Merge branch 'feature/tlsf-dynamic-control-size_v4.4' into 'release/v4.4'

heap: Update to the new tlsf implementation of dynamic metadata size (backport v4.4)

See merge request espressif/esp-idf!20797
This commit is contained in:
Zim Kalinowski
2022-11-21 19:02:35 +08:00
6 changed files with 231 additions and 180 deletions

View File

@ -90,12 +90,6 @@ tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);
/* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT);
/* Ensure we've properly tuned our sizes. */
tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
static inline __attribute__((__always_inline__)) size_t align_up(size_t x, size_t align)
{
tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
@ -120,7 +114,7 @@ static inline __attribute__((__always_inline__)) void* align_ptr(const void* ptr
** Adjust an allocation size to be aligned to word size, and no smaller
** than internal minimum.
*/
static inline __attribute__((__always_inline__)) size_t adjust_request_size(size_t size, size_t align)
static inline __attribute__((__always_inline__)) size_t adjust_request_size(tlsf_t tlsf, size_t size, size_t align)
{
size_t adjust = 0;
if (size)
@ -128,7 +122,7 @@ static inline __attribute__((__always_inline__)) size_t adjust_request_size(size
const size_t aligned = align_up(size, align);
/* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */
if (aligned < block_size_max)
if (aligned < tlsf_block_size_max(tlsf))
{
adjust = tlsf_max(aligned, block_size_min);
}
@ -141,34 +135,34 @@ static inline __attribute__((__always_inline__)) size_t adjust_request_size(size
** the documentation found in the white paper.
*/
static inline __attribute__((__always_inline__)) void mapping_insert(size_t size, int* fli, int* sli)
static inline __attribute__((__always_inline__)) void mapping_insert(control_t *control, size_t size, int* fli, int* sli)
{
int fl, sl;
if (size < SMALL_BLOCK_SIZE)
if (size < control->small_block_size)
{
/* Store small blocks in first list. */
fl = 0;
sl = tlsf_cast(int, size) >> 2;
sl = tlsf_cast(int, size) / (control->small_block_size / control->sl_index_count);
}
else
{
fl = tlsf_fls(size);
sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2);
fl -= (FL_INDEX_SHIFT - 1);
sl = tlsf_cast(int, size >> (fl - control->sl_index_count_log2)) ^ (1 << control->sl_index_count_log2);
fl -= (control->fl_index_shift - 1);
}
*fli = fl;
*sli = sl;
}
/* This version rounds up to the next block size (for allocations) */
static inline __attribute__((__always_inline__)) void mapping_search(size_t size, int* fli, int* sli)
static inline __attribute__((__always_inline__)) void mapping_search(control_t *control, size_t size, int* fli, int* sli)
{
if (size >= SMALL_BLOCK_SIZE)
if (size >= control->small_block_size)
{
const size_t round = (1 << (tlsf_fls(size) - SL_INDEX_COUNT_LOG2)) - 1;
const size_t round = (1 << (tlsf_fls(size) - control->sl_index_count_log2)) - 1;
size += round;
}
mapping_insert(size, fli, sli);
mapping_insert(control, size, fli, sli);
}
static inline __attribute__((__always_inline__)) block_header_t* search_suitable_block(control_t* control, int* fli, int* sli)
@ -200,7 +194,7 @@ static inline __attribute__((__always_inline__)) block_header_t* search_suitable
*sli = sl;
/* Return the first block in the free list. */
return control->blocks[fl][sl];
return control->blocks[fl*control->sl_index_count + sl];
}
/* Remove a free block from the free list.*/
@ -214,9 +208,9 @@ static inline __attribute__((__always_inline__)) void remove_free_block(control_
prev->next_free = next;
/* If this block is the head of the free list, set new head. */
if (control->blocks[fl][sl] == block)
if (control->blocks[fl*control->sl_index_count + sl] == block)
{
control->blocks[fl][sl] = next;
control->blocks[fl*control->sl_index_count + sl] = next;
/* If the new head is null, clear the bitmap. */
if (next == &control->block_null)
@ -235,7 +229,7 @@ static inline __attribute__((__always_inline__)) void remove_free_block(control_
/* Insert a free block into the free block list. */
static inline __attribute__((__always_inline__)) void insert_free_block(control_t* control, block_header_t* block, int fl, int sl)
{
block_header_t* current = control->blocks[fl][sl];
block_header_t* current = control->blocks[fl*control->sl_index_count + sl];
tlsf_assert(current && "free list cannot have a null entry");
tlsf_assert(block && "cannot insert a null entry into the free list");
block->next_free = current;
@ -248,7 +242,7 @@ static inline __attribute__((__always_inline__)) void insert_free_block(control_
** Insert the new block at the head of the list, and mark the first-
** and second-level bitmaps appropriately.
*/
control->blocks[fl][sl] = block;
control->blocks[fl*control->sl_index_count + sl] = block;
control->fl_bitmap |= (1 << fl);
control->sl_bitmap[fl] |= (1 << sl);
}
@ -257,7 +251,7 @@ static inline __attribute__((__always_inline__)) void insert_free_block(control_
static inline __attribute__((__always_inline__)) void block_remove(control_t* control, block_header_t* block)
{
int fl, sl;
mapping_insert(block_size(block), &fl, &sl);
mapping_insert(control, block_size(block), &fl, &sl);
remove_free_block(control, block, fl, sl);
}
@ -265,7 +259,7 @@ static inline __attribute__((__always_inline__)) void block_remove(control_t* co
static inline __attribute__((__always_inline__)) void block_insert(control_t* control, block_header_t* block)
{
int fl, sl;
mapping_insert(block_size(block), &fl, &sl);
mapping_insert(control, block_size(block), &fl, &sl);
insert_free_block(control, block, fl, sl);
}
@ -428,7 +422,7 @@ static inline __attribute__((__always_inline__)) block_header_t* block_locate_f
if (size)
{
mapping_search(size, &fl, &sl);
mapping_search(control, size, &fl, &sl);
/*
** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up
@ -436,7 +430,7 @@ static inline __attribute__((__always_inline__)) block_header_t* block_locate_f
** So, we protect against that here, since this is the only callsite of mapping_search.
** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range.
*/
if (fl < FL_INDEX_COUNT)
if (fl < control->fl_index_count)
{
block = search_suitable_block(control, &fl, &sl);
}
@ -465,22 +459,66 @@ static inline __attribute__((__always_inline__)) void* block_prepare_used(contro
}
/* Clear structure and point all empty lists at the null block. */
static void control_construct(control_t* control)
static control_t* control_construct(control_t* control, size_t bytes)
{
int i, j;
// check that the requested size can at least hold the control_t. This will allow us
// to fill in the field of control_t necessary to determine the final size of
// the metadata overhead and check that the requested size can hold
// this data and at least a block of minimum size
if (bytes < sizeof(control_t))
{
return NULL;
}
/* Find the closest power of two for first layer */
control->fl_index_max = 32 - __builtin_clz(bytes);
/* adapt second layer to the pool */
if (bytes <= 16 * 1024) control->sl_index_count_log2 = 3;
else if (bytes <= 256 * 1024) control->sl_index_count_log2 = 4;
else control->sl_index_count_log2 = 5;
control->fl_index_shift = (control->sl_index_count_log2 + ALIGN_SIZE_LOG2);
control->sl_index_count = 1 << control->sl_index_count_log2;
control->fl_index_count = control->fl_index_max - control->fl_index_shift + 1;
control->small_block_size = 1 << control->fl_index_shift;
// the total size fo the metadata overhead is the size of the control_t
// added to the size of the sl_bitmaps and the size of blocks
control->size = sizeof(control_t) + (sizeof(*control->sl_bitmap) * control->fl_index_count) +
(sizeof(*control->blocks) * (control->fl_index_count * control->sl_index_count));
// check that the requested size can hold the whole control structure and
// a small block at least
if (bytes < control->size + block_size_min)
{
return NULL;
}
control->block_null.next_free = &control->block_null;
control->block_null.prev_free = &control->block_null;
control->fl_bitmap = 0;
for (i = 0; i < FL_INDEX_COUNT; ++i)
control->sl_bitmap = align_ptr(control + 1, sizeof(*control->sl_bitmap));
control->blocks = align_ptr(control->sl_bitmap + control->fl_index_count, sizeof(*control->blocks));
/* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
tlsf_assert(sizeof(unsigned int) * CHAR_BIT >= control->sl_index_count && "CHAR_BIT less than sl_index_count");
/* Ensure we've properly tuned our sizes. */
tlsf_assert(ALIGN_SIZE == control->small_block_size / control->sl_index_count && "ALIGN_SIZE does not match");
for (int i = 0; i < control->fl_index_count; ++i)
{
control->sl_bitmap[i] = 0;
for (j = 0; j < SL_INDEX_COUNT; ++j)
for (int j = 0; j < control->sl_index_count; ++j)
{
control->blocks[i][j] = &control->block_null;
control->blocks[i*control->sl_index_count + j] = &control->block_null;
}
}
return control;
}
/*
@ -524,14 +562,14 @@ int tlsf_check(tlsf_t tlsf)
int status = 0;
/* Check that the free lists and bitmaps are accurate. */
for (i = 0; i < FL_INDEX_COUNT; ++i)
for (i = 0; i < control->fl_index_count; ++i)
{
for (j = 0; j < SL_INDEX_COUNT; ++j)
for (j = 0; j < control->sl_index_count; ++j)
{
const int fl_map = control->fl_bitmap & (1 << i);
const int sl_list = control->sl_bitmap[i];
const int sl_map = sl_list & (1 << j);
const block_header_t* block = control->blocks[i][j];
const block_header_t* block = control->blocks[i*control->sl_index_count + j];
/* Check that first- and second-level lists agree. */
if (!fl_map)
@ -559,7 +597,7 @@ int tlsf_check(tlsf_t tlsf)
tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");
mapping_insert(block_size(block), &fli, &sli);
mapping_insert(control, block_size(block), &fli, &sli);
tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
#ifdef MULTI_HEAP_POISONING
@ -631,13 +669,33 @@ int tlsf_check_pool(pool_t pool)
return integ.status;
}
size_t tlsf_fit_size(tlsf_t tlsf, size_t size)
{
/* because it's GoodFit, allocable size is one range lower */
if (size && tlsf != NULL)
{
size_t sl_interval;
control_t* control = tlsf_cast(control_t*, tlsf);
sl_interval = (1 << (32 - __builtin_clz(size) - 1)) / control->sl_index_count;
return size & ~(sl_interval - 1);
}
return 0;
}
/*
** Size of the TLSF structures in a given memory block passed to
** tlsf_create, equal to the size of a control_t
*/
size_t tlsf_size(void)
size_t tlsf_size(tlsf_t tlsf)
{
return sizeof(control_t);
if (tlsf == NULL)
{
return 0;
}
control_t* control = tlsf_cast(control_t*, tlsf);
return control->size;
}
size_t tlsf_align_size(void)
@ -650,9 +708,14 @@ size_t tlsf_block_size_min(void)
return block_size_min;
}
size_t tlsf_block_size_max(void)
size_t tlsf_block_size_max(tlsf_t tlsf)
{
return block_size_max;
if (tlsf == NULL)
{
return 0;
}
control_t* control = tlsf_cast(control_t*, tlsf);
return tlsf_cast(size_t, 1) << control->fl_index_max;
}
/*
@ -685,16 +748,16 @@ pool_t tlsf_add_pool(tlsf_t tlsf, void* mem, size_t bytes)
return 0;
}
if (pool_bytes < block_size_min || pool_bytes > block_size_max)
if (pool_bytes < block_size_min || pool_bytes > tlsf_block_size_max(tlsf))
{
#if defined (TLSF_64BIT)
printf("tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
(unsigned int)(pool_overhead + block_size_min),
(unsigned int)((pool_overhead + block_size_max) / 256));
(unsigned int)((pool_overhead + tlsf_block_size_max(tlsf)) / 256));
#else
printf("tlsf_add_pool: Memory size must be between %u and %u bytes.\n",
(unsigned int)(pool_overhead + block_size_min),
(unsigned int)(pool_overhead + block_size_max));
(unsigned int)(pool_overhead + tlsf_block_size_max(tlsf)));
#endif
return 0;
}
@ -730,7 +793,7 @@ void tlsf_remove_pool(tlsf_t tlsf, pool_t pool)
tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");
mapping_insert(block_size(block), &fl, &sl);
mapping_insert(control, block_size(block), &fl, &sl);
remove_free_block(control, block, fl, sl);
}
@ -739,43 +802,50 @@ void tlsf_remove_pool(tlsf_t tlsf, pool_t pool)
*/
tlsf_t tlsf_create(void* mem)
tlsf_t tlsf_create(void* mem, size_t max_bytes)
{
#if _DEBUG
if (test_ffs_fls())
{
return 0;
return NULL;
}
#endif
if (mem == NULL)
{
return NULL;
}
if (((tlsfptr_t)mem % ALIGN_SIZE) != 0)
{
printf("tlsf_create: Memory must be aligned to %u bytes.\n",
(unsigned int)ALIGN_SIZE);
return 0;
return NULL;
}
control_construct(tlsf_cast(control_t*, mem));
return tlsf_cast(tlsf_t, mem);
control_t* control_ptr = control_construct(tlsf_cast(control_t*, mem), max_bytes);
return tlsf_cast(tlsf_t, control_ptr);
}
pool_t tlsf_get_pool(tlsf_t tlsf)
{
return tlsf_cast(pool_t, (char*)tlsf + tlsf_size());
return tlsf_cast(pool_t, (char*)tlsf + tlsf_size(tlsf));
}
tlsf_t tlsf_create_with_pool(void* mem, size_t bytes)
tlsf_t tlsf_create_with_pool(void* mem, size_t pool_bytes, size_t max_bytes)
{
tlsf_t tlsf = tlsf_create(mem);
tlsf_add_pool(tlsf, (char*)mem + tlsf_size(), bytes - tlsf_size());
tlsf_t tlsf = tlsf_create(mem, max_bytes ? max_bytes : pool_bytes);
if (tlsf != NULL)
{
tlsf_add_pool(tlsf, (char*)mem + tlsf_size(tlsf), pool_bytes - tlsf_size(tlsf));
}
return tlsf;
}
void* tlsf_malloc(tlsf_t tlsf, size_t size)
{
control_t* control = tlsf_cast(control_t*, tlsf);
size_t adjust = adjust_request_size(size, ALIGN_SIZE);
size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
block_header_t* block = block_locate_free(control, adjust);
return block_prepare_used(control, block, adjust);
}
@ -806,7 +876,7 @@ void* tlsf_malloc(tlsf_t tlsf, size_t size)
void* tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t data_offset)
{
control_t* control = tlsf_cast(control_t*, tlsf);
const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
const size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
const size_t off_adjust = align_up(data_offset, ALIGN_SIZE);
/*
@ -821,7 +891,7 @@ void* tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t data_off
/* The offset is included in both `adjust` and `gap_minimum`, so we
** need to subtract it once.
*/
const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum - off_adjust, align);
const size_t size_with_gap = adjust_request_size(tlsf, adjust + align + gap_minimum - off_adjust, align);
/*
** If alignment is less than or equal to base alignment, we're done, because
@ -934,7 +1004,13 @@ void* tlsf_realloc(tlsf_t tlsf, void* ptr, size_t size)
const size_t cursize = block_size(block);
const size_t combined = cursize + block_size(next) + block_header_overhead;
const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
const size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
// if adjust if equal to 0, the size is too big
if (adjust == 0)
{
return p;
}
tlsf_assert(!block_is_free(block) && "block already marked as free");

View File

@ -78,12 +78,33 @@ typedef struct control_t
/* Empty lists point at this block to indicate they are free. */
block_header_t block_null;
/* Local parameter for the pool. Given the maximum
* value of each field, all the following parameters
* can fit on 4 bytes when using bitfields
*/
unsigned int fl_index_count : 5; // 5 cumulated bits
unsigned int fl_index_shift : 3; // 8 cumulated bits
unsigned int fl_index_max : 6; // 14 cumulated bits
unsigned int sl_index_count : 6; // 20 cumulated bits
/* log2 of number of linear subdivisions of block sizes. Larger
** values require more memory in the control structure. Values of
** 4 or 5 are typical.
*/
unsigned int sl_index_count_log2 : 3; // 23 cumulated bits
unsigned int small_block_size : 8; // 31 cumulated bits
/* size of the metadata ( size of control block,
* sl_bitmap and blocks )
*/
size_t size;
/* Bitmaps for free lists. */
unsigned int fl_bitmap;
unsigned int sl_bitmap[FL_INDEX_COUNT];
unsigned int *sl_bitmap;
/* Head of free lists. */
block_header_t* blocks[FL_INDEX_COUNT][SL_INDEX_COUNT];
block_header_t** blocks;
} control_t;
#include "heap_tlsf_block_functions.h"
@ -94,8 +115,8 @@ typedef void* tlsf_t;
typedef void* pool_t;
/* Create/destroy a memory pool. */
tlsf_t tlsf_create(void* mem);
tlsf_t tlsf_create_with_pool(void* mem, size_t bytes);
tlsf_t tlsf_create(void* mem, size_t max_bytes);
tlsf_t tlsf_create_with_pool(void* mem, size_t pool_bytes, size_t max_bytes);
pool_t tlsf_get_pool(tlsf_t tlsf);
/* Add/remove memory pools. */
@ -113,13 +134,23 @@ void tlsf_free(tlsf_t tlsf, void* ptr);
size_t tlsf_block_size(void* ptr);
/* Overheads/limits of internal structures. */
size_t tlsf_size(void);
size_t tlsf_size(tlsf_t tlsf);
size_t tlsf_align_size(void);
size_t tlsf_block_size_min(void);
size_t tlsf_block_size_max(void);
size_t tlsf_block_size_max(tlsf_t tlsf);
size_t tlsf_pool_overhead(void);
size_t tlsf_alloc_overhead(void);
/**
* @brief Return the allocable size based on the size passed
* as parameter
*
* @param tlsf Pointer to the tlsf structure
* @param size The allocation size
* @return size_t The updated allocation size
*/
size_t tlsf_fit_size(tlsf_t tlsf, size_t size);
/* Debugging. */
typedef void (*tlsf_walker)(void* ptr, size_t size, int used, void* user);
void tlsf_walk_pool(pool_t pool, tlsf_walker walker, void* user);

View File

@ -65,7 +65,6 @@
** bits for FL_INDEX.
*/
#define block_size_min (sizeof(block_header_t) - sizeof(block_header_t*))
#define block_size_max (tlsf_cast(size_t, 1) << FL_INDEX_MAX)
/*
** block_header_t member functions.

View File

@ -37,90 +37,9 @@
#pragma once
#ifdef ESP_PLATFORM
#include "soc/soc.h"
#if !CONFIG_SPIRAM
#define TLSF_MAX_POOL_SIZE (SOC_DIRAM_DRAM_HIGH - SOC_DIRAM_DRAM_LOW)
#else
#define TLSF_MAX_POOL_SIZE SOC_EXTRAM_DATA_SIZE
#endif
enum tlsf_config
{
/* log2 of number of linear subdivisions of block sizes. Larger
** values require more memory in the control structure. Values of
** 4 or 5 are typical.
*/
SL_INDEX_COUNT_LOG2 = 5,
/* All allocation sizes and addresses are aligned to 4 bytes. */
ALIGN_SIZE_LOG2 = 2,
ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
/*
** We support allocations of sizes up to (1 << FL_INDEX_MAX) bits.
** However, because we linearly subdivide the second-level lists, and
** our minimum size granularity is 4 bytes, it doesn't make sense to
** create first-level lists for sizes smaller than SL_INDEX_COUNT * 4,
** or (1 << (SL_INDEX_COUNT_LOG2 + 2)) bytes, as there we will be
** trying to split size ranges into more slots than we have available.
** Instead, we calculate the minimum threshold size, and place all
** blocks below that size into the 0th first-level list.
*/
/* Tunning the first level, we can reduce TLSF pool overhead
* in exchange of manage a pool smaller than 4GB
*/
#if (TLSF_MAX_POOL_SIZE <= (256 * 1024))
FL_INDEX_MAX = 18, //Each pool can have up 256KB
#elif (TLSF_MAX_POOL_SIZE <= (512 * 1024))
FL_INDEX_MAX = 19, //Each pool can have up 512KB
#elif (TLSF_MAX_POOL_SIZE <= (1 * 1024 * 1024))
FL_INDEX_MAX = 20, //Each pool can have up 1MB
#elif (TLSF_MAX_POOL_SIZE <= (2 * 1024 * 1024))
FL_INDEX_MAX = 21, //Each pool can have up 2MB
#elif (TLSF_MAX_POOL_SIZE <= (4 * 1024 * 1024))
FL_INDEX_MAX = 22, //Each pool can have up 4MB
#elif (TLSF_MAX_POOL_SIZE <= (8 * 1024 * 1024))
FL_INDEX_MAX = 23, //Each pool can have up 8MB
#elif (TLSF_MAX_POOL_SIZE <= (16 * 1024 * 1024))
FL_INDEX_MAX = 24, //Each pool can have up 16MB
#else
#error "Higher TLSF pool sizes should be added for this new config"
#endif
SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
};
#else
enum tlsf_config
{
//Specific configuration for host test.
/* log2 of number of linear subdivisions of block sizes. Larger
** values require more memory in the control structure. Values of
** 4 or 5 are typical.
*/
SL_INDEX_COUNT_LOG2 = 5,
/* All allocation sizes and addresses are aligned to 4 bytes. */
ALIGN_SIZE_LOG2 = 2,
ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
/* Tunning the first level, we can reduce TLSF pool overhead
* in exchange of manage a pool smaller than 4GB
*/
FL_INDEX_MAX = 30,
SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
};
#endif

View File

@ -122,7 +122,7 @@ size_t multi_heap_get_allocated_size_impl(multi_heap_handle_t heap, void *p)
multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size)
{
assert(start_ptr);
if(size < (tlsf_size() + tlsf_block_size_min() + sizeof(heap_t))) {
if(size < (sizeof(heap_t))) {
//Region too small to be a heap.
return NULL;
}
@ -130,13 +130,16 @@ multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size)
heap_t *result = (heap_t *)start_ptr;
size -= sizeof(heap_t);
result->heap_data = tlsf_create_with_pool(start_ptr + sizeof(heap_t), size);
/* Do not specify any maximum size for the allocations so that the default configuration is used */
const size_t max_bytes = 0;
result->heap_data = tlsf_create_with_pool(start_ptr + sizeof(heap_t), size, max_bytes);
if(!result->heap_data) {
return NULL;
}
result->lock = NULL;
result->free_bytes = size - tlsf_size();
result->free_bytes = size - tlsf_size(result->heap_data);
result->pool_size = size;
result->minimum_free_bytes = result->free_bytes;
return result;
@ -399,9 +402,7 @@ static void multi_heap_get_info_tlsf(void* ptr, size_t size, int used, void* use
void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info)
{
uint32_t sl_interval;
uint32_t overhead;
memset(info, 0, sizeof(multi_heap_info_t));
if (heap == NULL) {
@ -413,12 +414,9 @@ void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info)
/* TLSF has an overhead per block. Calculate the total amount of overhead, it shall not be
* part of the allocated bytes */
overhead = info->allocated_blocks * tlsf_alloc_overhead();
info->total_allocated_bytes = (heap->pool_size - tlsf_size()) - heap->free_bytes - overhead;
info->total_allocated_bytes = (heap->pool_size - tlsf_size(heap->heap_data)) - heap->free_bytes - overhead;
info->minimum_free_bytes = heap->minimum_free_bytes;
info->total_free_bytes = heap->free_bytes;
if (info->largest_free_block) {
sl_interval = (1 << (31 - __builtin_clz(info->largest_free_block))) / SL_INDEX_COUNT;
info->largest_free_block = info->largest_free_block & ~(sl_interval - 1);
}
info->largest_free_block = tlsf_fit_size(heap->heap_data, info->largest_free_block);
multi_heap_internal_unlock(heap);
}

View File

@ -8,6 +8,24 @@
#include <string.h>
#include <assert.h>
/* The functions __malloc__ and __free__ are used to call the libc
* malloc and free and allocate memory from the host heap. Since the test
* `TEST_CASE("multi_heap many random allocations", "[multi_heap]")`
* calls multi_heap_allocation_impl() with sizes that can go up to 8MB,
* an allocatation on the heap will be prefered rather than the stack which
* might not have the necessary memory.
*/
static void *__malloc__(size_t bytes)
{
return malloc(bytes);
}
static void __free__(void *ptr)
{
free(ptr);
}
/* Insurance against accidentally using libc heap functions in tests */
#undef free
#define free #error
@ -61,10 +79,11 @@ TEST_CASE("multi_heap simple allocations", "[multi_heap]")
TEST_CASE("multi_heap fragmentation", "[multi_heap]")
{
uint8_t small_heap[4 * 1024];
const size_t HEAP_SIZE = 4 * 1024;
uint8_t small_heap[HEAP_SIZE];
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
const size_t alloc_size = 128;
const size_t alloc_size = 500;
void *p[4];
for (int i = 0; i < 4; i++) {
@ -204,20 +223,22 @@ TEST_CASE("multi_heap defrag realloc", "[multi_heap]")
#endif
TEST_CASE("multi_heap many random allocations", "[multi_heap]")
void multi_heap_allocation_impl(int heap_size)
{
uint8_t big_heap[8 * 1024];
uint8_t *big_heap = (uint8_t *) __malloc__(heap_size);
const int NUM_POINTERS = 64;
printf("Running multi-allocation test...\n");
printf("Running multi-allocation test with heap_size %d...\n", heap_size);
REQUIRE( big_heap );
multi_heap_handle_t heap = multi_heap_register(big_heap, heap_size);
void *p[NUM_POINTERS] = { 0 };
size_t s[NUM_POINTERS] = { 0 };
multi_heap_handle_t heap = multi_heap_register(big_heap, sizeof(big_heap));
const size_t initial_free = multi_heap_free_size(heap);
const int ITERATIONS = 10000;
const int ITERATIONS = 5000;
for (int i = 0; i < ITERATIONS; i++) {
/* check all pointers allocated so far are valid inside big_heap */
@ -228,11 +249,11 @@ TEST_CASE("multi_heap many random allocations", "[multi_heap]")
uint8_t n = rand() % NUM_POINTERS;
if (rand() % 4 == 0) {
if (i % 4 == 0) {
/* 1 in 4 iterations, try to realloc the buffer instead
of using malloc/free
*/
size_t new_size = rand() % 1024;
size_t new_size = (rand() % 1023) + 1;
void *new_p = multi_heap_realloc(heap, p[n], new_size);
printf("realloc %p -> %p (%zu -> %zu)\n", p[n], new_p, s[n], new_size);
multi_heap_check(heap, true);
@ -241,13 +262,12 @@ TEST_CASE("multi_heap many random allocations", "[multi_heap]")
s[n] = new_size;
if (new_size > 0) {
REQUIRE( p[n] >= big_heap );
REQUIRE( p[n] < big_heap + sizeof(big_heap) );
REQUIRE( p[n] < big_heap + heap_size );
memset(p[n], n, new_size);
}
}
continue;
}
if (p[n] != NULL) {
if (s[n] > 0) {
/* Verify pre-existing contents of p[n] */
@ -271,14 +291,13 @@ TEST_CASE("multi_heap many random allocations", "[multi_heap]")
printf("malloc %p (%zu)\n", p[n], s[n]);
if (p[n] != NULL) {
REQUIRE( p[n] >= big_heap );
REQUIRE( p[n] < big_heap + sizeof(big_heap) );
REQUIRE( p[n] < big_heap + heap_size );
}
if (!multi_heap_check(heap, true)) {
printf("FAILED iteration %d after mallocing %p (%zu bytes)\n", i, p[n], s[n]);
multi_heap_dump(heap);
REQUIRE(0);
}
if (p[n] != NULL) {
memset(p[n], n, s[n]);
}
@ -294,6 +313,15 @@ TEST_CASE("multi_heap many random allocations", "[multi_heap]")
}
REQUIRE( initial_free == multi_heap_free_size(heap) );
__free__(big_heap);
}
TEST_CASE("multi_heap many random allocations", "[multi_heap]")
{
size_t poolsize[] = { 15, 255, 4095, 8191 };
for (size_t i = 0; i < sizeof(poolsize)/sizeof(size_t); i++) {
multi_heap_allocation_impl(poolsize[i] * 1024);
}
}
TEST_CASE("multi_heap_get_info() function", "[multi_heap]")
@ -393,8 +421,9 @@ TEST_CASE("multi_heap minimum-size allocations", "[multi_heap]")
TEST_CASE("multi_heap_realloc()", "[multi_heap]")
{
const size_t HEAP_SIZE = 4 * 1024;
const uint32_t PATTERN = 0xABABDADA;
uint8_t small_heap[4 * 1024];
uint8_t small_heap[HEAP_SIZE];
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
uint32_t *a = (uint32_t *)multi_heap_malloc(heap, 64);
@ -404,7 +433,6 @@ TEST_CASE("multi_heap_realloc()", "[multi_heap]")
REQUIRE( b > a); /* 'b' takes the block after 'a' */
*a = PATTERN;
uint32_t *c = (uint32_t *)multi_heap_realloc(heap, a, 72);
REQUIRE( multi_heap_check(heap, true));
REQUIRE( c != NULL );
@ -414,13 +442,12 @@ TEST_CASE("multi_heap_realloc()", "[multi_heap]")
#ifndef MULTI_HEAP_POISONING_SLOW
// "Slow" poisoning implementation doesn't reallocate in place, so these
// test will fail...
uint32_t *d = (uint32_t *)multi_heap_realloc(heap, c, 36);
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( c == d ); /* 'c' block should be shrunk in-place */
REQUIRE( *d == PATTERN);
uint32_t *e = (uint32_t *)multi_heap_malloc(heap, 64);
// biggest allocation possible to completely fill the block left free after it was reallocated
uint32_t *e = (uint32_t *)multi_heap_malloc(heap, 60);
REQUIRE( multi_heap_check(heap, true));
REQUIRE( a == e ); /* 'e' takes the block formerly occupied by 'a' */
@ -429,11 +456,7 @@ TEST_CASE("multi_heap_realloc()", "[multi_heap]")
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( f == b ); /* 'b' should be extended in-place, over space formerly occupied by 'd' */
#ifdef MULTI_HEAP_POISONING
#define TOO_MUCH 7420 + 1
#else
#define TOO_MUCH 7420 + 1
#endif
#define TOO_MUCH HEAP_SIZE + 1
/* not enough contiguous space left in the heap */
uint32_t *g = (uint32_t *)multi_heap_realloc(heap, e, TOO_MUCH);
REQUIRE( g == NULL );
@ -443,7 +466,8 @@ TEST_CASE("multi_heap_realloc()", "[multi_heap]")
g = (uint32_t *)multi_heap_realloc(heap, e, 128);
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( e == g ); /* 'g' extends 'e' in place, into the space formerly held by 'f' */
#endif
#endif // MULTI_HEAP_POISONING_SLOW
}
// TLSF only accepts heaps aligned to 4-byte boundary so
@ -542,8 +566,12 @@ TEST_CASE("multi_heap poisoning detection", "[multi_heap]")
/* register the heap memory. One free block only will be available */
multi_heap_handle_t heap = multi_heap_register(heap_mem, HEAP_SIZE);
control_t *tlsf_ptr = (control_t*)(heap_mem + 20);
const size_t control_t_size = tlsf_ptr->size;
const size_t heap_t_size = 20;
/* offset in memory at which to find the first free memory byte */
const size_t free_memory_offset = sizeof(multi_heap_info_t) + sizeof(control_t) + block_header_overhead;
const size_t free_memory_offset = heap_t_size + control_t_size + sizeof(block_header_t) - block_header_overhead;
/* block header of the free block under test in the heap () */
const block_header_t* block = (block_header_t*)(heap_mem + free_memory_offset - sizeof(block_header_t));