New version of Boost.Unordered

Merged revisions 55470,55877-55878,55901-55902,55921-55922,55990-55992,56009-56010,56329,56346-56349,56362-56363,56374 via svnmerge from 
https://svn.boost.org/svn/boost/trunk

........
  r55470 | danieljames | 2009-08-08 19:50:00 +0100 (Sat, 08 Aug 2009) | 1 line
  
  Remove empty svn:mergeinfo properties. This should reduce the amount of differences between trunk and release.
........
  r55877 | danieljames | 2009-08-30 17:33:42 +0100 (Sun, 30 Aug 2009) | 1 line
  
  Remove allocator_constructor since it's never used.
........
  r55878 | danieljames | 2009-08-30 17:42:28 +0100 (Sun, 30 Aug 2009) | 6 lines
  
  Initial checkin of new version of Boost.Unordered.
  
   - More template use, less preprocessor use.
   - Removed some of the Visual C++ 6 workarounds.
   - Reduced memory use of the main object.
   - Split into smaller headers.
........
  r55901 | danieljames | 2009-08-31 11:39:25 +0100 (Mon, 31 Aug 2009) | 1 line
  
  Detab.
........
  r55902 | danieljames | 2009-08-31 11:39:40 +0100 (Mon, 31 Aug 2009) | 1 line
  
  Remove unnecessary BOOST_DEDUCED_TYPENAMEs
........
  r55921 | danieljames | 2009-08-31 16:33:28 +0100 (Mon, 31 Aug 2009) | 1 line
  
  Remove a few unused parameters.
........
  r55922 | danieljames | 2009-08-31 16:33:49 +0100 (Mon, 31 Aug 2009) | 1 line
  
  Remove 'static' from next_node and node_count. Will hopefully make vacpp happy.
........
  r55990 | danieljames | 2009-09-03 08:36:21 +0100 (Thu, 03 Sep 2009) | 1 line
  
  Combine hash_structure and hash_table_manager.
........
  r55991 | danieljames | 2009-09-03 08:37:14 +0100 (Thu, 03 Sep 2009) | 1 line
  
  Remove some old Visual C++ workarounds.
........
  r55992 | danieljames | 2009-09-03 08:37:30 +0100 (Thu, 03 Sep 2009) | 1 line
  
  Add a small test to see if the tested compilers support out of line template methods.
........
  r56009 | danieljames | 2009-09-04 08:02:28 +0100 (Fri, 04 Sep 2009) | 1 line
  
  Fix link to n2691.
........
  r56010 | danieljames | 2009-09-04 08:03:04 +0100 (Fri, 04 Sep 2009) | 1 line
  
  Move size_ and cached_begin_bucket_ into table, rename hash_table_manager hash_buckets.
........
  r56329 | danieljames | 2009-09-20 22:55:15 +0100 (Sun, 20 Sep 2009) | 2 lines
  
  Since all the compilers support out of line template members use them
  and lots of other things.
........
  r56346 | danieljames | 2009-09-21 22:17:19 +0100 (Mon, 21 Sep 2009) | 1 line
  
  Slightly more consistent variable names. In detail 'n' is now always a node pointer.
........
  r56347 | danieljames | 2009-09-21 22:17:40 +0100 (Mon, 21 Sep 2009) | 1 line
  
  Fix bug where container was reducing the number of buckets.
........
  r56348 | danieljames | 2009-09-21 22:18:01 +0100 (Mon, 21 Sep 2009) | 1 line
  
  Fix a bug that was causing unnecessary rehahes.
........
  r56349 | danieljames | 2009-09-21 22:18:21 +0100 (Mon, 21 Sep 2009) | 1 line
  
  Use std::max.
........
  r56362 | danieljames | 2009-09-22 23:39:00 +0100 (Tue, 22 Sep 2009) | 1 line
  
  Another std::max.
........
  r56363 | danieljames | 2009-09-22 23:39:17 +0100 (Tue, 22 Sep 2009) | 1 line
  
  Remove the emplace_hint implementation for unique containers as it isn't really used and seems to be causing sun 5.7 problems.
........
  r56374 | danieljames | 2009-09-24 21:42:19 +0100 (Thu, 24 Sep 2009) | 1 line
  
  Remove temporary test.
........


[SVN r56375]
This commit is contained in:
Daniel James
2009-09-24 21:12:46 +00:00
parent df1dad5cb6
commit 1e7fe6a2d0
24 changed files with 4341 additions and 3942 deletions

View File

@ -24,7 +24,7 @@ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</simpara></purpose>
<description>
<para>For the normative reference see chapter 23 of
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008-2009/n2691.pdf">the working draft of the C++ standard [n2691].</ulink></para>
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf">the working draft of the C++ standard [n2691].</ulink></para>
<para><emphasis role="bold">Template Parameters</emphasis>
<informaltable>
<tgroup cols="2">
@ -762,7 +762,7 @@ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</simpara></purpose>
<description>
<para>For the normative reference see chapter 23 of
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008-2009/n2691.pdf">the working draft of the C++ standard [n2691].</ulink></para>
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf">the working draft of the C++ standard [n2691].</ulink></para>
<para><emphasis role="bold">Template Parameters</emphasis>
<informaltable>
<tgroup cols="2">
@ -1504,7 +1504,7 @@ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</simpara></purpose>
<description>
<para>For the normative reference see chapter 23 of
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008-2009/n2691.pdf">the working draft of the C++ standard [n2691].</ulink></para>
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf">the working draft of the C++ standard [n2691].</ulink></para>
<para><emphasis role="bold">Template Parameters</emphasis>
<informaltable>
<tgroup cols="2">
@ -2291,7 +2291,7 @@ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</simpara></purpose>
<description>
<para>For the normative reference see chapter 23 of
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008-2009/n2691.pdf">the working draft of the C++ standard [n2691].</ulink></para>
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf">the working draft of the C++ standard [n2691].</ulink></para>
<para><emphasis role="bold">Template Parameters</emphasis>
<informaltable>
<tgroup cols="2">

View File

@ -3,6 +3,8 @@
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// A couple of templates to make using allocators easier.
#ifndef BOOST_UNORDERED_DETAIL_ALLOCATOR_UTILITIES_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_ALLOCATOR_UTILITIES_HPP_INCLUDED
@ -21,214 +23,86 @@
# include <boost/detail/allocator_utilities.hpp>
#endif
#include <boost/mpl/aux_/config/eti.hpp>
namespace boost { namespace unordered_detail {
namespace boost {
namespace unordered_detail {
// rebind_wrap
//
// Rebind allocators. For some problematic libraries, use rebind_to
// from <boost/detail/allocator_utilities.hpp>.
#if defined(BOOST_UNORDERED_USE_ALLOCATOR_UTILITIES)
template <class Alloc, class T>
struct rebind_wrap : ::boost::detail::allocator::rebind_to<Alloc, T> {};
template <class Alloc, class T>
struct rebind_wrap : ::boost::detail::allocator::rebind_to<Alloc, T> {};
#else
template <class Alloc, class T>
struct rebind_wrap
{
typedef BOOST_DEDUCED_TYPENAME
Alloc::BOOST_NESTED_TEMPLATE rebind<T>::other
type;
};
template <class Alloc, class T>
struct rebind_wrap
{
typedef BOOST_DEDUCED_TYPENAME
Alloc::BOOST_NESTED_TEMPLATE rebind<T>::other
type;
};
#endif
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1300)
template <class T>
inline void reset(T& x) { x = T(); }
// allocator_array_constructor
//
// Allocate and construct an array in an exception safe manner, and
// clean up if an exception is thrown before the container takes charge
// of it.
template <class Ptr>
inline Ptr null_ptr() { return Ptr(); }
#else
template <class T>
inline void reset_impl(T& x, ...) { x = T(); }
template <class T>
inline void reset_impl(T*& x, int) { x = 0; }
template <class T>
inline void reset(T& x) { reset_impl(x); }
template <class Allocator>
struct allocator_array_constructor
{
typedef BOOST_DEDUCED_TYPENAME Allocator::pointer pointer;
template <class Ptr>
inline Ptr null_ptr() { Ptr x; reset(x); return x; }
#endif
Allocator& alloc_;
pointer ptr_;
pointer constructed_;
std::size_t length_;
// Work around for Microsoft's ETI bug.
template <class Allocator> struct allocator_value_type
allocator_array_constructor(Allocator& a)
: alloc_(a), ptr_(), constructed_(), length_(0)
{
typedef BOOST_DEDUCED_TYPENAME Allocator::value_type type;
};
constructed_ = pointer();
ptr_ = pointer();
}
template <class Allocator> struct allocator_pointer
{
typedef BOOST_DEDUCED_TYPENAME Allocator::pointer type;
};
template <class Allocator> struct allocator_const_pointer
{
typedef BOOST_DEDUCED_TYPENAME Allocator::const_pointer type;
};
template <class Allocator> struct allocator_reference
{
typedef BOOST_DEDUCED_TYPENAME Allocator::reference type;
};
template <class Allocator> struct allocator_const_reference
{
typedef BOOST_DEDUCED_TYPENAME Allocator::const_reference type;
};
#if defined(BOOST_MPL_CFG_MSVC_ETI_BUG)
~allocator_array_constructor() {
if (ptr_) {
for(pointer p = ptr_; p != constructed_; ++p)
alloc_.destroy(p);
template <>
struct allocator_value_type<int>
{
typedef int type;
};
template <>
struct allocator_pointer<int>
{
typedef int type;
};
template <>
struct allocator_const_pointer<int>
{
typedef int type;
};
template <>
struct allocator_reference<int>
{
typedef int type;
};
template <>
struct allocator_const_reference<int>
{
typedef int type;
};
#endif
template <class Allocator>
struct allocator_constructor
{
typedef BOOST_DEDUCED_TYPENAME allocator_value_type<Allocator>::type value_type;
typedef BOOST_DEDUCED_TYPENAME allocator_pointer<Allocator>::type pointer;
Allocator& alloc_;
pointer ptr_;
bool constructed_;
allocator_constructor(Allocator& a)
: alloc_(a), ptr_(), constructed_(false)
{
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
unordered_detail::reset(ptr_);
#endif
alloc_.deallocate(ptr_, length_);
}
}
~allocator_constructor() {
if(ptr_) {
if(constructed_) alloc_.destroy(ptr_);
alloc_.deallocate(ptr_, 1);
}
}
template <class V>
void construct(V const& v) {
BOOST_ASSERT(!ptr_ && !constructed_);
ptr_ = alloc_.allocate(1);
alloc_.construct(ptr_, value_type(v));
constructed_ = true;
}
void construct(value_type const& v) {
BOOST_ASSERT(!ptr_ && !constructed_);
ptr_ = alloc_.allocate(1);
alloc_.construct(ptr_, v);
constructed_ = true;
}
pointer get() const
{
return ptr_;
}
// no throw
pointer release()
{
pointer p = ptr_;
constructed_ = false;
unordered_detail::reset(ptr_);
return p;
}
};
template <class Allocator>
struct allocator_array_constructor
template <class V>
void construct(V const& v, std::size_t l)
{
typedef BOOST_DEDUCED_TYPENAME allocator_pointer<Allocator>::type pointer;
BOOST_ASSERT(!ptr_);
length_ = l;
ptr_ = alloc_.allocate(length_);
pointer end = ptr_ + static_cast<std::ptrdiff_t>(length_);
for(constructed_ = ptr_; constructed_ != end; ++constructed_)
alloc_.construct(constructed_, v);
}
Allocator& alloc_;
pointer ptr_;
pointer constructed_;
std::size_t length_;
pointer get() const
{
return ptr_;
}
allocator_array_constructor(Allocator& a)
: alloc_(a), ptr_(), constructed_(), length_(0)
{
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
unordered_detail::reset(constructed_);
unordered_detail::reset(ptr_);
#endif
}
~allocator_array_constructor() {
if (ptr_) {
for(pointer p = ptr_; p != constructed_; ++p)
alloc_.destroy(p);
alloc_.deallocate(ptr_, length_);
}
}
template <class V>
void construct(V const& v, std::size_t l)
{
BOOST_ASSERT(!ptr_);
length_ = l;
ptr_ = alloc_.allocate(length_);
pointer end = ptr_ + static_cast<std::ptrdiff_t>(length_);
for(constructed_ = ptr_; constructed_ != end; ++constructed_)
alloc_.construct(constructed_, v);
}
pointer get() const
{
return ptr_;
}
pointer release()
{
pointer p(ptr_);
unordered_detail::reset(ptr_);
return p;
}
private:
allocator_array_constructor(allocator_array_constructor const&);
allocator_array_constructor& operator=(allocator_array_constructor const&);
};
}
}
pointer release()
{
pointer p(ptr_);
ptr_ = pointer();
return p;
}
private:
allocator_array_constructor(allocator_array_constructor const&);
allocator_array_constructor& operator=(
allocator_array_constructor const&);
};
}}
#if defined(BOOST_UNORDERED_USE_ALLOCATOR_UTILITIES)
# undef BOOST_UNORDERED_USE_ALLOCATOR_UTILITIES

View File

@ -0,0 +1,177 @@
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_MANAGER_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_MANAGER_HPP_INCLUDED
#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <boost/unordered/detail/node.hpp>
namespace boost { namespace unordered_detail {
////////////////////////////////////////////////////////////////////////////
// Buckets
// TODO: Are these needed?
template <class A, class G>
inline BOOST_DEDUCED_TYPENAME hash_buckets<A, G>::bucket_ptr
hash_buckets<A, G>::get_bucket(std::size_t num) const
{
return buckets_ + static_cast<std::ptrdiff_t>(num);
}
template <class A, class G>
inline BOOST_DEDUCED_TYPENAME hash_buckets<A, G>::bucket_ptr
hash_buckets<A, G>::bucket_ptr_from_hash(std::size_t hashed) const
{
return get_bucket(hashed % bucket_count_);
}
template <class A, class G>
inline std::size_t hash_buckets<A, G>::bucket_size(std::size_t index) const
{
if(!buckets_) return 0;
bucket_ptr ptr = get_bucket(index)->next_;
std::size_t count = 0;
while(ptr) {
++count;
ptr = ptr->next_;
}
return count;
}
template <class A, class G>
inline BOOST_DEDUCED_TYPENAME hash_buckets<A, G>::node_ptr
hash_buckets<A, G>::bucket_begin(std::size_t num) const
{
return buckets_ ? get_bucket(num)->next_ : node_ptr();
}
////////////////////////////////////////////////////////////////////////////
// Delete
template <class A, class G>
inline void hash_buckets<A, G>::delete_node(node_ptr b)
{
node* raw_ptr = static_cast<node*>(&*b);
boost::unordered_detail::destroy(&raw_ptr->value());
real_node_ptr n(node_alloc().address(*raw_ptr));
node_alloc().destroy(n);
node_alloc().deallocate(n, 1);
}
template <class A, class G>
inline void hash_buckets<A, G>::clear_bucket(bucket_ptr b)
{
node_ptr node_it = b->next_;
b->next_ = node_ptr();
while(node_it) {
node_ptr node_to_delete = node_it;
node_it = node_it->next_;
delete_node(node_to_delete);
}
}
template <class A, class G>
inline void hash_buckets<A, G>::delete_buckets()
{
bucket_ptr end = this->get_bucket(this->bucket_count_);
for(bucket_ptr begin = this->buckets_; begin != end; ++begin) {
clear_bucket(begin);
}
// Destroy the buckets (including the sentinel bucket).
++end;
for(bucket_ptr begin = this->buckets_; begin != end; ++begin) {
bucket_alloc().destroy(begin);
}
bucket_alloc().deallocate(this->buckets_, this->bucket_count_ + 1);
this->buckets_ = bucket_ptr();
}
template <class A, class G>
inline std::size_t hash_buckets<A, G>::delete_nodes(
node_ptr begin, node_ptr end)
{
std::size_t count = 0;
while(begin != end) {
node_ptr n = begin;
begin = begin->next_;
delete_node(n);
++count;
}
return count;
}
////////////////////////////////////////////////////////////////////////////
// Constructors and Destructors
template <class A, class G>
inline hash_buckets<A, G>::hash_buckets(
node_allocator const& a, std::size_t bucket_count)
: buckets_(),
bucket_count_(bucket_count),
allocators_(a,a)
{
}
template <class A, class G>
inline hash_buckets<A, G>::~hash_buckets()
{
if(this->buckets_) { this->delete_buckets(); }
}
template <class A, class G>
inline void hash_buckets<A, G>::create_buckets()
{
// The array constructor will clean up in the event of an
// exception.
allocator_array_constructor<bucket_allocator>
constructor(bucket_alloc());
// Creates an extra bucket to act as a sentinel.
constructor.construct(bucket(), this->bucket_count_ + 1);
// Set up the sentinel (node_ptr cast)
bucket_ptr sentinel = constructor.get() +
static_cast<ptrdiff_t>(this->bucket_count_);
sentinel->next_ = sentinel;
// Only release the buckets once everything is successfully
// done.
this->buckets_ = constructor.release();
}
////////////////////////////////////////////////////////////////////////////
// Constructors and Destructors
// no throw
template <class A, class G>
inline void hash_buckets<A, G>::move(hash_buckets& other)
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
if(this->buckets_) { this->delete_buckets(); }
this->buckets_ = other.buckets_;
this->bucket_count_ = other.bucket_count_;
other.buckets_ = bucket_ptr();
other.bucket_count_ = 0;
}
template <class A, class G>
inline void hash_buckets<A, G>::swap(hash_buckets<A, G>& other)
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
std::swap(buckets_, other.buckets_);
std::swap(bucket_count_, other.bucket_count_);
}
}}
#endif

View File

@ -1,30 +0,0 @@
// Copyright 2008-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_UNORDERED_DETAIL_CONFIG_HEADER)
#define BOOST_UNORDERED_DETAIL_CONFIG_HEADER
#include <boost/config.hpp>
#if defined(BOOST_NO_SFINAE)
# define BOOST_UNORDERED_NO_HAS_MOVE_ASSIGN
#elif defined(__GNUC__) && \
(__GNUC__ < 3 || __GNUC__ == 3 && __GNUC_MINOR__ <= 3)
# define BOOST_UNORDERED_NO_HAS_MOVE_ASSIGN
#elif BOOST_WORKAROUND(BOOST_INTEL, < 900) || \
BOOST_WORKAROUND(__EDG_VERSION__, < 304) || \
BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0593))
# define BOOST_UNORDERED_NO_HAS_MOVE_ASSIGN
#endif
#if defined(BOOST_HAS_RVALUE_REFS) && defined(BOOST_HAS_VARIADIC_TMPL)
# if defined(__SGI_STL_PORT) || defined(_STLPORT_VERSION)
// STLport doesn't have std::forward.
# else
# define BOOST_UNORDERED_STD_FORWARD
# endif
#endif
#endif

View File

@ -0,0 +1,271 @@
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED
#include <boost/unordered/detail/table.hpp>
#include <boost/unordered/detail/extract_key.hpp>
namespace boost { namespace unordered_detail {
////////////////////////////////////////////////////////////////////////////
// Equality
template <class H, class P, class A, class K>
bool hash_equivalent_table<H, P, A, K>
::equals(hash_equivalent_table<H, P, A, K> const& other) const
{
if(this->size_ != other.size_) return false;
if(!this->size_) return true;
bucket_ptr end = this->get_bucket(this->bucket_count_);
for(bucket_ptr i = this->cached_begin_bucket_; i != end; ++i)
{
node_ptr it1 = i->next_;
while(BOOST_UNORDERED_BORLAND_BOOL(it1))
{
node_ptr it2 = other.find_iterator(get_key_from_ptr(it1));
if(!BOOST_UNORDERED_BORLAND_BOOL(it2)) return false;
node_ptr end1 = node::next_group(it1);
node_ptr end2 = node::next_group(it2);
do {
if(!extractor::compare_mapped(
node::get_value(it1), node::get_value(it2)))
return false;
it1 = it1->next_;
it2 = it2->next_;
} while(it1 != end1 && it2 != end2);
if(it1 != end1 || it2 != end2) return false;
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////
// A convenience method for adding nodes.
template <class H, class P, class A, class K>
inline BOOST_DEDUCED_TYPENAME hash_equivalent_table<H, P, A, K>::node_ptr
hash_equivalent_table<H, P, A, K>
::add_node(node_constructor& a, bucket_ptr bucket, node_ptr pos)
{
node_ptr n = a.release();
if(BOOST_UNORDERED_BORLAND_BOOL(pos)) {
node::add_after_node(n, pos);
}
else {
node::add_to_bucket(n, *bucket);
if(bucket < this->cached_begin_bucket_)
this->cached_begin_bucket_ = bucket;
}
++this->size_;
return n;
}
////////////////////////////////////////////////////////////////////////////
// Insert methods
template <class H, class P, class A, class K>
inline BOOST_DEDUCED_TYPENAME
hash_equivalent_table<H, P, A, K>::iterator_base
hash_equivalent_table<H, P, A, K>::emplace_impl(node_constructor& a)
{
key_type const& k = get_key(a.value());
std::size_t hash_value = this->hash_function()(k);
if(!this->size_) {
return this->emplace_empty_impl_with_node(a, 1);
}
else {
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr position = find_iterator(bucket, k);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
return iterator_base(bucket, add_node(a, bucket, position));
}
}
template <class H, class P, class A, class K>
inline BOOST_DEDUCED_TYPENAME
hash_equivalent_table<H, P, A, K>::iterator_base
hash_equivalent_table<H, P, A, K>
::emplace_hint_impl(iterator_base const& it, node_constructor& a)
{
// equal can throw, but with no effects
if (!it.node_ || !equal(get_key(a.value()), *it)) {
// Use the standard emplace if the iterator doesn't point
// to a matching key.
return emplace_impl(a);
}
else {
// Find the first node in the group - so that the node
// will be added at the end of the group.
node_ptr start = node::first_in_group(it.node_);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
bucket_ptr bucket = this->reserve_for_insert(this->size_ + 1) ?
get_bucket(this->bucket_index(get_key(a.value()))) :
it.bucket_;
// Nothing after this point can throw
return iterator_base(bucket, add_node(a, bucket, start));
}
}
template <class H, class P, class A, class K>
inline void hash_equivalent_table<H, P, A, K>
::emplace_impl_no_rehash(node_constructor& a)
{
key_type const& k = get_key(a.value());
bucket_ptr bucket = this->get_bucket(this->bucket_index(k));
add_node(a, bucket, find_iterator(bucket, k));
}
#if defined(BOOST_UNORDERED_STD_FORWARD)
// Emplace (equivalent key containers)
// (I'm using an overloaded emplace for both 'insert' and 'emplace')
// if hash function throws, basic exception safety
// strong otherwise
template <class H, class P, class A, class K>
template <class... Args>
BOOST_DEDUCED_TYPENAME hash_equivalent_table<H, P, A, K>::iterator_base
hash_equivalent_table<H, P, A, K>
::emplace(Args&&... args)
{
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_impl(a);
}
// Emplace (equivalent key containers)
// (I'm using an overloaded emplace for both 'insert' and 'emplace')
// if hash function throws, basic exception safety
// strong otherwise
template <class H, class P, class A, class K>
template <class... Args>
BOOST_DEDUCED_TYPENAME hash_equivalent_table<H, P, A, K>::iterator_base
hash_equivalent_table<H, P, A, K>
::emplace_hint(iterator_base const& it, Args&&... args)
{
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_hint_impl(it, a);
}
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <class H, class P, class A, class K> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
BOOST_DEDUCED_TYPENAME hash_equivalent_table<H, P, A, K>::iterator_base \
hash_equivalent_table<H, P, A, K> \
::emplace(BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_impl(a); \
} \
\
template <class H, class P, class A, class K> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
BOOST_DEDUCED_TYPENAME hash_equivalent_table<H, P, A, K>::iterator_base \
hash_equivalent_table<H, P, A, K> \
::emplace_hint(iterator_base const& it, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_hint_impl(it, a); \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
////////////////////////////////////////////////////////////////////////////
// Insert range methods
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
template <class H, class P, class A, class K>
template <class I>
inline void hash_equivalent_table<H, P, A, K>
::insert_for_range(I i, I j, forward_traversal_tag)
{
if(i == j) return;
std::size_t distance = unordered_detail::distance(i, j);
if(distance == 1) {
emplace(*i);
}
else {
node_constructor a(*this);
// Only require basic exception safety here
if(this->size_) {
this->reserve_for_insert(this->size_ + distance);
}
else {
a.construct(*i++);
this->emplace_empty_impl_with_node(a, distance);
}
for (; i != j; ++i) {
a.construct(*i);
emplace_impl_no_rehash(a);
}
}
}
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
template <class H, class P, class A, class K>
template <class I>
inline void hash_equivalent_table<H, P, A, K>
::insert_for_range(I i, I j, boost::incrementable_traversal_tag)
{
node_constructor a(*this);
for (; i != j; ++i) {
a.construct(*i);
emplace_impl(a);
}
}
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
// TODO: Should I special case an empty container?
template <class H, class P, class A, class K>
template <class I>
void hash_equivalent_table<H, P, A, K>::insert_range(I i, I j)
{
BOOST_DEDUCED_TYPENAME boost::iterator_traversal<I>::type
iterator_traversal_tag;
insert_for_range(i, j, iterator_traversal_tag);
}
}}
#endif

View File

@ -0,0 +1,171 @@
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_EXTRACT_KEY_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_EXTRACT_KEY_HPP_INCLUDED
#include <boost/config.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/unordered/detail/fwd.hpp>
namespace boost {
namespace unordered_detail {
// key extractors
//
// no throw
//
// 'extract_key' is called with the emplace parameters to return a
// key if available or 'no_key' is one isn't and will need to be
// constructed. This could be done by overloading the emplace implementation
// for the different cases, but that's a bit tricky on compilers without
// variadic templates.
struct no_key {
no_key() {}
template <class T> no_key(T const&) {}
};
struct set_extractor
{
template <class ValueType>
struct apply
{
typedef ValueType value_type;
typedef ValueType key_type;
static key_type const& extract(key_type const& v)
{
return v;
}
static no_key extract()
{
return no_key();
}
#if defined(BOOST_UNORDERED_STD_FORWARD)
template <class... Args>
static no_key extract(Args const&...)
{
return no_key();
}
#else
template <class Arg>
static no_key extract(Arg const&)
{
return no_key();
}
template <class Arg>
static no_key extract(Arg const&, Arg const&)
{
return no_key();
}
#endif
static bool compare_mapped(value_type const&, value_type const&)
{
return true;
}
};
};
struct map_extractor
{
template <class ValueType>
struct apply
{
typedef ValueType value_type;
typedef BOOST_DEDUCED_TYPENAME
remove_const<BOOST_DEDUCED_TYPENAME ValueType::first_type>::type
key_type;
static key_type const& extract(value_type const& v)
{
return v.first;
}
static key_type const& extract(key_type const& v)
{
return v;
}
template <class Second>
static key_type const& extract(std::pair<key_type, Second> const& v)
{
return v.first;
}
template <class Second>
static key_type const& extract(
std::pair<key_type const, Second> const& v)
{
return v.first;
}
/*
template <class Second>
static key_type const& extract(
std::pair<key_type&, Second> const& v)
{
return v.first;
}
template <class Second>
static key_type const& extract(
std::pair<key_type const&, Second> const& v)
{
return v.first;
}
*/
#if defined(BOOST_UNORDERED_STD_FORWARD)
template <class Arg1, class... Args>
static key_type const& extract(key_type const& k,
Arg1 const&, Args const&...)
{
return k;
}
template <class... Args>
static no_key extract(Args const&...)
{
return no_key();
}
#else
template <class Arg1>
static key_type const& extract(key_type const& k, Arg1 const&)
{
return k;
}
static no_key extract()
{
return no_key();
}
template <class Arg>
static no_key extract(Arg const&)
{
return no_key();
}
template <class Arg, class Arg1>
static no_key extract(Arg const&, Arg1 const&)
{
return no_key();
}
#endif
static bool compare_mapped(value_type const& x, value_type const& y)
{
return x.second == y.second;
}
};
};
}}
#endif

View File

@ -0,0 +1,987 @@
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This contains the basic data structure, apart from the actual values. There's
// no construction or deconstruction here. So this only depends on the pointer
// type.
#ifndef BOOST_UNORDERED_DETAIL_FWD_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_FWD_HPP_INCLUDED
#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <boost/iterator.hpp>
#include <boost/compressed_pair.hpp>
#include <boost/type_traits/aligned_storage.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/unordered/detail/allocator_helpers.hpp>
#include <algorithm>
// This header defines most of the classes used to implement the unordered
// containers. It doesn't include the insert methods as they require a lot
// of preprocessor metaprogramming - they are in insert.hpp
// Template parameters:
//
// H = Hash Function
// P = Predicate
// A = Value Allocator
// G = Grouped/Ungrouped
// K = Key Extractor
#if defined(BOOST_HAS_RVALUE_REFS) && defined(BOOST_HAS_VARIADIC_TMPL)
# if defined(__SGI_STL_PORT) || defined(_STLPORT_VERSION)
// STLport doesn't have std::forward.
# else
# define BOOST_UNORDERED_STD_FORWARD
# endif
#endif
#if !defined(BOOST_UNORDERED_EMPLACE_LIMIT)
#define BOOST_UNORDERED_EMPLACE_LIMIT 10
#endif
#if !defined(BOOST_UNORDERED_STD_FORWARD)
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#define BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params) \
BOOST_PP_ENUM_PARAMS_Z(z, num_params, class Arg)
#define BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params) \
BOOST_PP_ENUM_BINARY_PARAMS_Z(z, num_params, Arg, const& arg)
#define BOOST_UNORDERED_CALL_PARAMS(z, num_params) \
BOOST_PP_ENUM_PARAMS_Z(z, num_params, arg)
#endif
namespace boost { namespace unordered_detail {
static const float minimum_max_load_factor = 1e-3f;
static const std::size_t default_bucket_count = 11;
struct move_tag {};
template <class Alloc, class Grouped>
class hash_node_constructor;
struct set_extractor;
struct map_extractor;
struct no_key;
// Explicitly call a destructor
#if defined(BOOST_MSVC)
#pragma warning(push)
#if BOOST_MSVC >= 1400
#pragma warning(disable:4100) // unreferenced formal parameter
#endif
#endif
template <class T>
inline void destroy(T* x) {
x->~T();
}
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
// hash_bucket
template <class A>
class hash_bucket
{
hash_bucket& operator=(hash_bucket const&);
public:
typedef hash_bucket<A> bucket;
typedef BOOST_DEDUCED_TYPENAME
boost::unordered_detail::rebind_wrap<A, bucket>::type
bucket_allocator;
typedef BOOST_DEDUCED_TYPENAME bucket_allocator::pointer bucket_ptr;
typedef bucket_ptr node_ptr;
node_ptr next_;
hash_bucket() : next_() {}
// Only copy construct when allocating.
hash_bucket(hash_bucket const& x)
: next_()
{
BOOST_ASSERT(!x.next_);
}
};
template <class A>
struct ungrouped_node_base : hash_bucket<A> {
typedef hash_bucket<A> bucket;
typedef BOOST_DEDUCED_TYPENAME bucket::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME bucket::node_ptr node_ptr;
ungrouped_node_base() : bucket() {}
static inline node_ptr& next_group(node_ptr ptr);
static inline std::size_t group_count(node_ptr ptr);
static inline void add_to_bucket(node_ptr n, bucket& b);
static inline void add_after_node(node_ptr n, node_ptr position);
static void unlink_node(bucket& b, node_ptr n);
static void unlink_nodes(bucket& b, node_ptr begin, node_ptr end);
static void unlink_nodes(bucket& b, node_ptr end);
};
template <class A>
struct grouped_node_base : hash_bucket<A>
{
typedef hash_bucket<A> bucket;
typedef BOOST_DEDUCED_TYPENAME bucket::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME bucket::node_ptr node_ptr;
node_ptr group_prev_;
grouped_node_base() : bucket(), group_prev_() {}
static inline node_ptr& next_group(node_ptr ptr);
static inline node_ptr first_in_group(node_ptr n);
static inline std::size_t group_count(node_ptr ptr);
static inline void add_to_bucket(node_ptr n, bucket& b);
static inline void add_after_node(node_ptr n, node_ptr position);
static void unlink_node(bucket& b, node_ptr n);
static void unlink_nodes(bucket& b, node_ptr begin, node_ptr end);
static void unlink_nodes(bucket& b, node_ptr end);
private:
static inline node_ptr split_group(node_ptr split);
static inline grouped_node_base& get(node_ptr ptr) {
return static_cast<grouped_node_base&>(*ptr);
}
};
struct ungrouped
{
template <class A>
struct base {
typedef ungrouped_node_base<A> type;
};
};
struct grouped
{
template <class A>
struct base {
typedef grouped_node_base<A> type;
};
};
template <class ValueType>
struct value_base
{
typedef ValueType value_type;
BOOST_DEDUCED_TYPENAME boost::aligned_storage<
sizeof(value_type),
::boost::alignment_of<value_type>::value>::type data_;
void* address() {
return this;
}
value_type& value() {
return *(ValueType*) this;
}
};
// Node
template <class A, class G>
class hash_node :
public G::BOOST_NESTED_TEMPLATE base<A>::type,
public value_base<BOOST_DEDUCED_TYPENAME A::value_type>
{
public:
typedef BOOST_DEDUCED_TYPENAME A::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME hash_bucket<A>::node_ptr node_ptr;
static value_type& get_value(node_ptr p) {
return static_cast<hash_node&>(*p).value();
}
};
// Iterator Base
template <class A, class G>
class hash_iterator_base
{
public:
typedef A value_allocator;
typedef hash_bucket<A> bucket;
typedef hash_node<A, G> node;
typedef BOOST_DEDUCED_TYPENAME node::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME node::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME node::node_ptr node_ptr;
bucket_ptr bucket_;
node_ptr node_;
hash_iterator_base() : bucket_(), node_() {}
explicit hash_iterator_base(bucket_ptr b)
: bucket_(b),
node_(b ? b->next_ : node_ptr()) {}
hash_iterator_base(bucket_ptr b, node_ptr n)
: bucket_(b),
node_(n) {}
bool operator==(hash_iterator_base const& x) const {
return node_ == x.node_; }
bool operator!=(hash_iterator_base const& x) const {
return node_ != x.node_; }
value_type& operator*() const {
return node::get_value(node_);
}
void increment_bucket(node_ptr n) {
while(!n) {
++bucket_;
n = bucket_->next_;
}
node_ = bucket_ == n ? node_ptr() : n;
}
void increment() {
increment_bucket(node_->next_);
}
};
// hash_buckets
//
// This is responsible for allocating and deallocating buckets and nodes.
//
// Notes:
// 1. For the sake exception safety the allocators themselves don't allocate
// anything.
// 2. It's the callers responsibility to allocate the buckets before calling
// any of the methods (other than getters and setters).
template <class A, class G>
class hash_buckets
{
hash_buckets(hash_buckets const&);
hash_buckets& operator=(hash_buckets const&);
public:
// Types
typedef A value_allocator;
typedef hash_bucket<A> bucket;
typedef hash_iterator_base<A, G> iterator_base;
typedef BOOST_DEDUCED_TYPENAME A::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME iterator_base::node node;
typedef BOOST_DEDUCED_TYPENAME node::bucket_allocator bucket_allocator;
typedef BOOST_DEDUCED_TYPENAME node::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME node::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME rebind_wrap<value_allocator, node>::type
node_allocator;
typedef BOOST_DEDUCED_TYPENAME node_allocator::pointer real_node_ptr;
// Members
bucket_ptr buckets_;
std::size_t bucket_count_;
boost::compressed_pair<bucket_allocator, node_allocator> allocators_;
// Data access
bucket_allocator const& bucket_alloc() const {
return allocators_.first(); }
node_allocator const& node_alloc() const {
return allocators_.second(); }
bucket_allocator& bucket_alloc() {
return allocators_.first(); }
node_allocator& node_alloc() {
return allocators_.second(); }
std::size_t max_bucket_count() const {
// -1 to account for the sentinel.
return prev_prime(this->bucket_alloc().max_size() - 1);
}
// Constructors
hash_buckets(node_allocator const& a, std::size_t n);
void create_buckets();
~hash_buckets();
// no throw
void swap(hash_buckets& other);
void move(hash_buckets& other);
// For the remaining functions, buckets_ must not be null.
bucket_ptr get_bucket(std::size_t n) const;
bucket_ptr bucket_ptr_from_hash(std::size_t hashed) const;
std::size_t bucket_size(std::size_t index) const;
node_ptr bucket_begin(std::size_t n) const;
// Alloc/Dealloc
void delete_node(node_ptr);
//
void delete_buckets();
void clear_bucket(bucket_ptr);
std::size_t delete_nodes(node_ptr begin, node_ptr end);
std::size_t delete_to_bucket_end(node_ptr begin);
};
template <class H, class P> class set_hash_functions;
template <class H, class P>
class hash_buffered_functions
{
friend class set_hash_functions<H, P>;
hash_buffered_functions& operator=(hash_buffered_functions const&);
typedef boost::compressed_pair<H, P> function_pair;
typedef BOOST_DEDUCED_TYPENAME boost::aligned_storage<
sizeof(function_pair),
::boost::alignment_of<function_pair>::value>::type aligned_function;
bool current_; // The currently active functions.
aligned_function funcs_[2];
function_pair const& current() const {
return *static_cast<function_pair const*>(
static_cast<void const*>(&funcs_[current_]));
}
void construct(bool which, H const& hf, P const& eq)
{
new((void*) &funcs_[which]) function_pair(hf, eq);
}
void construct(bool which, function_pair const& f)
{
new((void*) &funcs_[which]) function_pair(f);
}
void destroy(bool which)
{
boost::unordered_detail::destroy((function_pair*)(&funcs_[which]));
}
public:
hash_buffered_functions(H const& hf, P const& eq)
: current_(false)
{
construct(current_, hf, eq);
}
hash_buffered_functions(hash_buffered_functions const& bf)
: current_(false)
{
construct(current_, bf.current());
}
~hash_buffered_functions() {
destroy(current_);
}
H const& hash_function() const {
return current().first();
}
P const& key_eq() const {
return current().second();
}
};
template <class H, class P>
class set_hash_functions
{
set_hash_functions(set_hash_functions const&);
set_hash_functions& operator=(set_hash_functions const&);
typedef hash_buffered_functions<H, P> buffered_functions;
buffered_functions& buffered_functions_;
bool tmp_functions_;
public:
set_hash_functions(buffered_functions& f, H const& h, P const& p)
: buffered_functions_(f),
tmp_functions_(!f.current_)
{
f.construct(tmp_functions_, h, p);
}
set_hash_functions(buffered_functions& f,
buffered_functions const& other)
: buffered_functions_(f),
tmp_functions_(!f.current_)
{
f.construct(tmp_functions_, other.current());
}
~set_hash_functions()
{
buffered_functions_.destroy(tmp_functions_);
}
void commit()
{
buffered_functions_.current_ = tmp_functions_;
tmp_functions_ = !tmp_functions_;
}
};
template <class H, class P, class A, class G, class K>
class hash_table :
public hash_buckets<A, G>,
public hash_buffered_functions<H, P>
{
hash_table(hash_table const&);
public:
typedef H hasher;
typedef P key_equal;
typedef A value_allocator;
typedef G grouped;
typedef K key_extractor;
typedef hash_buffered_functions<H, P> base;
typedef hash_buckets<A, G> buckets;
typedef BOOST_DEDUCED_TYPENAME value_allocator::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME key_extractor::BOOST_NESTED_TEMPLATE
apply<value_type> extractor;
typedef BOOST_DEDUCED_TYPENAME extractor::key_type key_type;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef BOOST_DEDUCED_TYPENAME buckets::bucket bucket;
typedef BOOST_DEDUCED_TYPENAME buckets::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::iterator_base iterator_base;
typedef BOOST_DEDUCED_TYPENAME buckets::node_allocator node_allocator;
typedef hash_node_constructor<A, G> node_constructor;
typedef std::pair<iterator_base, iterator_base> iterator_pair;
// Members
std::size_t size_;
float mlf_;
// Cached data - invalid if !this->buckets_
bucket_ptr cached_begin_bucket_;
std::size_t max_load_;
// Helper methods
key_type const& get_key(value_type const& v) const {
return extractor::extract(v);
}
key_type const& get_key_from_ptr(node_ptr n) const {
return extractor::extract(node::get_value(n));
}
bool equal(key_type const& k, value_type const& v) const;
node_ptr find_iterator(bucket_ptr bucket, key_type const& k) const;
node_ptr find_iterator(key_type const& k) const;
node_ptr* find_for_erase(bucket_ptr bucket, key_type const& k) const;
// Load methods
std::size_t max_size() const;
std::size_t bucket_index(key_type const& k) const;
void max_load_factor(float z);
std::size_t min_buckets_for_size(std::size_t n) const;
std::size_t calculate_max_load();
// Constructors
hash_table(std::size_t n, hasher const& hf, key_equal const& eq,
node_allocator const& a);
hash_table(hash_table const& x, node_allocator const& a);
hash_table(hash_table& x, move_tag m);
hash_table(hash_table& x, node_allocator const& a, move_tag m);
~hash_table() {}
hash_table& operator=(hash_table const&);
// Iterators
iterator_base begin() const {
return this->size_ ?
iterator_base(this->cached_begin_bucket_) :
iterator_base();
}
iterator_base end() const {
return iterator_base();
}
// Swap & Move
void swap(hash_table& x);
void fast_swap(hash_table& other);
void slow_swap(hash_table& other);
void partial_swap(hash_table& other);
void move(hash_table& x);
// Reserve and rehash
void create_for_insert(std::size_t n);
bool reserve_for_insert(std::size_t n);
void rehash(std::size_t n);
void rehash_impl(std::size_t n);
// Move/copy buckets
void move_buckets_to(buckets& dst);
void copy_buckets_to(buckets& dst) const;
// Misc. key methods
std::size_t count(key_type const& k) const;
iterator_base find(key_type const& k) const;
value_type& at(key_type const& k) const;
iterator_pair equal_range(key_type const& k) const;
// Erase
//
// no throw
void clear();
std::size_t erase_key(key_type const& k);
iterator_base erase(iterator_base r);
std::size_t erase_group(node_ptr* it, bucket_ptr bucket);
iterator_base erase_range(iterator_base r1, iterator_base r2);
// recompute_begin_bucket
void init_buckets();
// After an erase cached_begin_bucket_ might be left pointing to
// an empty bucket, so this is called to update it
//
// no throw
void recompute_begin_bucket(bucket_ptr b);
// This is called when a range has been erased
//
// no throw
void recompute_begin_bucket(bucket_ptr b1, bucket_ptr b2);
// no throw
float load_factor() const;
iterator_base emplace_empty_impl_with_node(
node_constructor&, std::size_t);
};
template <class H, class P, class A, class K>
class hash_unique_table :
public hash_table<H, P, A, boost::unordered_detail::ungrouped, K>
{
public:
typedef H hasher;
typedef P key_equal;
typedef A value_allocator;
typedef K key_extractor;
typedef hash_table<H, P, A, ungrouped, K> table;
typedef hash_node_constructor<A, ungrouped> node_constructor;
typedef BOOST_DEDUCED_TYPENAME table::key_type key_type;
typedef BOOST_DEDUCED_TYPENAME table::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME table::node node;
typedef BOOST_DEDUCED_TYPENAME table::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME table::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME table::iterator_base iterator_base;
typedef BOOST_DEDUCED_TYPENAME table::extractor extractor;
typedef std::pair<iterator_base, bool> emplace_return;
// Constructors
hash_unique_table(std::size_t n, hasher const& hf, key_equal const& eq,
value_allocator const& a)
: table(n, hf, eq, a) {}
hash_unique_table(hash_unique_table const& x)
: table(x, x.node_alloc()) {}
hash_unique_table(hash_unique_table const& x, value_allocator const& a)
: table(x, a) {}
hash_unique_table(hash_unique_table& x, move_tag m)
: table(x, m) {}
hash_unique_table(hash_unique_table& x, value_allocator const& a,
move_tag m)
: table(x, a, m) {}
~hash_unique_table() {}
// Insert methods
emplace_return emplace_impl_with_node(node_constructor& a);
value_type& operator[](key_type const& k);
// equals
bool equals(hash_unique_table const&) const;
node_ptr add_node(node_constructor& a, bucket_ptr bucket);
#if defined(BOOST_UNORDERED_STD_FORWARD)
template<class... Args>
emplace_return emplace(Args&&... args);
template<class... Args>
emplace_return emplace_impl(key_type const& k, Args&&... args);
template<class... Args>
emplace_return emplace_impl(no_key, Args&&... args);
template<class... Args>
emplace_return emplace_empty_impl(Args&&... args);
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, n, _) \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
emplace_return emplace( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n)); \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
emplace_return emplace_impl(key_type const& k, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n)); \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
emplace_return emplace_impl(no_key, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n)); \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
emplace_return emplace_empty_impl( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n));
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
// if hash function throws, or inserting > 1 element, basic exception
// safety strong otherwise
template <class InputIt>
void insert_range(InputIt i, InputIt j);
template <class InputIt>
void insert_range_impl(key_type const&, InputIt i, InputIt j);
template <class InputIt>
void insert_range_impl(no_key, InputIt i, InputIt j);
};
template <class H, class P, class A, class K>
class hash_equivalent_table :
public hash_table<H, P, A, boost::unordered_detail::grouped, K>
{
public:
typedef H hasher;
typedef P key_equal;
typedef A value_allocator;
typedef K key_extractor;
typedef hash_table<H, P, A, boost::unordered_detail::grouped, K> table;
typedef hash_node_constructor<A, boost::unordered_detail::grouped>
node_constructor;
typedef hash_iterator_base<A, grouped> iterator_base;
typedef BOOST_DEDUCED_TYPENAME table::key_type key_type;
typedef BOOST_DEDUCED_TYPENAME table::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME table::node node;
typedef BOOST_DEDUCED_TYPENAME table::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME table::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME table::extractor extractor;
// Constructors
hash_equivalent_table(std::size_t n,
hasher const& hf, key_equal const& eq, value_allocator const& a)
: table(n, hf, eq, a) {}
hash_equivalent_table(hash_equivalent_table const& x)
: table(x, x.node_alloc()) {}
hash_equivalent_table(hash_equivalent_table const& x,
value_allocator const& a)
: table(x, a) {}
hash_equivalent_table(hash_equivalent_table& x, move_tag m)
: table(x, m) {}
hash_equivalent_table(hash_equivalent_table& x,
value_allocator const& a, move_tag m)
: table(x, a, m) {}
~hash_equivalent_table() {}
// Insert methods
iterator_base emplace_impl(node_constructor& a);
iterator_base emplace_hint_impl(iterator_base const& it,
node_constructor& a);
void emplace_impl_no_rehash(node_constructor& a);
// equals
bool equals(hash_equivalent_table const&) const;
inline node_ptr add_node(node_constructor& a,
bucket_ptr bucket, node_ptr pos);
#if defined(BOOST_UNORDERED_STD_FORWARD)
template <class... Args>
iterator_base emplace(Args&&... args);
template <class... Args>
iterator_base emplace_hint(iterator_base const& it, Args&&... args);
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, n, _) \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
iterator_base emplace(BOOST_UNORDERED_FUNCTION_PARAMS(z, n)); \
\
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
iterator_base emplace_hint(iterator_base const& it, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n));
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
template <class I>
void insert_for_range(I i, I j, forward_traversal_tag);
template <class I>
void insert_for_range(I i, I j, boost::incrementable_traversal_tag);
template <class I>
void insert_range(I i, I j);
};
// Iterator Access
class iterator_access
{
public:
template <class Iterator>
static BOOST_DEDUCED_TYPENAME Iterator::base const&
get(Iterator const& it)
{
return it.base_;
}
};
// Iterators
template <class A, class G> class hash_iterator;
template <class A, class G> class hash_const_iterator;
template <class A, class G> class hash_local_iterator;
template <class A, class G> class hash_const_local_iterator;
// Local Iterators
//
// all no throw
template <class A, class G>
class hash_local_iterator
: public boost::iterator <
std::forward_iterator_tag,
BOOST_DEDUCED_TYPENAME A::value_type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME A::pointer,
BOOST_DEDUCED_TYPENAME A::reference>
{
public:
typedef BOOST_DEDUCED_TYPENAME A::value_type value_type;
private:
typedef hash_buckets<A, G> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef hash_const_local_iterator<A, G> const_local_iterator;
friend class hash_const_local_iterator<A, G>;
node_ptr ptr_;
public:
hash_local_iterator() : ptr_() {}
explicit hash_local_iterator(node_ptr x) : ptr_(x) {}
BOOST_DEDUCED_TYPENAME A::reference operator*() const {
return node::get_value(ptr_);
}
value_type* operator->() const {
return &node::get_value(ptr_);
}
hash_local_iterator& operator++() {
ptr_ = ptr_->next_; return *this;
}
hash_local_iterator operator++(int) {
hash_local_iterator tmp(ptr_); ptr_ = ptr_->next_; return tmp; }
bool operator==(hash_local_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator==(const_local_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator!=(hash_local_iterator x) const {
return ptr_ != x.ptr_;
}
bool operator!=(const_local_iterator x) const {
return ptr_ != x.ptr_;
}
};
template <class A, class G>
class hash_const_local_iterator
: public boost::iterator <
std::forward_iterator_tag,
BOOST_DEDUCED_TYPENAME A::value_type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME A::const_pointer,
BOOST_DEDUCED_TYPENAME A::const_reference >
{
public:
typedef BOOST_DEDUCED_TYPENAME A::value_type value_type;
private:
typedef hash_buckets<A, G> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node_ptr ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef hash_local_iterator<A, G> local_iterator;
friend class hash_local_iterator<A, G>;
ptr ptr_;
public:
hash_const_local_iterator() : ptr_() {}
explicit hash_const_local_iterator(ptr x) : ptr_(x) {}
hash_const_local_iterator(local_iterator x) : ptr_(x.ptr_) {}
BOOST_DEDUCED_TYPENAME A::const_reference
operator*() const {
return node::get_value(ptr_);
}
value_type const* operator->() const {
return &node::get_value(ptr_);
}
hash_const_local_iterator& operator++() {
ptr_ = ptr_->next_; return *this;
}
hash_const_local_iterator operator++(int) {
hash_const_local_iterator tmp(ptr_); ptr_ = ptr_->next_; return tmp;
}
bool operator==(local_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator==(hash_const_local_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator!=(local_iterator x) const {
return ptr_ != x.ptr_;
}
bool operator!=(hash_const_local_iterator x) const {
return ptr_ != x.ptr_;
}
};
// iterators
//
// all no throw
template <class A, class G>
class hash_iterator
: public boost::iterator <
std::forward_iterator_tag,
BOOST_DEDUCED_TYPENAME A::value_type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME A::pointer,
BOOST_DEDUCED_TYPENAME A::reference >
{
public:
typedef BOOST_DEDUCED_TYPENAME A::value_type value_type;
private:
typedef hash_buckets<A, G> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef BOOST_DEDUCED_TYPENAME buckets::iterator_base base;
typedef hash_const_iterator<A, G> const_iterator;
friend class hash_const_iterator<A, G>;
base base_;
public:
hash_iterator() : base_() {}
explicit hash_iterator(base const& x) : base_(x) {}
BOOST_DEDUCED_TYPENAME A::reference operator*() const {
return *base_;
}
value_type* operator->() const {
return &*base_;
}
hash_iterator& operator++() {
base_.increment(); return *this;
}
hash_iterator operator++(int) {
hash_iterator tmp(base_); base_.increment(); return tmp;
}
bool operator==(hash_iterator const& x) const {
return base_ == x.base_;
}
bool operator==(const_iterator const& x) const {
return base_ == x.base_;
}
bool operator!=(hash_iterator const& x) const {
return base_ != x.base_;
}
bool operator!=(const_iterator const& x) const {
return base_ != x.base_;
}
};
template <class A, class G>
class hash_const_iterator
: public boost::iterator <
std::forward_iterator_tag,
BOOST_DEDUCED_TYPENAME A::value_type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME A::const_pointer,
BOOST_DEDUCED_TYPENAME A::const_reference >
{
public:
typedef BOOST_DEDUCED_TYPENAME A::value_type value_type;
private:
typedef hash_buckets<A, G> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef BOOST_DEDUCED_TYPENAME buckets::iterator_base base;
typedef hash_iterator<A, G> iterator;
friend class hash_iterator<A, G>;
friend class iterator_access;
base base_;
public:
hash_const_iterator() : base_() {}
explicit hash_const_iterator(base const& x) : base_(x) {}
hash_const_iterator(iterator const& x) : base_(x.base_) {}
BOOST_DEDUCED_TYPENAME A::const_reference operator*() const {
return *base_;
}
value_type const* operator->() const {
return &*base_;
}
hash_const_iterator& operator++() {
base_.increment(); return *this;
}
hash_const_iterator operator++(int) {
hash_const_iterator tmp(base_); base_.increment(); return tmp;
}
bool operator==(iterator const& x) const {
return base_ == x.base_;
}
bool operator==(hash_const_iterator const& x) const {
return base_ == x.base_;
}
bool operator!=(iterator const& x) const {
return base_ != x.base_;
}
bool operator!=(hash_const_iterator const& x) const {
return base_ != x.base_;
}
};
}}
#endif

View File

@ -1,347 +0,0 @@
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_HASH_TABLE_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_HASH_TABLE_HPP_INCLUDED
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/config.hpp>
#include <boost/unordered/detail/config.hpp>
#if !defined(BOOST_UNORDERED_EMPLACE_LIMIT)
#define BOOST_UNORDERED_EMPLACE_LIMIT 10
#endif
#include <cstddef>
#include <boost/config/no_tr1/cmath.hpp>
#include <algorithm>
#include <utility>
#include <stdexcept>
#include <boost/iterator.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/limits.hpp>
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/unordered/detail/allocator_helpers.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/aligned_storage.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/not.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/utility/swap.hpp>
#include <boost/preprocessor/seq/size.hpp>
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/mpl/aux_/config/eti.hpp>
#if !(defined(BOOST_UNORDERED_STD_FORWARD))
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#define BOOST_UNORDERED_TEMPLATE_ARGS(z, n) \
BOOST_PP_ENUM_PARAMS_Z(z, n, typename Arg)
#define BOOST_UNORDERED_FUNCTION_PARAMS(z, n) \
BOOST_PP_ENUM_BINARY_PARAMS_Z(z, n, Arg, const& arg)
#define BOOST_UNORDERED_CALL_PARAMS(z, n) \
BOOST_PP_ENUM_PARAMS_Z(z, n, arg)
#endif
#if defined(BOOST_MSVC)
#pragma warning(push)
#if BOOST_MSVC >= 1400
#pragma warning(disable:4267) // conversion from 'size_t' to 'unsigned int',
// possible loss of data.
#endif
#endif
#if BOOST_WORKAROUND(__BORLANDC__, <= 0x0582)
#define BOOST_UNORDERED_BORLAND_BOOL(x) (bool)(x)
#else
#define BOOST_UNORDERED_BORLAND_BOOL(x) x
#endif
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
#define BOOST_UNORDERED_MSVC_RESET_PTR(x) unordered_detail::reset(x)
#else
#define BOOST_UNORDERED_MSVC_RESET_PTR(x)
#endif
namespace boost {
namespace unordered_detail {
template <class T> struct type_wrapper {};
static const std::size_t default_initial_bucket_count = 11;
static const float minimum_max_load_factor = 1e-3f;
inline std::size_t double_to_size_t(double f)
{
return f >= static_cast<double>((std::numeric_limits<std::size_t>::max)()) ?
(std::numeric_limits<std::size_t>::max)() :
static_cast<std::size_t>(f);
}
// prime number list, accessor
template<typename T> struct prime_list_template
{
static std::size_t const value[];
static std::ptrdiff_t const length;
};
#define BOOST_UNORDERED_PRIMES \
(5ul)(11ul)(17ul)(29ul)(37ul)(53ul)(67ul)(79ul) \
(97ul)(131ul)(193ul)(257ul)(389ul)(521ul)(769ul) \
(1031ul)(1543ul)(2053ul)(3079ul)(6151ul)(12289ul)(24593ul) \
(49157ul)(98317ul)(196613ul)(393241ul)(786433ul) \
(1572869ul)(3145739ul)(6291469ul)(12582917ul)(25165843ul) \
(50331653ul)(100663319ul)(201326611ul)(402653189ul)(805306457ul) \
(1610612741ul)(3221225473ul)(4294967291ul)
template<typename T>
std::size_t const prime_list_template<T>::value[] = {
BOOST_PP_SEQ_ENUM(BOOST_UNORDERED_PRIMES)
};
template<typename T>
std::ptrdiff_t const prime_list_template<T>::length
= BOOST_PP_SEQ_SIZE(BOOST_UNORDERED_PRIMES);
#undef BOOST_UNORDERED_PRIMES
typedef prime_list_template<std::size_t> prime_list;
// no throw
inline std::size_t next_prime(std::size_t n) {
std::size_t const* const prime_list_begin = prime_list::value;
std::size_t const* const prime_list_end = prime_list_begin +
prime_list::length;
std::size_t const* bound =
std::lower_bound(prime_list_begin, prime_list_end, n);
if(bound == prime_list_end)
bound--;
return *bound;
}
// no throw
inline std::size_t prev_prime(std::size_t n) {
std::size_t const* const prime_list_begin = prime_list::value;
std::size_t const* const prime_list_end = prime_list_begin +
prime_list::length;
std::size_t const* bound =
std::upper_bound(prime_list_begin,prime_list_end, n);
if(bound != prime_list_begin)
bound--;
return *bound;
}
// Controls how many buckets are allocated and which buckets hash
// values map to. Does not contain the buckets themselves, or ever
// deal with them directly.
struct bucket_manager {
std::size_t bucket_count_;
bucket_manager()
: bucket_count_(0) {}
explicit bucket_manager(std::size_t n)
: bucket_count_(next_prime(n)) {}
std::size_t bucket_count() const {
return bucket_count_;
}
std::size_t bucket_from_hash(std::size_t hashed) const {
return hashed % bucket_count_;
}
std::size_t max_bucket_count(std::size_t max_size) const {
return prev_prime(max_size);
}
};
// pair_cast - used to convert between pair types.
template <class Dst1, class Dst2, class Src1, class Src2>
inline std::pair<Dst1, Dst2> pair_cast(std::pair<Src1, Src2> const& x)
{
return std::pair<Dst1, Dst2>(Dst1(x.first), Dst2(x.second));
}
#if !defined(BOOST_NO_STD_DISTANCE)
using ::std::distance;
#else
template <class ForwardIterator>
inline std::size_t distance(ForwardIterator i, ForwardIterator j) {
std::size_t x;
std::distance(i, j, x);
return x;
}
#endif
struct move_tag {};
// Both hasher and key_equal's copy/assign can throw so double
// buffering is used to copy them.
template <typename Hash, typename Pred>
struct buffered_functions
{
typedef Hash hasher;
typedef Pred key_equal;
class functions
{
std::pair<hasher, key_equal> functions_;
public:
functions(hasher const& h, key_equal const& k)
: functions_(h, k) {}
hasher const& hash_function() const
{
return functions_.first;
}
key_equal const& key_eq() const
{
return functions_.second;
}
};
typedef functions buffered_functions::*functions_ptr;
buffered_functions(hasher const& h, key_equal const& k)
: func1_(h, k), func2_(h, k), func_(&buffered_functions::func1_) {}
// This copies the given function objects into the currently unused
// function objects and returns a pointer, that func_ can later be
// set to, to commit the change.
//
// Strong exception safety (since only usued function objects are
// changed).
functions_ptr buffer(buffered_functions const& x) {
functions_ptr ptr = func_ == &buffered_functions::func1_
? &buffered_functions::func2_ : &buffered_functions::func1_;
this->*ptr = x.current();
return ptr;
}
void set(functions_ptr ptr) {
BOOST_ASSERT(ptr != func_);
func_ = ptr;
}
functions const& current() const {
return this->*func_;
}
private:
functions func1_;
functions func2_;
functions_ptr func_; // The currently active functions.
};
#if defined(BOOST_MSVC)
# define BOOST_UNORDERED_DESTRUCT(x, type) (x)->~type();
#else
# define BOOST_UNORDERED_DESTRUCT(x, type) boost::unordered_detail::destroy(x)
template <typename T>
void destroy(T* x) {
x->~T();
}
#endif
}
}
#define BOOST_UNORDERED_EQUIVALENT_KEYS 1
#include <boost/unordered/detail/hash_table_impl.hpp>
#undef BOOST_UNORDERED_EQUIVALENT_KEYS
#define BOOST_UNORDERED_EQUIVALENT_KEYS 0
#include <boost/unordered/detail/hash_table_impl.hpp>
#undef BOOST_UNORDERED_EQUIVALENT_KEYS
namespace boost {
namespace unordered_detail {
class iterator_access
{
public:
template <class Iterator>
static BOOST_DEDUCED_TYPENAME Iterator::base const& get(Iterator const& it) {
return it.base_;
}
};
template <class ValueType, class KeyType,
class Hash, class Pred, class Alloc>
class hash_types_unique_keys
{
public:
typedef BOOST_DEDUCED_TYPENAME
boost::unordered_detail::rebind_wrap<Alloc, ValueType>::type
value_allocator;
typedef hash_table_unique_keys<ValueType, KeyType, Hash, Pred,
value_allocator> hash_table;
typedef hash_table_data_unique_keys<value_allocator> data;
typedef BOOST_DEDUCED_TYPENAME data::iterator_base iterator_base;
typedef hash_const_local_iterator_unique_keys<value_allocator> const_local_iterator;
typedef hash_local_iterator_unique_keys<value_allocator> local_iterator;
typedef hash_const_iterator_unique_keys<value_allocator> const_iterator;
typedef hash_iterator_unique_keys<value_allocator> iterator;
typedef BOOST_DEDUCED_TYPENAME data::size_type size_type;
typedef std::ptrdiff_t difference_type;
};
template <class ValueType, class KeyType,
class Hash, class Pred, class Alloc>
class hash_types_equivalent_keys
{
public:
typedef BOOST_DEDUCED_TYPENAME
boost::unordered_detail::rebind_wrap<Alloc, ValueType>::type
value_allocator;
typedef hash_table_equivalent_keys<ValueType, KeyType, Hash, Pred,
value_allocator> hash_table;
typedef hash_table_data_equivalent_keys<value_allocator> data;
typedef BOOST_DEDUCED_TYPENAME data::iterator_base iterator_base;
typedef hash_const_local_iterator_equivalent_keys<value_allocator> const_local_iterator;
typedef hash_local_iterator_equivalent_keys<value_allocator> local_iterator;
typedef hash_const_iterator_equivalent_keys<value_allocator> const_iterator;
typedef hash_iterator_equivalent_keys<value_allocator> iterator;
typedef BOOST_DEDUCED_TYPENAME data::size_type size_type;
typedef std::ptrdiff_t difference_type;
};
} // namespace boost::unordered_detail
} // namespace boost
#undef BOOST_UNORDERED_BORLAND_BOOL
#undef BOOST_UNORDERED_MSVC_RESET_PTR
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif // BOOST_UNORDERED_DETAIL_HASH_TABLE_HPP_INCLUDED

File diff suppressed because it is too large Load Diff

View File

@ -11,7 +11,7 @@
#ifndef BOOST_UNORDERED_DETAIL_MOVE_HEADER
#define BOOST_UNORDERED_DETAIL_MOVE_HEADER
#include <boost/config.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/or.hpp>
@ -20,7 +20,20 @@
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_class.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/unordered/detail/config.hpp>
#include <boost/detail/workaround.hpp>
/*************************************************************************************************/
#if defined(BOOST_NO_SFINAE)
# define BOOST_UNORDERED_NO_HAS_MOVE_ASSIGN
#elif defined(__GNUC__) && \
(__GNUC__ < 3 || __GNUC__ == 3 && __GNUC_MINOR__ <= 3)
# define BOOST_UNORDERED_NO_HAS_MOVE_ASSIGN
#elif BOOST_WORKAROUND(BOOST_INTEL, < 900) || \
BOOST_WORKAROUND(__EDG_VERSION__, < 304) || \
BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0593))
# define BOOST_UNORDERED_NO_HAS_MOVE_ASSIGN
#endif
/*************************************************************************************************/
@ -96,6 +109,8 @@ struct move_from
{
explicit move_from(T& x) : source(x) { }
T& source;
private:
move_from& operator=(move_from const&);
};
/*************************************************************************************************/

View File

@ -0,0 +1,226 @@
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This contains the basic data structure, apart from the actual values. There's
// no construction or deconstruction here. So this only depends on the pointer
// type.
#ifndef BOOST_UNORDERED_DETAIL_NODE_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_NODE_HPP_INCLUDED
#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/unordered/detail/fwd.hpp>
#if BOOST_WORKAROUND(__BORLANDC__, <= 0X0582)
#define BOOST_UNORDERED_BORLAND_BOOL(x) (bool)(x)
#else
#define BOOST_UNORDERED_BORLAND_BOOL(x) x
#endif
namespace boost { namespace unordered_detail {
////////////////////////////////////////////////////////////////////////////
// ungrouped node implementation
template <class A>
inline BOOST_DEDUCED_TYPENAME ungrouped_node_base<A>::node_ptr&
ungrouped_node_base<A>::next_group(node_ptr ptr)
{
return ptr->next_;
}
template <class A>
inline std::size_t ungrouped_node_base<A>::group_count(node_ptr)
{
return 1;
}
template <class A>
inline void ungrouped_node_base<A>::add_to_bucket(node_ptr n, bucket& b)
{
n->next_ = b.next_;
b.next_ = n;
}
template <class A>
inline void ungrouped_node_base<A>::add_after_node(node_ptr n,
node_ptr position)
{
n->next_ = position->next_;
position->next_ = position;
}
template <class A>
inline void ungrouped_node_base<A>::unlink_nodes(bucket& b,
node_ptr begin, node_ptr end)
{
node_ptr* pos = &b.next_;
while(*pos != begin) pos = &(*pos)->next_;
*pos = end;
}
template <class A>
inline void ungrouped_node_base<A>::unlink_nodes(bucket& b, node_ptr end)
{
b.next_ = end;
}
template <class A>
inline void ungrouped_node_base<A>::unlink_node(bucket& b, node_ptr n)
{
unlink_nodes(b, n, n->next_);
}
////////////////////////////////////////////////////////////////////////////
// grouped node implementation
// If ptr is the first element in a group, return pointer to next group.
// Otherwise returns a pointer to ptr.
template <class A>
inline BOOST_DEDUCED_TYPENAME grouped_node_base<A>::node_ptr&
grouped_node_base<A>::next_group(node_ptr ptr)
{
return get(ptr).group_prev_->next_;
}
template <class A>
inline BOOST_DEDUCED_TYPENAME grouped_node_base<A>::node_ptr
grouped_node_base<A>::first_in_group(node_ptr ptr)
{
while(next_group(ptr) == ptr)
ptr = get(ptr).group_prev_;
return ptr;
}
template <class A>
inline std::size_t grouped_node_base<A>::group_count(node_ptr ptr)
{
node_ptr start = ptr;
std::size_t size = 0;
do {
++size;
ptr = get(ptr).group_prev_;
} while(ptr != start);
return size;
}
template <class A>
inline void grouped_node_base<A>::add_to_bucket(node_ptr n, bucket& b)
{
n->next_ = b.next_;
get(n).group_prev_ = n;
b.next_ = n;
}
template <class A>
inline void grouped_node_base<A>::add_after_node(node_ptr n, node_ptr pos)
{
n->next_ = next_group(pos);
get(n).group_prev_ = get(pos).group_prev_;
next_group(pos) = n;
get(pos).group_prev_ = n;
}
// Break a ciruclar list into two, with split as the beginning
// of the second group (if split is at the beginning then don't
// split).
template <class A>
inline BOOST_DEDUCED_TYPENAME grouped_node_base<A>::node_ptr
grouped_node_base<A>::split_group(node_ptr split)
{
node_ptr first = first_in_group(split);
if(first == split) return split;
node_ptr last = get(first).group_prev_;
get(first).group_prev_ = get(split).group_prev_;
get(split).group_prev_ = last;
return first;
}
template <class A>
void grouped_node_base<A>::unlink_node(bucket& b, node_ptr n)
{
node_ptr next = n->next_;
node_ptr* pos = &next_group(n);
if(*pos != n) {
// The node is at the beginning of a group.
// Find the previous node pointer:
pos = &b.next_;
while(*pos != n) pos = &next_group(*pos);
// Remove from group
if(BOOST_UNORDERED_BORLAND_BOOL(next) &&
get(next).group_prev_ == n)
{
get(next).group_prev_ = get(n).group_prev_;
}
}
else if(BOOST_UNORDERED_BORLAND_BOOL(next) &&
get(next).group_prev_ == n)
{
// The deleted node is not at the end of the group, so
// change the link from the next node.
get(next).group_prev_ = get(n).group_prev_;
}
else {
// The deleted node is at the end of the group, so the
// first node in the group is pointing to it.
// Find that to change its pointer.
node_ptr x = get(n).group_prev_;
while(get(x).group_prev_ != n) {
x = get(x).group_prev_;
}
get(x).group_prev_ = get(n).group_prev_;
}
*pos = next;
}
template <class A>
void grouped_node_base<A>::unlink_nodes(bucket& b,
node_ptr begin, node_ptr end)
{
node_ptr* pos = &next_group(begin);
if(*pos != begin) {
// The node is at the beginning of a group.
// Find the previous node pointer:
pos = &b.next_;
while(*pos != begin) pos = &next_group(*pos);
// Remove from group
if(BOOST_UNORDERED_BORLAND_BOOL(end)) split_group(end);
}
else {
node_ptr group1 = split_group(begin);
if(BOOST_UNORDERED_BORLAND_BOOL(end)) {
node_ptr group2 = split_group(end);
if(begin == group2) {
node_ptr end1 = get(group1).group_prev_;
node_ptr end2 = get(group2).group_prev_;
get(group1).group_prev_ = end2;
get(group2).group_prev_ = end1;
}
}
}
*pos = end;
}
template <class A>
void grouped_node_base<A>::unlink_nodes(bucket& b, node_ptr end)
{
split_group(end);
b.next_ = end;
}
}}
#endif

View File

@ -0,0 +1,740 @@
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_ALL_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_ALL_HPP_INCLUDED
#include <cstddef>
#include <stdexcept>
#include <algorithm>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/unordered/detail/buckets.hpp>
#include <boost/unordered/detail/util.hpp>
namespace boost { namespace unordered_detail {
////////////////////////////////////////////////////////////////////////////
// Helper methods
// strong exception safety, no side effects
template <class H, class P, class A, class G, class K>
inline bool hash_table<H, P, A, G, K>::equal(
key_type const& k, value_type const& v) const
{
return this->key_eq()(k, get_key(v));
}
// strong exception safety, no side effects
template <class H, class P, class A, class G, class K>
inline BOOST_DEDUCED_TYPENAME hash_table<H, P, A, G, K>::node_ptr
hash_table<H, P, A, G, K>::find_iterator(
bucket_ptr bucket, key_type const& k) const
{
node_ptr it = bucket->next_;
while (BOOST_UNORDERED_BORLAND_BOOL(it) &&
!equal(k, node::get_value(it)))
{
it = node::next_group(it);
}
return it;
}
// strong exception safety, no side effects
// pre: this->buckets_
template <class H, class P, class A, class G, class K>
inline BOOST_DEDUCED_TYPENAME hash_table<H, P, A, G, K>::node_ptr
hash_table<H, P, A, G, K>::find_iterator(key_type const& k) const
{
return find_iterator(this->get_bucket(this->bucket_index(k)), k);
}
// strong exception safety, no side effects
template <class H, class P, class A, class G, class K>
inline BOOST_DEDUCED_TYPENAME hash_table<H, P, A, G, K>::node_ptr*
hash_table<H, P, A, G, K>::find_for_erase(
bucket_ptr bucket, key_type const& k) const
{
node_ptr* it = &bucket->next_;
while(BOOST_UNORDERED_BORLAND_BOOL(*it) &&
!equal(k, node::get_value(*it)))
{
it = &node::next_group(*it);
}
return it;
}
////////////////////////////////////////////////////////////////////////////
// Load methods
// no throw
template <class H, class P, class A, class G, class K>
std::size_t hash_table<H, P, A, G, K>::max_size() const
{
using namespace std;
// size < mlf_ * count
return double_to_size_t(ceil(
(double) this->mlf_ * this->max_bucket_count())) - 1;
}
// strong safety
template <class H, class P, class A, class G, class K>
inline std::size_t hash_table<H, P, A, G, K>::bucket_index(
key_type const& k) const
{
// hash_function can throw:
return this->hash_function()(k) % this->bucket_count_;
}
// no throw
template <class H, class P, class A, class G, class K>
inline std::size_t hash_table<H, P, A, G, K>::calculate_max_load()
{
using namespace std;
// From 6.3.1/13:
// Only resize when size >= mlf_ * count
return double_to_size_t(ceil((double) mlf_ * this->bucket_count_));
}
template <class H, class P, class A, class G, class K>
void hash_table<H, P, A, G, K>::max_load_factor(float z)
{
BOOST_ASSERT(z > 0);
mlf_ = (std::max)(z, minimum_max_load_factor);
this->max_load_ = this->calculate_max_load();
}
// no throw
template <class H, class P, class A, class G, class K>
inline std::size_t hash_table<H, P, A, G, K>::min_buckets_for_size(
std::size_t size) const
{
BOOST_ASSERT(this->mlf_ != 0);
using namespace std;
// From 6.3.1/13:
// size < mlf_ * count
// => count > size / mlf_
//
// Or from rehash post-condition:
// count > size / mlf_
return next_prime(double_to_size_t(floor(size / (double) mlf_)) + 1);
}
////////////////////////////////////////////////////////////////////////////
// recompute_begin_bucket
// init_buckets
template <class H, class P, class A, class G, class K>
inline void hash_table<H, P, A, G, K>::init_buckets()
{
if (this->size_) {
this->cached_begin_bucket_ = this->buckets_;
while (!this->cached_begin_bucket_->next_)
++this->cached_begin_bucket_;
} else {
this->cached_begin_bucket_ = this->get_bucket(this->bucket_count_);
}
this->max_load_ = calculate_max_load();
}
// After an erase cached_begin_bucket_ might be left pointing to
// an empty bucket, so this is called to update it
//
// no throw
template <class H, class P, class A, class G, class K>
inline void hash_table<H, P, A, G, K>::recompute_begin_bucket(bucket_ptr b)
{
BOOST_ASSERT(!(b < this->cached_begin_bucket_));
if(b == this->cached_begin_bucket_)
{
if (this->size_ != 0) {
while (!this->cached_begin_bucket_->next_)
++this->cached_begin_bucket_;
} else {
this->cached_begin_bucket_ =
this->get_bucket(this->bucket_count_);
}
}
}
// This is called when a range has been erased
//
// no throw
template <class H, class P, class A, class G, class K>
inline void hash_table<H, P, A, G, K>::recompute_begin_bucket(
bucket_ptr b1, bucket_ptr b2)
{
BOOST_ASSERT(!(b1 < this->cached_begin_bucket_) && !(b2 < b1));
BOOST_ASSERT(BOOST_UNORDERED_BORLAND_BOOL(b2->next_));
if(b1 == this->cached_begin_bucket_ && !b1->next_)
this->cached_begin_bucket_ = b2;
}
// no throw
template <class H, class P, class A, class G, class K>
inline float hash_table<H, P, A, G, K>::load_factor() const
{
BOOST_ASSERT(this->bucket_count_ != 0);
return static_cast<float>(this->size_)
/ static_cast<float>(this->bucket_count_);
}
////////////////////////////////////////////////////////////////////////////
// Constructors
template <class H, class P, class A, class G, class K>
hash_table<H, P, A, G, K>::hash_table(std::size_t num_buckets,
hasher const& hf, key_equal const& eq, node_allocator const& a)
: buckets(a, next_prime(num_buckets)),
base(hf, eq),
size_(),
mlf_(1.0f),
cached_begin_bucket_(),
max_load_(0)
{
}
// Copy Construct with allocator
template <class H, class P, class A, class G, class K>
hash_table<H, P, A, G, K>::hash_table(hash_table const& x,
node_allocator const& a)
: buckets(a, x.min_buckets_for_size(x.size_)),
base(x),
size_(x.size_),
mlf_(x.mlf_),
cached_begin_bucket_(),
max_load_(0)
{
if(x.size_) {
x.copy_buckets_to(*this);
this->init_buckets();
}
}
// Move Construct
template <class H, class P, class A, class G, class K>
hash_table<H, P, A, G, K>::hash_table(hash_table& x, move_tag)
: buckets(x.node_alloc(), x.bucket_count_),
base(x),
size_(0),
mlf_(1.0f),
cached_begin_bucket_(),
max_load_(0)
{
this->partial_swap(x);
}
template <class H, class P, class A, class G, class K>
hash_table<H, P, A, G, K>::hash_table(hash_table& x,
node_allocator const& a, move_tag)
: buckets(a, x.bucket_count_),
base(x),
size_(0),
mlf_(x.mlf_),
cached_begin_bucket_(),
max_load_(0)
{
if(a == x.node_alloc()) {
this->partial_swap(x);
}
else if(x.size_) {
x.copy_buckets_to(*this);
this->size_ = x.size_;
this->init_buckets();
}
}
template <class H, class P, class A, class G, class K>
hash_table<H, P, A, G, K>& hash_table<H, P, A, G, K>::operator=(
hash_table const& x)
{
hash_table tmp(x, this->node_alloc());
this->fast_swap(tmp);
return *this;
}
////////////////////////////////////////////////////////////////////////////
// Swap & Move
// Swap
//
// Strong exception safety
//
// Can throw if hash or predicate object's copy constructor throws
// or if allocators are unequal.
template <class H, class P, class A, class G, class K>
inline void hash_table<H, P, A, G, K>::partial_swap(hash_table& x)
{
this->buckets::swap(x); // No throw
std::swap(this->size_, x.size_);
std::swap(this->mlf_, x.mlf_);
std::swap(this->cached_begin_bucket_, x.cached_begin_bucket_);
std::swap(this->max_load_, x.max_load_);
}
template <class H, class P, class A, class G, class K>
inline void hash_table<H, P, A, G, K>::fast_swap(hash_table& x)
{
// These can throw, but they only affect the function objects
// that aren't in use so it is strongly exception safe, via.
// double buffering.
{
set_hash_functions<H, P> op1(*this, x);
set_hash_functions<H, P> op2(x, *this);
op1.commit();
op2.commit();
}
this->buckets::swap(x); // No throw
std::swap(this->size_, x.size_);
std::swap(this->mlf_, x.mlf_);
std::swap(this->cached_begin_bucket_, x.cached_begin_bucket_);
std::swap(this->max_load_, x.max_load_);
}
template <class H, class P, class A, class G, class K>
inline void hash_table<H, P, A, G, K>::slow_swap(hash_table& x)
{
if(this == &x) return;
{
// These can throw, but they only affect the function objects
// that aren't in use so it is strongly exception safe, via.
// double buffering.
set_hash_functions<H, P> op1(*this, x);
set_hash_functions<H, P> op2(x, *this);
// Create new buckets in separate hash_buckets objects
// which will clean up if anything throws an exception.
// (all can throw, but with no effect as these are new objects).
buckets b1(this->node_alloc(), x.min_buckets_for_size(x.size_));
if(x.size_) x.copy_buckets_to(b1);
buckets b2(x.node_alloc(), this->min_buckets_for_size(this->size_));
if(this->size_) copy_buckets_to(b2);
// Modifying the data, so no throw from now on.
b1.swap(*this);
b2.swap(x);
op1.commit();
op2.commit();
}
std::swap(this->size_, x.size_);
if(this->buckets_) this->init_buckets();
if(x.buckets_) x.init_buckets();
}
template <class H, class P, class A, class G, class K>
void hash_table<H, P, A, G, K>::swap(hash_table& x)
{
if(this->node_alloc() == x.node_alloc()) {
if(this != &x) this->fast_swap(x);
}
else {
this->slow_swap(x);
}
}
// Move
//
// Strong exception safety (might change unused function objects)
//
// Can throw if hash or predicate object's copy constructor throws
// or if allocators are unequal.
template <class H, class P, class A, class G, class K>
void hash_table<H, P, A, G, K>::move(hash_table& x)
{
// This can throw, but it only affects the function objects
// that aren't in use so it is strongly exception safe, via.
// double buffering.
set_hash_functions<H, P> new_func_this(*this, x);
if(this->node_alloc() == x.node_alloc()) {
this->buckets::move(x); // no throw
this->size_ = x.size_;
this->cached_begin_bucket_ = x.cached_begin_bucket_;
this->max_load_ = x.max_load_;
x.size_ = 0;
}
else {
// Create new buckets in separate HASH_TABLE_DATA objects
// which will clean up if anything throws an exception.
// (all can throw, but with no effect as these are new objects).
buckets b(this->node_alloc(), x.min_buckets_for_size(x.size_));
if(x.size_) x.copy_buckets_to(b);
// Start updating the data here, no throw from now on.
this->size_ = x.size_;
b.swap(*this);
this->init_buckets();
}
// We've made it, the rest is no throw.
this->mlf_ = x.mlf_;
new_func_this.commit();
}
////////////////////////////////////////////////////////////////////////////
// Reserve & Rehash
// basic exception safety
template <class H, class P, class A, class G, class K>
inline void hash_table<H, P, A, G, K>::create_for_insert(std::size_t size)
{
this->bucket_count_ = (std::max)(this->bucket_count_,
this->min_buckets_for_size(size));
this->create_buckets();
this->init_buckets();
}
// basic exception safety
template <class H, class P, class A, class G, class K>
inline bool hash_table<H, P, A, G, K>::reserve_for_insert(std::size_t size)
{
if(size >= max_load_) {
std::size_t num_buckets
= this->min_buckets_for_size((std::max)(size,
this->size_ + (this->size_ >> 1)));
if(num_buckets != this->bucket_count_) {
rehash_impl(num_buckets);
return true;
}
}
return false;
}
// if hash function throws, basic exception safety
// strong otherwise.
// TODO: Should this always create buckets?
template <class H, class P, class A, class G, class K>
inline void hash_table<H, P, A, G, K>::rehash(std::size_t min_buckets)
{
using namespace std;
if(!this->buckets_) {
this->bucket_count_ = next_prime(min_buckets);
this->create_buckets();
this->init_buckets();
}
else {
// no throw:
// TODO: Needlessly calling next_prime twice.
min_buckets = (std::max)(
next_prime(min_buckets),
this->min_buckets_for_size(this->size_));
if(min_buckets != this->bucket_count_) rehash_impl(min_buckets);
}
}
// if hash function throws, basic exception safety
// strong otherwise
template <class H, class P, class A, class G, class K>
void hash_table<H, P, A, G, K>
::rehash_impl(std::size_t num_buckets)
{
hasher const& hf = this->hash_function();
std::size_t size = this->size_;
bucket_ptr end = this->get_bucket(this->bucket_count_);
buckets dst(this->node_alloc(), num_buckets);
dst.create_buckets();
buckets src(this->node_alloc(), this->bucket_count_);
src.swap(*this);
this->size_ = 0;
for(bucket_ptr bucket = this->cached_begin_bucket_;
bucket != end; ++bucket)
{
node_ptr group = bucket->next_;
while(group) {
// Move the first group of equivalent nodes in bucket to dst.
// This next line throws iff the hash function throws.
bucket_ptr dst_bucket = dst.bucket_ptr_from_hash(
hf(get_key_from_ptr(group)));
node_ptr& next_group = node::next_group(group);
bucket->next_ = next_group;
next_group = dst_bucket->next_;
dst_bucket->next_ = group;
group = bucket->next_;
}
}
// Swap the new nodes back into the container and setup the local
// variables.
this->size_ = size;
dst.swap(*this); // no throw
this->init_buckets();
}
////////////////////////////////////////////////////////////////////////////
// copy_buckets_to
// copy_buckets_to
//
// basic excpetion safety. If an exception is thrown this will
// leave dst partially filled.
template <class H, class P, class A, class G, class K>
void hash_table<H, P, A, G, K>
::copy_buckets_to(buckets& dst) const
{
BOOST_ASSERT(this->buckets_ && !dst.buckets_);
hasher const& hf = this->hash_function();
bucket_ptr end = this->get_bucket(this->bucket_count_);
hash_node_constructor<A, G> a(dst);
dst.create_buckets();
// no throw:
for(bucket_ptr i = this->cached_begin_bucket_; i != end; ++i) {
// no throw:
for(node_ptr it = i->next_; it;) {
// hash function can throw.
bucket_ptr dst_bucket = dst.bucket_ptr_from_hash(
hf(get_key_from_ptr(it)));
// throws, strong
node_ptr group_end = node::next_group(it);
a.construct(node::get_value(it));
node_ptr n = a.release();
node::add_to_bucket(n, *dst_bucket);
for(it = it->next_; it != group_end; it = it->next_) {
a.construct(node::get_value(it));
node::add_after_node(a.release(), n);
}
}
}
}
////////////////////////////////////////////////////////////////////////////
// Misc. key methods
// strong exception safety
// count
//
// strong exception safety, no side effects
template <class H, class P, class A, class G, class K>
std::size_t hash_table<H, P, A, G, K>::count(key_type const& k) const
{
if(!this->size_) return 0;
node_ptr it = find_iterator(k); // throws, strong
return BOOST_UNORDERED_BORLAND_BOOL(it) ? node::group_count(it) : 0;
}
// find
//
// strong exception safety, no side effects
template <class H, class P, class A, class G, class K>
BOOST_DEDUCED_TYPENAME hash_table<H, P, A, G, K>::iterator_base
hash_table<H, P, A, G, K>::find(key_type const& k) const
{
if(!this->size_) return this->end();
bucket_ptr bucket = this->get_bucket(this->bucket_index(k));
node_ptr it = find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(it))
return iterator_base(bucket, it);
else
return this->end();
}
template <class H, class P, class A, class G, class K>
BOOST_DEDUCED_TYPENAME A::value_type&
hash_table<H, P, A, G, K>::at(key_type const& k) const
{
if(!this->size_)
throw std::out_of_range("Unable to find key in unordered_map.");
bucket_ptr bucket = this->get_bucket(this->bucket_index(k));
node_ptr it = find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(it))
return node::get_value(it);
else
throw std::out_of_range("Unable to find key in unordered_map.");
}
// equal_range
//
// strong exception safety, no side effects
template <class H, class P, class A, class G, class K>
BOOST_DEDUCED_TYPENAME hash_table<H, P, A, G, K>::iterator_pair
hash_table<H, P, A, G, K>::equal_range(key_type const& k) const
{
if(!this->size_)
return iterator_pair(this->end(), this->end());
bucket_ptr bucket = this->get_bucket(this->bucket_index(k));
node_ptr it = find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(it)) {
iterator_base first(iterator_base(bucket, it));
iterator_base second(first);
second.increment_bucket(node::next_group(second.node_));
return iterator_pair(first, second);
}
else {
return iterator_pair(this->end(), this->end());
}
}
////////////////////////////////////////////////////////////////////////////
// Erase methods
template <class H, class P, class A, class G, class K>
void hash_table<H, P, A, G, K>::clear()
{
// TODO: Is this check needed when called internally?
if(!this->size_) return;
bucket_ptr end = this->get_bucket(this->bucket_count_);
for(bucket_ptr begin = this->buckets_; begin != end; ++begin) {
this->clear_bucket(begin);
}
this->size_ = 0;
this->cached_begin_bucket_ = end;
}
template <class H, class P, class A, class G, class K>
inline std::size_t hash_table<H, P, A, G, K>::erase_group(
node_ptr* it, bucket_ptr bucket)
{
node_ptr pos = *it;
node_ptr end = node::next_group(pos);
*it = end;
std::size_t count = this->delete_nodes(pos, end);
this->size_ -= count;
this->recompute_begin_bucket(bucket);
return count;
}
template <class H, class P, class A, class G, class K>
std::size_t hash_table<H, P, A, G, K>
::erase_key(key_type const& k)
{
if(!this->size_) return 0;
// No side effects in initial section
bucket_ptr bucket = this->get_bucket(this->bucket_index(k));
node_ptr* it = this->find_for_erase(bucket, k);
// No throw.
return *it ? this->erase_group(it, bucket) : 0;
}
template <class H, class P, class A, class G, class K>
BOOST_DEDUCED_TYPENAME hash_table<H, P, A, G, K>::iterator_base
hash_table<H, P, A, G, K>::erase(iterator_base r)
{
BOOST_ASSERT(r.node_);
iterator_base next = r;
next.increment();
--this->size_;
node::unlink_node(*r.bucket_, r.node_);
this->delete_node(r.node_);
// r has been invalidated but its bucket is still valid
this->recompute_begin_bucket(r.bucket_, next.bucket_);
return next;
}
template <class H, class P, class A, class G, class K>
BOOST_DEDUCED_TYPENAME hash_table<H, P, A, G, K>::iterator_base
hash_table<H, P, A, G, K>::erase_range(
iterator_base r1, iterator_base r2)
{
if(r1 != r2)
{
BOOST_ASSERT(r1.node_);
if (r1.bucket_ == r2.bucket_) {
node::unlink_nodes(*r1.bucket_, r1.node_, r2.node_);
this->size_ -= this->delete_nodes(r1.node_, r2.node_);
// No need to call recompute_begin_bucket because
// the nodes are only deleted from one bucket, which
// still contains r2 after the erase.
BOOST_ASSERT(r1.bucket_->next_);
}
else {
bucket_ptr end_bucket = r2.node_ ?
r2.bucket_ : this->get_bucket(this->bucket_count_);
BOOST_ASSERT(r1.bucket_ < end_bucket);
node::unlink_nodes(*r1.bucket_, r1.node_, node_ptr());
this->size_ -= this->delete_nodes(r1.node_, node_ptr());
bucket_ptr i = r1.bucket_;
for(++i; i != end_bucket; ++i) {
this->size_ -= this->delete_nodes(i->next_, node_ptr());
i->next_ = node_ptr();
}
if(r2.node_) {
node_ptr first = r2.bucket_->next_;
node::unlink_nodes(*r2.bucket_, r2.node_);
this->size_ -= this->delete_nodes(first, r2.node_);
}
// r1 has been invalidated but its bucket is still
// valid.
this->recompute_begin_bucket(r1.bucket_, end_bucket);
}
}
return r2;
}
template <class H, class P, class A, class G, class K>
BOOST_DEDUCED_TYPENAME hash_table<H, P, A, G, K>::iterator_base
hash_table<H, P, A, G, K>::emplace_empty_impl_with_node(
node_constructor& a, std::size_t size)
{
key_type const& k = get_key(a.value());
std::size_t hash_value = this->hash_function()(k);
if(this->buckets_) this->reserve_for_insert(size);
else this->create_for_insert(size);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr n = a.release();
node::add_to_bucket(n, *bucket);
++this->size_;
this->cached_begin_bucket_ = bucket;
return iterator_base(bucket, n);
}
}}
#endif

View File

@ -0,0 +1,389 @@
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED
#include <boost/unordered/detail/table.hpp>
#include <boost/unordered/detail/extract_key.hpp>
namespace boost { namespace unordered_detail {
////////////////////////////////////////////////////////////////////////////
// Equality
template <class H, class P, class A, class K>
bool hash_unique_table<H, P, A, K>
::equals(hash_unique_table<H, P, A, K> const& other) const
{
if(this->size_ != other.size_) return false;
if(!this->size_) return true;
bucket_ptr end = this->get_bucket(this->bucket_count_);
for(bucket_ptr i = this->cached_begin_bucket_; i != end; ++i)
{
node_ptr it1 = i->next_;
while(BOOST_UNORDERED_BORLAND_BOOL(it1))
{
node_ptr it2 = other.find_iterator(get_key_from_ptr(it1));
if(!BOOST_UNORDERED_BORLAND_BOOL(it2)) return false;
if(!extractor::compare_mapped(
node::get_value(it1), node::get_value(it2)))
return false;
it1 = it1->next_;
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////
// A convenience method for adding nodes.
template <class H, class P, class A, class K>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::node_ptr
hash_unique_table<H, P, A, K>::add_node(node_constructor& a,
bucket_ptr bucket)
{
node_ptr n = a.release();
node::add_to_bucket(n, *bucket);
++this->size_;
if(bucket < this->cached_begin_bucket_)
this->cached_begin_bucket_ = bucket;
return n;
}
////////////////////////////////////////////////////////////////////////////
// Insert methods
// if hash function throws, basic exception safety
// strong otherwise
template <class H, class P, class A, class K>
BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::value_type&
hash_unique_table<H, P, A, K>::operator[](key_type const& k)
{
typedef BOOST_DEDUCED_TYPENAME value_type::second_type mapped_type;
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
if(!this->buckets_) {
node_constructor a(*this);
a.construct_pair(k, (mapped_type*) 0);
return *this->emplace_empty_impl_with_node(a, 1);
}
node_ptr pos = find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
return node::get_value(pos);
}
else {
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct_pair(k, (mapped_type*) 0);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return node::get_value(add_node(a, bucket));
}
}
template <class H, class P, class A, class K>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::emplace_return
hash_unique_table<H, P, A, K>
::emplace_impl_with_node(node_constructor& a)
{
// No side effects in this initial code
key_type const& k = get_key(a.value());
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Found an existing key, return it (no throw).
return emplace_return(iterator_base(bucket, pos), false);
} else {
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return emplace_return(
iterator_base(bucket, add_node(a, bucket)),
true);
}
}
#if defined(BOOST_UNORDERED_STD_FORWARD)
template <class H, class P, class A, class K>
template<class... Args>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::emplace_return
hash_unique_table<H, P, A, K>::emplace_impl(key_type const& k,
Args&&... args)
{
// No side effects in this initial code
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Found an existing key, return it (no throw).
return emplace_return(iterator_base(bucket, pos), false);
} else {
// Doesn't already exist, add to bucket.
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return emplace_return(
iterator_base(bucket, add_node(a, bucket)),
true);
}
}
template <class H, class P, class A, class K>
template<class... Args>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::emplace_return
hash_unique_table<H, P, A, K>::emplace_impl(no_key, Args&&... args)
{
// Construct the node regardless - in order to get the key.
// It will be discarded if it isn't used
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_impl_with_node(a);
}
template <class H, class P, class A, class K>
template<class... Args>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::emplace_return
hash_unique_table<H, P, A, K>::emplace_empty_impl(Args&&... args)
{
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_return(this->emplace_empty_impl_with_node(a, 1), true);
}
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <class H, class P, class A, class K> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline BOOST_DEDUCED_TYPENAME \
hash_unique_table<H, P, A, K>::emplace_return \
hash_unique_table<H, P, A, K>::emplace_impl( \
key_type const& k, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
std::size_t hash_value = this->hash_function()(k); \
bucket_ptr bucket \
= this->bucket_ptr_from_hash(hash_value); \
node_ptr pos = find_iterator(bucket, k); \
\
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) { \
return emplace_return(iterator_base(bucket, pos), false); \
} else { \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
\
if(this->reserve_for_insert(this->size_ + 1)) \
bucket = this->bucket_ptr_from_hash(hash_value); \
\
return emplace_return(iterator_base(bucket, \
add_node(a, bucket)), true); \
} \
} \
\
template <class H, class P, class A, class K> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline BOOST_DEDUCED_TYPENAME \
hash_unique_table<H, P, A, K>::emplace_return \
hash_unique_table<H, P, A, K>:: \
emplace_impl(no_key, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_impl_with_node(a); \
} \
\
template <class H, class P, class A, class K> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline BOOST_DEDUCED_TYPENAME \
hash_unique_table<H, P, A, K>::emplace_return \
hash_unique_table<H, P, A, K>:: \
emplace_empty_impl( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_return(this->emplace_empty_impl_with_node(a, 1), true); \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
#if defined(BOOST_UNORDERED_STD_FORWARD)
// Emplace (unique keys)
// (I'm using an overloaded emplace for both 'insert' and 'emplace')
// if hash function throws, basic exception safety
// strong otherwise
template <class H, class P, class A, class K>
template<class... Args>
BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::emplace_return
hash_unique_table<H, P, A, K>::emplace(Args&&... args)
{
return this->size_ ?
emplace_impl(
extractor::extract(std::forward<Args>(args)...),
std::forward<Args>(args)...) :
emplace_empty_impl(std::forward<Args>(args)...);
}
#else
template <class H, class P, class A, class K>
template <class Arg0>
BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::emplace_return
hash_unique_table<H, P, A, K>::emplace(Arg0 const& arg0)
{
return this->size_ ?
emplace_impl(extractor::extract(arg0), arg0) :
emplace_empty_impl(arg0);
}
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <class H, class P, class A, class K> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
BOOST_DEDUCED_TYPENAME hash_unique_table<H, P, A, K>::emplace_return \
hash_unique_table<H, P, A, K>::emplace( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
return this->size_ ? \
emplace_impl(extractor::extract(arg0, arg1), \
BOOST_UNORDERED_CALL_PARAMS(z, num_params)) : \
emplace_empty_impl( \
BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
}
BOOST_PP_REPEAT_FROM_TO(2, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
////////////////////////////////////////////////////////////////////////////
// Insert range methods
template <class H, class P, class A, class K>
template <class InputIt>
inline void hash_unique_table<H, P, A, K>::insert_range_impl(
key_type const&, InputIt i, InputIt j)
{
node_constructor a(*this);
if(!this->size_) {
a.construct(*i);
this->emplace_empty_impl_with_node(a, 1);
++i;
if(i == j) return;
}
do {
// No side effects in this initial code
// Note: can't use get_key as '*i' might not be value_type.
// TODO: Check if std::pair has an appropriate constructor. If not
// that might not be true.
// TODO: Test this line better.
key_type const& k = extractor::extract(*i);
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = find_iterator(bucket, k);
if (!BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Doesn't already exist, add to bucket.
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
a.construct(*i);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->size_ + 1 >= this->max_load_) {
this->reserve_for_insert(this->size_ + insert_size(i, j));
bucket = this->bucket_ptr_from_hash(hash_value);
}
// Nothing after this point can throw.
add_node(a, bucket);
}
} while(++i != j);
}
template <class H, class P, class A, class K>
template <class InputIt>
inline void hash_unique_table<H, P, A, K>::insert_range_impl(
no_key, InputIt i, InputIt j)
{
node_constructor a(*this);
if(!this->size_) {
a.construct(*i);
this->emplace_empty_impl_with_node(a, 1);
++i;
if(i == j) return;
}
do {
// No side effects in this initial code
a.construct(*i);
emplace_impl_with_node(a);
} while(++i != j);
}
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
template <class H, class P, class A, class K>
template <class InputIt>
void hash_unique_table<H, P, A, K>::insert_range(InputIt i, InputIt j)
{
if(i != j)
return insert_range_impl(extractor::extract(*i), i, j);
}
}}
#endif

View File

@ -0,0 +1,320 @@
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_UTIL_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_UTIL_HPP_INCLUDED
#include <cstddef>
#include <utility>
#include <algorithm>
#include <boost/limits.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/preprocessor/seq/size.hpp>
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/unordered/detail/fwd.hpp>
namespace boost { namespace unordered_detail {
////////////////////////////////////////////////////////////////////////////
// convert double to std::size_t
inline std::size_t double_to_size_t(double f)
{
return f >= static_cast<double>(
(std::numeric_limits<std::size_t>::max)()) ?
(std::numeric_limits<std::size_t>::max)() :
static_cast<std::size_t>(f);
}
////////////////////////////////////////////////////////////////////////////
// primes
template<class T> struct prime_list_template
{
static std::size_t const value[];
static std::ptrdiff_t const length;
};
#define BOOST_UNORDERED_PRIMES \
(5ul)(11ul)(17ul)(29ul)(37ul)(53ul)(67ul)(79ul) \
(97ul)(131ul)(193ul)(257ul)(389ul)(521ul)(769ul) \
(1031ul)(1543ul)(2053ul)(3079ul)(6151ul)(12289ul)(24593ul) \
(49157ul)(98317ul)(196613ul)(393241ul)(786433ul) \
(1572869ul)(3145739ul)(6291469ul)(12582917ul)(25165843ul) \
(50331653ul)(100663319ul)(201326611ul)(402653189ul)(805306457ul) \
(1610612741ul)(3221225473ul)(4294967291ul)
template<class T>
std::size_t const prime_list_template<T>::value[] = {
BOOST_PP_SEQ_ENUM(BOOST_UNORDERED_PRIMES)
};
template<class T>
std::ptrdiff_t const prime_list_template<T>::length
= BOOST_PP_SEQ_SIZE(BOOST_UNORDERED_PRIMES);
#undef BOOST_UNORDERED_PRIMES
typedef prime_list_template<std::size_t> prime_list;
// no throw
inline std::size_t next_prime(std::size_t num) {
std::size_t const* const prime_list_begin = prime_list::value;
std::size_t const* const prime_list_end = prime_list_begin +
prime_list::length;
std::size_t const* bound =
std::lower_bound(prime_list_begin, prime_list_end, num);
if(bound == prime_list_end)
bound--;
return *bound;
}
// no throw
inline std::size_t prev_prime(std::size_t num) {
std::size_t const* const prime_list_begin = prime_list::value;
std::size_t const* const prime_list_end = prime_list_begin +
prime_list::length;
std::size_t const* bound =
std::upper_bound(prime_list_begin,prime_list_end, num);
if(bound != prime_list_begin)
bound--;
return *bound;
}
////////////////////////////////////////////////////////////////////////////
// pair_cast - because some libraries don't have the full pair constructors.
template <class Dst1, class Dst2, class Src1, class Src2>
inline std::pair<Dst1, Dst2> pair_cast(std::pair<Src1, Src2> const& x)
{
return std::pair<Dst1, Dst2>(Dst1(x.first), Dst2(x.second));
}
////////////////////////////////////////////////////////////////////////////
// insert_size/initial_size
#if !defined(BOOST_NO_STD_DISTANCE)
using ::std::distance;
#else
template <class ForwardIterator>
inline std::size_t distance(ForwardIterator i, ForwardIterator j) {
std::size_t x;
std::distance(i, j, x);
return x;
}
#endif
template <class I>
inline std::size_t insert_size(I i, I j, boost::forward_traversal_tag)
{
return std::distance(i, j);
}
template <class I>
inline std::size_t insert_size(I, I, boost::incrementable_traversal_tag)
{
return 1;
}
template <class I>
inline std::size_t insert_size(I i, I j)
{
BOOST_DEDUCED_TYPENAME boost::iterator_traversal<I>::type
iterator_traversal_tag;
return insert_size(i, j, iterator_traversal_tag);
}
template <class I>
inline std::size_t initial_size(I i, I j,
std::size_t num_buckets = boost::unordered_detail::default_bucket_count)
{
return (std::max)(static_cast<std::size_t>(insert_size(i, j)) + 1,
num_buckets);
}
////////////////////////////////////////////////////////////////////////////
// Node Constructors
#if defined(BOOST_UNORDERED_STD_FORWARD)
template <class T, class... Args>
inline void construct_impl(T*, void* address, Args&&... args)
{
new(address) T(std::forward<Args>(args)...);
}
#if defined(BOOST_UNORDERED_CPP0X_PAIR)
template <class First, class Second, class Key, class Arg0, class... Args>
inline void construct_impl(std::pair<First, Second>*, void* address,
Key&& k, Arg0&& arg0, Args&&... args)
)
{
new(address) std::pair<First, Second>(k,
Second(arg0, std::forward<Args>(args)...);
}
#endif
#else
#define BOOST_UNORDERED_CONSTRUCT_IMPL(z, num_params, _) \
template < \
class T, \
BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params) \
> \
inline void construct_impl( \
T*, void* address, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params) \
) \
{ \
new(address) T( \
BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
} \
\
template <class First, class Second, class Key, \
BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params) \
> \
inline void construct_impl( \
std::pair<First, Second>*, void* address, \
Key const& k, BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
new(address) std::pair<First, Second>(k, \
Second(BOOST_UNORDERED_CALL_PARAMS(z, num_params))); \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_CONSTRUCT_IMPL, _)
#undef BOOST_UNORDERED_CONSTRUCT_IMPL
#endif
// hash_node_constructor
//
// Used to construct nodes in an exception safe manner.
template <class Alloc, class Grouped>
class hash_node_constructor
{
typedef hash_buckets<Alloc, Grouped> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef BOOST_DEDUCED_TYPENAME buckets::real_node_ptr real_node_ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::value_type value_type;
buckets& buckets_;
real_node_ptr node_;
bool node_constructed_;
bool value_constructed_;
public:
hash_node_constructor(buckets& m) :
buckets_(m),
node_(),
node_constructed_(false),
value_constructed_(false)
{
}
~hash_node_constructor();
void construct_preamble();
#if defined(BOOST_UNORDERED_STD_FORWARD)
template <class... Args>
void construct(Args&&... args)
{
construct_preamble();
construct_impl((value_type*) 0, node_->address(),
std::forward<Args>(args)...);
value_constructed_ = true;
}
#else
#define BOOST_UNORDERED_CONSTRUCT(z, num_params, _) \
template < \
BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params) \
> \
void construct( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params) \
) \
{ \
construct_preamble(); \
construct_impl( \
(value_type*) 0, node_->address(), \
BOOST_UNORDERED_CALL_PARAMS(z, num_params) \
); \
value_constructed_ = true; \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_CONSTRUCT, _)
#undef BOOST_UNORDERED_CONSTRUCT
#endif
template <class K, class M>
void construct_pair(K const& k, M*)
{
construct_preamble();
new(node_->address()) value_type(k, M());
value_constructed_ = true;
}
value_type& value() const
{
BOOST_ASSERT(node_);
return node_->value();
}
// no throw
BOOST_DEDUCED_TYPENAME buckets::node_ptr release()
{
real_node_ptr p = node_;
node_ = real_node_ptr();
// node_ptr cast
return buckets_.bucket_alloc().address(*p);
}
private:
hash_node_constructor(hash_node_constructor const&);
hash_node_constructor& operator=(hash_node_constructor const&);
};
// hash_node_constructor
template <class Alloc, class Grouped>
inline hash_node_constructor<Alloc, Grouped>::~hash_node_constructor()
{
if (node_) {
if (value_constructed_) {
boost::unordered_detail::destroy(&node_->value());
}
if (node_constructed_)
buckets_.node_alloc().destroy(node_);
buckets_.node_alloc().deallocate(node_, 1);
}
}
template <class Alloc, class Grouped>
inline void hash_node_constructor<Alloc, Grouped>::construct_preamble()
{
if(!node_) {
node_constructed_ = false;
value_constructed_ = false;
node_ = buckets_.node_alloc().allocate(1);
buckets_.node_alloc().construct(node_, node());
node_constructed_ = true;
}
else {
BOOST_ASSERT(node_constructed_ && value_constructed_);
boost::unordered_detail::destroy(&node_->value());
value_constructed_ = false;
}
}
}}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -3,5 +3,7 @@
# Distributed under the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
import testing ;
build-project unordered ;
build-project exception ;

View File

@ -21,14 +21,17 @@ namespace test
namespace test_detail
{
template <typename T> struct list_node;
template <typename T> class list_node;
template <typename T> class list_data;
template <typename T> class list_iterator;
template <typename T> class list_const_iterator;
template <typename T>
struct list_node
class list_node
{
list_node(list_node const&);
list_node& operator=(list_node const&);
public:
T value_;
list_node* next_;
@ -243,8 +246,8 @@ namespace test
node** merge_adjacent_ranges(node** first, node** second,
node** third, Less less)
{
while(true) {
while(true) {
for(;;) {
for(;;) {
if(first == second) return third;
if(less((*second)->value_, (*first)->value_)) break;
first = &(*first)->next_;
@ -256,7 +259,7 @@ namespace test
// Since the two ranges we just swapped, the order is now:
// first...third...second
while(true) {
for(;;) {
if(first == third) return second;
if(!less((*first)->value_, (*third)->value_)) break;
first = &(*first)->next_;

View File

@ -10,6 +10,7 @@ project unordered-test/unordered
<toolset>intel-linux:"<cxxflags>-strict_ansi -cxxlib-icc"
<toolset>gcc:<cxxflags>"-Wsign-promo -Wunused-parameter"
#<toolset>msvc:<cxxflags>/W4
<warnings>all
;
test-suite unordered

View File

@ -250,6 +250,19 @@ void constructor_tests2(T*, test::random_generator const& generator = test::defa
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
std::cerr<<"Construct 9\n";
{
test::random_values<T> v(100, generator);
T x(50);
BOOST_TEST(x.bucket_count() >= 50);
x.max_load_factor(10);
BOOST_TEST(x.bucket_count() >= 50);
x.insert(v.begin(), v.end());
BOOST_TEST(x.bucket_count() >= 50);
test::check_container(x, v);
test::check_equivalent_keys(x);
}
}
template <class T>

View File

@ -41,7 +41,7 @@ void copy_construct_tests1(T*, test::random_generator const& generator = test::d
T x(v.begin(), v.end());
T y(x);
test::unordered_equivalence_tester<T> equivalent(x);
equivalent(y);
BOOST_TEST(equivalent(y));
test::check_equivalent_keys(y);
}
@ -55,7 +55,7 @@ void copy_construct_tests1(T*, test::random_generator const& generator = test::d
x.max_load_factor(x.load_factor() / 4);
T y(x);
test::unordered_equivalence_tester<T> equivalent(x);
equivalent(y);
BOOST_TEST(equivalent(y));
// This isn't guaranteed:
BOOST_TEST(y.load_factor() < y.max_load_factor());
test::check_equivalent_keys(y);
@ -100,7 +100,7 @@ void copy_construct_tests2(T* ptr, test::random_generator const& generator = tes
T x(v.begin(), v.end(), 0, hf, eq, al);
T y(x);
test::unordered_equivalence_tester<T> equivalent(x);
equivalent(y);
BOOST_TEST(equivalent(y));
test::check_equivalent_keys(y);
BOOST_TEST(test::equivalent(y.get_allocator(), al));
}
@ -111,7 +111,7 @@ void copy_construct_tests2(T* ptr, test::random_generator const& generator = tes
T x(v.begin(), v.end(), 0, hf, eq, al);
T y(x, al2);
test::unordered_equivalence_tester<T> equivalent(x);
equivalent(y);
BOOST_TEST(equivalent(y));
test::check_equivalent_keys(y);
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
}

View File

@ -116,7 +116,7 @@ bool compare(Range1 const& x, Range2 const& y)
}
template <class Container>
bool general_erase_range_test(Container& x, int start, int end)
bool general_erase_range_test(Container& x, std::size_t start, std::size_t end)
{
collide_list l(x.begin(), x.end());
l.erase(boost::next(l.begin(), start), boost::next(l.begin(), end));

View File

@ -119,7 +119,7 @@ namespace move_tests
BOOST_TEST(y.max_load_factor() == 2.0); // Not necessarily required.
test::check_equivalent_keys(y);
}
/*
{
test::random_values<T> v(25, generator);
T y(create(v, count, hf, eq, al, 1.0), al);
@ -137,7 +137,7 @@ namespace move_tests
BOOST_TEST(y.max_load_factor() == 1.0); // Not necessarily required.
test::check_equivalent_keys(y);
}
}
*/ }
boost::unordered_set<test::object, test::hash, test::equal_to, test::allocator<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to, test::allocator<test::object> >* test_multiset;

View File

@ -60,6 +60,7 @@ void simple_test(X const& a)
X u;
X& r = u;
BOOST_TEST(&(r = r) == &r);
BOOST_TEST(r.empty());
BOOST_TEST(&(r = a) == &r);
BOOST_TEST(equivalent(r));
@ -91,7 +92,7 @@ UNORDERED_AUTO_TEST(simple_tests)
std::cout<<"Test unordered_set.\n";
boost::unordered_set<int> set;
simple_test(set);
set.insert(1); set.insert(2); set.insert(1456);
simple_test(set);