>
<td class="codetablecell" align="center">2.32</td>
<td class="codetablecell" align="center">8.14</td>
<td class="codetablecell" align="center">3.27</td>
</tr>
<tr>
<th class="codetableleft" align="right">cyclic</th>
<td class="codetablecell" align="center">22.60</td>
<td class="codetablecell" align="center">3.19</td>
<td class="codetablecell" align="center">1.63</td>
<td class="codetablecell" align="center">3.18</td>
</tr>
<tr>
<th class="codetableleft" align="right">
<div align="right">raw</div>
</th>
<td class="codetablecell" align="center">11.81</td>
<td class="codetablecell" align="center">0.24</td>
<td class="codetablecell" align="center">27.51</td>
<td class="codetablecell" align="center">0.77</td>
</tr>
</table>
<p>&nbsp;</p>
<h4 align="center">MSVC</h4>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="500">
<tr>
<th>&nbsp;</th>
<th class="codetabletop" colspan="2">vector</th>
<th class="codetabletop" colspan="2">list</th>
</tr>
<tr>
<th width="120">
<div align="right"></div>
</th>
<th class="codetabletop2" width="80">
<div align="center">fill</div>
</th>
<th class="codetabletop2" width="80">sort</th>
<th class="codetabletop2" width="80">fill</th>
<th class="codetabletop2" width="80">sort</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">1.83</td>
<td class="codetablecell" align="center">2.37</td>
<td class="codetablecell" align="center">1.86</td>
<td class="codetablecell" align="center">4.85</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center">1.04</td>
<td class="codetablecell" align="center">2.35</td>
<td class="codetablecell" align="center">1.38</td>
<td class="codetablecell" align="center">4.58</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center">1.04</td>
<td class="codetablecell" align="center">1.84</td>
<td class="codetablecell" align="center">1.16</td>
<td class="codetablecell" align="center">4.29</td>
</tr>
<tr>
<th class="codetableleft" align="right">linked</th>
<td class="codetablecell" align="center">1.08</td>
<td class="codetablecell" align="center">2.00</td>
<td class="codetablecell" align="center">1.21</td>
<td class="codetablecell" align="center">4.33</td>
</tr>
<tr>
<th class="codetableleft" align="right">cyclic</th>
<td class="codetablecell" align="center">1.38</td>
<td class="codetablecell" align="center">2.84</td>
<td class="codetablecell" align="center">1.47</td>
<td class="codetablecell" align="center">4.73</td>
</tr>
<tr>
<th class="codetableleft" align="right">
<div align="right">raw</div>
</th>
<td class="codetablecell" align="center">0.67</td>
<td class="codetablecell" align="center">0.28</td>
<td class="codetablecell" align="center">1.24</td>
<td class="codetablecell" align="center">1.81</td>
</tr>
</table>
<p>&nbsp;</p>
<h2>Code Size</h2>
<p>The following code sizes were determined by inspection of generated code for
MSVC only. Sizes are given in the form N / M / I where:</p>
<ul type="circle">
<li> N is the instruction count of the operation</li>
<li>M is the size of the code in bytes</li>
<li>I determines whether generated code was inlined or not I = inline, O = &quot;outline&quot;</li>
</ul>
<p>&nbsp;</p>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="570">
<tr>
<th height="28" width="140">
<div align="right"></div>
</th>
<th height="28" class="codetabletop" width="80">
<div align="center">ptr()</div>
</th>
<th height="28" class="codetabletop" width="80">ptr(p)</th>
<th height="28" class="codetabletop" width="80">ptr(ptr)</th>
<th height="28" class="codetabletop" width="80">op=()</th>
<th height="28" class="codetabletop" width="80">
<div align="center">~ptr()</div>
</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">38/110/O</td>
<td class="codetablecell" align="center">38/110/O</td>
<td class="codetablecell" align="center">9/23/I</td>
<td class="codetablecell" align="center">22/57/I</td>
<td class="codetablecell" align="center">17/40/I</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center"><font size="-1">50/141/O</font></td>
<td class="codetablecell" align="center"><font size="-1">50/141/O</font></td>
<td class="codetablecell" align="center"><font size="-1">9/23/I</font></td>
<td class="codetablecell" align="center"><font size="-1">23/64/I</font></td>
<td class="codetablecell" align="center"><font size="-1">13/38/I</font></td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center"><font size="-1">1/2/I</font></td>
<td class="codetablecell" align="center"><font size="-1">3/6/I</font></td>
<td class="codetablecell" align="center"><font size="-1">3/6/I</font></td>
<td class="codetablecell" align="center"><font size="-1">6/11/I</font></td>
<td class="codetablecell" align="center"><font size="-1">6/11/I</font></td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">linked</div>
</th>
<td class="codetablecell" align="center"><font size="-1">5/19/I</font></td>
<td class="codetablecell" align="center"><font size="-1">5/15/I</font></td>
<td class="codetablecell" align="center"><font size="-1">10/30/I</font></td>
<td class="codetablecell" align="center"><font size="-1">27/59/I</font></td>
<td class="codetablecell" align="center"><font size="-1">14/38/I</font></td>
</tr>
</table>
<p>During the code inspection, a couple of minor points were noticed: -</p>
<ul>
<li>Function inlining was critical to performance.</li>
<li>For MSVC, at least, a &quot;delete 0&quot; caused execution of 11 assembly
instructions, including a function call. So in cases where performance is
at an absolute premium it can be worth inserting the extra manual test.</li>
</ul>
<h2>&nbsp;</h2>
<h2>Data Size</h2>
<p>The following smart pointer sizes were obtained in bytes</p>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="270">
<tr>
<th height="28" width="150">
<div align="right"></div>
</th>
<th height="28" class="codetabletop" width="60">
<div align="center">MSVC</div>
</th>
<th height="28" class="codetabletop" width="60">
<div align="center">GCC</div>
</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell">
<div align="center">8</div>
</td>
<td class="codetablecell">
<div align="center">8</div>
</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell">
<div align="center">8</div>
</td>
<td class="codetablecell">
<div align="center">12</div>
</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell">
<div align="center">4</div>
</td>
<td class="codetablecell">
<div align="center">4</div>
</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">linked</div>
</th>
<td class="codetablecell">
<div align="center">12</div>
</td>
<td class="codetablecell">
<div align="center">12</div>
</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">cyclic</div>
</th>
<td class="codetablecell">
<div align="center">8</div>
</td>
<td class="codetablecell">
<div align="center">8</div>
</td>
</tr>
</table>
<h2>&nbsp;</h2>
<h2>Summary</h2>
<p>The timing results mainly speak for themselves: clearly an intrusive pointer
outperforms all others and a simple heap based counted pointer has poor performance
relative to other implementations. The selection of an optimal non-intrusive
smart pointer implementation is more application dependent, however. Where small
numbers of copies are expected, it is likely that the linked implementation
will be favoured. Conversely, for larger numbers of copies a counted pointer
with some type of special purpose allocator looks like a win. Other factors
to bear in mind are: -</p>
<ul>
<li>Deterministic individual, as opposed to amortized, operation time. This
weighs against any implementation depending on an allocator.</li>
<li>Multithreaded synchronization. This weighs against an implementation which
spreads its information as in the case of linked pointer.</li>
</ul>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->19 August 2001<!--webbot bot="Timestamp" endspan i-checksum="14767" -->
</p>
<p><EFBFBD> Copyright Gavin Collings 2000. Permission to copy, use, modify, sell
and distribute this document is granted provided this copyright notice appears in all
copies. This document is provided &quot;as is&quot; without express or implied warranty,
and with no claim as to its suitability for any purpose.</p>
</body>
</html>

760
sp_techniques.html Normal file
View File

@@ -0,0 +1,760 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Smart Pointer Programming Techniques</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body text="#000000" bgColor="#ffffff">
<h1><IMG height="86" alt="c++boost.gif (8819 bytes)" src="../../c++boost.gif" width="277" align="middle">Smart
Pointer Programming Techniques</h1>
<p><A href="#incomplete">Using incomplete classes for implementation hiding</A><br>
<A href="#pimpl">The "Pimpl" idiom</A><br>
<A href="#abstract">Using abstract classes for implementation hiding</A><br>
<A href="#preventing_delete">Preventing <code>delete px.get()</code></A><br>
<A href="#array">Using a <code>shared_ptr</code> to hold a pointer to an array</A><br>
<A href="#encapsulation">Encapsulating allocation details, wrapping factory
functions</A><br>
<A href="#static">Using a <code>shared_ptr</code> to hold a pointer to a statically
allocated object</A><br>
<A href="#com">Using a <code>shared_ptr</code> to hold a pointer to a COM object</A><br>
<A href="#intrusive">Using a <code>shared_ptr</code> to hold a pointer to an object
with an embedded reference count</A><br>
<A href="#another_sp">Using a <code>shared_ptr</code> to hold another shared
ownership smart pointer</A><br>
<A href="#from_raw">Obtaining a <code>shared_ptr</code> from a raw pointer</A><br>
<A href="#in_constructor">Obtaining a <code>shared_ptr</code> (<code>weak_ptr</code>)
to <code>this</code> in a constructor</A><br>
<A href="#from_this">Obtaining a <code>shared_ptr</code> to <code>this</code></A><br>
<A href="#handle">Using <code>shared_ptr</code> as a smart counted handle</A><br>
<A href="#on_block_exit">Using <code>shared_ptr</code> to execute code on block
exit</A><br>
<A href="#pvoid">Using <code>shared_ptr&lt;void&gt;</code> to hold an arbitrary
object</A><br>
<A href="#extra_data">Associating arbitrary data with heterogeneous <code>shared_ptr</code>
instances</A><br>
<A href="#as_lock">Using <code>shared_ptr</code> as a CopyConstructible mutex lock</A><br>
<A href="#wrapper">Using <code>shared_ptr</code> to wrap member function calls</A><br>
<A href="#delayed">Delayed deallocation</A><br>
<A href="#weak_without_shared">Weak pointers to objects not managed by a <code>shared_ptr</code></A><br>
</p>
<h2><A name="incomplete">Using incomplete classes for implementation hiding</A></h2>
<p>A proven technique (that works in C, too) for separating interface from
implementation is to use a pointer to an incomplete class as an opaque handle:</p>
<pre>class FILE;
FILE * fopen(char const * name, char const * mode);
void fread(FILE * f, void * data, size_t size);
void fclose(FILE * f);
</pre>
<p>It is possible to express the above interface using <code>shared_ptr</code>,
eliminating the need to manually call <code>fclose</code>:</p>
<pre>class FILE;
shared_ptr&lt;FILE&gt; fopen(char const * name, char const * mode);
void fread(shared_ptr&lt;FILE&gt; f, void * data, size_t size);
</pre>
<p>This technique relies on <code>shared_ptr</code>'s ability to execute a custom
deleter, eliminating the explicit call to <code>fclose</code>, and on the fact
that <code>shared_ptr&lt;X&gt;</code> can be copied and destroyed when <code>X</code>
is incomplete.</p>
<h2><A name="pimpl">The "Pimpl" idiom</A></h2>
<p>A C++ specific variation of the incomplete class pattern is the "Pimpl" idiom.
The incomplete class is not exposed to the user; it is hidden behind a
forwarding facade. <code>shared_ptr</code> can be used to implement a "Pimpl":</p>
<pre>// file.hpp:
class file
{
private:
class impl;
shared_ptr&lt;impl&gt; pimpl_;
public:
file(char const * name, char const * mode);
// compiler generated members are fine and useful
void read(void * data, size_t size);
};
</pre>
<pre>// file.cpp:
#include "file.hpp"
class file::impl
{
private:
impl(impl const &amp;);
impl &amp; operator=(impl const &amp;);
// private data
public:
impl(char const * name, char const * mode) { ... }
~impl() { ... }
void read(void * data, size_t size) { ... }
};
file::file(char const * name, char const * mode): pimpl_(new impl(name, mode))
{
}
void file::read(void * data, size_t size)
{
pimpl_-&gt;read(data, size);
}
</pre>
<p>The key thing to note here is that the compiler-generated copy constructor,
assignment operator, and destructor all have a sensible meaning. As a result, <code>
file</code> is <code>CopyConstructible</code> and <code>Assignable</code>,
allowing its use in standard containers.</p>
<h2><A name="abstract">Using abstract classes for implementation hiding</A></h2>
<p>Another widely used C++ idiom for separating inteface and implementation is to
use abstract base classes and factory functions. The abstract classes are
sometimes called "interfaces" and the pattern is known as "interface-based
programming". Again, <code>shared_ptr</code> can be used as the return type of
the factory functions:</p>
<pre>// X.hpp:
class X
{
public:
virtual void f() = 0;
virtual void g() = 0;
protected:
~X() {}
};
shared_ptr&lt;X&gt; createX();
</pre>
<pre>-- X.cpp:
class X_impl: public X
{
private:
X_impl(X_impl const &amp;);
X_impl &amp; operator=(X_impl const &amp;);
public:
virtual void f()
{
// ...
}
virtual void g()
{
// ...
}
};
shared_ptr&lt;X&gt; createX()
{
shared_ptr&lt;X&gt; px(new X_impl);
return px;
}
</pre>
<p>A key property of shared_ptr is that the allocation, construction, deallocation,
and destruction details are captured at the point of construction, inside the
factory function. Note the protected and nonvirtual destructor in the example
above. The client code cannot, and does not need to, delete a pointer to <code>X</code>;
the <code>shared_ptr&lt;X&gt;</code> instance returned from <code>createX</code>
will correctly call <code>~X_impl</code>.</p>
<h2><A name="preventing_delete">Preventing <code>delete px.get()</code></A></h2>
<p>It is often desirable to prevent client code from deleting a pointer that is
being managed by <code>shared_ptr</code>. The previous technique showed one
possible approach, using a protected destructor. Another alternative is to use
a private deleter:</p>
<pre>class X
{
private:
~X();
class deleter;
friend class deleter;
class deleter
{
public:
void operator()(X * p) { delete p; }
};
public:
static shared_ptr&lt;X&gt; create()
{
shared_ptr&lt;X&gt; px(new X, X::deleter());
return px;
}
};
</pre>
<h2><A name="array">Using a <code>shared_ptr</code> to hold a pointer to an array</A></h2>
<p>A <code>shared_ptr</code> can be used to hold a pointer to an array allocated
with <code>new[]</code>:</p>
<pre>shared_ptr&lt;X&gt; px(new X[1], <A href="../utility/checked_delete.html" >checked_array_deleter</A>&lt;X&gt;());
</pre>
<p>Note, however, that <code><A href="shared_array.htm">shared_array</A></code> is
often preferable, if this is an option. It has an array-specific interface,
without <code>operator*</code> and <code>operator-&gt;</code>, and does not
allow pointer conversions.</p>
<h2><A name="encapsulation">Encapsulating allocation details, wrapping factory
functions</A></h2>
<p><code>shared_ptr</code> can be used in creating C++ wrappers over existing C
style library interfaces that return raw pointers from their factory functions
to encapsulate allocation details. As an example, consider this interface,
where <code>CreateX</code> might allocate <code>X</code> from its own private
heap, <code>~X</code> may be inaccessible, or <code>X</code> may be incomplete:</p>
<pre>X * CreateX();
void DestroyX(X *);
</pre>
<p>The only way to reliably destroy a pointer returned by <code>CreateX</code> is
to call <code>DestroyX</code>.</p>
<P>Here is how a <code>shared_ptr</code>-based wrapper may look like:</P>
<pre>shared_ptr&lt;X&gt; createX()
{
shared_ptr&lt;X&gt; px(CreateX(), DestroyX);
return px;
}
</pre>
<p>Client code that calls <code>createX</code> still does not need to know how the
object has been allocated, but now the destruction is automatic.</p>
<h2><A name="static">Using a <code>shared_ptr</code> to hold a pointer to a statically
allocated object</A></h2>
<p>Sometimes it is desirable to create a <code>shared_ptr</code> to an already
existing object, so that the <code>shared_ptr</code> does not attempt to
destroy the object when there are no more references left. As an example, the
factory function:</p>
<pre>shared_ptr&lt;X&gt; createX();
</pre>
<p>in certain situations may need to return a pointer to a statically allocated <code>X</code>
instance.</p>
<P>The solution is to use a custom deleter that does nothing:</P>
<pre>struct null_deleter
{
void operator()(void const *) const
{
}
};
static X x;
shared_ptr&lt;X&gt; createX()
{
shared_ptr&lt;X&gt; px(&amp;x, null_deleter());
return px;
}
</pre>
<p>The same technique works for any object known to outlive the pointer.</p>
<h2><A name="com">Using a <code>shared_ptr</code> to hold a pointer to a COM Object</A></h2>
<p>Background: COM objects have an embedded reference count and two member
functions that manipulate it. <code>AddRef()</code> increments the count. <code>Release()</code>
decrements the count and destroys itself when the count drops to zero.</p>
<P>It is possible to hold a pointer to a COM object in a <code>shared_ptr</code>:</P>
<pre>shared_ptr&lt;IWhatever&gt; make_shared_from_COM(IWhatever * p)
{
p-&gt;AddRef();
shared_ptr&lt;IWhatever&gt; pw(p, <A href="../bind/mem_fn.html" >mem_fn</A>(&amp;IWhatever::Release));
return pw;
}
</pre>
<p>Note, however, that <code>shared_ptr</code> copies created from <code>pw</code> will
not "register" in the embedded count of the COM object; they will share the
single reference created in <code>make_shared_from_COM</code>. Weak pointers
created from <code>pw</code> will be invalidated when the last <code>shared_ptr</code>
is destroyed, regardless of whether the COM object itself is still alive.</p>
<h2><A name="intrusive">Using a <code>shared_ptr</code> to hold a pointer to an object
with an embedded reference count</A></h2>
<p>This is a generalization of the above technique. The example assumes that the
object implements the two functions required by <code><A href="intrusive_ptr.html">intrusive_ptr</A></code>,
<code>intrusive_ptr_add_ref</code> and <code>intrusive_ptr_release</code>:</p>
<pre>template&lt;class T&gt; struct intrusive_deleter
{
void operator()(T * p)
{
if(p) intrusive_ptr_release(p);
}
};
shared_ptr&lt;X&gt; make_shared_from_intrusive(X * p)
{
if(p) intrusive_ptr_add_ref(p);
shared_ptr&lt;X&gt; px(p, intrusive_deleter&lt;X&gt;());
return px;
}
</pre>
<h2><A name="another_sp">Using a <code>shared_ptr</code> to hold another shared
ownership smart pointer</A></h2>
<p>One of the design goals of <code>shared_ptr</code> is to be used in library
interfaces. It is possible to encounter a situation where a library takes a <code>shared_ptr</code>
argument, but the object at hand is being managed by a different reference
counted or linked smart pointer.</p>
<P>It is possible to exploit <code>shared_ptr</code>'s custom deleter feature to
wrap this existing smart pointer behind a <code>shared_ptr</code> facade:</P>
<pre>template&lt;class P&gt; struct smart_pointer_deleter
{
private:
P p_;
public:
smart_pointer_deleter(P const &amp; p): p_(p)
{
}
void operator()(void const *)
{
p_.reset();
}
P const &amp; get() const
{
return p_;
}
};
shared_ptr&lt;X&gt; make_shared_from_another(another_ptr&lt;X&gt; qx)
{
shared_ptr&lt;X&gt; px(qx.get(), smart_pointer_deleter&lt; another_ptr&lt;X&gt; &gt;(qx));
return px;
}
</pre>
<p>One subtle point is that deleters are not allowed to throw exceptions, and the
above example as written assumes that <code>p_.reset()</code> doesn't throw. If
this is not the case, <code>p_.reset()</code> should be wrapped in a <code>try {}
catch(...) {}</code> block that ignores exceptions. In the (usually
unlikely) event when an exception is thrown and ignored, <code>p_</code> will
be released when the lifetime of the deleter ends. This happens when all
references, including weak pointers, are destroyed or reset.</p>
<P>Another twist is that it is possible, given the above <code>shared_ptr</code> instance,
to recover the original smart pointer, using <code><A href="shared_ptr.htm#get_deleter">
get_deleter</A></code>:</P>
<pre>void extract_another_from_shared(shared_ptr&lt;X&gt; px)
{
typedef smart_pointer_deleter&lt; another_ptr&lt;X&gt; &gt; deleter;
if(deleter const * pd = get_deleter&lt;deleter&gt;(px))
{
another_ptr&lt;X&gt; qx = pd-&gt;get();
}
else
{
// not one of ours
}
}
</pre>
<h2><A name="from_raw">Obtaining a <code>shared_ptr</code> from a raw pointer</A></h2>
<p>Sometimes it is necessary to obtain a <code>shared_ptr</code> given a raw
pointer to an object that is already managed by another <code>shared_ptr</code>
instance. Example:</p>
<pre>void f(X * p)
{
shared_ptr&lt;X&gt; px(<i>???</i>);
}
</pre>
<p>Inside <code>f</code>, we'd like to create a <code>shared_ptr</code> to <code>*p</code>.</p>
<P>In the general case, this problem has no solution. One approach is to modify <code>f</code>
to take a <code>shared_ptr</code>, if possible:</P>
<pre>void f(shared_ptr&lt;X&gt; px);
</pre>
<p>The same transformation can be used for nonvirtual member functions, to convert
the implicit <code>this</code>:</p>
<pre>void X::f(int m);
</pre>
<p>would become a free function with a <code>shared_ptr</code> first argument:</p>
<pre>void f(shared_ptr&lt;X&gt; this_, int m);
</pre>
<p>If <code>f</code> cannot be changed, but <code>X</code> uses intrusive counting,
use <code><A href="#intrusive">make_shared_from_intrusive</A></code> described
above. Or, if it's known that the <code>shared_ptr</code> created in <code>f</code>
will never outlive the object, use <A href="#static">a null deleter</A>.</p>
<h2><A name="in_constructor">Obtaining a <code>shared_ptr</code> (<code>weak_ptr</code>)
to <code>this</code> in a constructor</A></h2>
<p>Some designs require objects to register themselves on construction with a
central authority. When the registration routines take a shared_ptr, this leads
to the question how could a constructor obtain a shared_ptr to this:</p>
<pre>class X
{
public:
X()
{
shared_ptr&lt;X&gt; this_(<i>???</i>);
}
};
</pre>
<p>In the general case, the problem cannot be solved. The <code>X</code> instance
being constructed can be an automatic variable or a static variable; it can be
created on the heap:</p>
<pre>shared_ptr&lt;X&gt; px(new X);</pre>
<P>but at construction time, <code>px</code> does not exist yet, and it is
impossible to create another <code>shared_ptr</code> instance that shares
ownership with it.</P>
<P>Depending on context, if the inner <code>shared_ptr</code> <code>this_</code> doesn't
need to keep the object alive, use a <code>null_deleter</code> as explained <A href="#static">
here</A> and <A href="#weak_without_shared">here</A>. If <code>X</code> is
supposed to always live on the heap, and be managed by a <code>shared_ptr</code>,
use a static factory function:</P>
<pre>class X
{
private:
X() { ... }
public:
static shared_ptr&lt;X&gt; create()
{
shared_ptr&lt;X&gt; px(new X);
// use px as 'this_'
return px;
}
};
</pre>
<h2><A name="from_this">Obtaining a <code>shared_ptr</code> to <code>this</code></A></h2>
<p>Sometimes it is needed to obtain a <code>shared_ptr</code> from <code>this</code>
in a virtual member function under the assumption that <code>this</code> is
already managed by a <code>shared_ptr</code>. The transformations <A href="#from_raw">
described in the previous technique</A> cannot be applied.</p>
<P>A typical example:</P>
<pre>class X
{
public:
virtual void f() = 0;
protected:
~X() {}
};
class Y
{
public:
virtual shared_ptr&lt;X&gt; getX() = 0;
protected:
~Y() {}
};
// --
class impl: public X, public Y
{
public:
impl() { ... }
virtual void f() { ... }
virtual shared_ptr&lt;X&gt; getX()
{
shared_ptr&lt;X&gt; px(<i>???</i>);
return px;
}
};
</pre>
<p>The solution is to keep a weak pointer to <code>this</code> as a member in <code>impl</code>:</p>
<pre>class impl: public X, public Y
{
private:
weak_ptr&lt;impl&gt; weak_this;
impl(impl const &amp;);
impl &amp; operator=(impl const &amp;);
impl() { ... }
public:
static shared_ptr&lt;impl&gt; create()
{
shared_ptr&lt;impl&gt; pi(new impl);
pi-&gt;weak_this = pi;
return pi;
}
virtual void f() { ... }
virtual shared_ptr&lt;X&gt; getX()
{
shared_ptr&lt;X&gt; px(weak_this);
return px;
}
};
</pre>
<p>The library now includes a helper class template <code><A href="enable_shared_from_this.html">
enable_shared_from_this</A></code> that can be used to encapsulate the
solution:</p>
<pre>class impl: public X, public Y, public enable_shared_from_this&lt;impl&gt;
{
public:
impl(impl const &amp;);
impl &amp; operator=(impl const &amp;);
public:
virtual void f() { ... }
virtual shared_ptr&lt;X&gt; getX()
{
return shared_from_this();
}
}
</pre>
<h2><A name="handle">Using <code>shared_ptr</code> as a smart counted handle</A></h2>
<p>Some library interfaces use opaque handles, a variation of the <A href="#incomplete">
incomplete class technique</A> described above. An example:</p>
<pre>typedef void * HANDLE;
HANDLE CreateProcess();
void CloseHandle(HANDLE);
</pre>
<p>Instead of a raw pointer, it is possible to use <code>shared_ptr</code> as the
handle and get reference counting and automatic resource management for free:</p>
<pre>typedef shared_ptr&lt;void&gt; handle;
handle createProcess()
{
shared_ptr&lt;void&gt; pv(CreateProcess(), CloseHandle);
return pv;
}
</pre>
<h2><A name="on_block_exit">Using <code>shared_ptr</code> to execute code on block exit</A></h2>
<p><code>shared_ptr&lt;void&gt;</code> can automatically execute cleanup code when
control leaves a scope.</p>
<UL>
<LI>
Executing <code>f(p)</code>, where <code>p</code> is a pointer:</LI></UL>
<pre> shared_ptr&lt;void&gt; guard(p, f);
</pre>
<UL>
<LI>
Executing arbitrary code: <code>f(x, y)</code>:</LI></UL>
<pre> shared_ptr&lt;void&gt; guard(static_cast&lt;void*&gt;(0), <A href="../bind/bind.html" >bind</A>(f, x, y));
</pre>
<P>For a more thorough treatment, see the article "Simplify Your Exception-Safe
Code" by Andrei Alexandrescu and Petru Marginean, available online at <A href="http://www.cuj.com/experts/1812/alexandr.htm?topic=experts">
http://www.cuj.com/experts/1812/alexandr.htm?topic=experts</A>.</P>
<h2><A name="pvoid">Using <code>shared_ptr&lt;void&gt;</code> to hold an arbitrary
object</A></h2>
<p><code>shared_ptr&lt;void&gt;</code> can act as a generic object pointer similar
to <code>void*</code>. When a <code>shared_ptr&lt;void&gt;</code> instance
constructed as:</p>
<pre> shared_ptr&lt;void&gt; pv(new X);
</pre>
<p>is destroyed, it will correctly dispose of the <code>X</code> object by
executing <code>~X</code>.</p>
<p>This propery can be used in much the same manner as a raw <code>void*</code> is
used to temporarily strip type information from an object pointer. A <code>shared_ptr&lt;void&gt;</code>
can later be cast back to the correct type by using <code><A href="shared_ptr.htm#static_pointer_cast">
static_pointer_cast</A></code>.</p>
<h2><A name="extra_data">Associating arbitrary data with heterogeneous <code>shared_ptr</code>
instances</A></h2>
<p><code>shared_ptr</code> and <code>weak_ptr</code> support <code>operator&lt;</code>
comparisons required by standard associative containers such as <code>std::map</code>.
This can be used to non-intrusively associate arbitrary data with objects
managed by <code>shared_ptr</code>:</p>
<pre>typedef int Data;
std::map&lt; shared_ptr&lt;void&gt;, Data &gt; userData;
// or std::map&lt; weak_ptr&lt;void&gt;, Data &gt; userData; to not affect the lifetime
shared_ptr&lt;X&gt; px(new X);
shared_ptr&lt;int&gt; pi(new int(3));
userData[px] = 42;
userData[pi] = 91;
</pre>
<h2><A name="as_lock">Using <code>shared_ptr</code> as a CopyConstructible mutex lock</A></h2>
<p>Sometimes it's necessary to return a mutex lock from a function, and a
noncopyable lock cannot be returned by value. It is possible to use <code>shared_ptr</code>
as a mutex lock:</p>
<pre>class mutex
{
public:
void lock();
void unlock();
};
shared_ptr&lt;mutex&gt; lock(mutex &amp; m)
{
m.lock();
return shared_ptr&lt;mutex&gt;(&amp;m, mem_fn(&amp;mutex::unlock));
}
</pre>
<p>Better yet, the <code>shared_ptr</code> instance acting as a lock can be
encapsulated in a dedicated <code>shared_lock</code> class:</p>
<pre>class shared_lock
{
private:
shared_ptr&lt;void&gt; pv;
public:
template&lt;class Mutex&gt; explicit shared_lock(Mutex &amp; m): pv((m.lock(), &amp;m), mem_fn(&amp;Mutex::unlock)) {}
};
</pre>
<p><code>shared_lock</code> can now be used as:</p>
<pre> shared_lock lock(m);
</pre>
<p>Note that <code>shared_lock</code> is not templated on the mutex type, thanks to <code>
shared_ptr&lt;void&gt;</code>'s ability to hide type information.</p>
<h2><A name="wrapper">Using <code>shared_ptr</code> to wrap member function calls</A></h2>
<p><code>shared_ptr</code> implements the ownership semantics required from the <code>Wrap</code>/<code>CallProxy</code>
scheme described in Bjarne Stroustrup's article "Wrapping C++ Member Function
Calls" (available online at <A href="http://www.research.att.com/~bs/wrapper.pdf">http://www.research.att.com/~bs/wrapper.pdf</A>).
An implementation is given below:</p>
<pre>template&lt;class T&gt; class pointer
{
private:
T * p_;
public:
explicit pointer(T * p): p_(p)
{
}
shared_ptr&lt;T&gt; operator-&gt;() const
{
p_-&gt;prefix();
return shared_ptr&lt;T&gt;(p_, <A href="../bind/mem_fn.html" >mem_fn</A>(&amp;T::suffix));
}
};
class X
{
private:
void prefix();
void suffix();
friend class pointer&lt;X&gt;;
public:
void f();
void g();
};
int main()
{
X x;
pointer&lt;X&gt; px(&amp;x);
px-&gt;f();
px-&gt;g();
}
</pre>
<h2><A name="delayed">Delayed deallocation</A></h2>
<p>In some situations, a single <code>px.reset()</code> can trigger an expensive
deallocation in a performance-critical region:</p>
<pre>class X; // ~X is expensive
class Y
{
shared_ptr&lt;X&gt; px;
public:
void f()
{
px.reset();
}
};
</pre>
<p>The solution is to postpone the potential deallocation by moving <code>px</code>
to a dedicated free list that can be periodically emptied when performance and
response times are not an issue:</p>
<pre>vector&lt; shared_ptr&lt;void&gt; &gt; free_list;
class Y
{
shared_ptr&lt;X&gt; px;
public:
void f()
{
free_list.push_back(px);
px.reset();
}
};
// periodically invoke free_list.clear() when convenient
</pre>
<p>Another variation is to move the free list logic to the construction point by
using a delayed deleter:</p>
<pre>struct delayed_deleter
{
template&lt;class T&gt; void operator()(T * p)
{
try
{
shared_ptr&lt;void&gt; pv(p);
free_list.push_back(pv);
}
catch(...)
{
}
}
};
</pre>
<h2><A name="weak_without_shared">Weak pointers to objects not managed by a <code>shared_ptr</code></A></h2>
<p>Make the object hold a <code>shared_ptr</code> to itself, using a <code>null_deleter</code>:</p>
<pre>class X
{
private:
shared_ptr&lt;X&gt; this_;
int i_;
public:
explicit X(int i): this_(this, null_deleter()), i_(i)
{
}
// repeat in all constructors (including the copy constructor!)
X(X const &amp; rhs): this_(this, null_deleter()), i_(rhs.i_)
{
}
// do not forget to not assign this_ in the copy assignment
X &amp; operator=(X const &amp; rhs)
{
i_ = rhs.i_;
}
weak_ptr&lt;X&gt; get_weak_ptr() const { return this_; }
};
</pre>
<p>When the object's lifetime ends, <code>X::this_</code> will be destroyed, and
all weak pointers will automatically expire.</p>
<hr>
<p>$Date$</p>
<p><small>Copyright <20> 2003 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</small></p>
</body>
</html>

269
src/sp_collector.cpp Normal file
View File

@@ -0,0 +1,269 @@
//
// sp_collector.cpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
#include <boost/assert.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/detail/lightweight_mutex.hpp>
#include <cstdlib>
#include <map>
#include <deque>
#include <iostream>
typedef std::map< void const *, std::pair<void *, size_t> > map_type;
static map_type & get_map()
{
static map_type m;
return m;
}
typedef boost::detail::lightweight_mutex mutex_type;
static mutex_type & get_mutex()
{
static mutex_type m;
return m;
}
static void * init_mutex_before_main = &get_mutex();
namespace
{
class X;
struct count_layout
{
boost::detail::sp_counted_base * pi;
int id;
};
struct shared_ptr_layout
{
X * px;
count_layout pn;
};
}
// assume 4 byte alignment for pointers when scanning
size_t const pointer_align = 4;
typedef std::map<void const *, long> map2_type;
static void scan_and_count(void const * area, size_t size, map_type const & m, map2_type & m2)
{
unsigned char const * p = static_cast<unsigned char const *>(area);
for(size_t n = 0; n + sizeof(shared_ptr_layout) <= size; p += pointer_align, n += pointer_align)
{
shared_ptr_layout const * q = reinterpret_cast<shared_ptr_layout const *>(p);
if(q->pn.id == boost::detail::shared_count_id && q->pn.pi != 0 && m.count(q->pn.pi) != 0)
{
++m2[q->pn.pi];
}
}
}
typedef std::deque<void const *> open_type;
static void scan_and_mark(void const * area, size_t size, map2_type & m2, open_type & open)
{
unsigned char const * p = static_cast<unsigned char const *>(area);
for(size_t n = 0; n + sizeof(shared_ptr_layout) <= size; p += pointer_align, n += pointer_align)
{
shared_ptr_layout const * q = reinterpret_cast<shared_ptr_layout const *>(p);
if(q->pn.id == boost::detail::shared_count_id && q->pn.pi != 0 && m2.count(q->pn.pi) != 0)
{
open.push_back(q->pn.pi);
m2.erase(q->pn.pi);
}
}
}
static void find_unreachable_objects_impl(map_type const & m, map2_type & m2)
{
// scan objects for shared_ptr members, compute internal counts
{
std::cout << "... " << m.size() << " objects in m.\n";
for(map_type::const_iterator i = m.begin(); i != m.end(); ++i)
{
boost::detail::sp_counted_base const * p = static_cast<boost::detail::sp_counted_base const *>(i->first);
BOOST_ASSERT(p->use_count() != 0); // there should be no inactive counts in the map
scan_and_count(i->second.first, i->second.second, m, m2);
}
std::cout << "... " << m2.size() << " objects in m2.\n";
}
// mark reachable objects
{
open_type open;
for(map2_type::iterator i = m2.begin(); i != m2.end(); ++i)
{
boost::detail::sp_counted_base const * p = static_cast<boost::detail::sp_counted_base const *>(i->first);
if(p->use_count() != i->second) open.push_back(p);
}
std::cout << "... " << m2.size() << " objects in open.\n";
for(open_type::iterator j = open.begin(); j != open.end(); ++j)
{
m2.erase(*j);
}
while(!open.empty())
{
void const * p = open.front();
open.pop_front();
map_type::const_iterator i = m.find(p);
BOOST_ASSERT(i != m.end());
scan_and_mark(i->second.first, i->second.second, m2, open);
}
}
// m2 now contains the unreachable objects
}
std::size_t find_unreachable_objects(bool report)
{
map2_type m2;
#ifdef BOOST_HAS_THREADS
// This will work without the #ifdef, but some compilers warn
// that lock is not referenced
mutex_type::scoped_lock lock(get_mutex());
#endif
map_type const & m = get_map();
find_unreachable_objects_impl(m, m2);
if(report)
{
for(map2_type::iterator j = m2.begin(); j != m2.end(); ++j)
{
map_type::const_iterator i = m.find(j->first);
BOOST_ASSERT(i != m.end());
std::cout << "Unreachable object at " << i->second.first << ", " << i->second.second << " bytes long.\n";
}
}
return m2.size();
}
typedef std::deque< boost::shared_ptr<X> > free_list_type;
static void scan_and_free(void * area, size_t size, map2_type const & m2, free_list_type & free)
{
unsigned char * p = static_cast<unsigned char *>(area);
for(size_t n = 0; n + sizeof(shared_ptr_layout) <= size; p += pointer_align, n += pointer_align)
{
shared_ptr_layout * q = reinterpret_cast<shared_ptr_layout *>(p);
if(q->pn.id == boost::detail::shared_count_id && q->pn.pi != 0 && m2.count(q->pn.pi) != 0 && q->px != 0)
{
boost::shared_ptr<X> * ppx = reinterpret_cast< boost::shared_ptr<X> * >(p);
free.push_back(*ppx);
ppx->reset();
}
}
}
void free_unreachable_objects()
{
free_list_type free;
{
map2_type m2;
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(get_mutex());
#endif
map_type const & m = get_map();
find_unreachable_objects_impl(m, m2);
for(map2_type::iterator j = m2.begin(); j != m2.end(); ++j)
{
map_type::const_iterator i = m.find(j->first);
BOOST_ASSERT(i != m.end());
scan_and_free(i->second.first, i->second.second, m2, free);
}
}
std::cout << "... about to free " << free.size() << " objects.\n";
}
// debug hooks
namespace boost
{
void sp_scalar_constructor_hook(void *)
{
}
void sp_scalar_constructor_hook(void * px, std::size_t size, void * pn)
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(get_mutex());
#endif
get_map()[pn] = std::make_pair(px, size);
}
void sp_scalar_destructor_hook(void *)
{
}
void sp_scalar_destructor_hook(void *, std::size_t, void * pn)
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(get_mutex());
#endif
get_map().erase(pn);
}
void sp_array_constructor_hook(void *)
{
}
void sp_array_destructor_hook(void *)
{
}
} // namespace boost
#endif // defined(BOOST_SP_ENABLE_DEBUG_HOOKS)

244
src/sp_debug_hooks.cpp Normal file
View File

@@ -0,0 +1,244 @@
//
// sp_debug_hooks.cpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
#include <boost/assert.hpp>
#include <new>
#include <cstdlib>
int const m = 2; // m * sizeof(int) must be aligned appropriately
// magic values to mark heap blocks with
int const allocated_scalar = 0x1234560C;
int const allocated_array = 0x1234560A;
int const adopted_scalar = 0x0567890C;
int const adopted_array = 0x0567890A;
int const deleted = 0x498769DE;
using namespace std; // for compilers where things aren't in std
// operator new
static new_handler get_new_handler()
{
new_handler p = set_new_handler(0);
set_new_handler(p);
return p;
}
static void * allocate(size_t n, int mark)
{
int * pm;
for(;;)
{
pm = static_cast<int*>(malloc(n + m * sizeof(int)));
if(pm != 0) break;
if(new_handler pnh = get_new_handler())
{
pnh();
}
else
{
return 0;
}
}
*pm = mark;
return pm + m;
}
void * operator new(size_t n) throw(bad_alloc)
{
void * p = allocate(n, allocated_scalar);
#if !defined(BOOST_NO_EXCEPTIONS)
if(p == 0) throw bad_alloc();
#endif
return p;
}
#if !defined(__BORLANDC__) || (__BORLANDC__ > 0x551)
void * operator new(size_t n, nothrow_t const &) throw()
{
return allocate(n, allocated_scalar);
}
#endif
void * operator new[](size_t n) throw(bad_alloc)
{
void * p = allocate(n, allocated_array);
#if !defined(BOOST_NO_EXCEPTIONS)
if(p == 0) throw bad_alloc();
#endif
return p;
}
#if !defined(__BORLANDC__) || (__BORLANDC__ > 0x551)
void * operator new[](size_t n, nothrow_t const &) throw()
{
return allocate(n, allocated_array);
}
#endif
// debug hooks
namespace boost
{
void sp_scalar_constructor_hook(void * p)
{
if(p == 0) return;
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm != adopted_scalar); // second smart pointer to the same address
BOOST_ASSERT(*pm != allocated_array); // allocated with new[]
BOOST_ASSERT(*pm == allocated_scalar); // not allocated with new
*pm = adopted_scalar;
}
void sp_scalar_constructor_hook(void * px, std::size_t, void *)
{
sp_scalar_constructor_hook(px);
}
void sp_scalar_destructor_hook(void * p)
{
if(p == 0) return;
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm == adopted_scalar); // attempt to destroy nonmanaged block
*pm = allocated_scalar;
}
void sp_scalar_destructor_hook(void * px, std::size_t, void *)
{
sp_scalar_destructor_hook(px);
}
// It is not possible to handle the array hooks in a portable manner.
// The implementation typically reserves a bit of storage for the number
// of objects in the array, and the argument of the array hook isn't
// equal to the return value of operator new[].
void sp_array_constructor_hook(void * /* p */)
{
/*
if(p == 0) return;
// adjust p depending on the implementation
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm != adopted_array); // second smart array pointer to the same address
BOOST_ASSERT(*pm != allocated_scalar); // allocated with new
BOOST_ASSERT(*pm == allocated_array); // not allocated with new[]
*pm = adopted_array;
*/
}
void sp_array_destructor_hook(void * /* p */)
{
/*
if(p == 0) return;
// adjust p depending on the implementation
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm == adopted_array); // attempt to destroy nonmanaged block
*pm = allocated_array;
*/
}
} // namespace boost
// operator delete
void operator delete(void * p) throw()
{
if(p == 0) return;
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm != deleted); // double delete
BOOST_ASSERT(*pm != adopted_scalar); // delete p.get();
BOOST_ASSERT(*pm != allocated_array); // allocated with new[]
BOOST_ASSERT(*pm == allocated_scalar); // not allocated with new
*pm = deleted;
free(pm);
}
#if !defined(__BORLANDC__) || (__BORLANDC__ > 0x551)
void operator delete(void * p, nothrow_t const &) throw()
{
::operator delete(p);
}
#endif
void operator delete[](void * p) throw()
{
if(p == 0) return;
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm != deleted); // double delete
BOOST_ASSERT(*pm != adopted_scalar); // delete p.get();
BOOST_ASSERT(*pm != allocated_scalar); // allocated with new
BOOST_ASSERT(*pm == allocated_array); // not allocated with new[]
*pm = deleted;
free(pm);
}
#if !defined(__BORLANDC__) || (__BORLANDC__ > 0x551)
void operator delete[](void * p, nothrow_t const &) throw()
{
::operator delete[](p);
}
#endif
#endif // defined(BOOST_SP_ENABLE_DEBUG_HOOKS)

42
test/Jamfile Normal file
View File

@@ -0,0 +1,42 @@
# Boost.SmartPtr Library test Jamfile
#
# Copyright (c) 2003 Peter Dimov
# Copyright (c) 2003 Dave Abrahams
#
# Permission to copy, use, modify, sell and distribute this software
# is granted provided this copyright notice appears in all copies.
# This software is provided "as is" without express or implied
# warranty, and with no claim as to its suitability for any purpose.
subproject libs/smart_ptr/test ;
# bring in rules for testing
SEARCH on testing.jam = $(BOOST_BUILD_PATH) ;
include testing.jam ;
# Make tests run by default.
DEPENDS all : smart_ptr ;
{
test-suite "smart_ptr"
: [ run smart_ptr_test.cpp ]
[ run shared_ptr_basic_test.cpp : : : <gcc><*><cxxflags>-Wno-non-virtual-dtor ]
[ run shared_ptr_test.cpp : : : <gcc><*><cxxflags>-Wno-non-virtual-dtor ]
[ run weak_ptr_test.cpp ]
[ run shared_from_this_test.cpp : : : <gcc><*><cxxflags>-Wno-non-virtual-dtor ]
[ run get_deleter_test.cpp ]
[ run intrusive_ptr_test.cpp ]
[ run intrusive_ptr_test.cpp ]
[ compile-fail shared_ptr_assign_fail.cpp ]
;
# this one is too slow to run unless explicitly requested, and ALL
# tests are run by default when this file is subincluded from
# boost/status, so it's guarded from that case. It will only be
# built from this directory when the targets "test" (all tests) or
# "shared_ptr_alloc_test" are requested.
if [ in-invocation-subdir ]
{
run shared_ptr_alloc_test.cpp ;
}
}

100
test/collector_test.cpp Normal file
View File

@@ -0,0 +1,100 @@
//
// collector_test.cpp
//
// Copyright (c) 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <vector>
#include <iostream>
#include <cstdlib>
#include <ctime>
// sp_collector.cpp exported functions
std::size_t find_unreachable_objects(bool report);
void free_unreachable_objects();
struct X
{
void* fill[32];
boost::shared_ptr<X> p;
};
void report()
{
std::cout << "Calling find_unreachable_objects:\n";
std::clock_t t = std::clock();
std::size_t n = find_unreachable_objects(false);
t = std::clock() - t;
std::cout << n << " unreachable objects.\n";
std::cout << " " << static_cast<double>(t) / CLOCKS_PER_SEC << " seconds.\n";
}
void free()
{
std::cout << "Calling free_unreachable_objects:\n";
std::clock_t t = std::clock();
free_unreachable_objects();
t = std::clock() - t;
std::cout << " " << static_cast<double>(t) / CLOCKS_PER_SEC << " seconds.\n";
}
int main()
{
std::vector< boost::shared_ptr<X> > v1, v2;
int const n = 256 * 1024;
std::cout << "Filling v1 and v2\n";
for(int i = 0; i < n; ++i)
{
v1.push_back(boost::shared_ptr<X>(new X));
v2.push_back(boost::shared_ptr<X>(new X));
}
report();
std::cout << "Creating the cycles\n";
for(int i = 0; i < n - 1; ++i)
{
v2[i]->p = v2[i+1];
}
v2[n-1]->p = v2[0];
report();
std::cout << "Resizing v2 to size of 1\n";
v2.resize(1);
report();
std::cout << "Clearing v2\n";
v2.clear();
report();
std::cout << "Clearing v1\n";
v1.clear();
report();
free();
report();
}

96
test/get_deleter_test.cpp Normal file
View File

@@ -0,0 +1,96 @@
//
// get_deleter_test.cpp
//
// Copyright (c) 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <boost/detail/lightweight_test.hpp>
struct deleter
{
int data;
deleter(): data(0)
{
}
void operator()(void *)
{
BOOST_TEST(data == 17041);
}
};
struct deleter2
{
};
struct X
{
};
int main()
{
{
boost::shared_ptr<X> p;
BOOST_TEST(boost::get_deleter<void>(p) == 0);
BOOST_TEST(boost::get_deleter<void const>(p) == 0);
BOOST_TEST(boost::get_deleter<int>(p) == 0);
BOOST_TEST(boost::get_deleter<int const>(p) == 0);
BOOST_TEST(boost::get_deleter<X>(p) == 0);
BOOST_TEST(boost::get_deleter<X const>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter const>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter2>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter2 const>(p) == 0);
}
{
boost::shared_ptr<X> p(new X);
BOOST_TEST(boost::get_deleter<void>(p) == 0);
BOOST_TEST(boost::get_deleter<void const>(p) == 0);
BOOST_TEST(boost::get_deleter<int>(p) == 0);
BOOST_TEST(boost::get_deleter<int const>(p) == 0);
BOOST_TEST(boost::get_deleter<X>(p) == 0);
BOOST_TEST(boost::get_deleter<X const>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter const>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter2>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter2 const>(p) == 0);
}
{
X x;
boost::shared_ptr<X> p(&x, deleter());
BOOST_TEST(boost::get_deleter<void>(p) == 0);
BOOST_TEST(boost::get_deleter<void const>(p) == 0);
BOOST_TEST(boost::get_deleter<int>(p) == 0);
BOOST_TEST(boost::get_deleter<int const>(p) == 0);
BOOST_TEST(boost::get_deleter<X>(p) == 0);
BOOST_TEST(boost::get_deleter<X const>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter2>(p) == 0);
BOOST_TEST(boost::get_deleter<deleter2 const>(p) == 0);
deleter * q = boost::get_deleter<deleter>(p);
BOOST_TEST(q != 0);
BOOST_TEST(q->data == 0);
q->data = 17041;
deleter const * r = boost::get_deleter<deleter const>(p);
BOOST_TEST(r == q);
BOOST_TEST(r->data == 17041);
}
return boost::report_errors();
}

553
test/intrusive_ptr_test.cpp Normal file
View File

@@ -0,0 +1,553 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#pragma warning(disable: 4355) // 'this' : used in base member initializer list
#pragma warning(disable: 4511) // copy constructor could not be generated
#pragma warning(disable: 4512) // assignment operator could not be generated
#endif
//
// intrusive_ptr_test.cpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/lightweight_test.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/config.hpp>
#include <algorithm>
#include <functional>
//
namespace N
{
class base
{
private:
long use_count_;
base(base const &);
base & operator=(base const &);
protected:
base(): use_count_(0)
{
}
virtual ~base()
{
}
public:
long use_count() const
{
return use_count_;
}
#if !defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
inline friend void intrusive_ptr_add_ref(base * p)
{
++p->use_count_;
}
inline friend void intrusive_ptr_release(base * p)
{
if(--p->use_count_ == 0) delete p;
}
#else
void add_ref()
{
++use_count_;
}
void release()
{
if(--use_count_ == 0) delete this;
}
#endif
};
} // namespace N
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
namespace boost
{
inline void intrusive_ptr_add_ref(N::base * p)
{
p->add_ref();
}
inline void intrusive_ptr_release(N::base * p)
{
p->release();
}
} // namespace boost
#endif
//
struct X: public virtual N::base
{
};
struct Y: public X
{
};
//
namespace n_element_type
{
void f(X &)
{
}
void test()
{
typedef boost::intrusive_ptr<X>::element_type T;
T t;
f(t);
}
} // namespace n_element_type
namespace n_constructors
{
void default_constructor()
{
boost::intrusive_ptr<X> px;
BOOST_TEST(px.get() == 0);
}
void pointer_constructor()
{
{
boost::intrusive_ptr<X> px(0);
BOOST_TEST(px.get() == 0);
}
{
boost::intrusive_ptr<X> px(0, false);
BOOST_TEST(px.get() == 0);
}
{
X * p = new X;
BOOST_TEST(p->use_count() == 0);
boost::intrusive_ptr<X> px(p);
BOOST_TEST(px.get() == p);
BOOST_TEST(px->use_count() == 1);
}
{
X * p = new X;
BOOST_TEST(p->use_count() == 0);
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
using boost::intrusive_ptr_add_ref;
#endif
intrusive_ptr_add_ref(p);
BOOST_TEST(p->use_count() == 1);
boost::intrusive_ptr<X> px(p, false);
BOOST_TEST(px.get() == p);
BOOST_TEST(px->use_count() == 1);
}
}
void copy_constructor()
{
{
boost::intrusive_ptr<X> px;
boost::intrusive_ptr<X> px2(px);
BOOST_TEST(px2.get() == px.get());
}
{
boost::intrusive_ptr<Y> py;
boost::intrusive_ptr<X> px(py);
BOOST_TEST(px.get() == py.get());
}
{
boost::intrusive_ptr<X> px(0);
boost::intrusive_ptr<X> px2(px);
BOOST_TEST(px2.get() == px.get());
}
{
boost::intrusive_ptr<Y> py(0);
boost::intrusive_ptr<X> px(py);
BOOST_TEST(px.get() == py.get());
}
{
boost::intrusive_ptr<X> px(0, false);
boost::intrusive_ptr<X> px2(px);
BOOST_TEST(px2.get() == px.get());
}
{
boost::intrusive_ptr<Y> py(0, false);
boost::intrusive_ptr<X> px(py);
BOOST_TEST(px.get() == py.get());
}
{
boost::intrusive_ptr<X> px(new X);
boost::intrusive_ptr<X> px2(px);
BOOST_TEST(px2.get() == px.get());
}
{
boost::intrusive_ptr<Y> py(new Y);
boost::intrusive_ptr<X> px(py);
BOOST_TEST(px.get() == py.get());
}
}
void test()
{
default_constructor();
pointer_constructor();
copy_constructor();
}
} // namespace n_constructors
namespace n_destructor
{
void test()
{
boost::intrusive_ptr<X> px(new X);
BOOST_TEST(px->use_count() == 1);
{
boost::intrusive_ptr<X> px2(px);
BOOST_TEST(px->use_count() == 2);
}
BOOST_TEST(px->use_count() == 1);
}
} // namespace n_destructor
namespace n_assignment
{
void copy_assignment()
{
}
void conversion_assignment()
{
}
void pointer_assignment()
{
}
void test()
{
copy_assignment();
conversion_assignment();
pointer_assignment();
}
} // namespace n_assignment
namespace n_access
{
void test()
{
{
boost::intrusive_ptr<X> px;
BOOST_TEST(px? false: true);
BOOST_TEST(!px);
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
using boost::get_pointer;
#endif
BOOST_TEST(get_pointer(px) == px.get());
}
{
boost::intrusive_ptr<X> px(0);
BOOST_TEST(px? false: true);
BOOST_TEST(!px);
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
using boost::get_pointer;
#endif
BOOST_TEST(get_pointer(px) == px.get());
}
{
boost::intrusive_ptr<X> px(new X);
BOOST_TEST(px? true: false);
BOOST_TEST(!!px);
BOOST_TEST(&*px == px.get());
BOOST_TEST(px.operator ->() == px.get());
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
using boost::get_pointer;
#endif
BOOST_TEST(get_pointer(px) == px.get());
}
}
} // namespace n_access
namespace n_swap
{
void test()
{
{
boost::intrusive_ptr<X> px;
boost::intrusive_ptr<X> px2;
px.swap(px2);
BOOST_TEST(px.get() == 0);
BOOST_TEST(px2.get() == 0);
using std::swap;
swap(px, px2);
BOOST_TEST(px.get() == 0);
BOOST_TEST(px2.get() == 0);
}
{
X * p = new X;
boost::intrusive_ptr<X> px;
boost::intrusive_ptr<X> px2(p);
boost::intrusive_ptr<X> px3(px2);
px.swap(px2);
BOOST_TEST(px.get() == p);
BOOST_TEST(px->use_count() == 2);
BOOST_TEST(px2.get() == 0);
BOOST_TEST(px3.get() == p);
BOOST_TEST(px3->use_count() == 2);
using std::swap;
swap(px, px2);
BOOST_TEST(px.get() == 0);
BOOST_TEST(px2.get() == p);
BOOST_TEST(px2->use_count() == 2);
BOOST_TEST(px3.get() == p);
BOOST_TEST(px3->use_count() == 2);
}
{
X * p1 = new X;
X * p2 = new X;
boost::intrusive_ptr<X> px(p1);
boost::intrusive_ptr<X> px2(p2);
boost::intrusive_ptr<X> px3(px2);
px.swap(px2);
BOOST_TEST(px.get() == p2);
BOOST_TEST(px->use_count() == 2);
BOOST_TEST(px2.get() == p1);
BOOST_TEST(px2->use_count() == 1);
BOOST_TEST(px3.get() == p2);
BOOST_TEST(px3->use_count() == 2);
using std::swap;
swap(px, px2);
BOOST_TEST(px.get() == p1);
BOOST_TEST(px->use_count() == 1);
BOOST_TEST(px2.get() == p2);
BOOST_TEST(px2->use_count() == 2);
BOOST_TEST(px3.get() == p2);
BOOST_TEST(px3->use_count() == 2);
}
}
} // namespace n_swap
namespace n_comparison
{
template<class T, class U> void test2(boost::intrusive_ptr<T> const & p, boost::intrusive_ptr<U> const & q)
{
BOOST_TEST((p == q) == (p.get() == q.get()));
BOOST_TEST((p != q) == (p.get() != q.get()));
}
template<class T> void test3(boost::intrusive_ptr<T> const & p, boost::intrusive_ptr<T> const & q)
{
BOOST_TEST((p == q) == (p.get() == q.get()));
BOOST_TEST((p.get() == q) == (p.get() == q.get()));
BOOST_TEST((p == q.get()) == (p.get() == q.get()));
BOOST_TEST((p != q) == (p.get() != q.get()));
BOOST_TEST((p.get() != q) == (p.get() != q.get()));
BOOST_TEST((p != q.get()) == (p.get() != q.get()));
// 'less' moved here as a g++ 2.9x parse error workaround
std::less<T*> less;
BOOST_TEST((p < q) == less(p.get(), q.get()));
}
void test()
{
{
boost::intrusive_ptr<X> px;
test3(px, px);
boost::intrusive_ptr<X> px2;
test3(px, px2);
boost::intrusive_ptr<X> px3(px);
test3(px3, px3);
test3(px, px3);
}
{
boost::intrusive_ptr<X> px;
boost::intrusive_ptr<X> px2(new X);
test3(px, px2);
test3(px2, px2);
boost::intrusive_ptr<X> px3(new X);
test3(px2, px3);
boost::intrusive_ptr<X> px4(px2);
test3(px2, px4);
test3(px4, px4);
}
{
boost::intrusive_ptr<X> px(new X);
boost::intrusive_ptr<Y> py(new Y);
test2(px, py);
boost::intrusive_ptr<X> px2(py);
test2(px2, py);
test3(px, px2);
test3(px2, px2);
}
}
} // namespace n_comparison
namespace n_static_cast
{
void test()
{
}
} // namespace n_static_cast
namespace n_dynamic_cast
{
void test()
{
}
} // namespace n_dynamic_cast
namespace n_transitive
{
struct X: public N::base
{
boost::intrusive_ptr<X> next;
};
void test()
{
boost::intrusive_ptr<X> p(new X);
p->next = boost::intrusive_ptr<X>(new X);
BOOST_TEST(!p->next->next);
p = p->next;
BOOST_TEST(!p->next);
}
} // namespace n_transitive
namespace n_report_1
{
class foo: public N::base
{
public:
foo(): m_self(this)
{
}
void suicide()
{
m_self = 0;
}
private:
boost::intrusive_ptr<foo> m_self;
};
void test()
{
foo * foo_ptr = new foo;
foo_ptr->suicide();
}
} // namespace n_report_1
int main()
{
n_element_type::test();
n_constructors::test();
n_destructor::test();
n_assignment::test();
n_access::test();
n_swap::test();
n_comparison::test();
n_static_cast::test();
n_dynamic_cast::test();
n_transitive::test();
n_report_1::test();
return boost::report_errors();
}

View File

@@ -0,0 +1,112 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_from_this_test.cpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/enable_shared_from_this.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/detail/lightweight_test.hpp>
//
class X
{
public:
virtual void f() = 0;
protected:
~X() {}
};
class Y
{
public:
virtual boost::shared_ptr<X> getX() = 0;
protected:
~Y() {}
};
boost::shared_ptr<Y> createY();
void test()
{
boost::shared_ptr<Y> py = createY();
BOOST_TEST(py.get() != 0);
BOOST_TEST(py.use_count() == 1);
boost::shared_ptr<X> px = py->getX();
BOOST_TEST(px.get() != 0);
BOOST_TEST(py.use_count() == 2);
px->f();
boost::shared_ptr<Y> py2 = boost::dynamic_pointer_cast<Y>(px);
BOOST_TEST(py.get() == py2.get());
BOOST_TEST(!(py < py2 || py2 < py));
BOOST_TEST(py.use_count() == 3);
}
void test2();
int main()
{
test();
test2();
return boost::report_errors();
}
// virtual inheritance from Y to stress the implementation
// (prevents Y* -> impl* casts)
class impl: public X, public virtual Y, public boost::enable_shared_from_this<impl>
{
public:
virtual void f()
{
}
virtual boost::shared_ptr<X> getX()
{
boost::shared_ptr<impl> pi = shared_from_this();
BOOST_TEST(pi.get() == this);
return pi;
}
};
// intermediate impl2 to stress the implementation
class impl2: public impl
{
};
boost::shared_ptr<Y> createY()
{
boost::shared_ptr<Y> pi(new impl2);
return pi;
}
void test2()
{
boost::shared_ptr<Y> pi(static_cast<impl2*>(0));
}

View File

@@ -0,0 +1,167 @@
//
// shared_ptr_alloc_test.cpp - use to evaluate the impact of count allocations
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <boost/config.hpp>
#include <boost/detail/quick_allocator.hpp>
#include <iostream>
#include <vector>
#include <ctime>
#include <cstddef>
#include <memory>
int const n = 1024 * 1024;
template<class T> void test(T * = 0)
{
std::clock_t t = std::clock();
std::clock_t t2;
{
std::vector< boost::shared_ptr<T> > v;
for(int i = 0; i < n; ++i)
{
boost::shared_ptr<T> pi(new T(i));
v.push_back(pi);
}
t2 = std::clock();
}
std::clock_t t3 = std::clock();
std::cout << " " << static_cast<double>(t3 - t) / CLOCKS_PER_SEC << " seconds, " << static_cast<double>(t2 - t) / CLOCKS_PER_SEC << " + " << static_cast<double>(t3 - t2) / CLOCKS_PER_SEC << ".\n";
}
class X
{
public:
explicit X(int n): n_(n)
{
}
void * operator new(std::size_t)
{
return std::allocator<X>().allocate(1, static_cast<X*>(0));
}
void operator delete(void * p)
{
std::allocator<X>().deallocate(static_cast<X*>(p), 1);
}
private:
X(X const &);
X & operator=(X const &);
int n_;
};
class Y
{
public:
explicit Y(int n): n_(n)
{
}
void * operator new(std::size_t n)
{
return boost::detail::quick_allocator<Y>::alloc(n);
}
void operator delete(void * p, std::size_t n)
{
boost::detail::quick_allocator<Y>::dealloc(p, n);
}
private:
Y(Y const &);
Y & operator=(Y const &);
int n_;
};
class Z: public Y
{
public:
explicit Z(int n): Y(n), m_(n + 1)
{
}
private:
Z(Z const &);
Z & operator=(Z const &);
int m_;
};
int main()
{
std::cout << BOOST_COMPILER "\n";
std::cout << BOOST_PLATFORM "\n";
std::cout << BOOST_STDLIB "\n";
#if defined(BOOST_HAS_THREADS)
std::cout << "BOOST_HAS_THREADS: (defined)\n";
#else
std::cout << "BOOST_HAS_THREADS: (not defined)\n";
#endif
#if defined(BOOST_SP_USE_STD_ALLOCATOR)
std::cout << "BOOST_SP_USE_STD_ALLOCATOR: (defined)\n";
#else
std::cout << "BOOST_SP_USE_STD_ALLOCATOR: (not defined)\n";
#endif
#if defined(BOOST_SP_USE_QUICK_ALLOCATOR)
std::cout << "BOOST_SP_USE_QUICK_ALLOCATOR: (defined)\n";
#else
std::cout << "BOOST_SP_USE_QUICK_ALLOCATOR: (not defined)\n";
#endif
#if defined(BOOST_QA_PAGE_SIZE)
std::cout << "BOOST_QA_PAGE_SIZE: " << BOOST_QA_PAGE_SIZE << "\n";
#else
std::cout << "BOOST_QA_PAGE_SIZE: (not defined)\n";
#endif
std::cout << n << " shared_ptr<int> allocations + deallocations:\n";
test<int>();
test<int>();
test<int>();
std::cout << n << " shared_ptr<X> allocations + deallocations:\n";
test<X>();
test<X>();
test<X>();
std::cout << n << " shared_ptr<Y> allocations + deallocations:\n";
test<Y>();
test<Y>();
test<Y>();
std::cout << n << " shared_ptr<Z> allocations + deallocations:\n";
test<Z>();
test<Z>();
test<Z>();
}

View File

@@ -0,0 +1,31 @@
#if defined(_MSC_VER) && !defined(__ICL)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_assign_fail.cpp - a negative test for shared_ptr assignment
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
bool boost_error(char const *, char const *, char const *, long)
{
return true;
}
int main()
{
boost::shared_ptr<int> p;
p = new int(42); // assignment must fail
return 0;
}

View File

@@ -0,0 +1,284 @@
//
// shared_ptr_basic_test.cpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/lightweight_test.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
int cnt = 0;
struct X
{
X()
{
++cnt;
}
~X() // virtual destructor deliberately omitted
{
--cnt;
}
virtual int id() const
{
return 1;
}
private:
X(X const &);
X & operator= (X const &);
};
struct Y: public X
{
Y()
{
++cnt;
}
~Y()
{
--cnt;
}
virtual int id() const
{
return 2;
}
private:
Y(Y const &);
Y & operator= (Y const &);
};
int * get_object()
{
++cnt;
return &cnt;
}
void release_object(int * p)
{
BOOST_TEST(p == &cnt);
--cnt;
}
template<class T> void test_is_X(boost::shared_ptr<T> const & p)
{
BOOST_TEST(p->id() == 1);
BOOST_TEST((*p).id() == 1);
}
template<class T> void test_is_X(boost::weak_ptr<T> const & p)
{
BOOST_TEST(p.get() != 0);
BOOST_TEST(p.get()->id() == 1);
}
template<class T> void test_is_Y(boost::shared_ptr<T> const & p)
{
BOOST_TEST(p->id() == 2);
BOOST_TEST((*p).id() == 2);
}
template<class T> void test_is_Y(boost::weak_ptr<T> const & p)
{
boost::shared_ptr<T> q = p.lock();
BOOST_TEST(q.get() != 0);
BOOST_TEST(q->id() == 2);
}
template<class T> void test_eq(T const & a, T const & b)
{
BOOST_TEST(a == b);
BOOST_TEST(!(a != b));
BOOST_TEST(!(a < b));
BOOST_TEST(!(b < a));
}
template<class T> void test_ne(T const & a, T const & b)
{
BOOST_TEST(!(a == b));
BOOST_TEST(a != b);
BOOST_TEST(a < b || b < a);
BOOST_TEST(!(a < b && b < a));
}
template<class T, class U> void test_shared(boost::weak_ptr<T> const & a, boost::weak_ptr<U> const & b)
{
BOOST_TEST(!(a < b));
BOOST_TEST(!(b < a));
}
template<class T, class U> void test_nonshared(boost::weak_ptr<T> const & a, boost::weak_ptr<U> const & b)
{
BOOST_TEST(a < b || b < a);
BOOST_TEST(!(a < b && b < a));
}
template<class T, class U> void test_eq2(T const & a, U const & b)
{
BOOST_TEST(a == b);
BOOST_TEST(!(a != b));
}
template<class T, class U> void test_ne2(T const & a, U const & b)
{
BOOST_TEST(!(a == b));
BOOST_TEST(a != b);
}
template<class T> void test_is_zero(boost::shared_ptr<T> const & p)
{
BOOST_TEST(!p);
BOOST_TEST(p.get() == 0);
}
template<class T> void test_is_nonzero(boost::shared_ptr<T> const & p)
{
// p? true: false is used to test p in a boolean context.
// BOOST_TEST(p) is not guaranteed to test the conversion,
// as the macro might test !!p instead.
BOOST_TEST(p? true: false);
BOOST_TEST(p.get() != 0);
}
int main()
{
using namespace boost;
{
shared_ptr<X> p(new Y);
shared_ptr<X> p2(new X);
test_is_nonzero(p);
test_is_nonzero(p2);
test_is_Y(p);
test_is_X(p2);
test_ne(p, p2);
{
shared_ptr<X> q(p);
test_eq(p, q);
}
shared_ptr<Y> p3 = dynamic_pointer_cast<Y>(p);
shared_ptr<Y> p4 = dynamic_pointer_cast<Y>(p2);
test_is_nonzero(p3);
test_is_zero(p4);
BOOST_TEST(p.use_count() == 2);
BOOST_TEST(p2.use_count() == 1);
BOOST_TEST(p3.use_count() == 2);
test_is_Y(p3);
test_eq2(p, p3);
test_ne2(p2, p4);
shared_ptr<void> p5(p);
test_is_nonzero(p5);
test_eq2(p, p5);
weak_ptr<X> wp1(p2);
BOOST_TEST(!wp1.expired());
BOOST_TEST(wp1.use_count() != 0);
p.reset();
p2.reset();
p3.reset();
p4.reset();
test_is_zero(p);
test_is_zero(p2);
test_is_zero(p3);
test_is_zero(p4);
BOOST_TEST(p5.use_count() == 1);
BOOST_TEST(wp1.expired());
BOOST_TEST(wp1.use_count() == 0);
try
{
shared_ptr<X> sp1(wp1);
BOOST_ERROR("shared_ptr<X> sp1(wp1) failed to throw");
}
catch(boost::bad_weak_ptr const &)
{
}
test_is_zero(wp1.lock());
weak_ptr<X> wp2 = static_pointer_cast<X>(p5);
BOOST_TEST(wp2.use_count() == 1);
test_is_Y(wp2);
test_nonshared(wp1, wp2);
// Scoped to not affect the subsequent use_count() tests.
{
shared_ptr<X> sp2(wp2);
test_is_nonzero(wp2.lock());
}
weak_ptr<Y> wp3 = dynamic_pointer_cast<Y>(wp2.lock());
BOOST_TEST(wp3.use_count() == 1);
test_shared(wp2, wp3);
weak_ptr<X> wp4(wp3);
BOOST_TEST(wp4.use_count() == 1);
test_shared(wp2, wp4);
wp1 = p2;
test_is_zero(wp1.lock());
wp1 = p4;
wp1 = wp3;
wp1 = wp2;
BOOST_TEST(wp1.use_count() == 1);
test_shared(wp1, wp2);
weak_ptr<X> wp5;
bool b1 = wp1 < wp5;
bool b2 = wp5 < wp1;
p5.reset();
BOOST_TEST(wp1.use_count() == 0);
BOOST_TEST(wp2.use_count() == 0);
BOOST_TEST(wp3.use_count() == 0);
// Test operator< stability for std::set< weak_ptr<> >
// Thanks to Joe Gottman for pointing this out
BOOST_TEST(b1 == (wp1 < wp5));
BOOST_TEST(b2 == (wp5 < wp1));
{
// note that both get_object and release_object deal with int*
shared_ptr<void> p6(get_object(), release_object);
}
}
BOOST_TEST(cnt == 0);
return boost::report_errors();
}

180
test/shared_ptr_mt_test.cpp Normal file
View File

@@ -0,0 +1,180 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_mt_test.cpp - tests shared_ptr with multiple threads
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <boost/bind.hpp>
#include <vector>
#include <memory>
#include <stdexcept>
#include <cstdio>
#include <ctime>
// 'portable' thread framework
class abstract_thread
{
public:
virtual ~abstract_thread() {}
virtual void run() = 0;
};
#if !defined(BOOST_HAS_PTHREADS) && defined(BOOST_HAS_WINTHREADS)
char const * title = "Using Windows threads";
#include <windows.h>
#include <process.h>
typedef HANDLE pthread_t;
unsigned __stdcall common_thread_routine(void * pv)
{
abstract_thread * pt = static_cast<abstract_thread *>(pv);
pt->run();
delete pt;
return 0;
}
int pthread_create(pthread_t * thread, void const *, unsigned (__stdcall * start_routine) (void*), void* arg)
{
HANDLE h = (HANDLE)_beginthreadex(0, 0, start_routine, arg, 0, 0);
if(h != 0)
{
*thread = h;
return 0;
}
else
{
return 1; // return errno;
}
}
int pthread_join(pthread_t thread, void ** /*value_ptr*/)
{
::WaitForSingleObject(thread, INFINITE);
::CloseHandle(thread);
return 0;
}
#else
char const * title = "Using POSIX threads";
#include <pthread.h>
extern "C" void * common_thread_routine(void * pv)
{
abstract_thread * pt = static_cast<abstract_thread *>(pv);
pt->run();
delete pt;
return 0;
}
#endif
//
template<class F> class thread: public abstract_thread
{
public:
explicit thread(F f): f_(f)
{
}
void run()
{
f_();
}
private:
F f_;
};
template<class F> pthread_t createThread(F f)
{
std::auto_ptr<abstract_thread> p(new thread<F>(f));
pthread_t r;
if(pthread_create(&r, 0, common_thread_routine, p.get()) == 0)
{
p.release();
return r;
}
throw std::runtime_error("createThread failed.");
}
//
int const n = 1024 * 1024;
void test(boost::shared_ptr<int> const & pi)
{
std::vector< boost::shared_ptr<int> > v;
for(int i = 0; i < n; ++i)
{
v.push_back(pi);
}
}
int const m = 16; // threads
#if defined(BOOST_LWM_USE_CRITICAL_SECTION)
char const * implementation = "critical section";
#elif defined(BOOST_LWM_USE_PTHREADS)
char const * implementation = "pthread_mutex";
#else
char const * implementation = "spinlock";
#endif
int main()
{
using namespace std; // printf, clock_t, clock
printf("%s: %s, %d threads, %d iterations: ", title, implementation, m, n);
boost::shared_ptr<int> pi(new int(42));
clock_t t = clock();
pthread_t a[m];
for(int i = 0; i < m; ++i)
{
a[i] = createThread( boost::bind(test, pi) );
}
for(int j = 0; j < m; ++j)
{
pthread_join(a[j], 0);
}
t = clock() - t;
printf("\n\n%.3f seconds.\n", static_cast<double>(t) / CLOCKS_PER_SEC);
return 0;
}

3288
test/shared_ptr_test.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,45 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_timing_test.cpp - use to evaluate the impact of thread safety
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <vector>
#include <ctime>
int const n = 8 * 1024 * 1024;
int main()
{
using namespace std;
std::vector< boost::shared_ptr<int> > v;
boost::shared_ptr<int> pi(new int);
clock_t t = clock();
for(int i = 0; i < n; ++i)
{
v.push_back(pi);
}
t = clock() - t;
std::cout << static_cast<double>(t) / CLOCKS_PER_SEC << '\n';
return 0;
}

301
test/smart_ptr_test.cpp Normal file
View File

@@ -0,0 +1,301 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
# pragma warning(disable: 4786) // identifier truncated in debug info
# pragma warning(disable: 4710) // function not inlined
# pragma warning(disable: 4711) // function selected for automatic inline expansion
# pragma warning(disable: 4514) // unreferenced inline removed
#endif
#ifdef __BORLANDC__
# pragma warn -8092 // template argument passed to 'find' is not an iterator
#endif
// smart pointer test program ----------------------------------------------//
// (C) Copyright Beman Dawes 1998, 1999. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright notice
// appears in all copies. This software is provided "as is" without express or
// implied warranty, and with no claim as to its suitability for any purpose.
// Revision History
// 24 May 01 use Boost test library for error detection, reporting, add tests
// for operations on incomplete types (Beman Dawes)
// 29 Nov 99 added std::swap and associative container tests (Darin Adler)
// 25 Sep 99 added swap tests
// 20 Jul 99 header name changed to .hpp
// 20 Apr 99 additional error tests added.
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/shared_array.hpp>
#include <boost/detail/lightweight_test.hpp>
#include <cstring>
#include <iostream>
#include <set>
class Incomplete;
Incomplete * get_ptr( boost::shared_ptr<Incomplete>& incomplete )
{
return incomplete.get();
}
using namespace std;
using boost::scoped_ptr;
using boost::scoped_array;
using boost::shared_ptr;
using boost::shared_array;
template<class T>
void ck( const T* v1, T v2 ) { BOOST_TEST( *v1 == v2 ); }
namespace {
int UDT_use_count; // independent of pointer maintained counts
}
// user defined type -------------------------------------------------------//
class UDT {
long value_;
public:
explicit UDT( long value=0 ) : value_(value) { ++UDT_use_count; }
~UDT() {
--UDT_use_count;
cout << "UDT with value " << value_ << " being destroyed\n";
}
long value() const { return value_; }
void value( long v ) { value_ = v;; }
}; // UDT
// tests on incomplete types -----------------------------------------------//
// Certain smart pointer operations are specified to work on incomplete types,
// and some uses depend upon this feature. These tests verify compilation
// only - the functions aren't actually invoked.
class Incomplete;
Incomplete * check_incomplete( scoped_ptr<Incomplete>& incomplete )
{
return incomplete.get();
}
Incomplete * check_incomplete( shared_ptr<Incomplete>& incomplete,
shared_ptr<Incomplete>& i2 )
{
incomplete.swap(i2);
cout << incomplete.use_count() << ' ' << incomplete.unique() << '\n';
return incomplete.get();
}
// This isn't a very systematic test; it just hits some of the basics.
void test()
{
BOOST_TEST( UDT_use_count == 0 ); // reality check
// test scoped_ptr with a built-in type
long * lp = new long;
scoped_ptr<long> sp ( lp );
BOOST_TEST( sp.get() == lp );
BOOST_TEST( lp == sp.get() );
BOOST_TEST( &*sp == lp );
*sp = 1234568901L;
BOOST_TEST( *sp == 1234568901L );
BOOST_TEST( *lp == 1234568901L );
ck( static_cast<long*>(sp.get()), 1234568901L );
ck( lp, *sp );
sp.reset();
BOOST_TEST( sp.get() == 0 );
// test scoped_ptr with a user defined type
scoped_ptr<UDT> udt_sp ( new UDT( 999888777 ) );
BOOST_TEST( udt_sp->value() == 999888777 );
udt_sp.reset();
udt_sp.reset( new UDT( 111222333 ) );
BOOST_TEST( udt_sp->value() == 111222333 );
udt_sp.reset( new UDT( 333222111 ) );
BOOST_TEST( udt_sp->value() == 333222111 );
// test scoped_array with a build-in type
char * sap = new char [ 100 ];
scoped_array<char> sa ( sap );
BOOST_TEST( sa.get() == sap );
BOOST_TEST( sap == sa.get() );
strcpy( sa.get(), "Hot Dog with mustard and relish" );
BOOST_TEST( strcmp( sa.get(), "Hot Dog with mustard and relish" ) == 0 );
BOOST_TEST( strcmp( sap, "Hot Dog with mustard and relish" ) == 0 );
BOOST_TEST( sa[0] == 'H' );
BOOST_TEST( sa[30] == 'h' );
sa[0] = 'N';
sa[4] = 'd';
BOOST_TEST( strcmp( sap, "Not dog with mustard and relish" ) == 0 );
sa.reset();
BOOST_TEST( sa.get() == 0 );
// test shared_ptr with a built-in type
int * ip = new int;
shared_ptr<int> cp ( ip );
BOOST_TEST( ip == cp.get() );
BOOST_TEST( cp.use_count() == 1 );
*cp = 54321;
BOOST_TEST( *cp == 54321 );
BOOST_TEST( *ip == 54321 );
ck( static_cast<int*>(cp.get()), 54321 );
ck( static_cast<int*>(ip), *cp );
shared_ptr<int> cp2 ( cp );
BOOST_TEST( ip == cp2.get() );
BOOST_TEST( cp.use_count() == 2 );
BOOST_TEST( cp2.use_count() == 2 );
BOOST_TEST( *cp == 54321 );
BOOST_TEST( *cp2 == 54321 );
ck( static_cast<int*>(cp2.get()), 54321 );
ck( static_cast<int*>(ip), *cp2 );
shared_ptr<int> cp3 ( cp );
BOOST_TEST( cp.use_count() == 3 );
BOOST_TEST( cp2.use_count() == 3 );
BOOST_TEST( cp3.use_count() == 3 );
cp.reset();
BOOST_TEST( cp2.use_count() == 2 );
BOOST_TEST( cp3.use_count() == 2 );
cp.reset( new int );
*cp = 98765;
BOOST_TEST( *cp == 98765 );
*cp3 = 87654;
BOOST_TEST( *cp3 == 87654 );
BOOST_TEST( *cp2 == 87654 );
cp.swap( cp3 );
BOOST_TEST( *cp == 87654 );
BOOST_TEST( *cp2 == 87654 );
BOOST_TEST( *cp3 == 98765 );
cp.swap( cp3 );
BOOST_TEST( *cp == 98765 );
BOOST_TEST( *cp2 == 87654 );
BOOST_TEST( *cp3 == 87654 );
cp2 = cp2;
BOOST_TEST( cp2.use_count() == 2 );
BOOST_TEST( *cp2 == 87654 );
cp = cp2;
BOOST_TEST( cp2.use_count() == 3 );
BOOST_TEST( *cp2 == 87654 );
BOOST_TEST( cp.use_count() == 3 );
BOOST_TEST( *cp == 87654 );
shared_ptr<int> cp4;
swap( cp2, cp4 );
BOOST_TEST( cp4.use_count() == 3 );
BOOST_TEST( *cp4 == 87654 );
BOOST_TEST( cp2.get() == 0 );
set< shared_ptr<int> > scp;
scp.insert(cp4);
BOOST_TEST( scp.find(cp4) != scp.end() );
BOOST_TEST( scp.find(cp4) == scp.find( shared_ptr<int>(cp4) ) );
// test shared_array with a built-in type
char * cap = new char [ 100 ];
shared_array<char> ca ( cap );
BOOST_TEST( ca.get() == cap );
BOOST_TEST( cap == ca.get() );
BOOST_TEST( &ca[0] == cap );
strcpy( ca.get(), "Hot Dog with mustard and relish" );
BOOST_TEST( strcmp( ca.get(), "Hot Dog with mustard and relish" ) == 0 );
BOOST_TEST( strcmp( cap, "Hot Dog with mustard and relish" ) == 0 );
BOOST_TEST( ca[0] == 'H' );
BOOST_TEST( ca[30] == 'h' );
shared_array<char> ca2 ( ca );
shared_array<char> ca3 ( ca2 );
ca[0] = 'N';
ca[4] = 'd';
BOOST_TEST( strcmp( ca.get(), "Not dog with mustard and relish" ) == 0 );
BOOST_TEST( strcmp( ca2.get(), "Not dog with mustard and relish" ) == 0 );
BOOST_TEST( strcmp( ca3.get(), "Not dog with mustard and relish" ) == 0 );
BOOST_TEST( ca.use_count() == 3 );
BOOST_TEST( ca2.use_count() == 3 );
BOOST_TEST( ca3.use_count() == 3 );
ca2.reset();
BOOST_TEST( ca.use_count() == 2 );
BOOST_TEST( ca3.use_count() == 2 );
BOOST_TEST( ca2.use_count() == 1 );
ca.reset();
BOOST_TEST( ca.get() == 0 );
shared_array<char> ca4;
swap( ca3, ca4 );
BOOST_TEST( ca4.use_count() == 1 );
BOOST_TEST( strcmp( ca4.get(), "Not dog with mustard and relish" ) == 0 );
BOOST_TEST( ca3.get() == 0 );
set< shared_array<char> > sca;
sca.insert(ca4);
BOOST_TEST( sca.find(ca4) != sca.end() );
BOOST_TEST( sca.find(ca4) == sca.find( shared_array<char>(ca4) ) );
// test shared_array with user defined type
shared_array<UDT> udta ( new UDT[3] );
udta[0].value( 111 );
udta[1].value( 222 );
udta[2].value( 333 );
shared_array<UDT> udta2 ( udta );
BOOST_TEST( udta[0].value() == 111 );
BOOST_TEST( udta[1].value() == 222 );
BOOST_TEST( udta[2].value() == 333 );
BOOST_TEST( udta2[0].value() == 111 );
BOOST_TEST( udta2[1].value() == 222 );
BOOST_TEST( udta2[2].value() == 333 );
udta2.reset();
BOOST_TEST( udta2.get() == 0 );
BOOST_TEST( udta.use_count() == 1 );
BOOST_TEST( udta2.use_count() == 1 );
BOOST_TEST( UDT_use_count == 4 ); // reality check
// test shared_ptr with a user defined type
UDT * up = new UDT;
shared_ptr<UDT> sup ( up );
BOOST_TEST( up == sup.get() );
BOOST_TEST( sup.use_count() == 1 );
sup->value( 54321 ) ;
BOOST_TEST( sup->value() == 54321 );
BOOST_TEST( up->value() == 54321 );
shared_ptr<UDT> sup2;
sup2 = sup;
BOOST_TEST( sup2->value() == 54321 );
BOOST_TEST( sup.use_count() == 2 );
BOOST_TEST( sup2.use_count() == 2 );
sup2 = sup2;
BOOST_TEST( sup2->value() == 54321 );
BOOST_TEST( sup.use_count() == 2 );
BOOST_TEST( sup2.use_count() == 2 );
cout << "OK\n";
new char[12345]; // deliberate memory leak to verify leaks detected
}
int main()
{
test();
return boost::report_errors();
}

1290
test/weak_ptr_test.cpp Normal file

File diff suppressed because it is too large Load Diff

245
weak_ptr.htm Normal file
View File

@@ -0,0 +1,245 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>weak_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body text="#000000" bgColor="#ffffff">
<h1><IMG height="86" alt="c++boost.gif (8819 bytes)" src="../../c++boost.gif" width="277" align="middle">weak_ptr
class template</h1>
<p><A href="#Introduction">Introduction</A><br>
<A href="#Synopsis">Synopsis</A><br>
<A href="#Members">Members</A><br>
<A href="#functions">Free Functions</A><br>
<A href="#FAQ">Frequently Asked Questions</A>
</p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <b>weak_ptr</b> class template stores a "weak reference" to an object that's
already managed by a <b>shared_ptr</b>. To access the object, a <STRONG>weak_ptr</STRONG>
can be converted to a <STRONG>shared_ptr</STRONG> using <A href="shared_ptr.htm#constructors">
the <STRONG>shared_ptr</STRONG> constructor</A> or the member function <STRONG><A href="#lock">
lock</A></STRONG>. When the last <b>shared_ptr</b> to the object goes
away and the object is deleted, the attempt to obtain a <STRONG>shared_ptr</STRONG>
from the <b>weak_ptr</b> instances that refer to the deleted object will fail:
the constructor will throw an exception of type <STRONG>boost::bad_weak_ptr</STRONG>,
and <STRONG>weak_ptr::lock</STRONG> will return an <EM>empty</EM> <STRONG>shared_ptr</STRONG>.</p>
<p>Every <b>weak_ptr</b> meets the <b>CopyConstructible</b> and <b>Assignable</b> requirements
of the C++ Standard Library, and so can be used in standard library containers.
Comparison operators are supplied so that <b>weak_ptr</b> works with the
standard library's associative containers.</p>
<P><STRONG>weak_ptr</STRONG> operations never throw&nbsp;exceptions.</P>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to.</p>
<P>Compared to <STRONG>shared_ptr</STRONG>, <STRONG>weak_ptr</STRONG> provides a
very limited subset of operations since accessing its stored pointer is often
dangerous in multithreaded programs, and sometimes unsafe even within a single
thread (that is, it may invoke undefined behavior.) Pretend for a moment that <b>weak_ptr</b>
has a <b>get</b> member function that returns a raw pointer, and consider this
innocent piece of code:</P>
<pre>shared_ptr&lt;int&gt; p(new int(5));
weak_ptr&lt;int&gt; q(p);
// some time later
if(int * r = q.get())
{
// use *r
}
</pre>
<P>Imagine that after the <STRONG>if</STRONG>, but immediately before <STRONG>r</STRONG>
is used, another thread executes the statement <code>p.reset()</code>. Now <STRONG>r</STRONG>
is a dangling pointer.</P>
<P>The solution to this problem is to create a temporary <STRONG>shared_ptr</STRONG>
from <STRONG>q</STRONG>:</P>
<pre>shared_ptr&lt;int&gt; p(new int(5));
weak_ptr&lt;int&gt; q(p);
// some time later
if(shared_ptr&lt;int&gt; r = q.<A href="#lock" >lock</A>())
{
// use *r
}
</pre>
<p>Now <STRONG>r</STRONG> holds a reference to the object that was pointed by <STRONG>q</STRONG>.
Even if <code>p.reset()</code> is executed in another thread, the object will
stay alive until <STRONG>r</STRONG> goes out of scope or is reset. By obtaining
a <STRONG>shared_ptr</STRONG> to the object, we have effectively locked it
against destruction.</p>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
template&lt;class T&gt; class weak_ptr {
public:
typedef T <A href="#element_type" >element_type</A>;
<A href="#default-constructor" >weak_ptr</A>();
template&lt;class Y&gt; <A href="#constructors" >weak_ptr</A>(shared_ptr&lt;Y&gt; const &amp; r);
<A href="#constructors" >weak_ptr</A>(weak_ptr const &amp; r);
template&lt;class Y&gt; <A href="#constructors" >weak_ptr</A>(weak_ptr&lt;Y&gt; const &amp; r);
<A href="#destructor" >~weak_ptr</A>();
weak_ptr &amp; <A href="#assignment" >operator=</A>(weak_ptr const &amp; r);
template&lt;class Y&gt; weak_ptr &amp; <A href="#assignment" >operator=</A>(weak_ptr&lt;Y&gt; const &amp; r);
template&lt;class Y&gt; weak_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr&lt;Y&gt; const &amp; r);
long <A href="#use_count" >use_count</A>() const;
bool <A href="#expired" >expired</A>() const;
shared_ptr&lt;T&gt; <A href="#lock" >lock</A>() const;
void <A href="#reset" >reset</A>();
void <A href="#swap" >swap</A>(weak_ptr&lt;T&gt; &amp; b);
};
template&lt;class T, class U&gt;
bool <A href="#comparison" >operator&lt;</A>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b);
template&lt;class T&gt;
void <A href="#free-swap" >swap</A>(weak_ptr&lt;T&gt; &amp; a, weak_ptr&lt;T&gt; &amp; b);
}
</pre>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<blockquote>
<p>Provides the type of the template parameter T.</p>
</blockquote>
<h3><a name="default-constructor">constructors</a></h3>
<pre>weak_ptr();</pre>
<blockquote>
<p><b>Effects:</b> Constructs an <EM>empty</EM> <b>weak_ptr</b>.</p>
<p><b>Postconditions:</b> <code>use_count() == 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote><a name="constructors"></a>
<pre>template&lt;class Y&gt; weak_ptr</A>(shared_ptr&lt;Y&gt; const &amp; r);
weak_ptr(weak_ptr const &amp; r);
template&lt;class Y&gt; weak_ptr(weak_ptr&lt;Y&gt; const &amp; r);</pre>
<blockquote>
<p><b>Effects:</b> If <STRONG>r</STRONG> is <EM>empty</EM>, constructs an <EM>empty</EM>
<STRONG>weak_ptr</STRONG>; otherwise, constructs a <b>weak_ptr</b> that <EM>shares
ownership</EM> with <STRONG>r</STRONG> as if by storing a copy of the
pointer stored in <b>r</b>.</p>
<p><b>Postconditions:</b> <code>use_count() == r.use_count()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="destructor">destructor</a></h3>
<pre>~weak_ptr();</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Destroys this <b>weak_ptr</b> but has no effect on the object
its stored pointer points to.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<h3><a name="assignment">assignment</a></h3>
<pre>weak_ptr &amp; operator=(weak_ptr const &amp; r);
template&lt;class Y&gt; weak_ptr &amp; operator=(weak_ptr&lt;Y&gt; const &amp; r);
template&lt;class Y&gt; weak_ptr &amp; operator=(shared_ptr&lt;Y&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>weak_ptr(r).swap(*this)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> The implementation is free to meet the effects (and the implied
guarantees) via different means, without creating a temporary.</P>
</BLOCKQUOTE>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const;</pre>
<blockquote>
<p><b>Returns:</b> if <STRONG>*this</STRONG> is <EM>empty</EM>, an unspecified
nonnegative value; otherwise, the number of <b>shared_ptr</b> objects that <EM>share
ownership</EM> with <STRONG>*this</STRONG>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>use_count()</code> is not necessarily efficient. Use only
for debugging and testing purposes, not for production code.</P>
</blockquote>
<h3><a name="expired">expired</a></h3>
<pre>bool expired() const;</pre>
<blockquote>
<p><b>Returns:</b> <code>use_count() == 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>expired()</code> may be faster than <code>use_count()</code>.</P>
</blockquote>
<h3><a name="lock">lock</a></h3>
<pre>shared_ptr&lt;T&gt; lock() const;</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> <code>expired()? shared_ptr&lt;T&gt;(): shared_ptr&lt;T&gt;(*this)</code>.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<h3><a name="reset">reset</a></h3>
<pre>void reset();</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>weak_ptr().swap(*this)</code>.</P>
</BLOCKQUOTE>
<h3><a name="swap">swap</a></h3>
<pre>void swap(weak_ptr &amp; b);</pre>
<blockquote>
<p><b>Effects:</b> Exchanges the contents of the two smart pointers.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;class T, class U&gt;
bool operator&lt;(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b);</pre>
<blockquote>
<p><b>Returns:</b> an unspecified value such that</p>
<UL>
<LI>
<b>operator&lt;</b> is a strict weak ordering as described in section 25.3 <code>[lib.alg.sorting]</code>
of the C++ standard;
<LI>
under the equivalence relation defined by <STRONG>operator&lt;</STRONG>, <code>!(a
&lt; b) &amp;&amp; !(b &lt; a)</code>, two <STRONG>weak_ptr</STRONG> instances
are equivalent if and only if they <EM>share ownership</EM>.</LI></UL>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Allows <STRONG>weak_ptr</STRONG> objects to be used as keys in
associative containers.</P>
</blockquote>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;class T&gt;
void swap(weak_ptr&lt;T&gt; &amp; a, weak_ptr&lt;T&gt; &amp; b)</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>a.swap(b)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Matches the interface of <B>std::swap</B>. Provided as an aid to
generic programming.</P>
</BLOCKQUOTE>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<P><B>Q.</B> Can an object create a <STRONG>weak_ptr</STRONG> to itself in its
constructor?</P>
<P><b>A.</b> No. A <STRONG>weak_ptr</STRONG> can only be created from a <STRONG>shared_ptr</STRONG>,
and at object construction time no <STRONG>shared_ptr</STRONG> to the object
exists yet. Even if you could create a temporary <STRONG>shared_ptr</STRONG> to <STRONG>
this</STRONG>, it would go out of scope at the end of the constructor, and
all <STRONG>weak_ptr</STRONG> instances would instantly expire.</P>
<P>The solution is to make the constructor private, and supply a factory function
that returns a <STRONG>shared_ptr</STRONG>:<BR>
</P>
<pre>
class X
{
private:
X();
public:
static shared_ptr&lt;X&gt; create()
{
shared_ptr&lt;X&gt; px(new X);
// create weak pointers from px here
return px;
}
};
</pre>
<p><br>
</p>
<hr>
<p>$Date$</p>
<p><small>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002, 2003 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</small></p>
</A>
</body>
</html>