mirror of
https://github.com/espressif/esp-idf.git
synced 2025-07-31 19:24:33 +02:00
spi_slave_hd: add segment mode example
This commit is contained in:
@@ -108,6 +108,13 @@ Receiving General Purpose Interrupts From the Master
|
||||
|
||||
When the master sends CMD 0x08, 0x09 or 0x0A, the slave corresponding will be triggered. Currently the CMD8 is permanently used to indicate the termination of RDDMA segments. To receiving general purpose interrupts, register callbacks for CMD 0x09 and 0x0A when the slave is initialized, see :ref:`spi_slave_hd_callbacks`.
|
||||
|
||||
|
||||
Application Example
|
||||
-------------------
|
||||
|
||||
The code example for Device/Host communication can be found in the :example:`peripherals/spi_slave_hd` directory of ESP-IDF examples.
|
||||
|
||||
|
||||
API reference
|
||||
-------------
|
||||
|
||||
|
106
examples/peripherals/spi_slave_hd/segment_mode/README.md
Normal file
106
examples/peripherals/spi_slave_hd/segment_mode/README.md
Normal file
@@ -0,0 +1,106 @@
|
||||
# SPI Slave Halfduplex: Segment Mode Examples
|
||||
|
||||
(See the README.md file in the 'examples' directory for more information about IDF examples.)
|
||||
|
||||
These two projects illustrate the SPI Slave Halfduplex Segment Mode.
|
||||
* ``seg_slave`` shows one of the ways to use the SPI Slave Halfduplex driver. There are 2 tasks repeating to receive/send transactions from/to SPI Master respectively.
|
||||
* ``seg_master`` shows how to use the ESP Serial Slave Link APIs to communicate with SPI Slave Halfduplex driver. It receives/sends transactions from/to slave a few times.
|
||||
|
||||
## How to use example
|
||||
|
||||
### Hardware Required
|
||||
|
||||
These two projects are supposed to be flashed onto two seperate boards and jumped together via correctly connected SPI pins defined in both of the ``app_main.c`` files. For the ``seg_master`` project, it could be flashed onto all the ESP Chips. Whereas the ``seg_slave`` currently could be flashed onto ESP32-S2. Once they are connected and flashed, they will use the SPI Master and SPI Slave Halfduplex drivers to communicate with each other.
|
||||
|
||||
Following is the connection between 2 ESP32S2 boards:
|
||||
|
||||
| Signal | Master | Slave |
|
||||
|-----------|--------|--------|
|
||||
| MOSI | GPIO11 | GPIO11 |
|
||||
| MISO | GPIO13 | GPIO13 |
|
||||
| SCLK | GPIO12 | GPIO12 |
|
||||
| CS | GPIO10 | GPIO10 |
|
||||
|
||||
(Feel free to change the GPIO settings by editing the macro definations at the top of ``app_main.c`` files.)
|
||||
|
||||
### Build and Flash
|
||||
|
||||
Run `idf.py -p PORT flash monitor` to build, flash and monitor the project.
|
||||
|
||||
(To exit the serial monitor, type ``Ctrl-]``.)
|
||||
|
||||
See the [Getting Started Guide](https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html) for full steps to build, flash and monitor projects.
|
||||
|
||||
## Example Output
|
||||
|
||||
``seg_master``
|
||||
```
|
||||
---------SLAVE INFO---------
|
||||
|
||||
Slave MAX Send Buffer Size: 5000
|
||||
Slave MAX Receive Buffer Size: 120
|
||||
I (328) SEG_MASTER: RECEIVING......
|
||||
Transaction No.0 from slave, length: 4640
|
||||
I (338) SEG_MASTER: SENDING......
|
||||
I (348) SEG_MASTER: RECEIVING......
|
||||
Transaction No.1 from slave, length: 3299
|
||||
I (348) SEG_MASTER: SENDING......
|
||||
I (358) SEG_MASTER: RECEIVING......
|
||||
Transaction No.2 from slave, length: 4836
|
||||
I (368) SEG_MASTER: SENDING......
|
||||
I (368) SEG_MASTER: RECEIVING......
|
||||
Transaction No.3 from slave, length: 3333
|
||||
I (378) SEG_MASTER: SENDING......
|
||||
I (378) SEG_MASTER: RECEIVING......
|
||||
Transaction No.4 from slave, length: 4965
|
||||
I (388) SEG_MASTER: SENDING......
|
||||
I (388) SEG_MASTER: RECEIVING......
|
||||
Transaction No.5 from slave, length: 3042
|
||||
I (398) SEG_MASTER: SENDING......
|
||||
I (408) SEG_MASTER: RECEIVING......
|
||||
Transaction No.6 from slave, length: 4892
|
||||
I (408) SEG_MASTER: SENDING......
|
||||
I (418) SEG_MASTER: RECEIVING......
|
||||
Transaction No.7 from slave, length: 3585
|
||||
I (428) SEG_MASTER: SENDING......
|
||||
I (428) SEG_MASTER: RECEIVING......
|
||||
Transaction No.8 from slave, length: 3348
|
||||
I (438) SEG_MASTER: SENDING......
|
||||
I (438) SEG_MASTER: RECEIVING......
|
||||
Transaction No.9 from slave, length: 4985
|
||||
I (448) SEG_MASTER: SENDING......
|
||||
I (448) SEG_MASTER: RECEIVING......
|
||||
Transaction No.10 from slave, length: 3710
|
||||
...
|
||||
```
|
||||
|
||||
``seg_slave``
|
||||
```
|
||||
77 bytes are received:
|
||||
this is master's transaction 0
|
||||
109 bytes are received:
|
||||
this is master's transaction 1
|
||||
83 bytes are received:
|
||||
this is master's transaction 2
|
||||
97 bytes are received:
|
||||
this is master's transaction 3
|
||||
47 bytes are received:
|
||||
this is master's transaction 4
|
||||
89 bytes are received:
|
||||
this is master's transaction 5
|
||||
80 bytes are received:
|
||||
this is master's transaction 6
|
||||
96 bytes are received:
|
||||
this is master's transaction 7
|
||||
83 bytes are received:
|
||||
this is master's transaction 8
|
||||
110 bytes are received:
|
||||
this is master's transaction 9
|
||||
113 bytes are received:
|
||||
this is master's transaction 10
|
||||
...
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
For any technical queries, please open an [issue](https://github.com/espressif/esp-idf/issues) on GitHub. We will get back to you.
|
@@ -0,0 +1,6 @@
|
||||
# The following lines of boilerplate have to be in your project's CMakeLists
|
||||
# in this exact order for cmake to work correctly
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
|
||||
project(seg-master)
|
@@ -0,0 +1,8 @@
|
||||
#
|
||||
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
|
||||
# project subdirectory.
|
||||
#
|
||||
|
||||
PROJECT_NAME := spi-slave-hd-seg-master
|
||||
|
||||
include $(IDF_PATH)/make/project.mk
|
@@ -0,0 +1 @@
|
||||
See README.md in the parent directory
|
@@ -0,0 +1,2 @@
|
||||
idf_component_register(SRCS "app_main.c"
|
||||
INCLUDE_DIRS ".")
|
@@ -0,0 +1,294 @@
|
||||
/* SPI Slave Halfduplex example
|
||||
|
||||
This example code is in the Public Domain (or CC0 licensed, at your option.)
|
||||
|
||||
Unless required by applicable law or agreed to in writing, this
|
||||
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||||
CONDITIONS OF ANY KIND, either express or implied.
|
||||
*/
|
||||
#include <string.h>
|
||||
#include "esp_log.h"
|
||||
#include "esp_err.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "driver/spi_master.h"
|
||||
#include "esp_serial_slave_link/essl_spi.h"
|
||||
|
||||
//Pin setting
|
||||
#if !CONFIG_IDF_TARGET_ESP32C3
|
||||
#define GPIO_MOSI 11
|
||||
#define GPIO_MISO 13
|
||||
#define GPIO_SCLK 12
|
||||
#define GPIO_CS 10
|
||||
#else
|
||||
#define GPIO_MOSI 7
|
||||
#define GPIO_MISO 2
|
||||
#define GPIO_SCLK 6
|
||||
#define GPIO_CS 10
|
||||
#endif
|
||||
|
||||
#define MASTER_HOST SPI2_HOST
|
||||
#define DMA_CHAN SPI_DMA_CH_AUTO
|
||||
|
||||
#define TX_SIZE_MIN 40
|
||||
|
||||
/**
|
||||
* Helper Macros for Master-Slave synchronization, each setting is 4-byte-width
|
||||
*
|
||||
* The address and value should be negotiated with Master beforehand
|
||||
*/
|
||||
//----------------------General Settings---------------------//
|
||||
//Indicate Slave General Settings are ready
|
||||
#define SLAVE_READY_FLAG_REG 0
|
||||
#define SLAVE_READY_FLAG 0xEE
|
||||
//Value in these 4 registers (Byte 4, 5, 6, 7) indicates the MAX Slave TX buffer length
|
||||
#define SLAVE_MAX_TX_BUF_LEN_REG 4
|
||||
//Value in these 4 registers indicates the MAX Slave RX buffer length
|
||||
#define SLAVE_MAX_RX_BUF_LEN_REG 8
|
||||
|
||||
//----------------------Updating Info------------------------//
|
||||
//Value in these 4 registers indicates size of the TX buffer that Slave has loaded to the DMA
|
||||
#define SLAVE_TX_READY_BUF_SIZE_REG 12
|
||||
//Value in these 4 registers indicates number of the RX buffer that Slave has loaded to the DMA
|
||||
#define SLAVE_RX_READY_BUF_NUM_REG 16
|
||||
|
||||
static const char TAG[] = "SEG_MASTER";
|
||||
|
||||
|
||||
static void get_spi_bus_default_config(spi_bus_config_t *bus_cfg)
|
||||
{
|
||||
memset(bus_cfg, 0x0, sizeof(spi_bus_config_t));
|
||||
bus_cfg->mosi_io_num = GPIO_MOSI;
|
||||
bus_cfg->miso_io_num = GPIO_MISO;
|
||||
bus_cfg->sclk_io_num = GPIO_SCLK;
|
||||
bus_cfg->quadwp_io_num = -1;
|
||||
bus_cfg->quadhd_io_num = -1;
|
||||
bus_cfg->max_transfer_sz = 14000;
|
||||
bus_cfg->flags = 0;
|
||||
bus_cfg->intr_flags = 0;
|
||||
}
|
||||
|
||||
static void get_spi_device_default_config(spi_device_interface_config_t *dev_cfg)
|
||||
{
|
||||
memset(dev_cfg, 0x0, sizeof(spi_device_interface_config_t));
|
||||
dev_cfg->clock_speed_hz = 10*1000*1000;
|
||||
dev_cfg->mode = 0;
|
||||
dev_cfg->spics_io_num = GPIO_CS;
|
||||
dev_cfg->cs_ena_pretrans = 0;
|
||||
dev_cfg->cs_ena_posttrans = 0;
|
||||
dev_cfg->command_bits = 8;
|
||||
dev_cfg->address_bits = 8;
|
||||
dev_cfg->dummy_bits = 8;
|
||||
dev_cfg->queue_size = 16;
|
||||
dev_cfg->flags = SPI_DEVICE_HALFDUPLEX;
|
||||
dev_cfg->duty_cycle_pos = 0;
|
||||
dev_cfg->input_delay_ns = 0;
|
||||
dev_cfg->pre_cb = NULL;
|
||||
dev_cfg->post_cb = NULL;
|
||||
}
|
||||
|
||||
static void init_master_hd(spi_device_handle_t* out_spi)
|
||||
{
|
||||
//init bus
|
||||
spi_bus_config_t bus_cfg = {};
|
||||
get_spi_bus_default_config(&bus_cfg);
|
||||
ESP_ERROR_CHECK(spi_bus_initialize(MASTER_HOST, &bus_cfg, DMA_CHAN));
|
||||
|
||||
//add device
|
||||
spi_device_interface_config_t dev_cfg = {};
|
||||
get_spi_device_default_config(&dev_cfg);
|
||||
ESP_ERROR_CHECK(spi_bus_add_device(MASTER_HOST, &dev_cfg, out_spi));
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------Function used for Master-Slave Synchronization---------------------------//
|
||||
//Wait for Slave to init the shared registers for its configurations, see the Helper Macros above
|
||||
static esp_err_t wait_for_slave_ready(spi_device_handle_t spi)
|
||||
{
|
||||
esp_err_t ret;
|
||||
uint32_t slave_ready_flag;
|
||||
|
||||
while (1) {
|
||||
//Master sends CMD2 to get slave configuration
|
||||
//The first byte is a flag assigned by slave as a start signal, here it's 0xee
|
||||
ret = essl_spi_rdbuf(spi, (uint8_t *)&slave_ready_flag, SLAVE_READY_FLAG_REG, 4, 0);
|
||||
if (ret != ESP_OK) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (slave_ready_flag != SLAVE_READY_FLAG) {
|
||||
printf("Waiting for Slave to be ready...\n");
|
||||
vTaskDelay(1000 / portTICK_PERIOD_MS);
|
||||
} else if (slave_ready_flag == SLAVE_READY_FLAG) {
|
||||
return ESP_OK;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Get the MAX length of Slave's TX/RX buffer
|
||||
static esp_err_t get_slave_max_buf_size(spi_device_handle_t spi, uint32_t *out_send_size, uint32_t *out_recv_size)
|
||||
{
|
||||
esp_err_t ret;
|
||||
|
||||
ret = essl_spi_rdbuf(spi, (uint8_t *)out_send_size, SLAVE_MAX_TX_BUF_LEN_REG, 4, 0);
|
||||
if (ret != ESP_OK) {
|
||||
return ret;
|
||||
}
|
||||
ret = essl_spi_rdbuf(spi, (uint8_t *)out_recv_size, SLAVE_MAX_RX_BUF_LEN_REG, 4, 0);
|
||||
if (ret != ESP_OK) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* To get the size of the ready Slave TX buffer
|
||||
* This size can be read from the pre-negotiated shared register (here `SLAVE_TX_READY_BUF_SIZE_REG`)
|
||||
*/
|
||||
static uint32_t get_slave_tx_buf_size(spi_device_handle_t spi)
|
||||
{
|
||||
uint32_t updated_size;
|
||||
uint32_t temp;
|
||||
|
||||
ESP_ERROR_CHECK(essl_spi_rdbuf_polling(spi, (uint8_t *)&temp, SLAVE_TX_READY_BUF_SIZE_REG, 4, 0));
|
||||
/**
|
||||
* Read until the last 2 reading result are same. Reason:
|
||||
* SPI transaction is carried on per 1 Byte. So when Master is reading the shared register, if the
|
||||
* value is changed by Slave at this time, Master may get wrong data.
|
||||
*/
|
||||
while (1) {
|
||||
ESP_ERROR_CHECK(essl_spi_rdbuf_polling(spi, (uint8_t *)&updated_size, SLAVE_TX_READY_BUF_SIZE_REG, 4, 0));
|
||||
if (updated_size == temp) {
|
||||
return updated_size;
|
||||
}
|
||||
temp = updated_size;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* To get the number of the ready Slave RX buffers
|
||||
* This number can be read from the pre-negotiated shared register (here `SLAVE_RX_READY_BUF_NUM_REG`)
|
||||
*/
|
||||
static uint32_t get_slave_rx_buf_num(spi_device_handle_t spi)
|
||||
{
|
||||
uint32_t updated_num;
|
||||
uint32_t temp;
|
||||
|
||||
ESP_ERROR_CHECK(essl_spi_rdbuf_polling(spi, (uint8_t *)&temp, SLAVE_RX_READY_BUF_NUM_REG, 4, 0));
|
||||
/**
|
||||
* Read until the last 2 reading result are same. Reason:
|
||||
* SPI transaction is carried on per 1 Byte. So when Master is reading the shared register, if the
|
||||
* value is changed by Slave at this time, Master may get wrong data.
|
||||
*/
|
||||
while (1) {
|
||||
ESP_ERROR_CHECK(essl_spi_rdbuf_polling(spi, (uint8_t *)&updated_num, SLAVE_RX_READY_BUF_NUM_REG, 4, 0));
|
||||
if (updated_num == temp) {
|
||||
return updated_num;
|
||||
}
|
||||
temp = updated_num;
|
||||
}
|
||||
}
|
||||
|
||||
void app_main(void)
|
||||
{
|
||||
spi_device_handle_t spi;
|
||||
init_master_hd(&spi);
|
||||
|
||||
ESP_ERROR_CHECK(wait_for_slave_ready(spi));
|
||||
|
||||
/**
|
||||
* Here we let the Slave to claim its transaction size. You can modify it in your own way,
|
||||
* e.g. let the Senders to claim its MAX length, or let the Master/Slave determine the length themselves, without considering
|
||||
* throughputs in the opposite side.
|
||||
*/
|
||||
uint32_t slave_max_tx_buf_size;
|
||||
uint32_t slave_max_rx_buf_size;
|
||||
ESP_ERROR_CHECK(get_slave_max_buf_size(spi, &slave_max_tx_buf_size, &slave_max_rx_buf_size));
|
||||
uint32_t rx_buf_size = slave_max_tx_buf_size;
|
||||
printf("\n\n---------SLAVE INFO---------\n\n");
|
||||
printf("Slave MAX Send Buffer Size: %d\n", slave_max_tx_buf_size);
|
||||
printf("Slave MAX Receive Buffer Size: %d\n", slave_max_rx_buf_size);
|
||||
|
||||
uint8_t *recv_buf = heap_caps_calloc(1, rx_buf_size, MALLOC_CAP_DMA);
|
||||
if (!recv_buf) {
|
||||
ESP_LOGE(TAG, "No enough memory!");
|
||||
abort();
|
||||
}
|
||||
uint8_t *send_buf = heap_caps_calloc(1, slave_max_rx_buf_size, MALLOC_CAP_DMA);
|
||||
if (!send_buf) {
|
||||
ESP_LOGE(TAG, "No enough memory!");
|
||||
abort();
|
||||
}
|
||||
|
||||
uint32_t size_has_read = 0; //Counter of the size that Master has received.
|
||||
uint32_t size_to_read = 0;
|
||||
|
||||
uint32_t num_has_sent = 0; //Counter of the buffer number that Master has sent.
|
||||
uint32_t tx_trans_id = 0;
|
||||
srand(30);
|
||||
while (1) {
|
||||
//RECV
|
||||
ESP_LOGI(TAG, "RECEIVING......");
|
||||
/**
|
||||
* This (`size_has_read`) is the counter mentioned in examples/peripherals/spi_slave_hd/segment_mode/seg_slave/app_main.c.
|
||||
* See its Note for Function used for Master-Slave Synchronization.
|
||||
*
|
||||
* Condition when this counter overflows:
|
||||
* If the Slave increases its counter with the value smaller than 2^32, then the calculation is still safe. For example:
|
||||
* 1. Initially, Slave's counter is (2^32 - 1 - 10), Master's counter is (2^32 - 1 - 20). So the difference would be 10B initially.
|
||||
* 2. Slave loads 20 bytes to the DMA, and increase its counter. So the value would be ((2^32 - 1 - 10) + 20) = 9;
|
||||
* 3. The difference (`size_can_be_read`) would be (9 - (2^32 - 1 - 20)) = 30;
|
||||
*
|
||||
* If this is 0, it means Slave didn't load new TX buffer to the bus yet.
|
||||
*/
|
||||
uint32_t size_can_be_read = get_slave_tx_buf_size(spi) - size_has_read;
|
||||
|
||||
if (size_can_be_read > rx_buf_size) {
|
||||
ESP_LOGW(TAG, "Slave is going to send buffer(%d Bytes) larger than pre-negotiated MAX size", size_can_be_read);
|
||||
/**
|
||||
* NOTE:
|
||||
* In this condition, Master should still increase its counter (``size_has_read``) by the size that Slave has loaded,
|
||||
* because Master RX buffer is not large enough, and it should read as large as it can, then send the CMD8. The extra
|
||||
* bits will be missed by Master.
|
||||
*/
|
||||
size_to_read = rx_buf_size;
|
||||
} else {
|
||||
size_to_read = size_can_be_read;
|
||||
}
|
||||
|
||||
if (size_to_read) {
|
||||
ESP_ERROR_CHECK(essl_spi_rddma(spi, recv_buf, size_to_read, -1, 0));
|
||||
size_has_read += size_can_be_read; //See NOTE above
|
||||
|
||||
//Process the data. Here we just print it out.
|
||||
printf("%s\n", recv_buf);
|
||||
memset(recv_buf, 0x0, rx_buf_size);
|
||||
}
|
||||
|
||||
//SEND
|
||||
ESP_LOGI(TAG, "SENDING......");
|
||||
/**
|
||||
* Similar logic, see the comment for `size_can_be_read` above.
|
||||
* If this is 0, it means Slave didn't load RX buffer to the bus yet.
|
||||
*/
|
||||
uint32_t num_to_send = get_slave_rx_buf_num(spi) - num_has_sent;
|
||||
|
||||
//Prepare your TX transaction in your own way. Here is an example.
|
||||
//You can set any size to send (shorter, longer or equal to the Slave Max RX buf size), Slave can get the actual length by ``trans_len`` member of ``spi_slave_hd_data_t``
|
||||
uint32_t actual_tx_size = (rand() % (slave_max_rx_buf_size - TX_SIZE_MIN + 1)) + TX_SIZE_MIN;
|
||||
snprintf((char *)send_buf, slave_max_rx_buf_size, "this is master's transaction %d", tx_trans_id);
|
||||
|
||||
for (int i = 0; i < num_to_send; i++) {
|
||||
ESP_ERROR_CHECK(essl_spi_wrdma(spi, send_buf, actual_tx_size, -1, 0));
|
||||
num_has_sent++;
|
||||
tx_trans_id++;
|
||||
}
|
||||
}
|
||||
|
||||
free(recv_buf);
|
||||
free(send_buf);
|
||||
|
||||
spi_bus_remove_device(spi);
|
||||
spi_bus_free(MASTER_HOST);
|
||||
}
|
@@ -0,0 +1,8 @@
|
||||
#
|
||||
# Main component makefile.
|
||||
#
|
||||
# This Makefile can be left empty. By default, it will take the sources in the
|
||||
# src/ directory, compile them and link them into lib(subdirectory_name).a
|
||||
# in the build directory. This behaviour is entirely configurable,
|
||||
# please read the ESP-IDF documents if you need to do this.
|
||||
#
|
@@ -0,0 +1,6 @@
|
||||
# The following lines of boilerplate have to be in your project's CMakeLists
|
||||
# in this exact order for cmake to work correctly
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
|
||||
project(seg-slave)
|
@@ -0,0 +1,2 @@
|
||||
| Supported Targets | ESP32-S2 |
|
||||
| ----------------- | -------- |
|
@@ -0,0 +1,2 @@
|
||||
idf_component_register(SRCS "app_main.c"
|
||||
INCLUDE_DIRS ".")
|
@@ -0,0 +1,304 @@
|
||||
/* SPI Slave Halfduplex example
|
||||
|
||||
This example code is in the Public Domain (or CC0 licensed, at your option.)
|
||||
|
||||
Unless required by applicable law or agreed to in writing, this
|
||||
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||||
CONDITIONS OF ANY KIND, either express or implied.
|
||||
*/
|
||||
#include <string.h>
|
||||
#include "esp_log.h"
|
||||
#include "esp_err.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "driver/spi_slave_hd.h"
|
||||
|
||||
#define TIME_IS_OUT(start, end, timeout) (timeout) > ((end)-(start)) ? 0 : 1
|
||||
|
||||
//Pin setting
|
||||
#ifdef CONFIG_IDF_TARGET_ESP32S2
|
||||
#define GPIO_MOSI 11
|
||||
#define GPIO_MISO 13
|
||||
#define GPIO_SCLK 12
|
||||
#define GPIO_CS 10
|
||||
|
||||
#define SLAVE_HOST SPI2_HOST
|
||||
#define DMA_CHAN SPI_DMA_CH_AUTO
|
||||
#define QUEUE_SIZE 4
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Helper Macros for Master-Slave synchronization, each setting is 4-byte-width
|
||||
*
|
||||
* The address and value should be negotiated with Master beforehand
|
||||
*/
|
||||
//----------------------General Settings---------------------//
|
||||
//Indicate Slave General Settings are ready
|
||||
#define SLAVE_READY_FLAG_REG 0
|
||||
#define SLAVE_READY_FLAG 0xEE
|
||||
//Value in these 4 registers (Byte 4, 5, 6, 7) indicates the MAX Slave TX buffer length
|
||||
#define SLAVE_MAX_TX_BUF_LEN_REG 4
|
||||
//Value in these 4 registers indicates the MAX Slave RX buffer length
|
||||
#define SLAVE_MAX_RX_BUF_LEN_REG 8
|
||||
|
||||
//----------------------Updating Info------------------------//
|
||||
//Value in these 4 registers indicates size of the TX buffer that Slave has loaded to the DMA
|
||||
#define SLAVE_TX_READY_BUF_SIZE_REG 12
|
||||
//Value in these 4 registers indicates number of the RX buffer that Slave has loaded to the DMA
|
||||
#define SLAVE_RX_READY_BUF_NUM_REG 16
|
||||
|
||||
|
||||
static const char TAG[] = "SEG_SLAVE";
|
||||
|
||||
/* Used for Master-Slave synchronization */
|
||||
static uint32_t s_tx_ready_buf_size; //See ``cb_set_tx_ready_buf_size()``
|
||||
static uint32_t s_rx_ready_buf_num; //See ``cb_set_rx_ready_buf_num()``
|
||||
|
||||
static uint32_t s_tx_data_id;
|
||||
|
||||
|
||||
//-------------------------------Function used for Master-Slave Synchronization---------------------------//
|
||||
/**
|
||||
* NOTE: Only if all the counters are in same size (here uint32_t), the calculation is safe (when the shared register overflows).
|
||||
* NOTE: If Slave resets the counters, Master needs to reset its counter accordingly.
|
||||
* NOTE: You can also implement your own synchronization method, BUT DO MIND the parallelled issue.
|
||||
*/
|
||||
|
||||
/**
|
||||
* To write the size of the TX buffer that is loaded to the hardware (DMA)
|
||||
*
|
||||
* This callback function will be called when each TX buffer is loaded to the DMA.
|
||||
* - For Slave, ``s_tx_ready_buf_size`` is a counter of the loaded buffer size and will be written to the pre-negotiated shared register.
|
||||
* - For Master, it also needs a counter for the size of buffers that have been received.
|
||||
* - The difference between these 2 counters will be the number that Master can read, without concern of reading meaningless data.
|
||||
*
|
||||
* There are 3 conditions:
|
||||
* 1. Master reads same length as Slave loaded size.
|
||||
* 2. If Master reads longer than the Slave loaded size, the extra bits that Master reads from the bus would be meaningless.
|
||||
* 3. If Master reads shorter than the Slave loaded size, Master should still increase its counter by the Slave loaded size (here ``event->trans->len``),
|
||||
* because the extra bits that Slave sends to the bus would be missed by the Master.
|
||||
*/
|
||||
static bool cb_set_tx_ready_buf_size(void *arg, spi_slave_hd_event_t *event, BaseType_t *awoken)
|
||||
{
|
||||
s_tx_ready_buf_size += event->trans->len;
|
||||
spi_slave_hd_write_buffer(SLAVE_HOST, SLAVE_TX_READY_BUF_SIZE_REG, (uint8_t *)&s_tx_ready_buf_size, 4);
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* To write the number of the RX buffers that are loaded to the hardware (DMA)
|
||||
*
|
||||
* This callback function will be called when each RX buffer is loaded to the DMA.
|
||||
* - For Slave, ``s_rx_ready_buf_num`` is a counter for the loaded buffer and will be written to the pre-negotiated shared register
|
||||
* - For Master, it also needs a counter for the number of buffers that have been sent out.
|
||||
* - The difference between these 2 counters will be the number that Master can send.
|
||||
*/
|
||||
static bool cb_set_rx_ready_buf_num(void *arg, spi_slave_hd_event_t *event, BaseType_t *awoken)
|
||||
{
|
||||
s_rx_ready_buf_num ++;
|
||||
spi_slave_hd_write_buffer(SLAVE_HOST, SLAVE_RX_READY_BUF_NUM_REG, (uint8_t *)&s_rx_ready_buf_num, 4);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void get_spi_bus_default_config(spi_bus_config_t *bus_cfg)
|
||||
{
|
||||
memset(bus_cfg, 0x0, sizeof(spi_bus_config_t));
|
||||
bus_cfg->mosi_io_num = GPIO_MOSI;
|
||||
bus_cfg->miso_io_num = GPIO_MISO;
|
||||
bus_cfg->sclk_io_num = GPIO_SCLK;
|
||||
bus_cfg->quadwp_io_num = -1;
|
||||
bus_cfg->quadhd_io_num = -1;
|
||||
bus_cfg->max_transfer_sz = 14000;
|
||||
bus_cfg->flags = 0;
|
||||
bus_cfg->intr_flags = 0;
|
||||
}
|
||||
|
||||
static void get_spi_slot_default_config(spi_slave_hd_slot_config_t *slave_hd_cfg)
|
||||
{
|
||||
memset(slave_hd_cfg, 0x0, sizeof(spi_slave_hd_slot_config_t));
|
||||
slave_hd_cfg->spics_io_num = GPIO_CS;
|
||||
slave_hd_cfg->flags = 0;
|
||||
slave_hd_cfg->mode = 0;
|
||||
slave_hd_cfg->command_bits = 8;
|
||||
slave_hd_cfg->address_bits = 8;
|
||||
slave_hd_cfg->dummy_bits = 8;
|
||||
slave_hd_cfg->queue_size = QUEUE_SIZE;
|
||||
slave_hd_cfg->dma_chan = DMA_CHAN;
|
||||
slave_hd_cfg->cb_config = (spi_slave_hd_callback_config_t) {
|
||||
.cb_send_dma_ready = cb_set_tx_ready_buf_size,
|
||||
.cb_recv_dma_ready = cb_set_rx_ready_buf_num
|
||||
};
|
||||
}
|
||||
|
||||
static void init_slave_hd(void)
|
||||
{
|
||||
spi_bus_config_t bus_cfg = {};
|
||||
get_spi_bus_default_config(&bus_cfg);
|
||||
|
||||
spi_slave_hd_slot_config_t slave_hd_cfg = {};
|
||||
get_spi_slot_default_config(&slave_hd_cfg);
|
||||
|
||||
ESP_ERROR_CHECK(spi_slave_hd_init(SLAVE_HOST, &bus_cfg, &slave_hd_cfg));
|
||||
}
|
||||
|
||||
//Example code for data to send. Use your own code for TX data here.
|
||||
static bool get_tx_data(uint8_t *data, uint32_t max_len, uint32_t *out_len)
|
||||
{
|
||||
uint32_t min_len = 0;
|
||||
*out_len = (rand() % (max_len - min_len + 1)) + min_len;
|
||||
if (*out_len < (max_len - min_len) / 2) {
|
||||
*out_len = 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
snprintf((char *)data, *out_len, "Transaction No.%d from slave, length: %d", s_tx_data_id, *out_len);
|
||||
s_tx_data_id++;
|
||||
return true;
|
||||
}
|
||||
|
||||
void sender(void *arg)
|
||||
{
|
||||
esp_err_t err = ESP_OK;
|
||||
uint32_t send_buf_size = *(uint32_t *)arg; //Tx buffer max size
|
||||
uint8_t *send_buf[QUEUE_SIZE]; //TX buffer
|
||||
spi_slave_hd_data_t slave_trans[QUEUE_SIZE]; //Transaction descriptor
|
||||
spi_slave_hd_data_t *ret_trans; //Pointer to the descriptor of return result
|
||||
|
||||
for (int i = 0; i < QUEUE_SIZE; i++) {
|
||||
// slave_trans
|
||||
send_buf[i] = heap_caps_calloc(1, send_buf_size, MALLOC_CAP_DMA);
|
||||
if (!send_buf[i]) {
|
||||
ESP_LOGE(TAG, "No enough memory!");
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* These 2 counters are used to maintain the driver internal queue.
|
||||
* internal queue item number = queue_sent_cnt - queue_recv_cnt
|
||||
*/
|
||||
uint32_t queue_sent_cnt = 0;
|
||||
uint32_t queue_recv_cnt = 0;
|
||||
|
||||
uint32_t descriptor_id = 0;
|
||||
uint32_t ready_data_size = 0;
|
||||
bool data_ready = false;
|
||||
|
||||
while (1) {
|
||||
/**
|
||||
* Start TX transaction
|
||||
* If the internal queue number is equal to the QUEUE_SIZE you set when initialisation,
|
||||
* - you should not call ``spi_slave_hd_queue_trans``.
|
||||
* - you should call ``spi_slave_hd_get_trans_res`` instead.
|
||||
*/
|
||||
if (queue_sent_cnt - queue_recv_cnt < QUEUE_SIZE) {
|
||||
/**
|
||||
* Here we simply get some random data.
|
||||
* In your own code, you could prepare some buffers, and create a FreeRTOS task to generate/get data, and give a
|
||||
* Semaphore to unblock this `sender()` Task.
|
||||
*/
|
||||
data_ready = get_tx_data(send_buf[descriptor_id], send_buf_size, &ready_data_size);
|
||||
if (data_ready) {
|
||||
slave_trans[descriptor_id].data = send_buf[descriptor_id];
|
||||
slave_trans[descriptor_id].len = ready_data_size;
|
||||
//Due to the `queue_sent_cnt` and `queue_recv_cnt` logic above, we are sure there is space to send data, this will return ESP_OK immediately
|
||||
ESP_ERROR_CHECK(spi_slave_hd_queue_trans(SLAVE_HOST, SPI_SLAVE_CHAN_TX, &slave_trans[descriptor_id], portMAX_DELAY));
|
||||
descriptor_id = (descriptor_id + 1) % QUEUE_SIZE; //descriptor_id will be: 0, 1, 2, ..., QUEUE_SIZE, 0, 1, ....
|
||||
queue_sent_cnt++;
|
||||
}
|
||||
}
|
||||
//Normally the task would be blocked when there is no data to send, here we use a delay to yield to other tasks
|
||||
vTaskDelay(1);
|
||||
|
||||
//Recycle the transaction
|
||||
while (1) {
|
||||
/**
|
||||
* Get the TX transaction result
|
||||
*
|
||||
* The ``ret_trans`` will exactly point to the transaction descriptor passed to the driver before (here ``slave_trans``).
|
||||
* For TX, the ``ret_trans->trans_len`` is meaningless. But you do need this API to maintain the internal queue.
|
||||
*/
|
||||
err = spi_slave_hd_get_trans_res(SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ret_trans, 0);
|
||||
if (err != ESP_OK) {
|
||||
assert(err == ESP_ERR_TIMEOUT);
|
||||
//Recycle all the used descriptors until there is no in-the-flight descriptor
|
||||
break;
|
||||
}
|
||||
queue_recv_cnt++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void receiver(void *arg)
|
||||
{
|
||||
spi_slave_hd_data_t *ret_trans;
|
||||
uint32_t recv_buf_size = *(uint32_t *)arg;
|
||||
uint8_t *recv_buf[QUEUE_SIZE];
|
||||
spi_slave_hd_data_t slave_trans[QUEUE_SIZE];
|
||||
for (int i = 0; i < QUEUE_SIZE; i++) {
|
||||
recv_buf[i] = heap_caps_calloc(1, recv_buf_size, MALLOC_CAP_DMA);
|
||||
if (!recv_buf[i]) {
|
||||
ESP_LOGE(TAG, "No enough memory!");
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* - For SPI Slave, you can use this way (making use of the internal queue) to pre-load transactions to driver. Thus if
|
||||
* Master's speed is slower than Slave, Slave won't need to wait until Master finishes.
|
||||
*/
|
||||
uint32_t descriptor_id = 0;
|
||||
for (int i = 0; i < QUEUE_SIZE; i++) {
|
||||
slave_trans[descriptor_id].data = recv_buf[descriptor_id];
|
||||
slave_trans[descriptor_id].len = recv_buf_size;
|
||||
ESP_ERROR_CHECK(spi_slave_hd_queue_trans(SLAVE_HOST, SPI_SLAVE_CHAN_RX, &slave_trans[descriptor_id], portMAX_DELAY));
|
||||
descriptor_id = (descriptor_id + 1) % QUEUE_SIZE; //descriptor_id will be: 0, 1, 2, ..., QUEUE_SIZE, 0, 1, ....
|
||||
}
|
||||
|
||||
while (1) {
|
||||
/**
|
||||
* Get the RX transaction result
|
||||
*
|
||||
* The actual used (by master) buffer size could be derived by ``ret_trans->trans_len``:
|
||||
* For example, when Master sends 4bytes, whereas slave prepares 512 bytes buffer. When master finish sending its
|
||||
* 4 bytes, it will send CMD7, which will force stopping the transaction. Slave will get the actual received length
|
||||
* from `ret_trans->trans_len`` member (here 4 bytes). The ``ret_trans`` will exactly point to the transaction descriptor
|
||||
* passed to the driver before (here ``slave_trans``). If the master sends longer than slave recv buffer,
|
||||
* slave will lose the extra bits.
|
||||
*/
|
||||
ESP_ERROR_CHECK(spi_slave_hd_get_trans_res(SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ret_trans, portMAX_DELAY));
|
||||
//Process the received data in your own code. Here we just print it out.
|
||||
printf("%d bytes are received: \n%s\n", ret_trans->trans_len, ret_trans->data);
|
||||
memset(ret_trans->data, 0x0, recv_buf_size);
|
||||
|
||||
/**
|
||||
* Prepared data for new transaction
|
||||
*/
|
||||
slave_trans[descriptor_id].data = recv_buf[descriptor_id];
|
||||
slave_trans[descriptor_id].len = recv_buf_size;
|
||||
//Start new transaction
|
||||
ESP_ERROR_CHECK(spi_slave_hd_queue_trans(SLAVE_HOST, SPI_SLAVE_CHAN_RX, &slave_trans[descriptor_id], portMAX_DELAY));
|
||||
descriptor_id = (descriptor_id + 1) % QUEUE_SIZE; //descriptor_id will be: 0, 1, 2, ..., QUEUE_SIZE, 0, 1, ....
|
||||
}
|
||||
}
|
||||
|
||||
void app_main(void)
|
||||
{
|
||||
init_slave_hd();
|
||||
|
||||
//Reset the shared register to 0
|
||||
uint8_t init_value[SOC_SPI_MAXIMUM_BUFFER_SIZE] = {0x0};
|
||||
spi_slave_hd_write_buffer(SLAVE_HOST, 0, init_value, SOC_SPI_MAXIMUM_BUFFER_SIZE);
|
||||
|
||||
uint32_t send_buf_size = 5000;
|
||||
spi_slave_hd_write_buffer(SLAVE_HOST, SLAVE_MAX_TX_BUF_LEN_REG, (uint8_t *)&send_buf_size, 4);
|
||||
|
||||
uint32_t recv_buf_size = 120;
|
||||
spi_slave_hd_write_buffer(SLAVE_HOST, SLAVE_MAX_RX_BUF_LEN_REG, (uint8_t *)&recv_buf_size, 4);
|
||||
|
||||
uint32_t slave_ready_flag = SLAVE_READY_FLAG;
|
||||
spi_slave_hd_write_buffer(SLAVE_HOST, SLAVE_READY_FLAG_REG, (uint8_t *)&slave_ready_flag, 4);
|
||||
|
||||
xTaskCreate(sender, "sendTask", 4096, &send_buf_size, 1, NULL);
|
||||
xTaskCreate(receiver, "recvTask", 4096, &recv_buf_size, 1, NULL);
|
||||
}
|
Reference in New Issue
Block a user