Compare commits

...

31 Commits

Author SHA1 Message Date
nobody
a633f6bc13 This commit was manufactured by cvs2svn to create tag
'Version_1_26_0'.

[SVN r11842]
2001-11-30 18:24:42 +00:00
Beman Dawes
8619c9b5c3 fix gcc looping (from Dave Abrahams)
[SVN r11839]
2001-11-30 17:55:39 +00:00
Toon Knapen
e4d5684f6b added test for permutation_iterator
[SVN r11825]
2001-11-30 11:10:07 +00:00
Toon Knapen
3d69cf95da added documentation for the permutation_iterator_adaptor
and linked to it from the iterator_adaptors documentation.


[SVN r11824]
2001-11-30 10:40:03 +00:00
Dave Abrahams
18944572b7 committing Daryle and Helmut's changes
[SVN r11813]
2001-11-29 21:22:52 +00:00
Jens Maurer
3e9d0f80c2 add generator iterator adaptor
[SVN r11736]
2001-11-19 22:11:51 +00:00
Jens Maurer
a2c4d1990a add boost::generator_iterator_policies and convenience classes
[SVN r11725]
2001-11-18 17:56:43 +00:00
Jens Maurer
404261c6ee add definition for integral constants initialized in-class
[SVN r11723]
2001-11-18 17:32:19 +00:00
Peter Dimov
87abc59612 #undef BOOST_REF_CONST added
[SVN r11674]
2001-11-14 14:40:29 +00:00
Peter Dimov
cb98ddf7db Fixed a bug w/ adaptable function objects + nested binds, made ref<> return const
[SVN r11670]
2001-11-13 13:56:05 +00:00
Peter Dimov
7d2e6c9025 __stdcall support added.
[SVN r11649]
2001-11-10 19:18:58 +00:00
Dave Abrahams
75eaa14a18 Removed defunct boost::tied (thanks, Daryle Walker)
[SVN r11622]
2001-11-07 10:35:12 +00:00
Jeremy Siek
082d6e3b32 *** empty log message ***
[SVN r11614]
2001-11-06 16:09:14 +00:00
Jeremy Siek
35b3770b6f *** empty log message ***
[SVN r11613]
2001-11-06 16:05:25 +00:00
Jeremy Siek
5b9d20c7e2 *** empty log message ***
[SVN r11611]
2001-11-06 15:52:56 +00:00
Jeremy Siek
5bbed2372e *** empty log message ***
[SVN r11602]
2001-11-05 21:03:59 +00:00
Jens Maurer
a9d407d239 update SunCC to 6.u2 (C++ 5.3)
[SVN r11601]
2001-11-05 21:00:53 +00:00
Jeremy Siek
3ca4a33a65 updated for named parameters
[SVN r11566]
2001-11-04 16:21:51 +00:00
Jeremy Siek
95197f427c remoeved #if 0
[SVN r11565]
2001-11-04 16:18:10 +00:00
Jeremy Siek
84cdfb032c commit these changes
[SVN r11563]
2001-11-04 04:37:14 +00:00
Dave Abrahams
ec2ceb9c96 no message
[SVN r11508]
2001-11-01 17:22:39 +00:00
John Maddock
6286c893fd Minor regression fixes for Borland and Sunpro tests.
[SVN r11470]
2001-10-30 11:41:35 +00:00
Jeremy Siek
354aef0e8c changed named parameters doc to match new stuff
[SVN r11417]
2001-10-22 17:04:23 +00:00
John Maddock
139e33c36d Updated preprocessor logic to use BOOST_HAS_LONG_LONG
[SVN r11399]
2001-10-18 11:33:52 +00:00
Dave Abrahams
e01de59cdd Made these actually compile
[SVN r11378]
2001-10-12 22:22:42 +00:00
Darin Adler
686f822dea Fix spelling error: "occurances" -> "occurrences".
[SVN r11376]
2001-10-11 17:26:04 +00:00
John Maddock
9961d5c9af Last fix had broken preprocessor logic, now fixed.
[SVN r11373]
2001-10-11 12:04:00 +00:00
John Maddock
628be0d125 Fixes for Sunpro C++ 5.3 (code now works!)
[SVN r11368]
2001-10-09 11:24:56 +00:00
John Maddock
633e45f61a Fixed test to work with sunpro 5.3 (omits array specialisation tests)
[SVN r11359]
2001-10-08 11:35:05 +00:00
John Maddock
2f357c3805 Partial fixes for sunpro 5.3 - doesn't actually work yet though
[SVN r11355]
2001-10-08 11:31:29 +00:00
John Maddock
cda0894d0d Fix for sunpro 5.3 (array specialisations don't work)
[SVN r11354]
2001-10-08 11:30:53 +00:00
22 changed files with 1396 additions and 234 deletions

View File

@@ -160,10 +160,10 @@ struct call_traits_checker<T[N]>
//
// check_wrap:
template <class T, class U>
void check_wrap(const contained<T>& w, const U& u)
template <class W, class U>
void check_wrap(const W& w, const U& u)
{
cout << "checking contained<" << typeid(T).name() << ">..." << endl;
cout << "checking " << typeid(W).name() << "..." << endl;
assert(w.value() == u);
}
@@ -211,17 +211,14 @@ int main(int argc, char *argv[ ])
c4(i);
call_traits_checker<const int&> c5;
c5(i);
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(__MWERKS__)
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(__MWERKS__) && !defined(__SUNPRO_CC)
call_traits_checker<int[2]> c6;
c6(a);
#endif
#endif
check_wrap(wrap(2), 2);
// compiler can't deduce this for some reason:
//const char ca[4] = "abc";
//check_wrap(wrap(ca), ca);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(__SUNPRO_CC)
check_wrap(wrap(a), a);
check_make_pair(test::make_pair(a, a), a, a);
#endif
@@ -376,8 +373,10 @@ void call_traits_test<T, true>::assert_construct(typename boost::call_traits<T>:
unused_variable(v3);
unused_variable(v4);
unused_variable(v5);
#ifndef __BORLANDC__
unused_variable(r2);
unused_variable(cr2);
#endif
unused_variable(cr3);
unused_variable(p2);
unused_variable(p3);
@@ -392,7 +391,7 @@ template struct call_traits_test<int*>;
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
template struct call_traits_test<int&>;
template struct call_traits_test<const int&>;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(__SUNPRO_CC)
template struct call_traits_test<int[2], true>;
#endif
#endif
@@ -400,7 +399,13 @@ template struct call_traits_test<int[2], true>;
#ifdef BOOST_MSVC
unsigned int expected_failures = 10;
#elif defined(__SUNPRO_CC)
unsigned int expected_failures = 11;
#if(__SUNPRO_CC <= 0x520)
unsigned int expected_failures = 14;
#elif(__SUNPRO_CC <= 0x530)
unsigned int expected_failures = 13;
#else
unsigned int expected_failures = 6;
#endif
#elif defined(__BORLANDC__)
unsigned int expected_failures = 2;
#elif defined(__GNUC__)
@@ -412,3 +417,4 @@ unsigned int expected_failures = 0;

View File

@@ -42,12 +42,13 @@ int main(int, char*[])
// Use indirect iterator to print out numbers by accessing
// them through the array of pointers.
#ifndef BOOST_MSVC
std::cout << "indirectly printing out the numbers from 0 to "
<< N << std::endl;
std::copy(boost::make_indirect_iterator(pointers.begin()),
boost::make_indirect_iterator(pointers.end()),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
#endif
return 0;
}

150
generator_iterator.htm Normal file
View File

@@ -0,0 +1,150 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>Generator Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" width="277" height="86">
<h1>Generator Iterator Adaptor</h1>
Defined in header <a href="../../boost/generator_iterator.hpp">boost/generator_iterator.hpp</a>
<p>
The generator iterator adaptor makes it easier to create custom input
iterators from 0-ary functions and function objects. The adaptor
takes a
<a href="http://www.sgi.com/tech/stl/Generator.html">Generator</a>
and creates a model of
<a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>.
Each increment retrieves an item from the generator and makes it
available to be retrieved by dereferencing. The motivation for this
iterator is that some concepts can be more naturally expressed as a
generator, while most STL algorithms expect an iterator. An example
is the <a href="../random/index.html">Random Number</a> library.
<h2>Synopsis</h2>
<blockquote>
<pre>
namespace boost {
template &lt;class Generator&gt;
class generator_iterator_policies;
template &lt;class Generator&gt;
class generator_iterator_generator;
template &lt;class Generator&gt;
typename generator_iterator_generator&lt;Generator&gt;::type
make_generator_iterator(Generator &amp; gen);
}
</pre>
</blockquote>
<hr>
<h2>The Generator Iterator Generator Class</h2>
The class generator_iterator_generator is a helper class whose purpose
is to construct a generator iterator type. The template parameter for
this class is the Generator function object type that is being
wrapped. The generator iterator adaptor only holds a reference (or
pointer) to the function object, therefore the function object must
outlive the generator iterator adaptor constructed from it.
<pre>
template &lt;class Generator>
class generator_iterator_generator
{
public:
typedef <a href="iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt; type; // the resulting generator iterator type
}
</pre>
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
<tr>
<td><tt><a href="http://www.sgi.com/tech/stl/Generator.html">Generator</a></tt>
<td>The generator (0-ary function object) type being
wrapped. The return type of the function must be defined as
<tt>Generator::result_type</tt>. The function object must be a model
of
<a href="http://www.sgi.com/tech/stl/Generator.html">Generator</a>.
</td>
</table>
<h3>Concept Model</h3>
The generator iterator class is a model of
<a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>.
<h3>Members</h3>
The generator iterator implements the member functions
and operators required of the
<a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
concept.
<br>
<hr>
<h2><a name="make_generator_iterator">The Generator Iterator Object Generator</a></h2>
The <tt>make_generator_iterator()</tt> function provides a
convenient way to create generator iterator objects. The function
saves the user the trouble of explicitly writing out the iterator
types.
<blockquote>
<pre>
template &lt;class Generator&gt;
typename generator_iterator_generator&lt;Generator&gt;::type
make_function_output_iterator(Generator &amp; gen);
</pre>
</blockquote>
<hr>
<h3>Example</h3>
The following program shows how <code>generator_iterator</code>
transforms a generator into an input iterator.
<blockquote>
<pre>
#include &lt;iostream>
#include &lt;boost/generator_iterator.hpp>
class my_generator
{
public:
typedef int result_type;
my_generator() : state(0) { }
int operator()() { return ++state; }
private:
int state;
};
int main()
{
my_generator gen;
boost::generator_iterator&lt;my_generator> it(gen);
for(int i = 0; i &lt; 10; ++i, ++it)
std::cout &lt;&lt; *it &lt;&lt; std::endl;
}
</pre>
</blockquote>
<hr>
Written by Jens Maurer.
</body>
</html>

View File

@@ -109,7 +109,7 @@ struct call_traits<T&const volatile>
typedef T& param_type; // hh removed const
};
#endif
#ifndef __SUNPRO_CC
template <typename T, std::size_t N>
struct call_traits<T [N]>
{
@@ -135,6 +135,7 @@ public:
typedef const array_type& const_reference;
typedef const T* const param_type;
};
#endif
}

View File

@@ -32,6 +32,10 @@
namespace boost
{
template <class T1, class T2>
class compressed_pair;
// compressed_pair
namespace details
@@ -104,10 +108,10 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_(x) {}
explicit compressed_pair_imp(second_param_type y)
compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return first_;}
@@ -116,10 +120,10 @@ namespace details
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp& y)
void swap(::boost::compressed_pair<T1, T2>& y)
{
cp_swap(first_, y.first_);
cp_swap(second_, y.second_);
cp_swap(first_, y.first());
cp_swap(second_, y.second());
}
private:
first_type first_;
@@ -147,10 +151,10 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_type(x) {}
explicit compressed_pair_imp(second_param_type y)
compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return *this;}
@@ -159,10 +163,10 @@ namespace details
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp& y)
void swap(::boost::compressed_pair<T1,T2>& y)
{
// no need to swap empty base class:
cp_swap(second_, y.second_);
cp_swap(second_, y.second());
}
private:
second_type second_;
@@ -189,10 +193,10 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: second_type(y), first_(x) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_(x) {}
explicit compressed_pair_imp(second_param_type y)
compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return first_;}
@@ -201,10 +205,10 @@ namespace details
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
void swap(compressed_pair_imp& y)
void swap(::boost::compressed_pair<T1,T2>& y)
{
// no need to swap empty base class:
cp_swap(first_, y.first_);
cp_swap(first_, y.first());
}
private:
@@ -233,10 +237,10 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_type(y) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_type(x) {}
explicit compressed_pair_imp(second_param_type y)
compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return *this;}
@@ -246,7 +250,7 @@ namespace details
second_const_reference second() const {return *this;}
//
// no need to swap empty bases:
void swap(compressed_pair_imp&) {}
void swap(::boost::compressed_pair<T1,T2>&) {}
};
// JM
@@ -272,7 +276,7 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type)
: first_type(x) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_type(x) {}
first_reference first() {return *this;}
@@ -281,7 +285,7 @@ namespace details
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
void swap(compressed_pair_imp&) {}
void swap(::boost::compressed_pair<T1,T2>&) {}
private:
};
@@ -305,7 +309,7 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_(x), second_(x) {}
first_reference first() {return first_;}
@@ -314,10 +318,10 @@ namespace details
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp<T1, T2, 5>& y)
void swap(::boost::compressed_pair<T1, T2>& y)
{
cp_swap(first_, y.first_);
cp_swap(second_, y.second_);
cp_swap(first_, y.first());
cp_swap(second_, y.second());
}
private:
first_type first_;
@@ -401,7 +405,10 @@ public:
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y) : base(x, y) {}
explicit compressed_pair(first_param_type x) : base(x) {}
#if !(defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x530))
explicit
#endif
compressed_pair(first_param_type x) : base(x) {}
first_reference first() {return base::first();}
first_const_reference first() const {return base::first();}
@@ -409,7 +416,7 @@ public:
second_reference second() {return base::second();}
second_const_reference second() const {return base::second();}
void swap(compressed_pair& y) { base::swap(y); }
void swap(::boost::compressed_pair<T,T>& y) { base::swap(y); }
};
template <class T1, class T2>

View File

@@ -0,0 +1,73 @@
// (C) Copyright Jens Maurer 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// Revision History:
// 15 Nov 2001 Jens Maurer
// created.
#ifndef BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP
#define BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP
#include <boost/iterator_adaptors.hpp>
#include <boost/ref.hpp>
namespace boost {
template<class Generator>
class generator_iterator_policies
{
public:
generator_iterator_policies() { }
template<class Base>
void initialize(Base& base) {
m_value = (*base)();
}
// The Iter template argument is necessary for compatibility with a MWCW
// bug workaround
template <class IteratorAdaptor>
void increment(IteratorAdaptor& iter) {
m_value = (*iter.base())();
}
template <class IteratorAdaptor>
const typename Generator::result_type&
dereference(const IteratorAdaptor&) const
{ return m_value; }
template <class IteratorAdaptor1, class IteratorAdaptor2>
bool equal(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return x.base() == y.base() &&
x.policies().m_value == y.policies().m_value; }
private:
typename Generator::result_type m_value;
};
template<class Generator>
struct generator_iterator_generator
{
typedef iterator_adaptor<Generator*, generator_iterator_policies<Generator>,
typename Generator::result_type, const typename Generator::result_type&,
const typename Generator::result_type*, std::input_iterator_tag,
long> type;
};
template <class Generator>
inline typename generator_iterator_generator<Generator>::type
make_generator_iterator(Generator & gen)
{
typedef typename generator_iterator_generator<Generator>::type result_t;
return result_t(&gen);
}
} // namespace boost
#endif // BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP

View File

@@ -9,6 +9,11 @@
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 28 Sep 01 Factored out iterator operator groups. (Daryle Walker)
// 27 Aug 01 'left' form for non commutative operators added;
// additional classes for groups of related operators added;
// workaround for empty base class optimization
// bug of GCC 3.0 (Helmut Zeisel)
// 25 Jun 01 output_iterator_helper changes: removed default template
// parameters, added support for self-proxying, additional
// documentation and tests (Aleksey Gurtovoy)
@@ -81,7 +86,14 @@
namespace boost {
namespace detail {
// Helmut Zeisel, empty base class optimization bug with GCC 3.0.0
#if defined(__GNUCC__) && __GNUC__==3 && __GNUC_MINOR__==0 && __GNU_PATCHLEVEL__==0
class empty_base {
bool dummy;
};
#else
class empty_base {};
#endif
} // namespace detail
} // namespace boost
@@ -168,6 +180,13 @@ struct subtractable2 : B
friend T operator-(T x, const U& y) { return x -= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct subtractable2_left : B
{
friend T operator-(const U& x, const T& y)
{ T result(x); return result -= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct subtractable1 : B
{
@@ -180,6 +199,13 @@ struct dividable2 : B
friend T operator/(T x, const U& y) { return x /= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct dividable2_left : B
{
friend T operator/(const U& x, const T& y)
{ T result(x); return result /= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct dividable1 : B
{
@@ -192,6 +218,13 @@ struct modable2 : B
friend T operator%(T x, const U& y) { return x %= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct modable2_left : B
{
friend T operator%(const U& x, const T& y)
{ T result(x); return result %= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct modable1 : B
{
@@ -463,12 +496,121 @@ struct shiftable1
, right_shiftable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct ring_operators2
: additive2<T, U
, subtractable2_left<T, U
, multipliable2<T, U, B
> > > {};
template <class T, class B = ::boost::detail::empty_base>
struct ring_operators1
: additive1<T
, multipliable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct ordered_ring_operators2
: ring_operators2<T, U
, totally_ordered2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct ordered_ring_operators1
: ring_operators1<T
, totally_ordered1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct field_operators2
: ring_operators2<T, U
, dividable2<T, U
, dividable2_left<T, U, B
> > > {};
template <class T, class B = ::boost::detail::empty_base>
struct field_operators1
: ring_operators1<T
, dividable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct ordered_field_operators2
: field_operators2<T, U
, totally_ordered2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct ordered_field_operators1
: field_operators1<T
, totally_ordered1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct euclidian_ring_operators2
: ring_operators2<T, U
, dividable2<T, U
, dividable2_left<T, U
, modable2<T, U
, modable2_left<T, U, B
> > > > > {};
template <class T, class B = ::boost::detail::empty_base>
struct euclidian_ring_operators1
: ring_operators1<T
, dividable1<T
, modable1<T, B
> > > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct ordered_euclidian_ring_operators2
: totally_ordered2<T, U
, euclidian_ring_operators2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct ordered_euclidian_ring_operators1
: totally_ordered1<T
, euclidian_ring_operators1<T, B
> > {};
template <class T, class P, class B = ::boost::detail::empty_base>
struct input_iteratable
: equality_comparable1<T
, incrementable<T
, dereferenceable<T, P, B
> > > {};
template <class T, class B = ::boost::detail::empty_base>
struct output_iteratable
: incrementable<T, B
> {};
template <class T, class P, class B = ::boost::detail::empty_base>
struct forward_iteratable
: input_iteratable<T, P, B
> {};
template <class T, class P, class B = ::boost::detail::empty_base>
struct bidirectional_iteratable
: forward_iteratable<T, P
, decrementable<T, B
> > {};
template <class T, class P, class D, class R, class B = ::boost::detail::empty_base>
struct random_access_iteratable
: bidirectional_iteratable<T, P
, totally_ordered1<T
, additive2<T, D
, indexable<T, D, R, B
> > > > {};
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
} // namespace boost
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
// BOOST_IMPORT_TEMPLATE1 .. BOOST_IMPORT_TEMPLATE3 -
// BOOST_IMPORT_TEMPLATE1 .. BOOST_IMPORT_TEMPLATE4 -
//
// When BOOST_NO_OPERATORS_IN_NAMESPACE is defined we need a way to import an
// operator template into the boost namespace. BOOST_IMPORT_TEMPLATE1 is used
@@ -479,6 +621,7 @@ struct shiftable1
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
// The template is already in boost so we have nothing to do.
# define BOOST_IMPORT_TEMPLATE4(template_name)
# define BOOST_IMPORT_TEMPLATE3(template_name)
# define BOOST_IMPORT_TEMPLATE2(template_name)
# define BOOST_IMPORT_TEMPLATE1(template_name)
@@ -489,6 +632,7 @@ struct shiftable1
// Bring the names in with a using-declaration
// to avoid stressing the compiler.
# define BOOST_IMPORT_TEMPLATE4(template_name) using ::template_name;
# define BOOST_IMPORT_TEMPLATE3(template_name) using ::template_name;
# define BOOST_IMPORT_TEMPLATE2(template_name) using ::template_name;
# define BOOST_IMPORT_TEMPLATE1(template_name) using ::template_name;
@@ -497,6 +641,10 @@ struct shiftable1
// Otherwise, because a Borland C++ 5.5 bug prevents a using declaration
// from working, we are forced to use inheritance for that compiler.
# define BOOST_IMPORT_TEMPLATE4(template_name) \
template <class T, class U, class V, class W, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, U, V, W, B> {};
# define BOOST_IMPORT_TEMPLATE3(template_name) \
template <class T, class U, class V, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, U, V, B> {};
@@ -542,6 +690,15 @@ template<class T> struct is_chained_base {
} // namespace boost
// Import a 4-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE4(template_name4) \
BOOST_IMPORT_TEMPLATE4(template_name4) \
template<class T, class U, class V, class W, class B> \
struct is_chained_base< ::boost::template_name4<T, U, V, W, B> > { \
typedef ::boost::detail::true_t value; \
};
// Import a 3-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE3(template_name3) \
@@ -610,6 +767,8 @@ BOOST_OPERATOR_TEMPLATE1(template_name##1)
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
# define BOOST_OPERATOR_TEMPLATE4(template_name4) \
BOOST_IMPORT_TEMPLATE4(template_name4)
# define BOOST_OPERATOR_TEMPLATE3(template_name3) \
BOOST_IMPORT_TEMPLATE3(template_name3)
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
@@ -632,8 +791,11 @@ BOOST_OPERATOR_TEMPLATE(equality_comparable)
BOOST_OPERATOR_TEMPLATE(multipliable)
BOOST_OPERATOR_TEMPLATE(addable)
BOOST_OPERATOR_TEMPLATE(subtractable)
BOOST_OPERATOR_TEMPLATE2(subtractable2_left)
BOOST_OPERATOR_TEMPLATE(dividable)
BOOST_OPERATOR_TEMPLATE2(dividable2_left)
BOOST_OPERATOR_TEMPLATE(modable)
BOOST_OPERATOR_TEMPLATE2(modable2_left)
BOOST_OPERATOR_TEMPLATE(xorable)
BOOST_OPERATOR_TEMPLATE(andable)
BOOST_OPERATOR_TEMPLATE(orable)
@@ -658,14 +820,27 @@ BOOST_OPERATOR_TEMPLATE(integer_arithmetic)
BOOST_OPERATOR_TEMPLATE(bitwise)
BOOST_OPERATOR_TEMPLATE1(unit_steppable)
BOOST_OPERATOR_TEMPLATE(shiftable)
BOOST_OPERATOR_TEMPLATE(ring_operators)
BOOST_OPERATOR_TEMPLATE(ordered_ring_operators)
BOOST_OPERATOR_TEMPLATE(field_operators)
BOOST_OPERATOR_TEMPLATE(ordered_field_operators)
BOOST_OPERATOR_TEMPLATE(euclidian_ring_operators)
BOOST_OPERATOR_TEMPLATE(ordered_euclidian_ring_operators)
BOOST_OPERATOR_TEMPLATE2(input_iteratable)
BOOST_OPERATOR_TEMPLATE1(output_iteratable)
BOOST_OPERATOR_TEMPLATE2(forward_iteratable)
BOOST_OPERATOR_TEMPLATE2(bidirectional_iteratable)
BOOST_OPERATOR_TEMPLATE4(random_access_iteratable)
#undef BOOST_OPERATOR_TEMPLATE
#undef BOOST_OPERATOR_TEMPLATE4
#undef BOOST_OPERATOR_TEMPLATE3
#undef BOOST_OPERATOR_TEMPLATE2
#undef BOOST_OPERATOR_TEMPLATE1
#undef BOOST_IMPORT_TEMPLATE1
#undef BOOST_IMPORT_TEMPLATE2
#undef BOOST_IMPORT_TEMPLATE3
#undef BOOST_IMPORT_TEMPLATE4
// The following 'operators' classes can only be used portably if the derived class
// declares ALL of the required member operators.
@@ -699,20 +874,18 @@ template <class T,
class P = V const *,
class R = V const &>
struct input_iterator_helper
: equality_comparable1<T
, incrementable<T
, dereferenceable<T, P
: input_iteratable<T, P
, boost::iterator<std::input_iterator_tag, V, D, P, R
> > > > {};
> > {};
template<class Derived>
template<class T>
struct output_iterator_helper
: boost::incrementable<Derived
: output_iteratable<T
, boost::iterator<std::output_iterator_tag, void, void, void, void
> >
{
Derived& operator*() { return static_cast<Derived&>(*this); }
Derived& operator++() { return static_cast<Derived&>(*this); }
T& operator*() { return static_cast<T&>(*this); }
T& operator++() { return static_cast<T&>(*this); }
};
template <class T,

View File

@@ -1,16 +1,15 @@
#ifndef BOOST_REF_HPP_INCLUDED
#define BOOST_REF_HPP_INCLUDED
#if _MSC_VER >= 1020
#if _MSC_VER+0 >= 1020
#pragma once
#endif
//
// ref.hpp - ref/cref, useful helper functions
//
// Version 1.00.0003 (2001-08-22)
//
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
@@ -40,16 +39,24 @@ private:
reference_wrapper & operator= (reference_wrapper const &);
};
template<class T> inline reference_wrapper<T> ref(T & t)
#if defined(__BORLANDC__) && (__BORLANDC__ <= 0x551)
#define BOOST_REF_CONST
#else
#define BOOST_REF_CONST const
#endif
template<class T> inline reference_wrapper<T> BOOST_REF_CONST ref(T & t)
{
return reference_wrapper<T>(t);
}
template<class T> inline reference_wrapper<T const> cref(T const & t)
template<class T> inline reference_wrapper<T const> BOOST_REF_CONST cref(T const & t)
{
return reference_wrapper<T const>(t);
}
#undef BOOST_REF_CONST
} // namespace boost
#endif // #ifndef BOOST_REF_HPP_INCLUDED

View File

@@ -26,12 +26,8 @@ template < typename MemberType, int UniqueID = 0 >
class noncopyable;
template < class A, class B >
class tied;
// Also has a few function templates
} // namespace boost

View File

@@ -33,8 +33,8 @@ int main(int, char*[])
char mutable_characters[N];
char* pointers_to_mutable_chars[N];
for (int i = 0; i < N; ++i)
pointers_to_mutable_chars[i] = &mutable_characters[i];
for (int j = 0; j < N; ++j)
pointers_to_mutable_chars[j] = &mutable_characters[j];
PairGen::iterator mutable_indirect_first(pointers_to_mutable_chars),
mutable_indirect_last(pointers_to_mutable_chars + N);
@@ -51,10 +51,12 @@ int main(int, char*[])
// Example of using make_indirect_iterator()
#ifndef BOOST_MSVC
std::copy(boost::make_indirect_iterator(pointers_to_chars),
boost::make_indirect_iterator(pointers_to_chars + N),
std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;
#endif
return 0;
}

View File

@@ -4,7 +4,9 @@
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// 8 Mar 2001 Jeremy Siek
// 04 Nov 2001 Jeremy Siek
// Updated with respect to new named parameter interface.
// 08 Mar 2001 Jeremy Siek
// Initial checkin.
#include <boost/iterator_adaptors.hpp>
@@ -26,9 +28,8 @@ main()
{
typedef boost::iterator_adaptor<my_iter, boost::default_iterator_policies,
boost::iterator_traits_generator
::reference<dummyT>
::iterator_category<std::input_iterator_tag> > iter_type;
boost::reference_is<dummyT>,
boost::iterator_category_is<std::input_iterator_tag> > iter_type;
BOOST_STATIC_ASSERT((boost::is_same<iter_type::iterator_category*,
std::input_iterator_tag*>::value));
@@ -42,12 +43,11 @@ main()
{
typedef boost::iterator_adaptor<dummyT*,
boost::default_iterator_policies,
boost::iterator_traits_generator
::value_type<dummyT>
::reference<const dummyT&>
::pointer<const dummyT*>
::iterator_category<std::forward_iterator_tag>
::difference_type<std::ptrdiff_t> > adaptor_type;
boost::value_type_is<dummyT>,
boost::reference_is<const dummyT&>,
boost::pointer_is<const dummyT*> ,
boost::iterator_category_is<std::forward_iterator_tag>,
boost::difference_type_is<std::ptrdiff_t> > adaptor_type;
adaptor_type i(array);

View File

@@ -7,7 +7,7 @@
#include <functional>
#include <algorithm>
#include <iostream>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/iterator_adaptors.hpp>
#include <boost/pending/integer_range.hpp>
int
@@ -21,8 +21,7 @@ main(int, char*[])
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
typedef std::binder1st< std::multiplies<int> > Function;
typedef boost::transform_iterator<Function, int*,
boost::iterator<std::random_access_iterator_tag, int>
typedef boost::transform_iterator_generator<Function, int*
>::type doubling_iterator;
doubling_iterator i(x, std::bind1st(std::multiplies<int>(), 2)),

View File

@@ -9,6 +9,10 @@
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 30 Nov 01 Added permutation_iterator.(Toon Knapen)
// 19 Nov 01 Added generator_iterator. (Jens Maurer)
// 04 Nov 01 Updated with respect to change in named parameters.
// (Jeremy Siek)
// 08 Mar 01 Moved indirect and transform tests to separate files.
// (Jeremy Siek)
// 19 Feb 01 Take adavantage of improved iterator_traits to do more tests
@@ -47,15 +51,20 @@
#include <algorithm>
#include <functional>
#include <numeric>
#include <boost/iterator_adaptors.hpp>
#include <boost/generator_iterator.hpp>
#include <boost/pending/iterator_tests.hpp>
#include <boost/pending/integer_range.hpp>
#include <boost/concept_archetype.hpp>
#include <boost/type_traits/same_traits.hpp>
#include <boost/permutation_iterator.hpp>
#include <stdlib.h>
#include <vector>
#include <deque>
#include <set>
#include <list>
struct my_iterator_tag : public std::random_access_iterator_tag { };
@@ -97,6 +106,18 @@ typedef std::deque<int> storage;
typedef std::deque<int*> pointer_deque;
typedef std::set<storage::iterator> iterator_set;
template <class T> struct foo;
void blah(int) { }
struct my_gen
{
typedef int result_type;
my_gen() : n(0) { }
int operator()() { return ++n; }
int n;
};
int
main()
{
@@ -105,17 +126,61 @@ main()
const int N = sizeof(array)/sizeof(dummyT);
// sanity check, if this doesn't pass the test is buggy
boost::random_access_iterator_test(array,N,array);
boost::random_access_iterator_test(array, N, array);
// Check that the policy concept checks and the default policy
// implementation match up.
boost::function_requires<
boost::RandomAccessIteratorPoliciesConcept<
boost::default_iterator_policies, int*,
boost::default_iterator_policies,
boost::iterator_adaptor<int*, boost::default_iterator_policies>,
boost::iterator<std::random_access_iterator_tag, int, std::ptrdiff_t,
int*, int&>
> >();
// Test the named parameters
{
// Test computation of defaults
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::value_type_is<int> > Iter1;
// don't use std::iterator_traits here to avoid VC++ problems
BOOST_STATIC_ASSERT((boost::is_same<Iter1::value_type, int>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::reference, int&>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::pointer, int*>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::iterator_category, std::random_access_iterator_tag>::value));
}
{
// Test computation of default when the Value is const
typedef boost::iterator_adaptor<std::list<int>::iterator,
boost::default_iterator_policies,
boost::value_type_is<const int> > Iter1;
BOOST_STATIC_ASSERT((boost::is_same<Iter1::value_type, int>::value));
#if defined(__BORLANDC__) || defined(BOOST_MSVC)
// We currently don't know how to workaround this bug.
BOOST_STATIC_ASSERT((boost::is_same<Iter1::reference, int&>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::pointer, int*>::value));
#else
BOOST_STATIC_ASSERT((boost::is_same<Iter1::reference, const int&>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::pointer, const int*>::value));
#endif
}
{
// Test with no defaults
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::reference_is<long>,
boost::pointer_is<float*>,
boost::value_type_is<char>,
boost::iterator_category_is<std::input_iterator_tag>,
boost::difference_type_is<int>
> Iter1;
BOOST_STATIC_ASSERT((boost::is_same<Iter1::value_type, char>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::reference, long>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::pointer, float*>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::difference_type, int>::value));
BOOST_STATIC_ASSERT((boost::is_same<Iter1::iterator_category, std::input_iterator_tag>::value));
}
// Test the iterator_adaptor
{
boost::iterator_adaptor<dummyT*, boost::default_iterator_policies, dummyT> i(array);
@@ -173,7 +238,7 @@ main()
typedef boost::reverse_iterator_generator<const dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, const dummyT
, dummyT, const dummyT&, const dummyT
#endif
>::type const_reverse_iterator;
@@ -306,12 +371,12 @@ main()
#else
typedef boost::iterator_adaptor<boost::forward_iterator_archetype<dummyT>,
boost::default_iterator_policies,
boost::iterator_traits_generator
::value_type<dummyT>
::reference<const dummyT&>
::pointer<const dummyT*>
::iterator_category<std::forward_iterator_tag>
::difference_type<std::ptrdiff_t> > adaptor_type;
boost::reference_is<const dummyT&>,
boost::pointer_is<const dummyT*> ,
boost::iterator_category_is<std::forward_iterator_tag>,
boost::value_type_is<dummyT>,
boost::difference_type_is<std::ptrdiff_t>
> adaptor_type;
#endif
adaptor_type i(forward_iter);
int zero = 0;
@@ -330,6 +395,41 @@ main()
if (zero) // don't do this, just make sure it compiles
assert((*i).m_x == i->foo());
}
{
// check generator_iterator
my_gen g1;
boost::generator_iterator_generator<my_gen>::type gen =
boost::make_generator_iterator(g1);
assert(*gen == 1);
++gen;
gen++;
assert(*gen == 3);
}
{
// check permutation_iterator
typedef std::vector< int > element_range_type;
typedef std::list< int > index_type;
static const int element_range_size = 10;
static const int index_size = 4;
element_range_type elements( element_range_size );
std::iota( elements.begin(), elements.end(), 0 );
index_type indices( index_size );
std::iota( indices.begin(), indices.end(), element_range_size - index_size );
std::reverse( indices.begin(), indices.end() );
typedef boost::permutation_iterator_generator< element_range_type::iterator, index_type::iterator >::type permutation_type;
permutation_type begin = boost::make_permutation_iterator( elements.begin(), indices.begin() );
permutation_type end = boost::make_permutation_iterator( elements.begin(), indices.end() );
int expected_outcome[] = { 9, 8, 7, 6 };
assert( std::equal( begin, end, expected_outcome ) );
}
std::cout << "test successful " << std::endl;
return 0;
}

View File

@@ -26,6 +26,37 @@
"../../more/generic_programming.html#adaptors">adaptors</a> which apply
specific useful behaviors to arbitrary base iterators.
<h2>Backward Compatibility Note</h2>
<p>The library's interface has changed since it was first released, breaking
backward compatibility:
<ol>
<li><a href="#policies">Policies classes</a> now operate on instances of the
whole <tt>iterator_adaptor</tt> object, rather than just operating on the
<tt>Base</tt> object. This change not only gives the policies class access
to both members of a pair of interacting iterators, but also eliminates the
need for the ugly <tt>type&lt;Reference&gt;</tt> and
<tt>type&lt;Difference&gt;</tt> parameters to various policy functions.
<li>The <a href="#named_template_parameters">Named Template Parameter</a>
interface has been made simpler, easier to use, and compatible with more
compilers.
</ol>
<h2>Other Documentation</h2>
<p><a href="iterator_adaptors.pdf">``Policy Adaptors and the Boost Iterator
Adaptor Library''</a> is a technical paper describing this library and the
powerful design pattern on which it is based. It was presented at the <a
href="http://www.oonumerics.org/tmpw01">C++ Template Workshop</a> at OOPSLA
2001; the slides from the talk are available <a
href="iterator_adaptors.ppt">here</a>. Please note that while the slides
incorporate the minor interface changes described in the previous section,
the paper does not.
<h2>Table of Contents</h2>
<ul>
@@ -91,6 +122,10 @@
"../../boost/function_output_iterator.hpp">boost/function_output_iterator.hpp</a></tt><br>
<a href="function_output_iterator.htm">Function Output Iterator Adaptor</a>
<li>Header <tt><a href="../../boost/generator_iterator.hpp">boost/generator_iterator.hpp</a></tt><br>
<a href="generator_iterator.htm">Generator Iterator Adaptor</a>
<li>Header <tt><a href="../../boost/permutation_iterator.hpp">boost/permutation_iterator.hpp</a></tt><br>
<a href="permutation_iterator.htm">Permutation Iterator Adaptor</a>
</ul>
<p><b><a href="../../people/dave_abrahams.htm">Dave
@@ -114,7 +149,11 @@
"filter_iterator.htm">filter_</a></tt> iterator generators and made some
simplifications to the main <tt><a href=
"#iterator_adaptor">iterator_adaptor</a></tt> template.<br>
<b><a href="../../people/jens_maurer.htm">Jens Maurer</a></b>
contributed the <a href="generator_iterator.htm">generator iterator</a>
adaptor.<br>
Toon Knapen contributed the <a href="permutation_iterator.htm">permutation
iterator</a> adaptor.<br>
<h2><a name="iterator_adaptor">Class template</a>
<tt>iterator_adaptor</tt></h2>
@@ -131,11 +170,11 @@
<p><tt>iterator_adaptor</tt> is declared like this:
<pre>
template &lt;class Base, class Policies,
class ValueOrNamedParams = typename std::iterator_traits&lt;Base&gt;::value_type,
class ReferenceOrNamedParams = <i>...(see below)</i>,
class PointerOrNamedParams = <i>...(see below)</i>,
class CategoryOrNamedParams = typename std::iterator_traits&lt;Base&gt;::iterator_category,
class DistanceOrNamedParams = typename std::iterator_traits&lt;Base&gt;::difference_type&gt;
class ValueOrNamedParam = typename std::iterator_traits&lt;Base&gt;::value_type,
class ReferenceOrNamedParam = <i>...(see below)</i>,
class PointerOrNamedParam = <i>...(see below)</i>,
class CategoryOrNamedParam = typename std::iterator_traits&lt;Base&gt;::iterator_category,
class DistanceOrNamedParam = typename std::iterator_traits&lt;Base&gt;::difference_type&gt;
struct iterator_adaptor;
</pre>
@@ -183,7 +222,7 @@ struct iterator_adaptor;
particular, the result type of <tt>operator*()</tt>.<br>
<b>Default:</b> If <tt>Value</tt> is supplied, <tt>Value&amp;</tt> is
used. Otherwise
<tt>std::iterator_traits&lt;BaseType&gt;::reference</tt> is used.
<tt>std::iterator_traits&lt;BaseType&gt;::reference</tt> is used. <a href="#7">[7]</a>
<tr>
<td><tt>Pointer</tt>
@@ -191,7 +230,7 @@ struct iterator_adaptor;
<td>The <tt>pointer</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> If <tt>Value</tt> was supplied, then <tt>Value*</tt>,
otherwise <tt>std::iterator_traits&lt;BaseType&gt;::pointer</tt>.
otherwise <tt>std::iterator_traits&lt;BaseType&gt;::pointer</tt>. <a href="#7">[7]</a>
<tr>
<td><tt>Category</tt>
@@ -208,11 +247,9 @@ struct iterator_adaptor;
<tt>std::iterator_traits&lt;BaseType&gt;::difference_type</tt>
<tr>
<td><tt>NamedParams</tt>
<td><tt>NamedParam</tt>
<td>A list of named template parameters generated using the
<a href="#iterator_traits_generator">
<tt>iterator_traits_generator</tt></a> class (see below).
<td>A named template parameter (see below).
</table>
<h3><a name="named_template_parameters">Named Template Parameters</a></h3>
@@ -223,59 +260,32 @@ struct iterator_adaptor;
template parameter, but use the defaults for the third through
fifth. As a solution to these problems we provide a mechanism for
naming the last five template parameters, and providing them in
any order through the <tt>iterator_traits_generator</tt> class.
any order through a set of named template parameters. The following
classes are provided for specifying the parameters. Any of these
classes can be used for any of the last five template parameters
of <tt>iterator_adaptor</tt>.
<blockquote>
<pre>
<a name="iterator_traits_generator">class iterator_traits_generator</a>
{
public:
template &lt;class Value&gt;
struct value_type : public <i>recursive magic</i> { };
template &lt;class Reference&gt;
struct reference : public <i>recursive magic</i> { };
template &lt;class Pointer&gt;
struct pointer : public <i>recursive magic</i> { };
template &lt;class Distance&gt;
struct difference_type : public <i>recursive magic</i> { };
template &lt;class Category&gt;
struct iterator_category : public <i>recursive magic</i> { };
};
template &lt;class Value&gt; struct value_type_is;
template &lt;class Reference&gt; struct reference_is;
template &lt;class Pointer&gt; struct pointer_is;
template &lt;class Distance&gt; struct difference_type_is;
template &lt;class Category&gt; struct iterator_category_is;
</pre>
</blockquote>
The <tt>iterator_traits_generator</tt> is used to create a list of
of template arguments. For example, suppose you want to set the
<tt>Reference</tt> and <tt>Category</tt> parameters, and use the
defaults for the rest. Then you can use the traits generator as
follows:
For example, the following adapts <tt>foo_iterator</tt> to create
an <a href=
"http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>
with <tt>reference</tt> type <tt>foo</tt>, and whose other traits
are determined according to the defaults described <a
href="#template_parameters">above</a>.
<blockquote>
<pre>
iterator_traits_generator::reference&lt;foo&gt;::category&lt;std::input_iterator_tag&gt;
</pre>
</blockquote>
This generated type can then be passed into the <tt>iterator_adaptor</tt>
class to replace any of the last five parameters. If you use the traits
generator in the <i>i</i>th parameter position, then the parameters <i>i</i>
through 7 will use the types specified in the generator. For example, the
following adapts <tt>foo_iterator</tt> to create an <a href=
"http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a> with
<tt>reference</tt> type <tt>foo</tt>, and whose other traits are determined
according to the defaults described <a href="#template_parameters">above</a>.
<blockquote>
<pre>
iterator_adaptor&lt;foo_iterator, foo_policies,
iterator_traits_generator
::reference&lt;foo&gt;
::iterator_category&lt;std::input_iterator_tag&gt;
&gt;
typedef iterator_adaptor&lt;foo_iterator, foo_policies,
reference_is&lt;foo&gt;, iterator_category_is&lt;std::input_iterator_tag&gt;
&gt; MyIterator;
</pre>
</blockquote>
@@ -414,40 +424,40 @@ iterator_adaptor&lt;foo_iterator, foo_policies,
<pre>
struct <a name="default_iterator_policies">default_iterator_policies</a>
{
template &lt;class BaseType&gt;
void initialize(BaseType&amp;)
{ }
// Some of these members were defined static, but Borland got confused
// and thought they were non-const. Also, Sun C++ does not like static
// function templates.
template &lt;class Reference, class BaseType&gt;
Reference dereference(type&lt;Reference&gt;, const BaseType&amp; x) const
{ return *x; }
template &lt;class Base&gt;
void initialize(Base&amp;)
{ }
template &lt;class BaseType&gt;
void increment(BaseType&amp; x)
{ ++x; }
template &lt;class IteratorAdaptor&gt;
typename IteratorAdaptor::reference dereference(const IteratorAdaptor&amp; x) const
{ return *x.base(); }
template &lt;class BaseType1, class BaseType2&gt;
bool equal(const BaseType1&amp; x, const BaseType2&amp; y) const
{ return x == y; }
template &lt;class IteratorAdaptor&gt;
void increment(IteratorAdaptor&amp; x)
{ ++x.base(); }
template &lt;class BaseType&gt;
void decrement(BaseType&amp; x)
{ --x; }
template &lt;class IteratorAdaptor&gt;
void decrement(IteratorAdaptor&amp; x)
{ --x.base(); }
template &lt;class BaseType, class DifferenceType&gt;
void advance(BaseType&amp; x, DifferenceType n)
{ x += n; }
template &lt;class IteratorAdaptor, class DifferenceType&gt;
void advance(IteratorAdaptor&amp; x, DifferenceType n)
{ x.base() += n; }
template &lt;class Difference, class BaseType1, class BaseType2&gt;
Difference distance(type&lt;Difference&gt;, const BaseType1&amp; x, const BaseType2&amp; y) const
{ return y - x; }
template &lt;class IteratorAdaptor1, class IteratorAdaptor2&gt;
typename IteratorAdaptor1::difference_type
distance(const IteratorAdaptor1&amp; x, const IteratorAdaptor2&amp; y) const
{ return y.base() - x.base(); }
template &lt;class BaseType1, class BaseType2&gt;
bool less(const BaseType1&amp; x, const BaseType2&amp; y) const
{ return x &lt; y; }
template &lt;class IteratorAdaptor1, class IteratorAdaptor2&gt;
bool equal(const IteratorAdaptor1&amp; x, const IteratorAdaptor2&amp; y) const
{ return x.base() == y.base(); }
};
</pre>
</blockquote>
</pre></blockquote>
<p>Template member functions are used throughout
<tt>default_iterator_policies</tt> so that it can be employed with a wide
@@ -480,7 +490,7 @@ struct <a name="default_iterator_policies">default_iterator_policies</a>
iterator_adaptor(const
iterator_adaptor&lt;B,Policies,V,R,P,Category,Distance&gt;&amp;)</tt>
<br><br>
This constructor allows for conversion from non-<tt>const</tt> to
This constructor allows for conversion from mutable to
constant adapted iterators. See <a href=
"#iterator_interactions">below</a> for more details.<br>
Requires: <tt>B</tt> is convertible to <tt>Base</tt>.
@@ -512,34 +522,31 @@ struct <a name="default_iterator_policies">default_iterator_policies</a>
<p>To implement a transform iterator we will only change one of the base
iterator's behaviors, so the <tt>transform_iterator_policies</tt> class can
inherit the rest from <tt>default_iterator_policies</tt>. We will define
the <tt>dereference()</tt> member function, which is used to implement
inherit the rest from <tt>default_iterator_policies</tt>. We will define the
<tt>dereference()</tt> member function, which is used to implement
<tt>operator*()</tt> of the adapted iterator. The implementation will
dereference the base iterator and apply the function object. The
<tt>type&lt;Reference&gt;</tt> parameter is used to convey the appropriate
return type. The complete code for <tt>transform_iterator_policies</tt>
is:<br>
dereference the base iterator and apply the function object. The complete
code for <tt>transform_iterator_policies</tt> is:<br>
<br>
<blockquote>
<pre>
template &lt;class AdaptableUnaryFunction&gt;
struct transform_iterator_policies : public default_iterator_policies
{
<blockquote><pre>
template &lt;class AdaptableUnaryFunction&gt;
struct transform_iterator_policies : public default_iterator_policies
{
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction&amp; f)
: m_f(f) { }
template &lt;class Reference, class BaseIterator&gt;
Reference dereference(type&lt;Reference&gt;, const BaseIterator&amp; i) const
{ return m_f(*i); }
: m_f(f) { }
template &lt;class IteratorAdaptor&gt;
typename IteratorAdaptor::reference
dereference(const IteratorAdaptor&amp; iter) const
{ return m_f(*iter.base()); }
AdaptableUnaryFunction m_f;
};
</pre>
</blockquote>
};
</pre></blockquote>
<p>The next step is to use the <tt>iterator_adaptor</tt> template to
construct the transform iterator type. The nicest way to package the
@@ -575,7 +582,7 @@ public:
<p>As a finishing touch, we will create an <a href=
"../../more/generic_programming.html#object_generator">object generator</a>
for the transform iterator. This is a function that makes it more
for the transform iterator. Our object generator makes it more
convenient to create a transform iterator.<br>
<br>
@@ -814,12 +821,12 @@ bool operator==(const iterator_adaptor&lt;B1,P,V1,R1,P1,C,D&gt;&amp;,
<tt>reference</tt> types for all <a href=
"http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterators</a> are
<tt>const T*</tt> and <tt>const T&amp;</tt>, respectively. Stripping the
<tt>const</tt>-ness of <tt>Value</tt> allows you to easily
make a <tt>const</tt> iterator adaptor by supplying a <tt>const</tt> type
for <tt>Value</tt>, and allowing the defaults for the <tt>Pointer</tt> and
<tt>Reference</tt> parameters to take effect. Although compilers that don't
support partial specialization won't strip <tt>const</tt> for you, having a
<tt>const value_type</tt> is often harmless in practice.
<tt>const</tt>-ness of <tt>Value</tt> allows you to easily make a constant
iterator by supplying a <tt>const</tt> type for <tt>Value</tt>, and allowing
the defaults for the <tt>Pointer</tt> and <tt>Reference</tt> parameters to
take effect. Although compilers that don't support partial specialization
won't strip <tt>const</tt> for you, having a <tt>const value_type</tt> is
often harmless in practice.
<p><a name="2">[2]</a> If your compiler does not support partial
specialization and the base iterator is a builtin pointer type, you
@@ -885,6 +892,14 @@ bool operator==(const iterator_adaptor&lt;B1,P,V1,R1,P1,C,D&gt;&amp;,
*x = i;
</pre>
<p><a name="7">[7]</a>
If you are using a compiler that does not have a version of
<tt>std::iterator_traits</tt> that works for pointers (i.e., if your
compiler does not support partial specialization) then if the
<tt>Base</tt> type is a const pointer, then the correct defaults
for the <tt>reference</tt> and <tt>pointer</tt> types can not be
deduced. You must specify these types explicitly.
<hr>
<p>Revised

BIN
iterator_adaptors.pdf Normal file

Binary file not shown.

BIN
iterator_adaptors.ppt Normal file

Binary file not shown.

View File

@@ -75,6 +75,12 @@ protected:
}; // test_opr_base
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
// A definition is required even for integral static constants
const std::size_t test_opr_base::fruit_length;
const std::size_t test_opr_base::scratch_length;
#endif
template <typename T, typename R = T&, typename P = T*>
class test_opr
: public test_opr_base

View File

@@ -374,7 +374,7 @@ int main()
test<unsigned int>();
test<long>();
test<unsigned long>();
#if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
#if defined(BOOST_HAS_LONG_LONG) && !defined(BOOST_NO_INTEGRAL_INT64_T)
test<long long>();
test<unsigned long long>();
#elif defined(BOOST_MSVC)

View File

@@ -30,7 +30,11 @@ provided by the class.</p>
</ul></li>
<li><a href="#usage">Usage</a>
<ul>
<li><a href="#two_arg">Two-Argument Template Forms</a></li>
<li><a href="#two_arg">Two-Argument Template Forms</a>
<ul>
<li><a href="#two_arg_gen">General Considerations</a></li>
<li><a href="#mixed_arithmetics">Mixed arithmetics</a></li>
</ul></li>
<li><a href="#chaining">Base Class Chaining and Object Size</a></li>
<li><a href="#explicit_instantiation">Separate, Explicit
Instantiation</a></li>
@@ -39,7 +43,10 @@ provided by the class.</p>
<li><a href="#example">Example</a></li>
<li><a href="#arithmetic">Arithmetic operators</a>
<ul>
<li><a href="#smpl_oprs">Simple Arithmetic Operators</a></li>
<li><a href="#smpl_oprs">Simple Arithmetic Operators</a>
<ul>
<li><a href="#ordering">Ordering Note</a></li>
</ul></li>
<li><a href="#grpd_oprs">Grouped Arithmetic Operators</a></li>
<li><a href="#ex_oprs">Example Templates</a></li>
<li><a href="#a_demo">Arithmetic Operators Demonstration
@@ -49,8 +56,12 @@ provided by the class.</p>
Helpers</a>
<ul>
<li><a href="#dereference">Dereference operators</a></li>
<li><a href="#iterator">Iterator Helpers</a></li>
<li><a href="#iterator_helpers_notes">Iterator Helper Notes</a></li>
<li><a href="#grpd_iter_oprs">Grouped Iterator Operators</a></li>
<li><a href="#iterator">Iterator Helpers</a>
<ul>
<li><a href="#iterator_helpers_notes">Iterator Helper
Notes</a></li>
</ul></li>
<li><a href="#i_demo">Iterator Demonstration and Test
Program</a></li>
</ul></li>
@@ -151,6 +162,8 @@ domains, <i>i.e.</i> eventually more useful.</p>
<h3><a name="two_arg">Two-Argument</a> Template Forms</h3>
<h4><a name="two_arg_gen">General Considerations</a></h4>
<p>The arguments to a binary operator commonly have identical types, but
it is not unusual to want to define operators which combine different
types. For <a href="#example">example</a>, one might want to multiply a
@@ -176,6 +189,46 @@ trailing <code>'1'</code> are provided for symmetry and to enable
certain applications of the <a href="#chaining">base class chaining</a>
technique.</p>
<h4><a name="mixed_arithmetics">Mixed Arithmetics</a></h4>
<p>Another application of the two-argument template forms is for
mixed arithmetics between a type <code>T</code> and a type <code>U</code>
that is convertible to <code>T</code>. In this case there are two ways
where the two-argument template forms are helpful: one is to provide
the respective signatures for operator overloading, the second is
performance.</p>
<p>With respect to the operator overloading assume <i>e.g.</i> that
<code>U</code> is <code>int</code>, that <code>T</code> is an user-defined
unlimited integer type, and that <code>double operator-(double, const
T&amp;)</code> exists. If one wants to compute <code>int - T</code> and
does not provide <code>T operator-(int, const T&amp;)</code>, the
compiler will consider <code>double operator-(double, const T&amp;)</code>
to be a better match than <code>T operator-(const T&amp;, const
T&amp;)</code>, which will probably be different from the user's intention.
To define a complete set of operator signatures, additional 'left' forms
of the two-argument template forms are provided (<code><a
href="#subtractable2_left">subtractable2_left&lt;T, U&gt;</a></code>,
<code><a href="#dividable2_left">dividable2_left&lt;T, U&gt;</a></code>,
<code><a href="#modable2_left">modable2_left&lt;T, U&gt;</a></code>) that
define the signatures for non-commutative operators where <code>U</code>
appears on the left hand side (<code>operator-(const U&amp;, const
T&amp;)</code>, <code>operator/(const U&amp;, const T&amp;)</code>,
<code>operator%(const U&amp;, const T&amp;)</code>).</p>
<p>With respect to the performance observe that when one uses the
single type binary operator for mixed type arithmetics, the type
<code>U</code> argument has to be converted to type <code>T</code>. In
practice, however, there are often more efficient implementations of,
say <code>T::operator-=(const U&amp;)</code> that avoid unnecessary
conversions from <code>U</code> to <code>T</code>. The two-argument
template forms of the arithmetic operator create additional operator
interfaces that use these more efficient implementations. There is, however,
no performance gain in the 'left' forms: they still need a conversion
from <code>U</code> to <code>T</code> and have an implementation
equivalent to the code that would be automatically created by the compiler
if it considered the single type binary operator to be the best match.</p>
<h3>Base Class <a name="chaining">Chaining</a> and Object Size</h3>
<p>Every operator class template, except the <a href="#ex_oprs">arithmetic
@@ -419,6 +472,12 @@ for the <a href="#chaining">base class chaining</a> technique.
<td><code>t -= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="subtractable2_left">subtractable2_left&lt;T, U&gt;</a></code></td>
<td><code>T operator-(const U&amp;, const T&amp;)</code></td>
<td><code>T temp(u); temp -= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="multipliable1">multipliable&lt;T&gt;</a></code><br>
<code>multipliable1&lt;T&gt;</code></td>
@@ -448,6 +507,12 @@ for the <a href="#chaining">base class chaining</a> technique.
<td><code>t /= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="dividable2_left">dividable2_left&lt;T, U&gt;</a></code></td>
<td><code>T operator/(const U&amp;, const T&amp;)</code></td>
<td><code>T temp(u); temp /= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="modable1">modable&lt;T&gt;</a></code><br>
<code>modable1&lt;T&gt;</code></td>
@@ -462,6 +527,12 @@ for the <a href="#chaining">base class chaining</a> technique.
<td><code>t %= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="modable2_left">modable2_left&lt;T, U&gt;</a></code></td>
<td><code>T operator%(const U&amp;, const T&amp;)</code></td>
<td><code>T temp(u); temp %= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="orable1">orable&lt;T&gt;</a></code><br>
<code>orable1&lt;T&gt;</code></td>
@@ -588,8 +659,9 @@ for the <a href="#chaining">base class chaining</a> technique.
</tr>
</table>
<p><strong><a name="ordering">Ordering Note</a></strong><br>
The <code><a href="#less_than_comparable1">less_than_comparable&lt;T&gt;</a></code>
<h4><a name="ordering">Ordering</a> Note</h4>
<p>The <code><a href="#less_than_comparable1">less_than_comparable&lt;T&gt;</a></code>
and <code><a href="#partially_ordered1">partially_ordered&lt;T&gt;</a></code>
templates provide the same set of operations. However, the workings of
<code><a href="#less_than_comparable1">less_than_comparable&lt;T&gt;</a></code>
@@ -771,6 +843,109 @@ optional template parameter <code>B</code>, which is not shown, for the
<li><code><a href="#right_shiftable2">right_shiftable&lt;T, U&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ring_operators1">ring_operators&lt;T&gt;</a></code><br>
<code>ring_operators1&lt;T&gt;</code></td>
<td><ul>
<li><code><a href="#additive1">additive&lt;T&gt;</a></code></li>
<li><code><a href="#multipliable1">multipliable&lt;T&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ring_operators2">ring_operators&lt;T, U&gt;</a></code><br>
<code>ring_operators2&lt;T, U&gt;</code></td>
<td><ul>
<li><code><a href="#additive2">additive&lt;T, U&gt;</a></code></li>
<li><code><a href="#subtractable2_left">subtractable2_left&lt;T, U&gt;</a></code></li>
<li><code><a href="#multipliable2">multipliable&lt;T, U&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_ring_operators1">ordered_ring_operators&lt;T&gt;</a></code><br>
<code>ordered_ring_operators1&lt;T&gt;</code></td>
<td><ul>
<li><code><a href="#ring_operators1">ring_operators&lt;T&gt;</a></code></li>
<li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_ring_operators2">ordered_ring_operators&lt;T, U&gt;</a></code><br>
<code>ordered_ring_operators2&lt;T, U&gt;</code></td>
<td><ul>
<li><code><a href="#ring_operators2">ring_operators&lt;T, U&gt;</a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered&lt;T, U&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="field_operators1">field_operators&lt;T&gt;</a></code><br>
<code>field_operators1&lt;T&gt;</code></td>
<td><ul>
<li><code><a href="#ring_operators1">ring_operators&lt;T&gt;</a></code></li>
<li><code><a href="#dividable1">dividable&lt;T&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="field_operators2">field_operators&lt;T, U&gt;</a></code><br>
<code>field_operators2&lt;T, U&gt;</code></td>
<td><ul>
<li><code><a href="#ring_operators2">ring_operators&lt;T, U&gt;</a></code></li>
<li><code><a href="#dividable2">dividable&lt;T, U&gt;</a></code></li>
<li><code><a href="#dividable2_left">dividable2_left&lt;T, U&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_field_operators1">ordered_field_operators&lt;T&gt;</a></code><br>
<code>ordered_field_operators1&lt;T&gt;</code></td>
<td><ul>
<li><code><a href="#field_operators1">field_operators&lt;T&gt;</a></code></li>
<li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_field_operators2">ordered_field_operators&lt;T, U&gt;</a></code><br>
<code>ordered_field_operators2&lt;T, U&gt;</code></td>
<td><ul>
<li><code><a href="#field_operators2">field_operators&lt;T, U&gt;</a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered&lt;T, U&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="euclidian_ring_operators1">euclidian_ring_operators&lt;T&gt;</a></code><br>
<code>euclidian_ring_operators1&lt;T&gt;</code></td>
<td><ul>
<li><code><a href="#ring_operators1">ring_operators&lt;T&gt;</a></code></li>
<li><code><a href="#dividable1">dividable&lt;T&gt;</a></code></li>
<li><code><a href="#modable1">modable&lt;T&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="euclidian_ring_operators2">euclidian_ring_operators&lt;T, U&gt;</a></code><br>
<code>euclidian_ring_operators2&lt;T, U&gt;</code></td>
<td><ul>
<li><code><a href="#ring_operators2">ring_operators&lt;T, U&gt;</a></code></li>
<li><code><a href="#dividable2">dividable&lt;T, U&gt;</a></code></li>
<li><code><a href="#dividable2_left">dividable2_left&lt;T, U&gt;</a></code></li>
<li><code><a href="#modable2">modable&lt;T, U&gt;</a></code></li>
<li><code><a href="#modable2_left">modable2_left&lt;T, U&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_euclidian_ring_operators1">ordered_euclidian_ring_operators&lt;T&gt;</a></code><br>
<code>ordered_euclidian_ring_operators1&lt;T&gt;</code></td>
<td><ul>
<li><code><a href="#euclidian_ring_operators1">euclidian_ring_operators&lt;T&gt;</a></code></li>
<li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_euclidian_ring_operators2">ordered_euclidian_ring_operators&lt;T, U&gt;</a></code><br>
<code>ordered_euclidian_ring_operators2&lt;T, U&gt;</code></td>
<td><ul>
<li><code><a href="#euclidian_ring_operators2">euclidian_ring_operators&lt;T, U&gt;</a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered&lt;T, U&gt;</a></code></li>
</ul></td>
</tr>
</table>
<h3><a name="ex_oprs">Example</a> Templates</h3>
@@ -888,19 +1063,87 @@ href="#chaining">base class chaining</a>.</p>
</tr>
</table>
<h3><a name="iterator">Iterator</a> Helpers</h3>
<h3><a name="grpd_iter_oprs">Grouped Iterator Operators</a></h3>
<p>There are five separate iterator helper classes, each for a
different category of iterator. Here is a summary of the core set of
operators that the custom iterator must define, and the extra operators
that are created by the helper classes. These classes cannot be used for <a
href="#chaining">base class chaining</a>. For convenience, the helper
classes also fill in all of the typedef's required of iterators by the
C++ standard (<code>iterator_category</code>, <code>value_type</code>,
<i>etc.</i>).</p>
<p>There are five iterator operator class templates, each for a different
category of iterator. The following table shows the operator groups
for any category that a custom iterator could define. These class
templates have an additional optional template parameter <code>B</code>,
which is not shown, to support <a href="#chaining">base class chaining</a>.</p>
<table cellpadding="5" border="1" align="center">
<caption>Iterator Helper Template Classes</caption>
<caption>Iterator Operator Class Templates</caption>
<tr>
<td colspan="2"><table align="center" border="1">
<caption><em>Key</em></caption>
<tr>
<td><code>T</code>: operand type</td>
<td><code>P</code>: <code>pointer</code> type</td>
</tr>
<tr>
<td><code>D</code>: <code>difference_type</code></td>
<td><code>R</code>: <code>reference</code> type</td>
</tr>
<tr>
<td><code>V</code>: <code>value_type</code></td>
<td></td>
</tr>
</table></td>
</tr>
<tr>
<th>Template</th>
<th>Component Operator Templates</th>
</tr>
<tr>
<td><code><a name="input_iteratable">input_iteratable&lt;T, P&gt;</a></code></td>
<td><ul>
<li><code><a href="#equality_comparable1">equality_comparable&lt;T&gt;</a></code></li>
<li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
<li><code><a href="#dereferenceable">dereferenceable&lt;T, P&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="output_iteratable">output_iteratable&lt;T&gt;</a></code></td>
<td><ul>
<li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="forward_iteratable">forward_iteratable&lt;T, P&gt;</a></code></td>
<td><ul>
<li><code><a href="#input_iteratable">input_iteratable&lt;T, P&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="bidirectional_iteratable">bidirectional_iteratable&lt;T, P&gt;</a></code></td>
<td><ul>
<li><code><a href="#forward_iteratable">forward_iteratable&lt;T, P&gt;</a></code></li>
<li><code><a href="#decrementable">decrementable&lt;T&gt;</a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="random_access_iteratable">random_access_iteratable&lt;T, P, D, R&gt;</a></code></td>
<td><ul>
<li><code><a href="#bidirectional_iteratable">bidirectional_iteratable&lt;T, P&gt;</a></code></li>
<li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
<li><code><a href="#additive2">additive&lt;T, D&gt;</a></code></li>
<li><code><a href="#indexable">indexable&lt;T, D, R&gt;</a></code></li>
</ul></td>
</tr>
</table>
<h3><a name="iterator">Iterator</a> Helpers</h3>
<p>There are also five iterator helper class templates, each corresponding
to a different iterator category. These classes cannot be used for <a
href="#chaining">base class chaining</a>. The following summaries
show that these class templates supply both the iterator operators from
the <a href="#grpd_iter_oprs">iterator operator class templates</a> and
the iterator typedef's required by the C++ standard (<code>iterator_category</code>,
<code>value_type</code>, <i>etc.</i>).</p>
<table cellpadding="5" border="1" align="center">
<caption>Iterator Helper Class Templates</caption>
<tr>
<td colspan="2"><table align="center" border="1">
<caption><em>Key</em></caption>
@@ -926,16 +1169,14 @@ C++ standard (<code>iterator_category</code>, <code>value_type</code>,
<td><code><a name="input_iterator_helper">input_iterator_helper&lt;T, V, D, P, R&gt;</a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#equality_comparable1">equality_comparable&lt;T&gt;</a></code></li>
<li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
<li><code><a href="#dereferenceable">dereferenceable&lt;T, P&gt;</a></code></li>
<li><code><a href="#input_iteratable">input_iteratable&lt;T, P&gt;</a></code></li>
</ul></td>
</tr>
<tr valign="baseline">
<td><code><a name="output_iterator_helper">output_iterator_helper&lt;T&gt;</a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
<li><code><a href="#output_iteratable">output_iteratable&lt;T&gt;</a></code></li>
</ul>
See also [<a href="#1">1</a>], [<a href="#2">2</a>].
</td>
@@ -944,33 +1185,21 @@ C++ standard (<code>iterator_category</code>, <code>value_type</code>,
<td><code><a name="forward_iterator_helper">forward_iterator_helper&lt;T, V, D, P, R&gt;</a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#equality_comparable1">equality_comparable&lt;T&gt;</a></code></li>
<li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
<li><code><a href="#dereferenceable">dereferenceable&lt;T, P&gt;</a></code></li>
<li><code><a href="#forward_iteratable">forward_iteratable&lt;T, P&gt;</a></code></li>
</ul></td>
</tr>
<tr valign="baseline">
<td><code><a name="bidirectional_iterator_helper">bidirectional_iterator_helper&lt;T, V, D, P, R&gt;</a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#equality_comparable1">equality_comparable&lt;T&gt;</a></code></li>
<li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
<li><code><a href="#decrementable">decrementable&lt;T&gt;</a></code></li>
<li><code><a href="#dereferenceable">dereferenceable&lt;T, P&gt;</a></code></li>
<li><code><a href="#bidirectional_iteratable">bidirectional_iteratable&lt;T, P&gt;</a></code></li>
</ul></td>
</tr>
<tr valign="baseline">
<td><code><a name="random_access_iterator_helper">random_access_iterator_helper&lt;T, V, D, P, R&gt;</a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#equality_comparable1">equality_comparable&lt;T&gt;</a></code></li>
<li><code><a href="#less_than_comparable1">less_than_comparable&lt;T&gt;</a></code></li>
<li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
<li><code><a href="#decrementable">decrementable&lt;T&gt;</a></code></li>
<li><code><a href="#dereferenceable">dereferenceable&lt;T, P&gt;</a></code></li>
<li><code><a href="#addable2">addable&lt;T, D&gt;</a></code></li>
<li><code><a href="#subtractable2">subtractable&lt;T, D&gt;</a></code></li>
<li><code><a href="#indexable">indexable&lt;T, D, R&gt;</a></code></li>
<li><code><a href="#random_access_iteratable">random_access_iteratable&lt;T, P, D, R&gt;</a></code></li>
</ul>
To satisfy <cite><a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a></cite>,
<code>x1 - x2</code> with return convertible to <code>D</code>
@@ -978,7 +1207,7 @@ C++ standard (<code>iterator_category</code>, <code>value_type</code>,
</tr>
</table>
<h3><a name="iterator_helpers_notes">Iterator Helper Notes</a></h3>
<h4><a name="iterator_helpers_notes">Iterator Helper Notes</a></h4>
<p><a name="1">[1]</a> Unlike other iterator helpers templates,
<code>output_iterator_helper</code> takes only one template parameter - the type of
@@ -987,8 +1216,8 @@ restriction, the standard requires <code>difference_type</code> and
<code>value_type</code> of any output iterator to be
<code>void</code> (24.3.1 [lib.iterator.traits]), and
<code>output_iterator_helper</code> template respects this
requirement. Also, output iterators in the standard have void <tt>pointer</tt> and
<tt>reference</tt> types, so the <tt>output_iterator_helper</tt> does the
requirement. Also, output iterators in the standard have void <code>pointer</code> and
<code>reference</code> types, so the <code>output_iterator_helper</code> does the
same.
<p><a name="2">[2]</a> As self-proxying is the easiest and most common way to
@@ -1008,13 +1237,13 @@ template&lt;class UnaryFunction&gt;
struct function_output_iterator
: boost::output_iterator_helper&lt; function_output_iterator&lt;UnaryFunction&gt; &gt;
{
explicit function_output_iterator(UnaryFunction const& f = UnaryFunction())
explicit function_output_iterator(UnaryFunction const&amp; f = UnaryFunction())
: func(f) {}
template&lt;typename T&gt;
function_output_iterator& operator=(T const& value)
function_output_iterator&amp; operator=(T const&amp; value)
{
this->func(value);
this-&gt;func(value);
return *this;
}
@@ -1093,6 +1322,10 @@ the test results with selected platforms.</p>
partial ordering, and arithmetic conversions. Added the
grouped operator classes. Added helper classes for
input and output iterators.
<dt>Helmut Zeisel
<dd>Contributed the 'left' operators and added some
grouped operator classes.
</dl>
<h2>Note for Users of <a name="old_lib_note">Older Versions</a></h2>
@@ -1142,7 +1375,7 @@ the library remain backward-compatible.</p>
<hr>
<p>Revised: 25 Jun 2001</p>
<p>Revised: 30 Oct 2001</p>
<p>Copyright &copy; David Abrahams and Beman Dawes 1999-2001.
Permission to copy, use, modify, sell and distribute this document is

View File

@@ -8,6 +8,8 @@
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 01 Oct 01 Added tests for "left" operators
// and new grouped operators. (Helmut Zeisel)
// 20 May 01 Output progress messages. Added tests for new operator
// templates. Updated random number generator. Changed tests to
// use Boost Test Tools library. (Daryle Walker)
@@ -184,6 +186,74 @@ namespace
template <class T, class U>
T true_value(Wrapped4<T,U> x) { return x.value(); }
// U must be convertible to T
template <class T, class U>
class Wrapped5
: boost::ordered_field_operators2<Wrapped5<T, U>, U>
, boost::ordered_field_operators1<Wrapped5<T, U> >
{
public:
explicit Wrapped5( T v = T() ) : _value(v) {}
// Conversion from U to Wrapped5<T,U>
Wrapped5(U u) : _value(u) {}
T value() const { return _value; }
bool operator<(const Wrapped5& x) const { return _value < x._value; }
bool operator<(U u) const { return _value < u; }
bool operator>(U u) const { return _value > u; }
bool operator==(const Wrapped5& u) const { return _value == u._value; }
bool operator==(U u) const { return _value == u; }
Wrapped5& operator/=(const Wrapped5& u) { _value /= u._value; return *this;}
Wrapped5& operator/=(U u) { _value /= u; return *this;}
Wrapped5& operator*=(const Wrapped5& u) { _value *= u._value; return *this;}
Wrapped5& operator*=(U u) { _value *= u; return *this;}
Wrapped5& operator-=(const Wrapped5& u) { _value -= u._value; return *this;}
Wrapped5& operator-=(U u) { _value -= u; return *this;}
Wrapped5& operator+=(const Wrapped5& u) { _value += u._value; return *this;}
Wrapped5& operator+=(U u) { _value += u; return *this;}
private:
T _value;
};
template <class T, class U>
T true_value(Wrapped5<T,U> x) { return x.value(); }
// U must be convertible to T
template <class T, class U>
class Wrapped6
: boost::ordered_euclidian_ring_operators2<Wrapped6<T, U>, U>
, boost::ordered_euclidian_ring_operators1<Wrapped6<T, U> >
{
public:
explicit Wrapped6( T v = T() ) : _value(v) {}
// Conversion from U to Wrapped6<T,U>
Wrapped6(U u) : _value(u) {}
T value() const { return _value; }
bool operator<(const Wrapped6& x) const { return _value < x._value; }
bool operator<(U u) const { return _value < u; }
bool operator>(U u) const { return _value > u; }
bool operator==(const Wrapped6& u) const { return _value == u._value; }
bool operator==(U u) const { return _value == u; }
Wrapped6& operator%=(const Wrapped6& u) { _value %= u._value; return *this;}
Wrapped6& operator%=(U u) { _value %= u; return *this;}
Wrapped6& operator/=(const Wrapped6& u) { _value /= u._value; return *this;}
Wrapped6& operator/=(U u) { _value /= u; return *this;}
Wrapped6& operator*=(const Wrapped6& u) { _value *= u._value; return *this;}
Wrapped6& operator*=(U u) { _value *= u; return *this;}
Wrapped6& operator-=(const Wrapped6& u) { _value -= u._value; return *this;}
Wrapped6& operator-=(U u) { _value -= u; return *this;}
Wrapped6& operator+=(const Wrapped6& u) { _value += u._value; return *this;}
Wrapped6& operator+=(U u) { _value += u; return *this;}
private:
T _value;
};
template <class T, class U>
T true_value(Wrapped6<T,U> x) { return x.value(); }
// MyInt uses only the single template-argument form of all_operators<>
typedef Wrapped1<int> MyInt;
@@ -193,6 +263,10 @@ namespace
typedef Wrapped4<short, short> MyShort;
typedef Wrapped5<double, int> MyDoubleInt;
typedef Wrapped6<long, int> MyLongInt;
template <class X1, class Y1, class X2, class Y2>
void sanity_check(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
@@ -267,6 +341,13 @@ namespace
BOOST_TEST( (x1 - y1).value() == (x2 - y2) );
}
template <class X1, class Y1, class X2, class Y2>
void test_subtractable_left(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check( x1, y1, x2, y2 );
BOOST_TEST( (y1 - x1).value() == (y2 - x2) );
}
template <class X1, class Y1, class X2, class Y2>
void test_dividable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
@@ -275,6 +356,14 @@ namespace
BOOST_TEST( (x1 / y1).value() == (x2 / y2) );
}
template <class X1, class Y1, class X2, class Y2>
void test_dividable_left(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check( x1, y1, x2, y2 );
if ( x2 != 0 )
BOOST_TEST( (y1 / x1).value() == (y2 / x2) );
}
template <class X1, class Y1, class X2, class Y2>
void test_modable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
@@ -283,6 +372,14 @@ namespace
BOOST_TEST( (x1 % y1).value() == (x2 % y2) );
}
template <class X1, class Y1, class X2, class Y2>
void test_modable_left(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check( x1, y1, x2, y2 );
if ( x2 != 0 )
BOOST_TEST( (y1 % x1).value() == (y2 % x2) );
}
template <class X1, class Y1, class X2, class Y2>
void test_xorable_aux(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
@@ -374,6 +471,14 @@ namespace
test_decrementable( x1, x2 );
}
template <class X1, class Y1, class X2, class Y2>
void test_left(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
test_subtractable_left( x1, y1, x2, y2 );
test_dividable_left( x1, y1, x2, y2 );
test_modable_left( x1, y1, x2, y2 );
}
template <class Big, class Small>
struct tester
{
@@ -388,6 +493,19 @@ namespace
}
};
template <class Big, class Small>
struct tester_left
{
void operator()(boost::minstd_rand& randomizer) const
{
Big b1 = Big( randomizer() );
Big b2 = Big( randomizer() );
Small s = Small( randomizer() );
test_left( Wrapped6<Big, Small>(b1), s, b1, s );
}
};
// added as a regression test. We had a bug which this uncovered.
struct Point
: boost::addable<Point
@@ -427,6 +545,13 @@ template Wrapped2<unsigned int, unsigned char>;
template Wrapped2<unsigned long, unsigned int>;
template Wrapped2<unsigned long, unsigned char>;
template Wrapped2<unsigned long, unsigned long>;
template Wrapped6<long, int>;
template Wrapped6<long, signed char>;
template Wrapped6<int, signed char>;
template Wrapped6<unsigned long, unsigned int>;
template Wrapped6<unsigned long, unsigned char>;
template Wrapped6<unsigned int, unsigned char>;
#endif
#define PRIVATE_EXPR_TEST(e, t) BOOST_TEST( ((e), (t)) )
@@ -459,6 +584,14 @@ test_main( int , char * [] )
tester<unsigned long, unsigned long>()(r);
tester<unsigned int, unsigned int>()(r);
tester<unsigned int, unsigned char>()(r);
tester_left<long, int>()(r);
tester_left<long, signed char>()(r);
tester_left<int, signed char>()(r);
tester_left<unsigned long, unsigned int>()(r);
tester_left<unsigned long, unsigned char>()(r);
tester_left<unsigned int, unsigned char>()(r);
}
cout << "Did random tester loop." << endl;
@@ -653,5 +786,106 @@ test_main( int , char * [] )
cout << "Performed tests on MyShort objects.\n";
MyDoubleInt di1(1);
MyDoubleInt di2(2.);
MyDoubleInt half(0.5);
MyDoubleInt di;
MyDoubleInt tmp;
BOOST_TEST( di1.value() == 1 );
BOOST_TEST( di2.value() == 2 );
BOOST_TEST( di2.value() == 2 );
BOOST_TEST( di.value() == 0 );
cout << "Created MyDoubleInt objects.\n";
PRIVATE_EXPR_TEST( (di = di2), (di.value() == 2) );
BOOST_TEST( di2 == di );
BOOST_TEST( 2 == di );
BOOST_TEST( di == 2 );
BOOST_TEST( di1 < di2 );
BOOST_TEST( 1 < di2 );
BOOST_TEST( di1 <= di2 );
BOOST_TEST( 1 <= di2 );
BOOST_TEST( di2 > di1 );
BOOST_TEST( di2 > 1 );
BOOST_TEST( di2 >= di1 );
BOOST_TEST( di2 >= 1 );
BOOST_TEST( di1 / di2 == half );
BOOST_TEST( di1 / 2 == half );
BOOST_TEST( 1 / di2 == half );
PRIVATE_EXPR_TEST( (tmp=di1), ((tmp/=2) == half) );
PRIVATE_EXPR_TEST( (tmp=di1), ((tmp/=di2) == half) );
BOOST_TEST( di1 * di2 == di2 );
BOOST_TEST( di1 * 2 == di2 );
BOOST_TEST( 1 * di2 == di2 );
PRIVATE_EXPR_TEST( (tmp=di1), ((tmp*=2) == di2) );
PRIVATE_EXPR_TEST( (tmp=di1), ((tmp*=di2) == di2) );
BOOST_TEST( di2 - di1 == di1 );
BOOST_TEST( di2 - 1 == di1 );
BOOST_TEST( 2 - di1 == di1 );
PRIVATE_EXPR_TEST( (tmp=di2), ((tmp-=1) == di1) );
PRIVATE_EXPR_TEST( (tmp=di2), ((tmp-=di1) == di1) );
BOOST_TEST( di1 + di1 == di2 );
BOOST_TEST( di1 + 1 == di2 );
BOOST_TEST( 1 + di1 == di2 );
PRIVATE_EXPR_TEST( (tmp=di1), ((tmp+=1) == di2) );
PRIVATE_EXPR_TEST( (tmp=di1), ((tmp+=di1) == di2) );
cout << "Performed tests on MyDoubleInt objects.\n";
MyLongInt li1(1);
MyLongInt li2(2);
MyLongInt li;
MyLongInt tmp2;
BOOST_TEST( li1.value() == 1 );
BOOST_TEST( li2.value() == 2 );
BOOST_TEST( li.value() == 0 );
cout << "Created MyLongInt objects.\n";
PRIVATE_EXPR_TEST( (li = li2), (li.value() == 2) );
BOOST_TEST( li2 == li );
BOOST_TEST( 2 == li );
BOOST_TEST( li == 2 );
BOOST_TEST( li1 < li2 );
BOOST_TEST( 1 < li2 );
BOOST_TEST( li1 <= li2 );
BOOST_TEST( 1 <= li2 );
BOOST_TEST( li2 > li1 );
BOOST_TEST( li2 > 1 );
BOOST_TEST( li2 >= li1 );
BOOST_TEST( li2 >= 1 );
BOOST_TEST( li1 % li2 == li1 );
BOOST_TEST( li1 % 2 == li1 );
BOOST_TEST( 1 % li2 == li1 );
PRIVATE_EXPR_TEST( (tmp2=li1), ((tmp2%=2) == li1) );
PRIVATE_EXPR_TEST( (tmp2=li1), ((tmp2%=li2) == li1) );
BOOST_TEST( li1 / li2 == 0 );
BOOST_TEST( li1 / 2 == 0 );
BOOST_TEST( 1 / li2 == 0 );
PRIVATE_EXPR_TEST( (tmp2=li1), ((tmp2/=2) == 0) );
PRIVATE_EXPR_TEST( (tmp2=li1), ((tmp2/=li2) == 0) );
BOOST_TEST( li1 * li2 == li2 );
BOOST_TEST( li1 * 2 == li2 );
BOOST_TEST( 1 * li2 == li2 );
PRIVATE_EXPR_TEST( (tmp2=li1), ((tmp2*=2) == li2) );
PRIVATE_EXPR_TEST( (tmp2=li1), ((tmp2*=li2) == li2) );
BOOST_TEST( li2 - li1 == li1 );
BOOST_TEST( li2 - 1 == li1 );
BOOST_TEST( 2 - li1 == li1 );
PRIVATE_EXPR_TEST( (tmp2=li2), ((tmp2-=1) == li1) );
PRIVATE_EXPR_TEST( (tmp2=li2), ((tmp2-=li1) == li1) );
BOOST_TEST( li1 + li1 == li2 );
BOOST_TEST( li1 + 1 == li2 );
BOOST_TEST( 1 + li1 == li2 );
PRIVATE_EXPR_TEST( (tmp2=li1), ((tmp2+=1) == li2) );
PRIVATE_EXPR_TEST( (tmp2=li1), ((tmp2+=li1) == li2) );
cout << "Performed tests on MyLongInt objects.\n";
return boost::exit_success;
}

159
permutation_iterator.htm Normal file
View File

@@ -0,0 +1,159 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>Permutation Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1>Permutation Iterator Adaptor</h1>
<p>Defined in header <a href="../../boost/permutation_iterator.hpp">boost/permutation_iterator.hpp</a></p>
<p>The permutation iterator adaptor provides an iterator to a permutation of a given range.
(<a href="http://www.cut-the-knot.com/do_you_know/permutation.html">see definition of permutation</a>).
The adaptor takes two arguments
<ul>
<li>an iterator to the range V on which the <a href="http://www.cut-the-knot.com/do_you_know/permutation.html">permutation</a> will be applied</li>
<li>the reindexing scheme that defines how the elements of V will be permuted.</li>
</ul>
<p>Note that the permutation iterator is not limited to strict permutations of the given range V.
The distance between begin and end of the reindexing iterators is allowed to be smaller compared to the
size of the range V, in which case the permutation iterator only provides a permutation of a subrange of V.
The indexes neither need to be unique. In this same context, it must be noted that the past the end permutation iterator is
completely defined by means of the past-the-end iterator to the indices</p>
<h2>Synopsis</h2>
<blockquote>
<pre>
namespace boost {
template &lt;class IndexIterator&gt;
class permutation_iterator_policies;
template &lt;class ElementIterator, class IndexIterator&gt;
class permutation_iterator_generator;
template &lt;class ElementIterator, class IndexIterator&gt;
typename permutation_iterator_generator&lt;ElementIterator, IndexIterator&gt;::type
make_permutation_iterator(ElementIterator&amp; base, IndexIterator&amp; indexing);
}
</pre>
</blockquote>
<h2>The Permutation Iterator Generator Class Template</h2>
<p>The <code>permutation_iterator_generator</code> is a helper class whose purpose
is to construct a permutation iterator <strong>type</strong>. This class has
two template arguments, the first being the iterator type over the range V, the
second being the type of iterator over the indices.
<blockquote>
<pre>
template &lt;class ElementIterator, class IndexIterator&gt;
class permutation_iterator_generator
{
public:
typedef <a href="iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt; type; // the resulting permutation iterator type
}
</pre>
</blockquote>
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
<tr>
<td><tt>ElementIterator</tt></td>
<td>The iterator over the elements to be permuted. This type must be a model
of <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a></td>
</td>
<tr>
<td><tt>IndexIterator</tt></td>
<td>The iterator over the new indexing scheme. This type must at least be a model
of <a href="http://www.sgi.com/tech/stl/ForwardIterator.html">ForwardIterator</a></td>.
The <code>IndexIterator::value_type</code> must be convertible to the
<code>ElementIterator::difference_type</code>.
</table>
<h3>Concept Model</h3>
The permutation iterator is always a model of the same concept as the IndexIterator.
<h3>Members</h3>
The permutation iterator implements the member functions
and operators required for the
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access Iterator</a>
concept. However, the permutation iterator can only meet the complexity guarantees
of the same concept as the OrderIterator. Thus for instance, although the permutation
iterator provides <code>operator+=(distance)</code>, this operation will take linear time
in case the OrderIterator is a model of ForwardIterator instead of amortized constant time.
<br>
<h2><a name="make_generator_iterator">The Permutation Iterator Object Generator</a></h2>
The <code>make_permutation_iterator()</code> function provides a
convenient way to create permutation iterator objects. The function
saves the user the trouble of explicitly writing out the iterator
types.
<blockquote>
<pre>
template &lt;class ElementIterator, class IndexIterator &gt;
typename permutation_iterator_generator&lt;ElementIterator, IndexIterator&gt;::type
make_permutation_iterator(ElementIterator&amp; base, IndexIterator&amp; order);
</pre>
</blockquote>
<h2>Example</h2>
<blockquote>
<pre>
typedef std::vector< int > element_range_type;
typedef std::list< int > index_type;
static const int element_range_size = 10;
static const int index_size = 4;
element_range_type elements( element_range_size );
std::iota( elements.begin(), elements.end(), 0 );
index_type indices( index_size );
std::iota( indices.begin(), indices.end(), element_range_size - index_size );
std::reverse( indices.begin(), indices.end() );
typedef permutation_iterator_generator< element_range_type::iterator, index_type::iterator >::type permutation_type;
permutation_type begin = make_permutation_iterator( elements.begin(), indices.begin() );
permutation_type it = begin;
permutation_type end = make_permutation_iterator( elements.begin(), indices.end() );
std::cout.setf( std::ios_base::left );
std::cout << std::setw( 50 ) << "The original range is : ";
std::copy( elements.begin(), elements.end(), std::ostream_iterator< int >( std::cout, " " ) );
std::cout << "\n";
std::cout << std::setw( 50 ) << "The reindexing scheme is : ";
std::copy( indices.begin(), indices.end(), std::ostream_iterator< int >( std::cout, " " ) );
std::cout << "\n";
std::cout << std::setw( 50 ) << "The permutated range is : ";
std::copy( begin, end, std::ostream_iterator< int >( std::cout, " " ) );
std::cout << "\n";
</pre>
</blockquote>
<br><br><br><hr>
Thanks: The permutation iterator is only a small addition to the superb iterator adaptors
library of David Abrahams and Jeremy Siek.
<br><br>
Copyright 2001 Toon Knapen.
</body>
</html>

View File

@@ -14,7 +14,7 @@
//
// 3 successfully inserted.
// 9 was already in the set.
// There were 2 occurances of 4.
// There were 2 occurrences of 4.
#include <set>
#include <algorithm>
@@ -55,7 +55,7 @@ main(int, char*[])
boost::tie(i,end) = std::equal_range(vals, vals + 6, 4);
std::cout << "There were " << std::distance(i,end)
<< " occurances of " << *i << "." << std::endl;
<< " occurrences of " << *i << "." << std::endl;
// Footnote: of course one would normally just use std::count()
// to get this information, but that would spoil the example :)
}