Merge branch 'feature/add_api_spi_slave_trans_in_isr' into 'master'

spi_slave: add isr version api to add transaction in isr callback

Closes IDF-6199 and IDF-6049

See merge request espressif/esp-idf!20587
This commit is contained in:
Wan Lei
2023-01-05 12:46:01 +08:00
18 changed files with 514 additions and 92 deletions

View File

@@ -104,6 +104,7 @@ menu "Driver Configurations"
config SPI_SLAVE_ISR_IN_IRAM
bool "Place SPI slave ISR function into IRAM"
default y
select PERIPH_CTRL_FUNC_IN_IRAM
help
Place the SPI slave ISR in to IRAM to avoid possible cache miss.

View File

@@ -16,6 +16,7 @@
#include "sdkconfig.h"
#include "esp_err.h"
#include "hal/spi_types.h"
#include "driver/spi_slave.h"
#ifdef __cplusplus
extern "C" {
@@ -23,6 +24,7 @@ extern "C" {
/**
* @brief Reset the trans Queue of slave driver
* @note
* This API is used to reset SPI Slave transaction queue. After calling this function:
* - The SPI Slave transaction queue will be reset.
@@ -37,3 +39,39 @@ extern "C" {
* - ESP_OK on success
*/
esp_err_t spi_slave_queue_reset(spi_host_device_t host);
/**
* @brief Reset the trans Queue from within ISR of slave driver
* @note
* This API is used to reset SPI Slave transaction queue from within ISR. After calling this function:
* - The SPI Slave transaction queue will be empty.
*
* @param host SPI peripheral that is acting as a slave
*
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t spi_slave_queue_reset_isr(spi_host_device_t host);
/**
* @brief Queue a SPI transaction in ISR
* @note
* Similar as ``spi_slave_queue_trans``, but can and can only called within an ISR, then get the transaction results
* through the transaction descriptor passed in ``spi_slave_interface_config_t::post_trans_cb``. if use this API, you
* should trigger a transaction by normal ``spi_slave_queue_trans`` once and only once to start isr
*
* If you use both ``spi_slave_queue_trans`` and ``spi_slave_queue_trans_isr`` simultaneously to transfer valid data,
* you should deal with concurrency issues on your self risk
*
* @param host SPI peripheral that is acting as a slave
* @param trans_desc Description of transaction to execute. Not const because we may want to write status back
* into the transaction description.
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_ERR_NO_MEM if trans_queue is full
* - ESP_OK on success
*/
esp_err_t spi_slave_queue_trans_isr(spi_host_device_t host, const spi_slave_transaction_t *trans_desc);

View File

@@ -7,35 +7,34 @@
#include <string.h>
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_check.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_err.h"
#include "esp_pm.h"
#include "esp_heap_caps.h"
#include "esp_rom_gpio.h"
#include "esp_rom_sys.h"
#include "soc/lldesc.h"
#include "soc/soc_caps.h"
#include "soc/spi_periph.h"
#include "soc/soc_memory_layout.h"
#include "hal/spi_ll.h"
#include "hal/spi_slave_hal.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/task.h"
#include "sdkconfig.h"
#include "driver/gpio.h"
#include "esp_private/spi_common_internal.h"
#include "driver/spi_slave.h"
#include "hal/gpio_hal.h"
#include "hal/spi_slave_hal.h"
#include "esp_private/spi_slave_internal.h"
#include "esp_private/spi_common_internal.h"
static const char *SPI_TAG = "spi_slave";
#define SPI_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
#define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, SPI_TAG, str)
#ifdef CONFIG_SPI_SLAVE_ISR_IN_IRAM
#define SPI_SLAVE_ISR_ATTR IRAM_ATTR
@@ -61,6 +60,7 @@ typedef struct {
QueueHandle_t ret_queue;
bool dma_enabled;
bool cs_iomux;
uint8_t cs_in_signal;
uint32_t tx_dma_chan;
uint32_t rx_dma_chan;
#ifdef CONFIG_PM_ENABLE
@@ -72,6 +72,7 @@ static spi_slave_t *spihost[SOC_SPI_PERIPH_NUM];
static void spi_intr(void *arg);
__attribute__((always_inline))
static inline bool is_valid_host(spi_host_device_t host)
{
//SPI1 can be used as GPSPI only on ESP32
@@ -91,7 +92,7 @@ static inline bool SPI_SLAVE_ISR_ATTR bus_is_iomux(spi_slave_t *host)
static void SPI_SLAVE_ISR_ATTR freeze_cs(spi_slave_t *host)
{
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, spi_periph_signal[host->id].spics_in, false);
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, host->cs_in_signal, false);
}
// Use this function instead of cs_initial to avoid overwrite the output config
@@ -99,9 +100,9 @@ static void SPI_SLAVE_ISR_ATTR freeze_cs(spi_slave_t *host)
static inline void SPI_SLAVE_ISR_ATTR restore_cs(spi_slave_t *host)
{
if (host->cs_iomux) {
gpio_iomux_in(host->cfg.spics_io_num, spi_periph_signal[host->id].spics_in);
gpio_ll_iomux_in(GPIO_HAL_GET_HW(GPIO_PORT_0), host->cfg.spics_io_num, host->cs_in_signal);
} else {
esp_rom_gpio_connect_in_signal(host->cfg.spics_io_num, spi_periph_signal[host->id].spics_in, false);
esp_rom_gpio_connect_in_signal(host->cfg.spics_io_num, host->cs_in_signal, false);
}
}
@@ -161,6 +162,7 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
spicommon_cs_initialize(host, slave_config->spics_io_num, 0, !bus_is_iomux(spihost[host]));
// check and save where cs line really route through
spihost[host]->cs_iomux = (slave_config->spics_io_num == spi_periph_signal[host].spics0_iomux_pin) && bus_is_iomux(spihost[host]);
spihost[host]->cs_in_signal = spi_periph_signal[host].spics_in;
}
// The slave DMA suffers from unexpected transactions. Forbid reading if DMA is enabled by disabling the CS line.
@@ -204,6 +206,9 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
}
int flags = bus_config->intr_flags | ESP_INTR_FLAG_INTRDISABLED;
#ifdef CONFIG_SPI_SLAVE_ISR_IN_IRAM
flags |= ESP_INTR_FLAG_IRAM;
#endif
err = esp_intr_alloc(spicommon_irqsource_for_host(host), flags, spi_intr, (void *)spihost[host], &spihost[host]->intr);
if (err != ESP_OK) {
ret = err;
@@ -314,6 +319,24 @@ esp_err_t SPI_SLAVE_ATTR spi_slave_queue_reset(spi_host_device_t host)
return ESP_OK;
}
esp_err_t SPI_SLAVE_ISR_ATTR spi_slave_queue_reset_isr(spi_host_device_t host)
{
ESP_RETURN_ON_FALSE_ISR(is_valid_host(host), ESP_ERR_INVALID_ARG, SPI_TAG, "invalid host");
ESP_RETURN_ON_FALSE_ISR(spihost[host], ESP_ERR_INVALID_ARG, SPI_TAG, "host not slave");
spi_slave_transaction_t *trans = NULL;
BaseType_t do_yield = pdFALSE;
while( pdFALSE == xQueueIsQueueEmptyFromISR(spihost[host]->trans_queue)) {
xQueueReceiveFromISR(spihost[host]->trans_queue, &trans, &do_yield);
}
if (do_yield) {
portYIELD_FROM_ISR();
}
spihost[host]->cur_trans = NULL;
return ESP_OK;
}
esp_err_t SPI_SLAVE_ATTR spi_slave_queue_trans(spi_host_device_t host, const spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait)
{
BaseType_t r;
@@ -333,6 +356,29 @@ esp_err_t SPI_SLAVE_ATTR spi_slave_queue_trans(spi_host_device_t host, const spi
return ESP_OK;
}
esp_err_t SPI_SLAVE_ISR_ATTR spi_slave_queue_trans_isr(spi_host_device_t host, const spi_slave_transaction_t *trans_desc)
{
BaseType_t r;
BaseType_t do_yield = pdFALSE;
ESP_RETURN_ON_FALSE_ISR(is_valid_host(host), ESP_ERR_INVALID_ARG, SPI_TAG, "invalid host");
ESP_RETURN_ON_FALSE_ISR(spihost[host], ESP_ERR_INVALID_ARG, SPI_TAG, "host not slave");
ESP_RETURN_ON_FALSE_ISR(spihost[host]->dma_enabled == 0 || trans_desc->tx_buffer==NULL || esp_ptr_dma_capable(trans_desc->tx_buffer),
ESP_ERR_INVALID_ARG, SPI_TAG, "txdata not in DMA-capable memory");
ESP_RETURN_ON_FALSE_ISR(spihost[host]->dma_enabled == 0 || trans_desc->rx_buffer==NULL ||
(esp_ptr_dma_capable(trans_desc->rx_buffer) && esp_ptr_word_aligned(trans_desc->rx_buffer) &&
(trans_desc->length%4==0)),
ESP_ERR_INVALID_ARG, SPI_TAG, "rxdata not in DMA-capable memory or not WORD aligned");
ESP_RETURN_ON_FALSE_ISR(trans_desc->length <= spihost[host]->max_transfer_sz * 8, ESP_ERR_INVALID_ARG, SPI_TAG, "data transfer > host maximum");
r = xQueueSendFromISR(spihost[host]->trans_queue, (void *)&trans_desc, &do_yield);
if (!r) {
return ESP_ERR_NO_MEM;
}
if (do_yield) {
portYIELD_FROM_ISR();
}
return ESP_OK;
}
esp_err_t SPI_SLAVE_ATTR spi_slave_get_trans_result(spi_host_device_t host, spi_slave_transaction_t **trans_desc, TickType_t ticks_to_wait)
{

View File

@@ -8,3 +8,16 @@ set(EXTRA_COMPONENT_DIRS
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(spi_slave_test)
if(CONFIG_COMPILER_DUMP_RTL_FILES)
add_custom_target(check_test_app_sections ALL
COMMAND ${PYTHON} $ENV{IDF_PATH}/tools/ci/check_callgraph.py
--rtl-dir ${CMAKE_BINARY_DIR}/esp-idf/driver/
--elf-file ${CMAKE_BINARY_DIR}/spi_slave_test.elf
find-refs
--from-sections=.iram0.text
--to-sections=.flash.text,.flash.rodata
--exit-code
DEPENDS ${elf}
)
endif()

View File

@@ -10,6 +10,6 @@ set(srcs
# the component can be registered as WHOLE_ARCHIVE
idf_component_register(
SRCS ${srcs}
PRIV_REQUIRES test_utils driver test_driver_utils
PRIV_REQUIRES test_utils driver test_driver_utils spi_flash
WHOLE_ARCHIVE
)

View File

@@ -15,6 +15,8 @@
#include "driver/spi_master.h"
#include "driver/spi_slave.h"
#include "driver/gpio.h"
#include "esp_private/cache_utils.h"
#include "esp_private/spi_slave_internal.h"
#include "esp_log.h"
#include "esp_rom_gpio.h"
@@ -40,47 +42,47 @@ static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi )
esp_rom_gpio_connect_in_signal( gpio, sigi, false );
}
static void master_init( spi_device_handle_t* spi)
static void master_init( spi_device_handle_t *spi)
{
esp_err_t ret;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=UNCONNECTED_PIN,
.quadhd_io_num=-1
spi_bus_config_t buscfg = {
.miso_io_num = PIN_NUM_MISO,
.mosi_io_num = PIN_NUM_MOSI,
.sclk_io_num = PIN_NUM_CLK,
.quadwp_io_num = UNCONNECTED_PIN,
.quadhd_io_num = -1
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=4*1000*1000, //currently only up to 4MHz for internel connect
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=7, //We want to be able to queue 7 transactions at a time
.pre_cb=NULL,
.cs_ena_posttrans=5,
.cs_ena_pretrans=1,
spi_device_interface_config_t devcfg = {
.clock_speed_hz = 4 * 1000 * 1000, //currently only up to 4MHz for internel connect
.mode = 0, //SPI mode 0
.spics_io_num = PIN_NUM_CS, //CS pin
.queue_size = 7, //We want to be able to queue 7 transactions at a time
.pre_cb = NULL,
.cs_ena_posttrans = 5,
.cs_ena_pretrans = 1,
};
//Initialize the SPI bus
ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO);
TEST_ASSERT(ret==ESP_OK);
ret = spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO);
TEST_ASSERT(ret == ESP_OK);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
TEST_ASSERT(ret==ESP_OK);
ret = spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
TEST_ASSERT(ret == ESP_OK);
}
static void slave_init(void)
{
//Configuration for the SPI bus
spi_bus_config_t buscfg={
.mosi_io_num=PIN_NUM_MOSI,
.miso_io_num=PIN_NUM_MISO,
.sclk_io_num=PIN_NUM_CLK
spi_bus_config_t buscfg = {
.mosi_io_num = PIN_NUM_MOSI,
.miso_io_num = PIN_NUM_MISO,
.sclk_io_num = PIN_NUM_CLK
};
//Configuration for the SPI slave interface
spi_slave_interface_config_t slvcfg={
.mode=0,
.spics_io_num=PIN_NUM_CS,
.queue_size=3,
.flags=0,
spi_slave_interface_config_t slvcfg = {
.mode = 0,
.spics_io_num = PIN_NUM_CS,
.queue_size = 3,
.flags = 0,
};
//Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY);
@@ -90,7 +92,8 @@ static void slave_init(void)
TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
}
static void custom_setup(void) {
static void custom_setup(void)
{
//Initialize buffers
memset(master_txbuf, 0, sizeof(master_txbuf));
memset(master_rxbuf, 0, sizeof(master_rxbuf));
@@ -109,13 +112,14 @@ static void custom_setup(void) {
int_connect( PIN_NUM_CLK, spi_periph_signal[TEST_SPI_HOST].spiclk_out, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in );
}
static void custom_teardown(void) {
static void custom_teardown(void)
{
TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
}
TEST_CASE("test fullduplex slave with only RX direction","[spi]")
TEST_CASE("test fullduplex slave with only RX direction", "[spi]")
{
custom_setup();
@@ -124,11 +128,11 @@ TEST_CASE("test fullduplex slave with only RX direction","[spi]")
for ( int i = 0; i < 4; i ++ ) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t* out;
spi_slave_transaction_t *out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length=8*32;
slave_t.tx_buffer=NULL;
slave_t.rx_buffer=slave_rxbuf;
slave_t.length = 8 * 32;
slave_t.tx_buffer = NULL;
slave_t.rx_buffer = slave_rxbuf;
// Colorize RX buffer with known pattern
memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf));
@@ -137,22 +141,22 @@ TEST_CASE("test fullduplex slave with only RX direction","[spi]")
//send
spi_transaction_t t = {};
t.length = 32*(i+1);
t.length = 32 * (i + 1);
if ( t.length != 0 ) {
t.tx_buffer = master_txbuf;
t.rx_buffer = NULL;
}
spi_device_transmit( spi, (spi_transaction_t*)&t );
spi_device_transmit( spi, (spi_transaction_t *)&t );
//wait for end
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 );
ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8);
ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length / 8 );
ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len + 7) / 8);
TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 );
TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length / 8 );
TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
}
@@ -161,7 +165,7 @@ TEST_CASE("test fullduplex slave with only RX direction","[spi]")
ESP_LOGI(SLAVE_TAG, "test passed.");
}
TEST_CASE("test fullduplex slave with only TX direction","[spi]")
TEST_CASE("test fullduplex slave with only TX direction", "[spi]")
{
custom_setup();
@@ -170,11 +174,11 @@ TEST_CASE("test fullduplex slave with only TX direction","[spi]")
for ( int i = 0; i < 4; i ++ ) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t* out;
spi_slave_transaction_t *out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length=8*32;
slave_t.tx_buffer=slave_txbuf;
slave_t.rx_buffer=NULL;
slave_t.length = 8 * 32;
slave_t.tx_buffer = slave_txbuf;
slave_t.rx_buffer = NULL;
// Colorize RX buffer with known pattern
memset( master_rxbuf, 0x66, sizeof(master_rxbuf));
@@ -183,22 +187,22 @@ TEST_CASE("test fullduplex slave with only TX direction","[spi]")
//send
spi_transaction_t t = {};
t.length = 32*(i+1);
t.length = 32 * (i + 1);
if ( t.length != 0 ) {
t.tx_buffer = NULL;
t.rx_buffer = master_rxbuf;
}
spi_device_transmit( spi, (spi_transaction_t*)&t );
spi_device_transmit( spi, (spi_transaction_t *)&t );
//wait for end
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 );
ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8);
ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length / 8 );
ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len + 7) / 8);
TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 );
TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length / 8 );
TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
}
@@ -207,7 +211,7 @@ TEST_CASE("test fullduplex slave with only TX direction","[spi]")
ESP_LOGI(SLAVE_TAG, "test passed.");
}
TEST_CASE("test slave send unaligned","[spi]")
TEST_CASE("test slave send unaligned", "[spi]")
{
custom_setup();
@@ -217,11 +221,11 @@ TEST_CASE("test slave send unaligned","[spi]")
for ( int i = 0; i < 4; i ++ ) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t* out;
spi_slave_transaction_t *out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length=8*32;
slave_t.tx_buffer=slave_txbuf+i;
slave_t.rx_buffer=slave_rxbuf;
slave_t.length = 8 * 32;
slave_t.tx_buffer = slave_txbuf + i;
slave_t.rx_buffer = slave_rxbuf;
// Colorize RX buffers with known pattern
memset( master_rxbuf, 0x66, sizeof(master_rxbuf));
@@ -231,25 +235,25 @@ TEST_CASE("test slave send unaligned","[spi]")
//send
spi_transaction_t t = {};
t.length = 32*(i+1);
t.length = 32 * (i + 1);
if ( t.length != 0 ) {
t.tx_buffer = master_txbuf+i;
t.rx_buffer = master_rxbuf+i;
t.tx_buffer = master_txbuf + i;
t.rx_buffer = master_rxbuf + i;
}
spi_device_transmit( spi, (spi_transaction_t*)&t );
spi_device_transmit( spi, (spi_transaction_t *)&t );
//wait for end
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 );
ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 );
ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8);
ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8);
ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length / 8 );
ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length / 8 );
ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len + 7) / 8);
ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len + 7) / 8);
TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 );
TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 );
TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length / 8 );
TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length / 8 );
TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
}
@@ -316,12 +320,12 @@ static void unaligned_test_master(void)
vTaskDelay(50);
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&t));
TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&t));
//show result
ESP_LOG_BUFFER_HEX("master tx:", master_send_buf+i, length_in_bytes);
ESP_LOG_BUFFER_HEX("master tx:", master_send_buf + i, length_in_bytes);
ESP_LOG_BUFFER_HEX("master rx:", master_recv_buf, length_in_bytes);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_send_buf+i, master_recv_buf, length_in_bytes);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_send_buf + i, master_recv_buf, length_in_bytes);
//clean
memset(master_recv_buf, 0x00, BUF_SIZE);
@@ -383,6 +387,307 @@ static void unaligned_test_slave(void)
TEST_ASSERT(spi_slave_free(TEST_SPI_HOST) == ESP_OK);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave_Unaligned_Test", "[spi_ms][test_env=generic_multi_device][timeout=120]", unaligned_test_master, unaligned_test_slave);
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave_Unaligned_Test", "[spi_ms][timeout=120]", unaligned_test_master, unaligned_test_slave);
#endif //#if (TEST_SPI_PERIPH_NUM == 1)
#if CONFIG_SPI_SLAVE_ISR_IN_IRAM
#define TEST_IRAM_TRANS_NUM 8
#define TEST_TRANS_LEN 120
#define TEST_BUFFER_SZ (TEST_IRAM_TRANS_NUM*TEST_TRANS_LEN)
static void test_slave_iram_master_normal(void)
{
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
spi_device_handle_t dev_handle = {0};
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &dev_handle));
uint8_t *master_send = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DMA);
uint8_t *master_recv = heap_caps_calloc(1, TEST_BUFFER_SZ, MALLOC_CAP_DMA);
uint8_t *master_exp = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DEFAULT);
get_tx_buffer(1001, master_send, master_exp, TEST_BUFFER_SZ);
spi_transaction_t trans_cfg = {
.tx_buffer = master_send,
.rx_buffer = master_recv,
.user = master_exp,
.length = TEST_TRANS_LEN * 8,
};
//first trans to trigger slave enter isr
unity_send_signal("Master ready");
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(dev_handle, &trans_cfg));
for (uint8_t cnt = 0; cnt < TEST_IRAM_TRANS_NUM; cnt ++) {
trans_cfg.tx_buffer = master_send + TEST_TRANS_LEN * cnt;
trans_cfg.rx_buffer = master_recv + TEST_TRANS_LEN * cnt;
trans_cfg.user = master_exp + TEST_TRANS_LEN * cnt;
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(dev_handle, &trans_cfg));
ESP_LOG_BUFFER_HEX("master tx", trans_cfg.tx_buffer, TEST_TRANS_LEN);
ESP_LOG_BUFFER_HEX_LEVEL("master rx", trans_cfg.rx_buffer, TEST_TRANS_LEN, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEX_LEVEL("master exp", trans_cfg.user, TEST_TRANS_LEN, ESP_LOG_DEBUG);
spitest_cmp_or_dump(trans_cfg.user, trans_cfg.rx_buffer, TEST_TRANS_LEN);
}
free(master_send);
free(master_recv);
free(master_exp);
spi_bus_remove_device(dev_handle);
spi_bus_free(TEST_SPI_HOST);
}
//------------------------------------test slave func-----------------------------------------
static IRAM_ATTR void ESP_LOG_BUFFER_HEX_ISR(const char *tag, const uint8_t *buff, const uint32_t byte_len)
{
esp_rom_printf(DRAM_STR("%s: "), tag);
for (uint16_t i = 0; i < byte_len; i++) {
if (0 == i % 16) {
esp_rom_printf(DRAM_STR("\n"));
}
esp_rom_printf(DRAM_STR("%02x "), buff[i]);
}
esp_rom_printf(DRAM_STR("\n"));
}
static uint32_t isr_iram_cnt;
static uint32_t iram_test_fail;
static IRAM_ATTR void test_slave_iram_post_trans_cbk(spi_slave_transaction_t *curr_trans)
{
isr_iram_cnt ++;
// first trans is the trigger trans with random data by master
if (isr_iram_cnt > 1) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave tx"), curr_trans->tx_buffer, curr_trans->trans_len / 8);
if (memcmp(curr_trans->rx_buffer, curr_trans->user, curr_trans->trans_len / 8)) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave rx"), curr_trans->rx_buffer, curr_trans->trans_len / 8);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave exp"), curr_trans->user, curr_trans->trans_len / 8);
iram_test_fail = true;
}
}
if (isr_iram_cnt <= TEST_IRAM_TRANS_NUM) {
// str "Send signal: [Slave ready]!\n" used for CI to run test automatically
// here use `esp_rom_printf` instead `unity_send_signal` because cache is disabled by test
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
}
}
static IRAM_ATTR void test_slave_isr_iram(void)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.flags = SPI_SLAVE_NO_RETURN_RESULT;
slvcfg.queue_size = 16;
slvcfg.post_trans_cb = test_slave_iram_post_trans_cbk;
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &bus_cfg, &slvcfg, SPI_DMA_CH_AUTO));
uint8_t *slave_iram_send = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_iram_recv = heap_caps_calloc(1, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_iram_exp = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL);
get_tx_buffer(1001, slave_iram_exp, slave_iram_send, TEST_BUFFER_SZ);
spi_slave_transaction_t trans_cfg[TEST_IRAM_TRANS_NUM] = {0};
unity_wait_for_signal("Master ready");
trans_cfg[0].tx_buffer = slave_iram_send;
trans_cfg[0].rx_buffer = slave_iram_recv;
trans_cfg[0].user = slave_iram_exp;
trans_cfg[0].length = TEST_TRANS_LEN * 8;
spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg[0], portMAX_DELAY);
// mount several transaction first
for (uint8_t i = 0; i < TEST_IRAM_TRANS_NUM; i++) {
trans_cfg[i].tx_buffer = slave_iram_send + TEST_TRANS_LEN * i;
trans_cfg[i].rx_buffer = slave_iram_recv + TEST_TRANS_LEN * i;
trans_cfg[i].user = slave_iram_exp + TEST_TRANS_LEN * i;
trans_cfg[i].length = TEST_TRANS_LEN * 8;
spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg[i], portMAX_DELAY);
}
// disable cache then send signal `ready` to start transaction
spi_flash_disable_interrupts_caches_and_other_cpu();
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
while (isr_iram_cnt <= TEST_IRAM_TRANS_NUM) {
esp_rom_delay_us(10);
}
spi_flash_enable_interrupts_caches_and_other_cpu();
if (iram_test_fail) {
TEST_FAIL();
}
free(slave_iram_send);
free(slave_iram_recv);
free(slave_iram_exp);
spi_slave_free(TEST_SPI_HOST);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave: Test_ISR_IRAM_disable_cache", "[spi_ms]", test_slave_iram_master_normal, test_slave_isr_iram);
static uint32_t isr_trans_cnt, isr_trans_test_fail;
static IRAM_ATTR void test_trans_in_isr_post_trans_cbk(spi_slave_transaction_t *curr_trans)
{
isr_trans_cnt ++;
//first trans is the trigger trans with random data
if (isr_trans_cnt > 1) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave tx"), curr_trans->tx_buffer, curr_trans->trans_len / 8);
if (memcmp(curr_trans->rx_buffer, curr_trans->user, curr_trans->trans_len / 8)) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave rx"), curr_trans->rx_buffer, curr_trans->trans_len / 8);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave exp"), curr_trans->user, curr_trans->trans_len / 8);
isr_trans_test_fail = true;
}
curr_trans->tx_buffer = (uint8_t *)curr_trans->tx_buffer + TEST_TRANS_LEN;
curr_trans->rx_buffer = (uint8_t *)curr_trans->rx_buffer + TEST_TRANS_LEN;
curr_trans->user = (uint8_t *)curr_trans->user + TEST_TRANS_LEN;
}
if (isr_trans_cnt <= TEST_IRAM_TRANS_NUM) {
if (ESP_OK == spi_slave_queue_trans_isr(TEST_SPI_HOST, curr_trans)) {
// use `esp_rom_printf` instead `unity_send_signal` because cache is disabled by test
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
} else {
esp_rom_printf(DRAM_STR("SPI Add trans in isr fail, Queue full\n"));
}
}
}
static IRAM_ATTR void spi_slave_trans_in_isr(void)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.flags = SPI_SLAVE_NO_RETURN_RESULT;
slvcfg.queue_size = 16;
slvcfg.post_trans_cb = test_trans_in_isr_post_trans_cbk;
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &bus_cfg, &slvcfg, SPI_DMA_CH_AUTO));
uint8_t *slave_isr_send = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_isr_recv = heap_caps_calloc(1, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_isr_exp = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL);
get_tx_buffer(1001, slave_isr_exp, slave_isr_send, TEST_BUFFER_SZ);
spi_slave_transaction_t trans_cfg = {
.tx_buffer = slave_isr_send,
.rx_buffer = slave_isr_recv,
.user = slave_isr_exp,
.length = TEST_TRANS_LEN * 8,
};
unity_wait_for_signal("Master ready");
//start a trans by normal API first to trigger spi isr
spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg, portMAX_DELAY);
spi_flash_disable_interrupts_caches_and_other_cpu();
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
while (isr_trans_cnt <= TEST_IRAM_TRANS_NUM) {
esp_rom_delay_us(10);
}
spi_flash_enable_interrupts_caches_and_other_cpu();
if (isr_trans_test_fail) {
TEST_FAIL();
}
free(slave_isr_send);
free(slave_isr_recv);
free(slave_isr_exp);
spi_slave_free(TEST_SPI_HOST);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave: Test_Queue_Trans_in_ISR", "[spi_ms]", test_slave_iram_master_normal, spi_slave_trans_in_isr);
uint32_t dummy_data[2] = {0x38383838, 0x5b5b5b5b};
spi_slave_transaction_t dummy_trans[2];
static uint32_t queue_reset_isr_trans_cnt, test_queue_reset_isr_fail;
static IRAM_ATTR void test_queue_reset_in_isr_post_trans_cbk(spi_slave_transaction_t *curr_trans)
{
queue_reset_isr_trans_cnt ++;
//first trans is the trigger trans with random data
if (queue_reset_isr_trans_cnt > 1) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave tx"), curr_trans->tx_buffer, curr_trans->length / 8);
if (memcmp(curr_trans->rx_buffer, curr_trans->user, curr_trans->length / 8)) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave rx"), curr_trans->rx_buffer, curr_trans->length / 8);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave exp"), curr_trans->user, curr_trans->length / 8);
test_queue_reset_isr_fail = true;
}
if (queue_reset_isr_trans_cnt > 4) {
// add some confusing transactions
dummy_data[0] ++;
dummy_data[1] --;
spi_slave_queue_trans_isr(TEST_SPI_HOST, &dummy_trans[0]);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("Queue Hacked hahhhhh..."), dummy_trans[0].tx_buffer, dummy_trans[0].length / 8);
spi_slave_queue_trans_isr(TEST_SPI_HOST, &dummy_trans[1]);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("Queue Hacked hahhhhh..."), dummy_trans[1].tx_buffer, dummy_trans[1].length / 8);
if (ESP_OK == spi_slave_queue_reset_isr(TEST_SPI_HOST)) {
esp_rom_printf(DRAM_STR("Queue reset done, continue\n"));
}
}
curr_trans->tx_buffer = (uint8_t *)curr_trans->tx_buffer + TEST_TRANS_LEN;
curr_trans->rx_buffer = (uint8_t *)curr_trans->rx_buffer + TEST_TRANS_LEN;
curr_trans->user = (uint8_t *)curr_trans->user + TEST_TRANS_LEN;
}
if (queue_reset_isr_trans_cnt <= TEST_IRAM_TRANS_NUM) {
if (ESP_OK == spi_slave_queue_trans_isr(TEST_SPI_HOST, curr_trans)) {
// use `esp_rom_printf` instead `unity_send_signal` because cache is disabled by test
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
} else {
esp_rom_printf(DRAM_STR("SPI Add trans in isr fail, Queue full\n"));
}
}
}
static IRAM_ATTR void spi_queue_reset_in_isr(void)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.flags = SPI_SLAVE_NO_RETURN_RESULT;
slvcfg.queue_size = 16;
slvcfg.post_trans_cb = test_queue_reset_in_isr_post_trans_cbk;
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &bus_cfg, &slvcfg, SPI_DMA_CH_AUTO));
uint8_t *slave_isr_send = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_isr_recv = heap_caps_calloc(1, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_isr_exp = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL);
get_tx_buffer(1001, slave_isr_exp, slave_isr_send, TEST_BUFFER_SZ);
spi_slave_transaction_t trans_cfg = {
.tx_buffer = slave_isr_send,
.rx_buffer = slave_isr_recv,
.user = slave_isr_exp,
.length = TEST_TRANS_LEN * 8,
};
unity_wait_for_signal("Master ready");
for (uint8_t i = 0; i < 2; i++) {
dummy_trans[i].tx_buffer = &dummy_data[i];
dummy_trans[i].rx_buffer = &dummy_data[i];
dummy_trans[i].user = &dummy_data[i];
dummy_trans[i].length = sizeof(uint32_t) * 8;
}
// start a trans by normal API first to trigger spi isr
spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg, portMAX_DELAY);
// spi_flash_disable_interrupts_caches_and_other_cpu();
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
while (queue_reset_isr_trans_cnt <= TEST_IRAM_TRANS_NUM) {
esp_rom_delay_us(10);
}
// spi_flash_enable_interrupts_caches_and_other_cpu();
if (test_queue_reset_isr_fail) {
TEST_FAIL();
}
free(slave_isr_send);
free(slave_isr_recv);
free(slave_isr_exp);
spi_slave_free(TEST_SPI_HOST);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave: Test_Queue_Reset_in_ISR", "[spi_ms]", test_slave_iram_master_normal, spi_queue_reset_in_isr);
#endif // CONFIG_SPI_SLAVE_ISR_IN_IRAM

View File

@@ -7,6 +7,7 @@ import pytest
# If `test_env` is define, should not run on generic runner
@pytest.mark.supported_targets
@pytest.mark.generic
@pytest.mark.parametrize('config', ['defaults',], indirect=True)
def test_slave_single_dev(case_tester) -> None: # type: ignore
for case in case_tester.test_menu:
if 'test_env' in case.attributes:
@@ -17,7 +18,7 @@ def test_slave_single_dev(case_tester) -> None: # type: ignore
# if `test_env` not defined, will run on `generic_multi_device` by default
@pytest.mark.supported_targets
@pytest.mark.generic_multi_device
@pytest.mark.parametrize('count', [2,], indirect=True)
@pytest.mark.parametrize('count, config', [(2, 'defaults'), (2, 'iram_safe')], indirect=True)
def test_slave_multi_dev(case_tester) -> None: # type: ignore
for case in case_tester.test_menu:
if case.attributes.get('test_env', 'generic_multi_device') == 'generic_multi_device':

View File

@@ -0,0 +1,2 @@
# don't delete.
# used for CI to compile a default config when 'sdkconfig.ci.xxxx' is exist

View File

@@ -0,0 +1,7 @@
CONFIG_COMPILER_DUMP_RTL_FILES=y
CONFIG_SPI_MASTER_ISR_IN_IRAM=n
CONFIG_SPI_SLAVE_ISR_IN_IRAM=y
CONFIG_COMPILER_OPTIMIZATION_ASSERTIONS_DISABLE=y
CONFIG_COMPILER_OPTIMIZATION_NONE=y
# silent the error check, as the error string are stored in rodata, causing RTL check failure
CONFIG_COMPILER_OPTIMIZATION_CHECKS_SILENT=y

View File

@@ -22,6 +22,7 @@ entries:
rtc_wdt (noflash_text)
if PERIPH_CTRL_FUNC_IN_IRAM = y:
periph_ctrl: periph_module_reset (noflash)
if PERIPH_CTRL_FUNC_IN_IRAM = y && ESP32_WIFI_ENABLED = y:
periph_ctrl: wifi_module_enable (noflash)
periph_ctrl: wifi_module_disable (noflash)
if GDMA_CTRL_FUNC_IN_IRAM = y:

View File

@@ -625,10 +625,11 @@ static inline bool gpio_ll_is_digital_io_hold(gpio_dev_t *hw, uint32_t gpio_num)
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
__attribute__((always_inline))
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
PIN_INPUT_ENABLE(DR_REG_IO_MUX_BASE + GPIO_PIN_MUX_REG_OFFSET[gpio]);
}
/**

View File

@@ -441,10 +441,11 @@ static inline bool gpio_ll_is_digital_io_hold(gpio_dev_t *hw, uint32_t gpio_num)
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
__attribute__((always_inline))
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
PIN_INPUT_ENABLE(IO_MUX_GPIO0_REG + (gpio * 4));
}
/**

View File

@@ -453,10 +453,11 @@ static inline bool gpio_ll_is_digital_io_hold(gpio_dev_t *hw, uint32_t gpio_num)
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
__attribute__((always_inline))
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
PIN_INPUT_ENABLE(IO_MUX_GPIO0_REG + (gpio * 4));
}
/**

View File

@@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@@ -402,6 +402,7 @@ static inline void gpio_ll_hold_dis(gpio_dev_t *hw, uint32_t gpio_num)
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
__attribute__((always_inline))
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;

View File

@@ -424,10 +424,11 @@ static inline void gpio_ll_hold_dis(gpio_dev_t *hw, uint32_t gpio_num)
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
__attribute__((always_inline))
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
PIN_INPUT_ENABLE(IO_MUX_GPIO0_REG + (gpio * 4));
}
/**

View File

@@ -400,10 +400,11 @@ static inline void gpio_ll_hold_dis(gpio_dev_t *hw, uint32_t gpio_num)
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
__attribute__((always_inline))
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
PIN_INPUT_ENABLE(IO_MUX_GPIO0_REG + (gpio * 4));
}
/**

View File

@@ -456,10 +456,11 @@ static inline bool gpio_ll_is_digital_io_hold(gpio_dev_t *hw, uint32_t gpio_num)
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
__attribute__((always_inline))
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
PIN_INPUT_ENABLE(IO_MUX_GPIO0_REG + (gpio * 4));
}
/**

View File

@@ -472,10 +472,11 @@ static inline bool gpio_ll_is_digital_io_hold(gpio_dev_t *hw, uint32_t gpio_num)
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
__attribute__((always_inline))
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
PIN_INPUT_ENABLE(IO_MUX_GPIO0_REG + (gpio * 4));
}
/**