Merge branch 'feature/use_esp_secure_cert_tool_for_ssl_ds_example' into 'master'

mqtt/ssl_ds example: Remove configure_ds.py script, use

Closes IDFGH-7353

See merge request espressif/esp-idf!19764
This commit is contained in:
Aditya Patwardhan
2022-08-29 16:37:31 +08:00
8 changed files with 38 additions and 491 deletions

View File

@@ -9,12 +9,11 @@ set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/protocol_exam
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(mqtt_ssl_ds)
# Flash the custom partition named `pre_prov`.
set(partition pre_prov)
# Flash the custom partition named `esp_secure_cert`.
set(partition esp_secure_cert)
idf_build_get_property(project_dir PROJECT_DIR)
set(image_file ${project_dir}/esp_ds_data/${partition}.bin)
set(image_file ${project_dir}/esp_secure_cert_data/${partition}.bin)
partition_table_get_partition_info(offset "--partition-name ${partition}" "offset")
esptool_py_flash_target_image(flash "${partition}" "${offset}" "${image_file}")
target_add_binary_data(${CMAKE_PROJECT_NAME}.elf "main/client.crt" TEXT)
target_add_binary_data(${CMAKE_PROJECT_NAME}.elf "main/mosquitto.org.crt" TEXT)

View File

@@ -40,22 +40,27 @@ openssl genrsa -out client.key
openssl req -out client.csr -key client.key -new
```
Paste the generated CSR in the [Mosquitto test certificate signer](https://test.mosquitto.org/ssl/index.php), click Submit and copy the downloaded `client.crt` in the `main` directory.
Please note, that the supplied file `client.crt` in the `main` directory is only a placeholder for your client certificate (i.e. the example "as is" would compile but would not connect to the broker)
Paste the generated CSR in the [Mosquitto test certificate signer](https://test.mosquitto.org/ssl/index.php), click Submit and downloaded the `client.crt`. This `client.crt` file shall be used as the device certificate.
#### 3) Configure the DS peripheral
* The DS peripheral can be configured with the python script [configure_ds.py](README.md#configure_ds-py) by executing the following command
* i) Install the [esp_secure_cert configuration utility](https://github.com/espressif/esp_secure_cert_mgr/tree/main/tools#esp_secure_cert-configuration-tool) with following command:
```
pip install esp-secure-cert-tool
```
* ii) The DS peripheral can be configured by executing the following command:
```
python configure_ds.py --port /* USB COM port */ --private-key /* RSA priv key */
configure_esp_secure_cert.py -p /* Serial port */ --device-cert /* Device cert */ --private-key /* RSA priv key */ --target_chip /* target chip */ --configure_ds --skip_flash
```
This command shall generate a partition named `esp_secure_cert.bin` in the `esp_secure_cert_data` directory. This partition would be aumatically detected by the build system and flashed at appropriate offset when `idf.py flash` command is used. For this process, the command must be executed in the current folder only.
In the command USB COM port is nothing but the serial port to which the ESP chip is connected. see
[check serial port](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/establish-serial-connection.html#check-port-on-windows) for more details.
RSA private key is nothing but the client private key ( RSA ) generated in Step 2.
> Note: More details about the `esp-secure-cert-tool` utility can be found [here](https://github.com/espressif/esp_secure_cert_mgr/tree/main/tools).
#### 4) Connection cofiguration
* Open the project configuration menu (`idf.py menuconfig`)
* Configure Wi-Fi or Ethernet under "Example Connection Configuration" menu. See "Establishing Wi-Fi or Ethernet Connection" section in [examples/protocols/README.md](../../README.md) for more details.

View File

@@ -1,393 +0,0 @@
#!/usr/bin/env python
# SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: Apache-2.0
import argparse
import hashlib
import hmac
import json
import os
import struct
import subprocess
import sys
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.utils import int_to_bytes
try:
import nvs_partition_gen as nvs_gen
except ImportError:
idf_path = os.getenv('IDF_PATH')
if not idf_path or not os.path.exists(idf_path):
raise Exception('IDF_PATH not found')
sys.path.insert(0, os.path.join(idf_path, 'components', 'nvs_flash', 'nvs_partition_generator'))
import nvs_partition_gen as nvs_gen
# Check python version is proper or not to avoid script failure
assert sys.version_info >= (3, 6, 0), 'Python version too low.'
esp_ds_data_dir = 'esp_ds_data'
# hmac_key_file is generated when HMAC_KEY is calculated, it is used when burning HMAC_KEY to efuse
hmac_key_file = esp_ds_data_dir + '/hmac_key.bin'
# csv and bin filenames are default filenames for nvs partition files created with this script
csv_filename = esp_ds_data_dir + '/pre_prov.csv'
bin_filename = esp_ds_data_dir + '/pre_prov.bin'
expected_json_path = os.path.join('build', 'config', 'sdkconfig.json')
# Targets supported by the script
supported_targets = {'esp32s2', 'esp32c3', 'esp32s3'}
supported_key_size = {'esp32s2':[1024, 2048, 3072, 4096], 'esp32c3':[1024, 2048, 3072], 'esp32s3':[1024, 2048, 3072, 4096]}
# @return
# on success idf_target - value of the IDF_TARGET read from build/config/sdkconfig.json
# on failure None
def get_idf_target():
if os.path.exists(expected_json_path):
sdkconfig = json.load(open(expected_json_path))
idf_target_read = sdkconfig['IDF_TARGET']
return idf_target_read
else:
print('ERROR: IDF_TARGET has not been set for the supported targets,'
"\nplase execute command \"idf.py set-target {TARGET}\" in the example directory")
return None
def load_privatekey(key_file_path, password=None):
key_file = open(key_file_path, 'rb')
key = key_file.read()
key_file.close()
return serialization.load_pem_private_key(key, password=password, backend=default_backend())
def number_as_bytes(number, pad_bits=None):
"""
Given a number, format as a little endian array of bytes
"""
result = int_to_bytes(number)[::-1]
while pad_bits is not None and len(result) < (pad_bits // 8):
result += b'\x00'
return result
# @return
# c : ciphertext_c
# iv : initialization vector
# key_size : key size of the RSA private key in bytes.
# @input
# privkey : path to the RSA private key
# priv_key_pass : path to the RSA privaete key password
# hmac_key : HMAC key value ( to calculate DS params)
# idf_target : The target chip for the script (e.g. esp32s2, esp32c3, esp32s3)
# @info
# The function calculates the encrypted private key parameters.
# Consult the DS documentation (available for the ESP32-S2) in the esp-idf programming guide for more details about the variables and calculations.
def calculate_ds_parameters(privkey, priv_key_pass, hmac_key, idf_target):
private_key = load_privatekey(privkey, priv_key_pass)
if not isinstance(private_key, rsa.RSAPrivateKey):
print('ERROR: Only RSA private keys are supported')
sys.exit(-1)
if hmac_key is None:
print('ERROR: hmac_key cannot be None')
sys.exit(-2)
priv_numbers = private_key.private_numbers()
pub_numbers = private_key.public_key().public_numbers()
Y = priv_numbers.d
M = pub_numbers.n
key_size = private_key.key_size
if key_size not in supported_key_size[idf_target]:
print('ERROR: Private key size {0} not supported for the target {1},\nthe supported key sizes are {2}'
.format(key_size, idf_target, str(supported_key_size[idf_target])))
sys.exit(-1)
iv = os.urandom(16)
rr = 1 << (key_size * 2)
rinv = rr % pub_numbers.n
mprime = - rsa._modinv(M, 1 << 32)
mprime &= 0xFFFFFFFF
length = key_size // 32 - 1
# get max supported key size for the respective target
max_len = max(supported_key_size[idf_target])
aes_key = hmac.HMAC(hmac_key, b'\xFF' * 32, hashlib.sha256).digest()
md_in = number_as_bytes(Y, max_len) + \
number_as_bytes(M, max_len) + \
number_as_bytes(rinv, max_len) + \
struct.pack('<II', mprime, length) + \
iv
# expected_len = max_len_Y + max_len_M + max_len_rinv + (mprime + length packed (8 bytes))+ iv (16 bytes)
expected_len = (max_len / 8) * 3 + 8 + 16
assert len(md_in) == expected_len
md = hashlib.sha256(md_in).digest()
# In case of ESP32-S2
# Y4096 || M4096 || Rb4096 || M_prime32 || LENGTH32 || MD256 || 0x08*8
# In case of ESP32-C3
# Y3072 || M3072 || Rb3072 || M_prime32 || LENGTH32 || MD256 || 0x08*8
p = number_as_bytes(Y, max_len) + \
number_as_bytes(M, max_len) + \
number_as_bytes(rinv, max_len) + \
md + \
struct.pack('<II', mprime, length) + \
b'\x08' * 8
# expected_len = max_len_Y + max_len_M + max_len_rinv + md (32 bytes) + (mprime + length packed (8bytes)) + padding (8 bytes)
expected_len = (max_len / 8) * 3 + 32 + 8 + 8
assert len(p) == expected_len
cipher = Cipher(algorithms.AES(aes_key), modes.CBC(iv), backend=default_backend())
encryptor = cipher.encryptor()
c = encryptor.update(p) + encryptor.finalize()
return c, iv, key_size
# @info
# The function makes use of the "espefuse.py" script to read the efuse summary
def efuse_summary(args, idf_target):
os.system('python $IDF_PATH/components/esptool_py/esptool/espefuse.py --chip {0} -p {1} summary'.format(idf_target, (args.port)))
# @info
# The function makes use of the "espefuse.py" script to burn the HMAC key on the efuse.
def efuse_burn_key(args, idf_target):
# In case of a development (default) usecase we disable the read protection.
key_block_status = '--no-read-protect'
if args.production is True:
# Whitespace character will have no additional effect on the command and
# read protection will be enabled as the default behaviour of the command
key_block_status = ' '
os.system('python $IDF_PATH/components/esptool_py/esptool/espefuse.py --chip {0} -p {1} burn_key '
'{2} {3} HMAC_DOWN_DIGITAL_SIGNATURE {4}'
.format((idf_target), (args.port), ('BLOCK_KEY' + str(args.efuse_key_id)), (hmac_key_file), (key_block_status)))
# @info
# Generate a custom csv file of encrypted private key parameters.
# The csv file is required by the nvs_partition_generator utility to create the nvs partition.
def generate_csv_file(c, iv, hmac_key_id, key_size, csv_file):
with open(csv_file, 'wt', encoding='utf8') as f:
f.write('# This is a generated csv file containing required parameters for the Digital Signature operation\n')
f.write('key,type,encoding,value\nesp_ds_ns,namespace,,\n')
f.write('esp_ds_c,data,hex2bin,%s\n' % (c.hex()))
f.write('esp_ds_iv,data,hex2bin,%s\n' % (iv.hex()))
f.write('esp_ds_key_id,data,u8,%d\n' % (hmac_key_id))
f.write('esp_ds_rsa_len,data,u16,%d\n' % (key_size))
class DefineArgs(object):
def __init__(self, attributes):
for key, value in attributes.items():
self.__setattr__(key, value)
# @info
# This function uses the nvs_partition_generater utility
# to generate the nvs partition of the encrypted private key parameters.
def generate_nvs_partition(input_filename, output_filename):
nvs_args = DefineArgs({
'input': input_filename,
'outdir': os.getcwd(),
'output': output_filename,
'size': hex(0x3000),
'version': 2,
'keyfile':None,
})
nvs_gen.generate(nvs_args, is_encr_enabled=False, encr_key=None)
# @return
# The json formatted summary of the efuse.
def get_efuse_summary_json(args, idf_target):
_efuse_summary = None
try:
_efuse_summary = subprocess.check_output(('python $IDF_PATH/components/esptool_py/esptool/espefuse.py '
'--chip {0} -p {1} summary --format json'.format(idf_target, (args.port))), shell=True)
except subprocess.CalledProcessError as e:
print((e.output).decode('UTF-8'))
sys.exit(-1)
_efuse_summary = _efuse_summary.decode('UTF-8')
# Remove everything before actual json data from efuse_summary command output.
_efuse_summary = _efuse_summary[_efuse_summary.find('{'):]
try:
_efuse_summary_json = json.loads(_efuse_summary)
except json.JSONDecodeError:
print('ERROR: failed to parse the json output')
sys.exit(-1)
return _efuse_summary_json
# @return
# on success: 256 bit HMAC key present in the given key_block (args.efuse_key_id)
# on failure: None
# @info
# This function configures the provided efuse key_block.
# If the provided efuse key_block is empty the function generates a new HMAC key and burns it in the efuse key_block.
# If the key_block already contains a key the function reads the key from the efuse key_block
def configure_efuse_key_block(args, idf_target):
efuse_summary_json = get_efuse_summary_json(args, idf_target)
key_blk = 'BLOCK_KEY' + str(args.efuse_key_id)
key_purpose = 'KEY_PURPOSE_' + str(args.efuse_key_id)
kb_writeable = efuse_summary_json[key_blk]['writeable']
kb_readable = efuse_summary_json[key_blk]['readable']
hmac_key_read = None
# If the efuse key block is writable (empty) then generate and write
# the new hmac key and check again
# If the efuse key block is not writable (already contains a key) then check if it is redable
if kb_writeable is True:
print('Provided key block (KEY BLOCK %1d) is writable\n Generating a new key and burning it in the efuse..\n' % (args.efuse_key_id))
new_hmac_key = os.urandom(32)
with open(hmac_key_file, 'wb') as key_file:
key_file.write(new_hmac_key)
# Burn efuse key
efuse_burn_key(args, idf_target)
if args.production is False:
# Read fresh summary of the efuse to read the key value from efuse.
# If the key read from efuse matches with the key generated
# on host then burn_key operation was successfull
new_efuse_summary_json = get_efuse_summary_json(args, idf_target)
hmac_key_read = new_efuse_summary_json[key_blk]['value']
print(hmac_key_read)
hmac_key_read = bytes.fromhex(hmac_key_read)
if new_hmac_key == hmac_key_read:
print('Key was successfully written to the efuse (KEY BLOCK %1d)' % (args.efuse_key_id))
else:
print('ERROR: Failed to burn the hmac key to efuse (KEY BLOCK %1d),'
'\nPlease execute the script again using a different key id' % (args.efuse_key_id))
return None
else:
new_efuse_summary_json = get_efuse_summary_json(args, idf_target)
if new_efuse_summary_json[key_purpose]['value'] != 'HMAC_DOWN_DIGITAL_SIGNATURE':
print('ERROR: Failed to verify the key purpose of the key block{})'.format(args.efuse_key_id))
return None
hmac_key_read = new_hmac_key
else:
# If the efuse key block is redable, then read the key from efuse block and use it for encrypting the RSA private key parameters.
# If the efuse key block is not redable or it has key purpose set to a different
# value than "HMAC_DOWN_DIGITAL_SIGNATURE" then we cannot use it for DS operation
if kb_readable is True:
if efuse_summary_json[key_purpose]['value'] == 'HMAC_DOWN_DIGITAL_SIGNATURE':
print('Provided efuse key block (KEY BLOCK %1d) already contains a key with key_purpose=HMAC_DOWN_DIGITAL_SIGNATURE,'
'\nusing the same key for encrypting the private key data...\n' % (args.efuse_key_id))
hmac_key_read = efuse_summary_json[key_blk]['value']
hmac_key_read = bytes.fromhex(hmac_key_read)
if args.keep_ds_data is True:
with open(hmac_key_file, 'wb') as key_file:
key_file.write(hmac_key_read)
else:
print('ERROR: Provided efuse key block ((KEY BLOCK %1d)) contains a key with key purpose different'
'than HMAC_DOWN_DIGITAL_SIGNATURE,\nplease execute the script again with a different value of the efuse key id.' % (args.efuse_key_id))
return None
else:
print('ERROR: Provided efuse key block (KEY BLOCK %1d) is not readable and writeable,'
'\nplease execute the script again with a different value of the efuse key id.' % (args.efuse_key_id))
return None
# Return the hmac key burned into the efuse
return hmac_key_read
def cleanup(args):
if args.keep_ds_data is False:
if os.path.exists(hmac_key_file):
os.remove(hmac_key_file)
if os.path.exists(csv_filename):
os.remove(csv_filename)
def main():
parser = argparse.ArgumentParser(description='''Generate an HMAC key and burn it in the desired efuse key block (required for Digital Signature),
Generates an NVS partition containing the encrypted private key parameters from the client private key.
''')
parser.add_argument(
'--private-key',
dest='privkey',
default='client.key',
metavar='relative/path/to/client-priv-key',
help='relative path to client private key')
parser.add_argument(
'--pwd', '--password',
dest='priv_key_pass',
metavar='[password]',
help='the password associated with the private key')
parser.add_argument(
'--summary',
dest='summary',action='store_true',
help='Provide this option to print efuse summary of the chip')
parser.add_argument(
'--efuse_key_id',
dest='efuse_key_id', type=int, choices=range(1,6),
metavar='[key_id] ',
default=1,
help='Provide the efuse key_id which contains/will contain HMAC_KEY, default is 1')
parser.add_argument(
'--port', '-p',
dest='port',
metavar='[port]',
required=True,
help='UART com port to which the ESP device is connected')
parser.add_argument(
'--keep_ds_data_on_host','-keep_ds_data',
dest='keep_ds_data', action='store_true',
help='Keep encrypted private key data and key on host machine for testing purpose')
parser.add_argument(
'--production', '-prod',
dest='production', action='store_true',
help='Enable production configurations. e.g.keep efuse key block read protection enabled')
args = parser.parse_args()
idf_target = get_idf_target()
if idf_target not in supported_targets:
if idf_target is not None:
print('ERROR: The script does not support the target %s' % idf_target)
sys.exit(-1)
idf_target = str(idf_target)
if args.summary is not False:
efuse_summary(args, idf_target)
sys.exit(0)
if (os.path.exists(args.privkey) is False):
print('ERROR: The provided private key file does not exist')
sys.exit(-1)
if (os.path.exists(esp_ds_data_dir) is False):
os.makedirs(esp_ds_data_dir)
# Burn hmac_key on the efuse block (if it is empty) or read it
# from the efuse block (if the efuse block already contains a key).
hmac_key_read = configure_efuse_key_block(args, idf_target)
if hmac_key_read is None:
sys.exit(-1)
# Calculate the encrypted private key data along with all other parameters
c, iv, key_size = calculate_ds_parameters(args.privkey, args.priv_key_pass, hmac_key_read, idf_target)
# Generate csv file for the DS data and generate an NVS partition.
generate_csv_file(c, iv, args.efuse_key_id, key_size, csv_filename)
generate_nvs_partition(csv_filename, bin_filename)
cleanup(args)
if __name__ == '__main__':
main()

View File

@@ -29,25 +29,10 @@
#include "esp_log.h"
#include "mqtt_client.h"
#include "rsa_sign_alt.h"
#include "esp_secure_cert_read.h"
/* pre_prov - name of partition containing encrypted prv key parameters ( It is set as such to synchronize it with the pre provisioning service */
#define NVS_PARTITION_NAME "pre_prov"
/* esp_ds_ns - namespace used for defining values in esp_ds_nvs */
#define NVS_NAMESPACE "esp_ds_ns"
/* esp_ds_key_id - efuse key block id where 256 bit key is stored, which will be read by
* DS module to perform DS operation */
#define NVS_EFUSE_KEY_ID "esp_ds_key_id"
/* esp_ds_rsa_len - length of RSA private key (in bits) which is encrypted */
#define NVS_RSA_LEN "esp_ds_rsa_len"
/* following entries denote key(ASCII string) for particular value in key-value pair of esp_ds_nvs (which are defined in esp_ds_ns) */
/* ciphertext_c - encrypted RSA private key, see ESP32-S2 Techincal Reference Manual for more details */
#define NVS_CIPHER_C "esp_ds_c"
/* initialization vector (iv) - 256 bit value used to encrypt RSA private key (to generate ciphertext_c) */
#define NVS_IV "esp_ds_iv"
static const char *TAG = "MQTTS_EXAMPLE";
extern const uint8_t client_cert_pem_start[] asm("_binary_client_crt_start");
extern const uint8_t client_cert_pem_end[] asm("_binary_client_crt_end");
extern const uint8_t server_cert_pem_start[] asm("_binary_mosquitto_org_crt_start");
extern const uint8_t server_cert_pem_end[] asm("_binary_mosquitto_org_crt_end");
@@ -109,80 +94,23 @@ static void mqtt_event_handler(void *handler_args, esp_event_base_t base, int32_
}
}
void *esp_read_ds_data_from_nvs(void)
{
esp_ds_data_ctx_t *ds_data_ctx;
ds_data_ctx = (esp_ds_data_ctx_t *)malloc(sizeof(esp_ds_data_ctx_t));
if (ds_data_ctx == NULL) {
ESP_LOGE(TAG, "Error in allocating memory for esp_ds_data_context");
goto exit;
}
ds_data_ctx->esp_ds_data = (esp_ds_data_t *)calloc(1, sizeof(esp_ds_data_t));
if (ds_data_ctx->esp_ds_data == NULL) {
ESP_LOGE(TAG, "Could not allocate memory for DS data handle ");
goto exit;
}
nvs_handle_t esp_ds_nvs_handle;
esp_err_t esp_ret;
esp_ret = nvs_flash_init_partition(NVS_PARTITION_NAME);
if (esp_ret != ESP_OK) {
ESP_LOGE(TAG, "Error in esp_ds_nvs partition init,\nreturned %02x (%s)", esp_ret, esp_err_to_name(esp_ret));
goto exit;
}
esp_ret = nvs_open_from_partition(NVS_PARTITION_NAME, NVS_NAMESPACE,
NVS_READONLY, &esp_ds_nvs_handle);
if (esp_ret != ESP_OK) {
ESP_LOGE(TAG, "Error in esp_ds_nvs partition open,\nreturned %02x (%s)", esp_ret, esp_err_to_name(esp_ret));
goto exit;
}
esp_ret = nvs_get_u8(esp_ds_nvs_handle, NVS_EFUSE_KEY_ID, &ds_data_ctx->efuse_key_id);
if (esp_ret != ESP_OK) {
ESP_LOGE(TAG, "Error in efuse_key_id value from nvs,\nreturned %02x (%s)", esp_ret, esp_err_to_name(esp_ret));
goto exit;
}
esp_ret = nvs_get_u16(esp_ds_nvs_handle, NVS_RSA_LEN, &ds_data_ctx->rsa_length_bits);
if (esp_ret != ESP_OK) {
ESP_LOGE(TAG, "Error in reading rsa key length value from nvs,\nreturned %02x (%s)", esp_ret, esp_err_to_name(esp_ret));
goto exit;
}
size_t blob_length = ESP_DS_C_LEN;
esp_ret = nvs_get_blob(esp_ds_nvs_handle, NVS_CIPHER_C, (void *)(ds_data_ctx->esp_ds_data->c), &blob_length);
if ((esp_ret != ESP_OK) || (blob_length != ESP_DS_C_LEN)) {
ESP_LOGE(TAG, "Error in reading ciphertext_c value from nvs,bytes_read = %d,\nreturned %02x (%s)", blob_length, esp_ret, esp_err_to_name(esp_ret));
goto exit;
}
blob_length = ESP_DS_IV_LEN;
esp_ret = nvs_get_blob(esp_ds_nvs_handle, NVS_IV, (void *)(ds_data_ctx->esp_ds_data->iv), &blob_length);
if ((esp_ret != ESP_OK) || (blob_length != ESP_DS_IV_LEN)) {
ESP_LOGE(TAG, "Error in reading initialization vector value from nvs,bytes_read = %d,\nreturned %02x (%s)", blob_length, esp_ret, esp_err_to_name(esp_ret));
goto exit;
}
return (void *)ds_data_ctx;
exit:
if (ds_data_ctx != NULL) {
free(ds_data_ctx->esp_ds_data);
}
free(ds_data_ctx);
return NULL;
}
static void mqtt_app_start(void)
{
/* The context is used by the DS peripheral, should not be freed */
void *ds_data = esp_read_ds_data_from_nvs();
esp_ds_data_ctx_t *ds_data = esp_secure_cert_get_ds_ctx();
if (ds_data == NULL) {
ESP_LOGE(TAG, "Error in reading DS data from NVS");
vTaskDelete(NULL);
}
char *device_cert = NULL;
esp_err_t ret;
uint32_t len;
ret = esp_secure_cert_get_device_cert(&device_cert, &len);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to obtain the device certificate");
vTaskDelete(NULL);
}
const esp_mqtt_client_config_t mqtt_cfg = {
.broker = {
.address.uri = "mqtts://test.mosquitto.org:8884",
@@ -190,9 +118,9 @@ static void mqtt_app_start(void)
},
.credentials = {
.authentication = {
.certificate = (const char *)client_cert_pem_start,
.certificate = (const char *)device_cert,
.key = NULL,
.ds_data = ds_data
.ds_data = (void *)ds_data
},
},
};

View File

@@ -1 +0,0 @@
Please paste your client certificate here (follow instructions in README.md)

View File

@@ -0,0 +1,3 @@
## IDF Component Manager Manifest File
dependencies:
espressif/esp_secure_cert_mgr: "^2.0.0"

View File

@@ -1,6 +1,6 @@
# ESP-IDF Partition Table
# Name, Type, SubType, Offset, Size, Flags
nvs,data,nvs,0x9000,24K,
phy_init,data,phy,0xf000,4K,
pre_prov,data,nvs,0x10000,0x3000,
esp_secure_cert,0x3F,,,0x2000,
nvs,data,nvs,,24K,
phy_init,data,phy,,4K,
factory,app,factory,0x20000,1M,
1 # ESP-IDF Partition Table
2 # Name, Type, SubType, Offset, Size, Flags
3 nvs,data,nvs,0x9000,24K, esp_secure_cert,0x3F,,,0x2000,
4 phy_init,data,phy,0xf000,4K, nvs,data,nvs,,24K,
5 pre_prov,data,nvs,0x10000,0x3000, phy_init,data,phy,,4K,
6 factory,app,factory,0x20000,1M,

View File

@@ -1 +1,7 @@
CONFIG_PARTITION_TABLE_CUSTOM=y
# Setting partition table offset to 0xC000 would make the address of
# `esp_secure_cert` partition as 0xD000 (comes next in the sequence).
# Modules that are programmed with Espressif Secure Pre Provisioining service
# uses this offset for `esp_secure_cert` and hence this change aligns this example
# to work on those modules.
CONFIG_PARTITION_TABLE_OFFSET=0xC000