This commit was manufactured by cvs2svn to create branch

'unlabeled-1.4.2'.

[SVN r9366]
This commit is contained in:
nobody
2001-02-28 21:39:58 +00:00
commit 1c5e20a7bc
5 changed files with 1349 additions and 0 deletions

96
.gitattributes vendored Normal file
View File

@@ -0,0 +1,96 @@
* text=auto !eol svneol=native#text/plain
*.gitattributes text svneol=native#text/plain
# Scriptish formats
*.bat text svneol=native#text/plain
*.bsh text svneol=native#text/x-beanshell
*.cgi text svneol=native#text/plain
*.cmd text svneol=native#text/plain
*.js text svneol=native#text/javascript
*.php text svneol=native#text/x-php
*.pl text svneol=native#text/x-perl
*.pm text svneol=native#text/x-perl
*.py text svneol=native#text/x-python
*.sh eol=lf svneol=LF#text/x-sh
configure eol=lf svneol=LF#text/x-sh
# Image formats
*.bmp binary svneol=unset#image/bmp
*.gif binary svneol=unset#image/gif
*.ico binary svneol=unset#image/ico
*.jpeg binary svneol=unset#image/jpeg
*.jpg binary svneol=unset#image/jpeg
*.png binary svneol=unset#image/png
*.tif binary svneol=unset#image/tiff
*.tiff binary svneol=unset#image/tiff
*.svg text svneol=native#image/svg%2Bxml
# Data formats
*.pdf binary svneol=unset#application/pdf
*.avi binary svneol=unset#video/avi
*.doc binary svneol=unset#application/msword
*.dsp text svneol=crlf#text/plain
*.dsw text svneol=crlf#text/plain
*.eps binary svneol=unset#application/postscript
*.gz binary svneol=unset#application/gzip
*.mov binary svneol=unset#video/quicktime
*.mp3 binary svneol=unset#audio/mpeg
*.ppt binary svneol=unset#application/vnd.ms-powerpoint
*.ps binary svneol=unset#application/postscript
*.psd binary svneol=unset#application/photoshop
*.rdf binary svneol=unset#text/rdf
*.rss text svneol=unset#text/xml
*.rtf binary svneol=unset#text/rtf
*.sln text svneol=native#text/plain
*.swf binary svneol=unset#application/x-shockwave-flash
*.tgz binary svneol=unset#application/gzip
*.vcproj text svneol=native#text/xml
*.vcxproj text svneol=native#text/xml
*.vsprops text svneol=native#text/xml
*.wav binary svneol=unset#audio/wav
*.xls binary svneol=unset#application/vnd.ms-excel
*.zip binary svneol=unset#application/zip
# Text formats
.htaccess text svneol=native#text/plain
*.bbk text svneol=native#text/xml
*.cmake text svneol=native#text/plain
*.css text svneol=native#text/css
*.dtd text svneol=native#text/xml
*.htm text svneol=native#text/html
*.html text svneol=native#text/html
*.ini text svneol=native#text/plain
*.log text svneol=native#text/plain
*.mak text svneol=native#text/plain
*.qbk text svneol=native#text/plain
*.rst text svneol=native#text/plain
*.sql text svneol=native#text/x-sql
*.txt text svneol=native#text/plain
*.xhtml text svneol=native#text/xhtml%2Bxml
*.xml text svneol=native#text/xml
*.xsd text svneol=native#text/xml
*.xsl text svneol=native#text/xml
*.xslt text svneol=native#text/xml
*.xul text svneol=native#text/xul
*.yml text svneol=native#text/plain
boost-no-inspect text svneol=native#text/plain
CHANGES text svneol=native#text/plain
COPYING text svneol=native#text/plain
INSTALL text svneol=native#text/plain
Jamfile text svneol=native#text/plain
Jamroot text svneol=native#text/plain
Jamfile.v2 text svneol=native#text/plain
Jamrules text svneol=native#text/plain
Makefile* text svneol=native#text/plain
README text svneol=native#text/plain
TODO text svneol=native#text/plain
# Code formats
*.c text svneol=native#text/plain
*.cpp text svneol=native#text/plain
*.h text svneol=native#text/plain
*.hpp text svneol=native#text/plain
*.ipp text svneol=native#text/plain
*.tpp text svneol=native#text/plain
*.jam text svneol=native#text/plain
*.java text svneol=native#text/plain

424
algo_opt_examples.cpp Normal file
View File

@@ -0,0 +1,424 @@
/*
*
* Copyright (c) 1999
* Dr John Maddock
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Dr John Maddock makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*
* This file provides some example of type_traits usage -
* by "optimising" various algorithms:
*
* opt::copy - optimised for trivial copy (cf std::copy)
* opt::fill - optimised for trivial copy/small types (cf std::fill)
* opt::destroy_array - an example of optimisation based upon omitted destructor calls
* opt::iter_swap - uses type_traits to determine whether the iterator is a proxy
* in which case it uses a "safe" approach, otherwise calls swap
* on the assumption that swap may be specialised for the pointed-to type.
*
*/
/* Release notes:
23rd July 2000:
Added explicit failure for broken compilers that don't support these examples.
Fixed broken gcc support (broken using directive).
Reordered tests slightly.
*/
#include <iostream>
#include <typeinfo>
#include <algorithm>
#include <iterator>
#include <vector>
#include <memory>
#include <boost/timer.hpp>
#include <boost/type_traits.hpp>
#include <boost/call_traits.hpp>
using std::cout;
using std::endl;
using std::cin;
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#error "Sorry, without template partial specialisation support there isn't anything to test here..."
#endif
namespace opt{
//
// algorithm destroy_array:
// The reverse of std::unitialized_copy, takes a block of
// unitialized memory and calls destructors on all objects therein.
//
namespace detail{
template <bool>
struct array_destroyer
{
template <class T>
static void destroy_array(T* i, T* j){ do_destroy_array(i, j); }
};
template <>
struct array_destroyer<true>
{
template <class T>
static void destroy_array(T*, T*){}
};
template <class T>
void do_destroy_array(T* first, T* last)
{
while(first != last)
{
first->~T();
++first;
}
}
}; // namespace detail
template <class T>
inline void destroy_array(T* p1, T* p2)
{
detail::array_destroyer<boost::has_trivial_destructor<T>::value>::destroy_array(p1, p2);
}
//
// unoptimised versions of destroy_array:
//
template <class T>
void destroy_array1(T* first, T* last)
{
while(first != last)
{
first->~T();
++first;
}
}
template <class T>
void destroy_array2(T* first, T* last)
{
for(; first != last; ++first) first->~T();
}
//
// opt::copy
// same semantics as std::copy
// calls memcpy where appropiate.
//
namespace detail{
template <bool b>
struct copier
{
template<typename I1, typename I2>
static I2 do_copy(I1 first, I1 last, I2 out);
};
template <bool b>
template<typename I1, typename I2>
I2 copier<b>::do_copy(I1 first, I1 last, I2 out)
{
while(first != last)
{
*out = *first;
++out;
++first;
}
return out;
}
template <>
struct copier<true>
{
template<typename I1, typename I2>
static I2* do_copy(I1* first, I1* last, I2* out)
{
memcpy(out, first, (last-first)*sizeof(I2));
return out+(last-first);
}
};
}
template<typename I1, typename I2>
inline I2 copy(I1 first, I1 last, I2 out)
{
typedef typename boost::remove_cv<typename std::iterator_traits<I1>::value_type>::type v1_t;
typedef typename boost::remove_cv<typename std::iterator_traits<I2>::value_type>::type v2_t;
enum{ can_opt = boost::is_same<v1_t, v2_t>::value
&& boost::is_pointer<I1>::value
&& boost::is_pointer<I2>::value
&& boost::has_trivial_assign<v1_t>::value };
return detail::copier<can_opt>::do_copy(first, last, out);
}
//
// fill
// same as std::fill, uses memset where appropriate, along with call_traits
// to "optimise" parameter passing.
//
namespace detail{
template <bool opt>
struct filler
{
template <typename I, typename T>
static void do_fill(I first, I last, typename boost::call_traits<T>::param_type val);
};
template <bool b>
template <typename I, typename T>
void filler<b>::do_fill(I first, I last, typename boost::call_traits<T>::param_type val)
{
while(first != last)
{
*first = val;
++first;
}
}
template <>
struct filler<true>
{
template <typename I, typename T>
static void do_fill(I first, I last, T val)
{
std::memset(first, val, last-first);
}
};
}
template <class I, class T>
inline void fill(I first, I last, const T& val)
{
enum{ can_opt = boost::is_pointer<I>::value
&& boost::is_arithmetic<T>::value
&& (sizeof(T) == 1) };
typedef detail::filler<can_opt> filler_t;
filler_t::template do_fill<I,T>(first, last, val);
}
//
// iter_swap:
// tests whether iterator is a proxying iterator or not, and
// uses optimal form accordingly:
//
namespace detail{
template <bool b>
struct swapper
{
template <typename I>
static void do_swap(I one, I two)
{
typedef typename std::iterator_traits<I>::value_type v_t;
v_t v = *one;
*one = *two;
*two = v;
}
};
#ifdef __GNUC__
using std::swap;
#endif
template <>
struct swapper<true>
{
template <typename I>
static void do_swap(I one, I two)
{
using std::swap;
swap(*one, *two);
}
};
}
template <typename I1, typename I2>
inline void iter_swap(I1 one, I2 two)
{
typedef typename std::iterator_traits<I1>::reference r1_t;
typedef typename std::iterator_traits<I2>::reference r2_t;
enum{ can_opt = boost::is_reference<r1_t>::value && boost::is_reference<r2_t>::value && boost::is_same<r1_t, r2_t>::value };
detail::swapper<can_opt>::do_swap(one, two);
}
}; // namespace opt
//
// define some global data:
//
const int array_size = 1000;
int i_array[array_size] = {0,};
const int ci_array[array_size] = {0,};
char c_array[array_size] = {0,};
const char cc_array[array_size] = { 0,};
const int iter_count = 1000000;
int main()
{
//
// test destroy_array,
// compare destruction time of an array of ints
// with unoptimised form.
//
cout << "Measuring times in micro-seconds per 1000 elements processed" << endl << endl;
cout << "testing destroy_array...\n"
"[Some compilers may be able to optimise the \"unoptimised\"\n versions as well as type_traits does.]" << endl;
/*cache load*/ opt::destroy_array(i_array, i_array + array_size);
boost::timer t;
double result;
int i;
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>: " << result << endl;
/*cache load*/ opt::destroy_array1(i_array, i_array + array_size);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array1(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>(unoptimised#1): " << result << endl;
/*cache load*/ opt::destroy_array2(i_array, i_array + array_size);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array2(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>(unoptimised#2): " << result << endl << endl;
cout << "testing fill(char)...\n"
"[Some standard library versions may already perform this optimisation.]" << endl;
/*cache load*/ opt::fill<char*, char>(c_array, c_array + array_size, (char)3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::fill<char*, char>(c_array, c_array + array_size, (char)3);
}
result = t.elapsed();
cout << "opt::fill<char*, char>: " << result << endl;
/*cache load*/ std::fill(c_array, c_array + array_size, (char)3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::fill(c_array, c_array + array_size, (char)3);
}
result = t.elapsed();
cout << "std::fill<char*, char>: " << result << endl << endl;
cout << "testing fill(int)...\n"
"[Tests the effect of call_traits pass-by-value optimisation -\nthe value of this optimisation may depend upon hardware characteristics.]" << endl;
/*cache load*/ opt::fill<int*, int>(i_array, i_array + array_size, 3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::fill<int*, int>(i_array, i_array + array_size, 3);
}
result = t.elapsed();
cout << "opt::fill<int*, int>: " << result << endl;
/*cache load*/ std::fill(i_array, i_array + array_size, 3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::fill(i_array, i_array + array_size, 3);
}
result = t.elapsed();
cout << "std::fill<int*, int>: " << result << endl << endl;
cout << "testing copy...\n"
"[Some standard library versions may already perform this optimisation.]" << endl;
/*cache load*/ opt::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "opt::copy<const int*, int*>: " << result << endl;
/*cache load*/ std::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "std::copy<const int*, int*>: " << result << endl;
/*cache load*/ opt::detail::copier<false>::template do_copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::detail::copier<false>::template do_copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "standard \"unoptimised\" copy: " << result << endl << endl;
/*cache load*/ opt::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "opt::copy<const char*, char*>: " << result << endl;
/*cache load*/ std::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "std::copy<const char*, char*>: " << result << endl;
/*cache load*/ opt::detail::copier<false>::template do_copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::detail::copier<false>::template do_copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "standard \"unoptimised\" copy: " << result << endl << endl;
//
// testing iter_swap
// really just a check that it does in fact compile...
std::vector<int> v1;
v1.push_back(0);
v1.push_back(1);
std::vector<bool> v2;
v2.push_back(0);
v2.push_back(1);
opt::iter_swap(v1.begin(), v1.begin()+1);
opt::iter_swap(v2.begin(), v2.begin()+1);
cout << "Press any key to exit...";
cin.get();
}

View File

@@ -0,0 +1,53 @@
// Example of using the filter iterator adaptor from
// boost/iterator_adaptors.hpp.
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#include <boost/config.hpp>
#include <algorithm>
#include <functional>
#include <iostream>
#include <boost/iterator_adaptors.hpp>
struct is_positive_number {
bool operator()(int x) { return 0 < x; }
};
int main()
{
int numbers[] = { 0, -1, 4, -3, 5, 8, -2 };
const int N = sizeof(numbers)/sizeof(int);
// Example using make_filter_iterator()
std::copy(boost::make_filter_iterator<is_positive_number>(numbers, numbers + N),
boost::make_filter_iterator<is_positive_number>(numbers + N, numbers + N),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Example using filter_iterator_generator
typedef boost::filter_iterator_generator<is_positive_number, int*, int>::type
FilterIter;
is_positive_number predicate;
FilterIter::policies_type policies(predicate, numbers + N);
FilterIter filter_iter_first(numbers, policies);
FilterIter filter_iter_last(numbers + N, policies);
std::copy(filter_iter_first, filter_iter_last, std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Another example using make_filter_iterator()
std::copy(boost::make_filter_iterator(numbers, numbers + N,
std::bind2nd(std::greater<int>(), -2)),
boost::make_filter_iterator(numbers + N, numbers + N,
std::bind2nd(std::greater<int>(), -2)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}

385
numeric_traits_test.cpp Normal file
View File

@@ -0,0 +1,385 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 23 Jan 2001 Added test for wchar_t (David Abrahams)
// 23 Jan 2001 Now statically selecting a test for signed numbers to avoid
// warnings with fancy compilers. Added commentary and
// additional dumping of traits data for tested types (David
// Abrahams).
// 21 Jan 2001 Initial version (David Abrahams)
#include <boost/detail/numeric_traits.hpp>
#include <cassert>
#include <boost/type_traits.hpp>
#include <boost/static_assert.hpp>
#include <boost/cstdint.hpp>
#include <boost/utility.hpp>
#include <boost/lexical_cast.hpp>
#include <climits>
#include <typeinfo>
#include <iostream>
#include <string>
#ifndef BOOST_NO_LIMITS
# include <limits>
#endif
// A macro for declaring class compile-time constants.
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
# define DECLARE_CLASS_CONST(type, init) static const type init
#else
# define DECLARE_CLASS_CONST(type, init) enum { init }
#endif
// =================================================================================
// template class complement_traits<Number> --
//
// statically computes the max and min for 1s and 2s-complement binary
// numbers. This helps on platforms without <limits> support. It also shows
// an example of a recursive template that works with MSVC!
//
template <unsigned size> struct complement; // forward
// The template complement, below, does all the real work, using "poor man's
// partial specialization". We need complement_traits_aux<> so that MSVC doesn't
// complain about undefined min/max as we're trying to recursively define them.
template <class Number, unsigned size>
struct complement_traits_aux
{
DECLARE_CLASS_CONST(Number, max = complement<size>::template traits<Number>::max);
DECLARE_CLASS_CONST(Number, min = complement<size>::template traits<Number>::min);
};
template <unsigned size>
struct complement
{
template <class Number>
struct traits
{
private:
// indirection through complement_traits_aux neccessary to keep MSVC happy
typedef complement_traits_aux<Number, size - 1> prev;
public:
DECLARE_CLASS_CONST(Number, max =
Number(Number(prev::max) << CHAR_BIT)
+ Number(UCHAR_MAX));
DECLARE_CLASS_CONST(Number, min = Number(Number(prev::min) << CHAR_BIT));
};
};
// Template class complement_base<> -- defines values for min and max for
// complement<1>, at the deepest level of recursion. Uses "poor man's partial
// specialization" again.
template <bool is_signed> struct complement_base;
template <> struct complement_base<false>
{
template <class Number>
struct values
{
DECLARE_CLASS_CONST(Number, min = 0);
DECLARE_CLASS_CONST(Number, max = UCHAR_MAX);
};
};
template <> struct complement_base<true>
{
template <class Number>
struct values
{
DECLARE_CLASS_CONST(Number, min = SCHAR_MIN);
DECLARE_CLASS_CONST(Number, max = SCHAR_MAX);
};
};
// Base specialization of complement, puts an end to the recursion.
template <>
struct complement<1>
{
template <class Number>
struct traits
{
DECLARE_CLASS_CONST(bool, is_signed = boost::detail::is_signed<Number>::value);
DECLARE_CLASS_CONST(Number, min =
complement_base<is_signed>::template values<Number>::min);
DECLARE_CLASS_CONST(Number, max =
complement_base<is_signed>::template values<Number>::max);
};
};
// Now here's the "pretty" template you're intended to actually use.
// complement_traits<Number>::min, complement_traits<Number>::max are the
// minimum and maximum values of Number if Number is a built-in integer type.
template <class Number>
struct complement_traits
{
DECLARE_CLASS_CONST(Number, max = (complement_traits_aux<Number, sizeof(Number)>::max));
DECLARE_CLASS_CONST(Number, min = (complement_traits_aux<Number, sizeof(Number)>::min));
};
// =================================================================================
// Support for streaming various numeric types in exactly the format I want. I
// needed this in addition to all the assertions so that I could see exactly
// what was going on.
//
// Numbers go through a 2-stage conversion process (by default, though, no real
// conversion).
//
template <class T> struct stream_as {
typedef T t1;
typedef T t2;
};
// char types first get converted to unsigned char, then to unsigned.
template <> struct stream_as<char> {
typedef unsigned char t1;
typedef unsigned t2;
};
template <> struct stream_as<unsigned char> {
typedef unsigned char t1; typedef unsigned t2;
};
template <> struct stream_as<signed char> {
typedef unsigned char t1; typedef unsigned t2;
};
#if defined(BOOST_MSVC) // No intmax streaming built-in
// On this platform, __int64 and __uint64 get streamed as strings
template <> struct stream_as<boost::uintmax_t> {
typedef std::string t1;
typedef std::string t2;
};
template <> struct stream_as<boost::intmax_t> {
typedef std::string t1;
typedef std::string t2;
};
#endif
// Standard promotion process for streaming
template <class T> struct promote
{
static typename stream_as<T>::t1 from(T x) {
typedef typename stream_as<T>::t1 t1;
return t1(x);
}
};
#if defined(BOOST_MSVC) // No intmax streaming built-in
// On this platform, stream them as long/unsigned long if they fit.
// Otherwise, write a string.
template <> struct promote<boost::uintmax_t> {
std::string static from(const boost::uintmax_t x) {
if (x > ULONG_MAX)
return std::string("large unsigned value");
else
return boost::lexical_cast<std::string>((unsigned long)x);
}
};
template <> struct promote<boost::intmax_t> {
std::string static from(const boost::intmax_t x) {
if (x > boost::intmax_t(ULONG_MAX))
return std::string("large positive signed value");
else if (x >= 0)
return boost::lexical_cast<std::string>((unsigned long)x);
if (x < boost::intmax_t(LONG_MIN))
return std::string("large negative signed value");
else
return boost::lexical_cast<std::string>((long)x);
}
};
#endif
// This is the function which converts types to the form I want to stream them in.
template <class T>
typename stream_as<T>::t2 stream_number(T x)
{
return promote<T>::from(x);
}
// =================================================================================
//
// Tests for built-in signed and unsigned types
//
// Tag types for selecting tests
struct unsigned_tag {};
struct signed_tag {};
// Tests for unsigned numbers. The extra default Number parameter works around
// an MSVC bug.
template <class Number>
void test_aux(unsigned_tag, Number* = 0)
{
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
BOOST_STATIC_ASSERT(!boost::detail::is_signed<Number>::value);
BOOST_STATIC_ASSERT(
(sizeof(Number) < sizeof(boost::intmax_t))
| (boost::is_same<difference_type, boost::intmax_t>::value));
// Force casting to Number here to work around the fact that it's an enum on MSVC
BOOST_STATIC_ASSERT(Number(complement_traits<Number>::max) > Number(0));
BOOST_STATIC_ASSERT(Number(complement_traits<Number>::min) == Number(0));
const Number max = complement_traits<Number>::max;
const Number min = complement_traits<Number>::min;
const Number test_max = (sizeof(Number) < sizeof(boost::intmax_t))
? max
: max / 2 - 1;
std::cout << std::hex << "(unsigned) min = " << stream_number(min) << ", max = "
<< stream_number(max) << "..." << std::flush;
std::cout << "difference_type = " << typeid(difference_type).name() << "..."
<< std::flush;
difference_type d1 = boost::detail::numeric_distance(Number(0), test_max);
difference_type d2 = boost::detail::numeric_distance(test_max, Number(0));
std::cout << "0->" << stream_number(test_max) << "==" << std::dec << stream_number(d1) << "; "
<< std::hex << stream_number(test_max) << "->0==" << std::dec << stream_number(d2) << "..." << std::flush;
assert(d1 == difference_type(test_max));
assert(d2 == -difference_type(test_max));
}
// Tests for signed numbers. The extra default Number parameter works around an
// MSVC bug.
struct out_of_range_tag {};
struct in_range_tag {};
// This test morsel gets executed for numbers whose difference will always be
// representable in intmax_t
template <class Number>
void signed_test(in_range_tag, Number* = 0)
{
BOOST_STATIC_ASSERT(boost::detail::is_signed<Number>::value);
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
const Number max = complement_traits<Number>::max;
const Number min = complement_traits<Number>::min;
difference_type d1 = boost::detail::numeric_distance(min, max);
difference_type d2 = boost::detail::numeric_distance(max, min);
std::cout << stream_number(min) << "->" << stream_number(max) << "==";
std::cout << std::dec << stream_number(d1) << "; ";
std::cout << std::hex << stream_number(max) << "->" << stream_number(min)
<< "==" << std::dec << stream_number(d2) << "..." << std::flush;
assert(d1 == difference_type(max) - difference_type(min));
assert(d2 == difference_type(min) - difference_type(max));
}
// This test morsel gets executed for numbers whose difference may exceed the
// capacity of intmax_t.
template <class Number>
void signed_test(out_of_range_tag, Number* = 0)
{
BOOST_STATIC_ASSERT(boost::detail::is_signed<Number>::value);
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
const Number max = complement_traits<Number>::max;
const Number min = complement_traits<Number>::min;
difference_type min_distance = complement_traits<difference_type>::min;
difference_type max_distance = complement_traits<difference_type>::max;
const Number n1 = Number(min + max_distance);
const Number n2 = Number(max + min_distance);
difference_type d1 = boost::detail::numeric_distance(min, n1);
difference_type d2 = boost::detail::numeric_distance(max, n2);
std::cout << stream_number(min) << "->" << stream_number(n1) << "==";
std::cout << std::dec << stream_number(d1) << "; ";
std::cout << std::hex << stream_number(max) << "->" << stream_number(n2)
<< "==" << std::dec << stream_number(d2) << "..." << std::flush;
assert(d1 == max_distance);
assert(d2 == min_distance);
}
template <class Number>
void test_aux(signed_tag, Number* = 0)
{
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
BOOST_STATIC_ASSERT(boost::detail::is_signed<Number>::value);
BOOST_STATIC_ASSERT(
(sizeof(Number) < sizeof(boost::intmax_t))
| (boost::is_same<difference_type, Number>::value));
// Force casting to Number here to work around the fact that it's an enum on MSVC
BOOST_STATIC_ASSERT(Number(complement_traits<Number>::max) > Number(0));
BOOST_STATIC_ASSERT(Number(complement_traits<Number>::min) < Number(0));
const Number max = complement_traits<Number>::max;
const Number min = complement_traits<Number>::min;
std::cout << std::hex << "min = " << stream_number(min) << ", max = "
<< stream_number(max) << "..." << std::flush;
std::cout << "difference_type = " << typeid(difference_type).name() << "..."
<< std::flush;
typedef typename boost::detail::if_true<
(sizeof(Number) < sizeof(boost::intmax_t))>
::template then<
in_range_tag,
out_of_range_tag
>::type
range_tag;
signed_test<Number>(range_tag());
}
// Test for all numbers. The extra default Number parameter works around an MSVC
// bug.
template <class Number>
void test(Number* = 0)
{
std::cout << "testing " << typeid(Number).name() << ":\n"
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
<< "is_signed: " << (std::numeric_limits<Number>::is_signed ? "true\n" : "false\n")
<< "is_bounded: " << (std::numeric_limits<Number>::is_bounded ? "true\n" : "false\n")
<< "digits: " << std::numeric_limits<Number>::digits << "\n"
#endif
<< "..." << std::flush;
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
BOOST_STATIC_ASSERT(boost::detail::is_signed<difference_type>::value);
typedef typename boost::detail::if_true<
boost::detail::is_signed<Number>::value
>::template then<signed_tag, unsigned_tag>::type signedness;
test_aux<Number>(signedness());
std::cout << "passed" << std::endl;
}
int main()
{
test<char>();
test<unsigned char>();
test<signed char>();
test<wchar_t>();
test<short>();
test<unsigned short>();
test<int>();
test<unsigned int>();
test<long>();
test<unsigned long>();
#if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
test<long long>();
test<unsigned long long>();
#elif defined(BOOST_MSVC)
// The problem of not having compile-time static class constants other than
// enums prevents this from working, since values get truncated.
// test<boost::uintmax_t>();
// test<boost::intmax_t>();
#endif
return 0;
}

391
projection_iterator.htm Normal file
View File

@@ -0,0 +1,391 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Projection Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="center" width="277" height="86">
<h1>Projection Iterator Adaptor</h1>
Defined in header
<a href="../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a>
<p>
The projection iterator adaptor is similar to the <a
href="./transform_iterator.htm">transform iterator adaptor</a> in that
its <tt>operator*()</tt> applies some function to the result of
dereferencing the base iterator and then returns the result. The
difference is that the function must return a reference to some
existing object (for example, a data member within the
<tt>value_type</tt> of the base iterator). The following
<b>pseudo-code</b> gives the basic idea. The data member <tt>p</tt> is
the function object.
<pre>
reference projection_iterator::operator*() const {
return this->p(*this->base_iterator);
}
</pre>
<h2>Synopsis</h2>
<pre>
namespace boost {
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
struct projection_iterator_generator;
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>,
class BaseIterator, class ConstBaseIterator&gt;
struct projection_iterator_pair_generator;
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
typename projection_iterator_generator&lt;AdaptableUnaryFunction, BaseIterator&gt;::type
make_projection_iterator(BaseIterator base,
const AdaptableUnaryFunction& p = AdaptableUnaryFunction())
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class ConstBaseIterator&gt;
typename projection_iterator_generator&lt;AdaptableUnaryFunction, ConstBaseIterator&gt;::type
make_const_projection_iterator(ConstBaseIterator base,
const AdaptableUnaryFunction& p = AdaptableUnaryFunction())
}
</pre>
<hr>
<h2><a name="projection_iterator_generator">The Projection Iterator Type
Generator</a></h2>
The class <tt>projection_iterator_generator</tt> is a helper class
whose purpose is to construct an projection iterator type. The main
template parameter for this class is the <a
href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a>
function object type and the <tt>BaseIterator</tt> type that is being
wrapped.
<pre>
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
class projection_iterator_generator
{
public:
typedef <tt><a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt;</tt> type; // the resulting projection iterator type
};
</pre>
<h3>Example</h3>
In the following example we have a list of personnel records. Each
record has an employee's name and ID number. We want to be able to
traverse through the list accessing either the name or the ID numbers
of the employees using the projection iterator so we create the
function object classes <tt>select_name</tt> and
<tt>select_ID</tt>. We then use the
<tt>projection_iterator_generator</tt> class to create a projection
iterator and use it to print out the names of the employees.
<pre>
#include &lt;boost/config.hpp&gt;
#include &lt;list&gt;
#include &lt;iostream&gt;
#include &lt;iterator&gt;
#include &lt;algorithm&gt;
#include &lt;string&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
struct personnel_record {
personnel_record(std::string n, int id) : m_name(n), m_ID(id) { }
std::string m_name;
int m_ID;
};
struct select_name {
typedef personnel_record argument_type;
typedef std::string result_type;
const std::string&amp; operator()(const personnel_record&amp; r) const {
return r.m_name;
}
std::string&amp; operator()(personnel_record&amp; r) const {
return r.m_name;
}
};
struct select_ID {
typedef personnel_record argument_type;
typedef int result_type;
const int&amp; operator()(const personnel_record&amp; r) const {
return r.m_ID;
}
int&amp; operator()(personnel_record&amp; r) const {
return r.m_ID;
}
};
int main(int, char*[])
{
std::list&lt;personnel_record&gt; personnel_list;
personnel_list.push_back(personnel_record("Barney", 13423));
personnel_list.push_back(personnel_record("Fred", 12343));
personnel_list.push_back(personnel_record("Wilma", 62454));
personnel_list.push_back(personnel_record("Betty", 20490));
// Example of using projection_iterator_generator
// to print out the names in the personnel list.
boost::projection_iterator_generator&lt;select_name,
std::list&lt;personnel_record&gt;::iterator&gt;::type
personnel_first(personnel_list.begin()),
personnel_last(personnel_list.end());
std::copy(personnel_first, personnel_last,
std::ostream_iterator&lt;std::string&gt;(std::cout, "\n"));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
The output for this part is:
<pre>
Barney
Fred
Wilma
Betty
</pre>
<h3>Template Parameters</h3>
<Table border>
<TR>
<TH>Parameter</TH><TH>Description</TH>
</TR>
<TR>
<TD><a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a></TD>
<TD>The type of the function object. The <tt>argument_type</tt> of the
function must match the value type of the base iterator. The function
should return a reference to the function's <tt>result_type</tt>.
The <tt>result_type</tt> will be the resulting iterator's <tt>value_type</tt>.
</TD>
</TD>
<TR>
<TD><tt>BaseIterator</tt></TD>
<TD>The iterator type being wrapped.</TD>
</TD>
</TR>
</Table>
<h3>Model of</h3>
If the base iterator is a model of <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> then so is the resulting projection iterator. If
the base iterator supports less functionality than this the resulting
projection iterator will also support less functionality.
<h3>Members</h3>
The projection iterator type implements the member functions and
operators required of the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> concept.
In addition it has the following constructor:
<pre>
projection_iterator_generator::type(const BaseIterator&amp; it,
const AdaptableUnaryFunction&amp; p = AdaptableUnaryFunction())
</pre>
<p>
<hr>
<p>
<h2><a name="projection_iterator_pair_generator">The Projection Iterator Pair
Generator</a></h2>
Sometimes a mutable/const pair of iterator types is needed, such as
when implementing a container type. The
<tt>projection_iterator_pair_generator</tt> class makes it more
convenient to create this pair of iterator types.
<pre>
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator, class ConstBaseIterator&gt;
class projection_iterator_pair_generator
{
public:
typedef <tt><a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt;</tt> iterator; // the mutable projection iterator type
typedef <tt><a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt;</tt> const_iterator; // the immutable projection iterator type
};
</pre>
<h3>Example</h3>
In this part of the example we use the
<tt>projection_iterator_pair_generator</tt> to create a mutable/const
pair of projection iterators that access the ID numbers of the
personnel. We use the mutable iterator to re-index the ID numbers from
zero. We then use the constant iterator to print the ID numbers out.
<pre>
// continuing from the last example...
typedef boost::projection_iterator_pair_generator&lt;select_ID,
std::list&lt;personnel_record&gt;::iterator,
std::list&lt;personnel_record&gt;::const_iterator&gt; PairGen;
PairGen::iterator ID_first(personnel_list.begin()),
ID_last(personnel_list.end());
int new_id = 0;
while (ID_first != ID_last) {
*ID_first = new_id++;
++ID_first;
}
PairGen::const_iterator const_ID_first(personnel_list.begin()),
const_ID_last(personnel_list.end());
std::copy(const_ID_first, const_ID_last,
std::ostream_iterator&lt;int&gt;(std::cout, " "));
std::cout &lt;&lt; std::endl;
std::cout &lt;&lt; std::endl;
// to be continued...
</pre&gt;
The output is:
<pre>
0 1 2 3
</pre>
<h3>Template Parameters</h3>
<Table border>
<TR>
<TH>Parameter</TH><TH>Description</TH>
</TR>
<TR>
<TD><a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a></TD>
<TD>The type of the function object. The <tt>argument_type</tt> of the
function must match the value type of the base iterator. The function
should return a true reference to the function's <tt>result_type</tt>.
The <tt>result_type</tt> will be the resulting iterator's <tt>value_type</tt>.
</TD>
</TD>
<TR>
<TD><tt>BaseIterator</tt></TD>
<TD>The mutable iterator type being wrapped.</TD>
</TD>
</TR>
<TR>
<TD><tt>ConstBaseIterator</tt></TD>
<TD>The constant iterator type being wrapped.</TD>
</TD>
</TR>
</Table>
<h3>Model of</h3>
If the base iterator types model the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> then so do the resulting projection iterator
types. If the base iterators support less functionality the
resulting projection iterator types will also support less
functionality. The resulting <tt>iterator</tt> type is mutable, and
the resulting <tt>const_iterator</tt> type is constant.
<h3>Members</h3>
The resulting <tt>iterator</tt> and <tt>const_iterator</tt> types
implements the member functions and operators required of the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> concept. In addition they support the following
constructors:
<pre>
projection_iterator_pair_generator::iterator(const BaseIterator&amp; it,
const AdaptableUnaryFunction&amp; p = AdaptableUnaryFunction())</pre>
<pre>
projection_iterator_pair_generator::const_iterator(const BaseIterator&amp; it,
const AdaptableUnaryFunction&amp; p = AdaptableUnaryFunction())
</pre>
<p>
<hr>
<p>
<h2><a name="make_projection_iterator">The Projection Iterator Object Generators</a></h2>
The <tt>make_projection_iterator()</tt> and
<tt>make_const_projection_iterator()</tt> functions provide a more
convenient way to create projection iterator objects. The functions
save the user the trouble of explicitly writing out the iterator
types.
<pre>
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
typename projection_iterator_generator&lt;AdaptableUnaryFunction, BaseIterator&gt;::type
make_projection_iterator(BaseIterator base,
const AdaptableUnaryFunction& p = AdaptableUnaryFunction())
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class ConstBaseIterator&gt;
typename projection_iterator_generator&lt;AdaptableUnaryFunction, ConstBaseIterator&gt;::type
make_const_projection_iterator(ConstBaseIterator base,
const AdaptableUnaryFunction& p = AdaptableUnaryFunction())
</pre>
<h3>Example</h3>
In this part of the example, we again print out the names of the
personnel, but this time we use the
<tt>make_const_projection_iterator()</tt> function to save some typing.
<pre>
// continuing from the last example...
std::copy
(boost::make_const_projection_iterator&lt;select_name&gt;(personnel_list.begin()),
boost::make_const_projection_iterator&lt;select_name&gt;(personnel_list.end()),
std::ostream_iterator<std::string>(std::cout, "\n"));
return 0;
}
</pre>
The output is:
<pre>
Barney
Fred
Wilma
Betty
</pre>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->16 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14385" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>
<!-- LocalWords: html charset alt gif hpp BaseIterator const namespace struct
-->
<!-- LocalWords: ConstPointer ConstReference typename iostream int abcdefg
-->
<!-- LocalWords: sizeof PairGen pre Siek htm AdaptableUnaryFunction
-->
<!-- LocalWords: ConstBaseIterator
-->