Merge branch 'feature/freemodbus_slave_add_multi_area_descriptors' into 'master'

freemodbus: add support for list of area descriptors for each register area

Closes IDFGH-3911

See merge request espressif/esp-idf!11134
This commit is contained in:
Michael (XIAO Xufeng)
2021-01-28 12:29:38 +08:00
7 changed files with 483 additions and 637 deletions

View File

@@ -13,9 +13,11 @@
* limitations under the License.
*/
#include "esp_err.h" // for esp_err_t
#include "sdkconfig.h" // for KConfig defines
#include "esp_err.h" // for esp_err_t
#include "sdkconfig.h" // for KConfig defines
#include "mbc_slave.h" // for slave private type definitions
#include "mbutils.h" // for stack bit setting utilities
#include "esp_modbus_common.h" // for common defines
#include "esp_modbus_slave.h" // for public slave defines
#include "esp_modbus_callbacks.h" // for modbus callbacks function pointers declaration
@@ -37,12 +39,59 @@ static uint8_t mb_slave_id[] = { MB_ID_BYTE0(MB_CONTROLLER_SLAVE_ID),
#endif
#define REG_SIZE(type, nregs) ((type == MB_PARAM_INPUT) || (type == MB_PARAM_HOLDING)) ? (nregs >> 1) : (nregs << 3)
// Common interface pointer for slave port
static mb_slave_interface_t* slave_interface_ptr = NULL;
// Searches the register in the area specified by type, returns descriptor if found, else NULL
static mb_descr_entry_t* mbc_slave_find_reg_descriptor(mb_param_type_t type, uint16_t addr, size_t regs)
{
mb_descr_entry_t* it;
uint16_t reg_size = 0;
mb_slave_options_t* mbs_opts = &slave_interface_ptr->opts;
if (LIST_EMPTY(&mbs_opts->mbs_area_descriptors[type])) {
return NULL;
}
// search for the register in each area
for (it = LIST_FIRST(&mbs_opts->mbs_area_descriptors[type]); it != NULL; it = LIST_NEXT(it, entries)) {
reg_size = REG_SIZE(type, it->size);
if ((addr >= it->start_offset)
&& (it->p_data)
&& (regs >= 1)
&& ((addr + regs) <= (it->start_offset + reg_size + 1))
&& (reg_size >= 1)) {
return it;
}
}
return NULL;
}
static void mbc_slave_free_descriptors(void) {
mb_descr_entry_t* it;
mb_slave_options_t* mbs_opts = &slave_interface_ptr->opts;
for (int descr_type = 0; descr_type < MB_PARAM_COUNT; descr_type++) {
for (it = LIST_FIRST(&mbs_opts->mbs_area_descriptors[descr_type]); it != NULL; it = LIST_NEXT(it, entries)) {
LIST_REMOVE(it, entries);
free(it);
}
}
}
void mbc_slave_init_iface(void* handler)
{
slave_interface_ptr = (mb_slave_interface_t*) handler;
mb_slave_options_t* mbs_opts = &slave_interface_ptr->opts;
// Initialize list head for register areas
LIST_INIT(&mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT]);
LIST_INIT(&mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING]);
LIST_INIT(&mbs_opts->mbs_area_descriptors[MB_PARAM_COIL]);
LIST_INIT(&mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE]);
}
/**
@@ -65,6 +114,10 @@ esp_err_t mbc_slave_destroy(void)
ESP_ERR_INVALID_STATE,
"Slave destroy failure error=(0x%x).",
error);
// Destroy all opened descriptors
mbc_slave_free_descriptors();
free(slave_interface_ptr);
slave_interface_ptr = NULL;
return error;
}
@@ -157,75 +210,328 @@ esp_err_t mbc_slave_set_descriptor(mb_register_area_descriptor_t descr_data)
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
MB_SLAVE_CHECK((slave_interface_ptr->set_descriptor != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
error = slave_interface_ptr->set_descriptor(descr_data);
MB_SLAVE_CHECK((error == ESP_OK),
ESP_ERR_INVALID_STATE,
"Slave set descriptor failure error=(0x%x).",
(uint16_t)error);
if (slave_interface_ptr->set_descriptor != NULL) {
error = slave_interface_ptr->set_descriptor(descr_data);
MB_SLAVE_CHECK((error == ESP_OK),
ESP_ERR_INVALID_STATE,
"Slave set descriptor failure error=(0x%x).",
(uint16_t)error);
} else {
mb_slave_options_t* mbs_opts = &slave_interface_ptr->opts;
// Check if the address is already in the descriptor list
mb_descr_entry_t* it = mbc_slave_find_reg_descriptor(descr_data.type, descr_data.start_offset, 1);
MB_SLAVE_CHECK((it == NULL), ESP_ERR_INVALID_ARG, "mb incorrect descriptor or already defined.");
mb_descr_entry_t* new_descr = (mb_descr_entry_t*) heap_caps_malloc(sizeof(mb_descr_entry_t),
MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
MB_SLAVE_CHECK((new_descr != NULL), ESP_ERR_NO_MEM, "mb can not allocate memory for descriptor.");
new_descr->start_offset = descr_data.start_offset;
new_descr->type = descr_data.type;
new_descr->p_data = descr_data.address;
new_descr->size = descr_data.size;
LIST_INSERT_HEAD(&mbs_opts->mbs_area_descriptors[descr_data.type], new_descr, entries);
error = ESP_OK;
}
return error;
}
/**
* Below are stack callback functions to read/write registers
// The helper function to get time stamp in microseconds
static uint64_t mbc_slave_get_time_stamp(void)
{
uint64_t time_stamp = esp_timer_get_time();
return time_stamp;
}
// Helper function to send parameter information to application task
static esp_err_t mbc_slave_send_param_info(mb_event_group_t par_type, uint16_t mb_offset,
uint8_t* par_address, uint16_t par_size)
{
MB_SLAVE_ASSERT(slave_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &slave_interface_ptr->opts;
esp_err_t error = ESP_FAIL;
mb_param_info_t par_info;
// Check if queue is not full the send parameter information
par_info.type = par_type;
par_info.size = par_size;
par_info.address = par_address;
par_info.time_stamp = mbc_slave_get_time_stamp();
par_info.mb_offset = mb_offset;
BaseType_t status = xQueueSend(mbs_opts->mbs_notification_queue_handle, &par_info, MB_PAR_INFO_TOUT);
if (pdTRUE == status) {
ESP_LOGD(MB_SLAVE_TAG, "Queue send parameter info (type, address, size): %d, 0x%.4x, %d",
par_type, (uint32_t)par_address, par_size);
error = ESP_OK;
} else if (errQUEUE_FULL == status) {
ESP_LOGD(MB_SLAVE_TAG, "Parameter queue is overflowed.");
}
return error;
}
// Helper function to send notification
static esp_err_t mbc_slave_send_param_access_notification(mb_event_group_t event)
{
MB_SLAVE_ASSERT(slave_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &slave_interface_ptr->opts;
esp_err_t err = ESP_FAIL;
mb_event_group_t bits = (mb_event_group_t)xEventGroupSetBits(mbs_opts->mbs_event_group, (EventBits_t)event);
if (bits & event) {
ESP_LOGD(MB_SLAVE_TAG, "The MB_REG_CHANGE_EVENT = 0x%.2x is set.", (uint8_t)event);
err = ESP_OK;
}
return err;
}
/*
* Below are the common slave read/write register callback functions
* The concrete slave port can override them using interface function pointers
*/
eMBErrorCode eMBRegDiscreteCB(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNDiscrete)
// Callback function for reading of MB Input Registers
eMBErrorCode mbc_reg_input_slave_cb(UCHAR * reg_buffer, USHORT address, USHORT n_regs)
{
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
MB_EILLSTATE, "Slave stack uninitialized.");
MB_SLAVE_CHECK((reg_buffer != NULL),
MB_EINVAL, "Slave stack call failed.");
eMBErrorCode status = MB_ENOERR;
address--; // address of register is already +1
mb_descr_entry_t* it = mbc_slave_find_reg_descriptor(MB_PARAM_INPUT, address, n_regs);
if (it != NULL) {
uint16_t input_reg_start = (uint16_t)it->start_offset; // Get Modbus start address
uint8_t* input_buffer = (uint8_t*)it->p_data; // Get instance address
uint16_t regs = n_regs;
uint16_t reg_index;
// If input or configuration parameters are incorrect then return an error to stack layer
reg_index = (uint16_t)(address - input_reg_start);
reg_index <<= 1; // register Address to byte address
input_buffer += reg_index;
uint8_t* buffer_start = input_buffer;
while (regs > 0) {
_XFER_2_RD(reg_buffer, input_buffer);
reg_index += 2;
regs -= 1;
}
// Send access notification
(void)mbc_slave_send_param_access_notification(MB_EVENT_INPUT_REG_RD);
// Send parameter info to application task
(void)mbc_slave_send_param_info(MB_EVENT_INPUT_REG_RD, (uint16_t)address,
(uint8_t*)buffer_start, (uint16_t)n_regs);
} else {
status = MB_ENOREG;
}
return status;
}
// Callback function for reading of MB Holding Registers
// Executed by stack when request to read/write holding registers is received
eMBErrorCode mbc_reg_holding_slave_cb(UCHAR * reg_buffer, USHORT address, USHORT n_regs, eMBRegisterMode mode)
{
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
MB_EILLSTATE, "Slave stack uninitialized.");
MB_SLAVE_CHECK((reg_buffer != NULL),
MB_EINVAL, "Slave stack call failed.");
eMBErrorCode status = MB_ENOERR;
uint16_t reg_index;
address--; // address of register is already +1
mb_descr_entry_t* it = mbc_slave_find_reg_descriptor(MB_PARAM_HOLDING, address, n_regs);
if (it != NULL) {
uint16_t reg_holding_start = (uint16_t)it->start_offset; // Get Modbus start address
uint8_t* holding_buffer = (uint8_t*)it->p_data; // Get instance address
uint16_t regs = n_regs;
reg_index = (uint16_t) (address - reg_holding_start);
reg_index <<= 1; // register Address to byte address
holding_buffer += reg_index;
uint8_t* buffer_start = holding_buffer;
switch (mode) {
case MB_REG_READ:
while (regs > 0) {
_XFER_2_RD(reg_buffer, holding_buffer);
reg_index += 2;
regs -= 1;
};
// Send access notification
(void)mbc_slave_send_param_access_notification(MB_EVENT_HOLDING_REG_RD);
// Send parameter info
(void)mbc_slave_send_param_info(MB_EVENT_HOLDING_REG_RD, (uint16_t)address,
(uint8_t*)buffer_start, (uint16_t)n_regs);
break;
case MB_REG_WRITE:
while (regs > 0) {
_XFER_2_WR(holding_buffer, reg_buffer);
holding_buffer += 2;
reg_index += 2;
regs -= 1;
};
// Send access notification
(void)mbc_slave_send_param_access_notification(MB_EVENT_HOLDING_REG_WR);
// Send parameter info
(void)mbc_slave_send_param_info(MB_EVENT_HOLDING_REG_WR, (uint16_t)address,
(uint8_t*)buffer_start, (uint16_t)n_regs);
break;
}
} else {
status = MB_ENOREG;
}
return status;
}
// Callback function for reading of MB Coils Registers
eMBErrorCode mbc_reg_coils_slave_cb(UCHAR* reg_buffer, USHORT address, USHORT n_coils, eMBRegisterMode mode)
{
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
MB_EILLSTATE, "Slave stack uninitialized.");
MB_SLAVE_CHECK((reg_buffer != NULL),
MB_EINVAL, "Slave stack call failed.");
eMBErrorCode status = MB_ENOERR;
uint16_t reg_index;
uint16_t coils = n_coils;
address--; // The address is already +1
mb_descr_entry_t* it = mbc_slave_find_reg_descriptor(MB_PARAM_COIL, address, n_coils);
if (it != NULL) {
uint16_t reg_coils_start = (uint16_t)it->start_offset; // MB offset of coils
uint8_t* reg_coils_buf = (uint8_t*)it->p_data;
reg_index = (uint16_t) (address - it->start_offset);
CHAR* coils_data_buf = (CHAR*)(reg_coils_buf + (reg_index >> 3));
switch (mode) {
case MB_REG_READ:
while (coils > 0) {
uint8_t result = xMBUtilGetBits((uint8_t*)reg_coils_buf, reg_index, 1);
xMBUtilSetBits(reg_buffer, reg_index - (address - reg_coils_start), 1, result);
reg_index++;
coils--;
}
// Send an event to notify application task about event
(void)mbc_slave_send_param_access_notification(MB_EVENT_COILS_RD);
(void)mbc_slave_send_param_info(MB_EVENT_COILS_RD, (uint16_t)address,
(uint8_t*)(coils_data_buf), (uint16_t)n_coils);
break;
case MB_REG_WRITE:
while (coils > 0) {
uint8_t result = xMBUtilGetBits(reg_buffer,
reg_index - (address - reg_coils_start), 1);
xMBUtilSetBits((uint8_t*)reg_coils_buf, reg_index, 1, result);
reg_index++;
coils--;
}
// Send an event to notify application task about event
(void)mbc_slave_send_param_access_notification(MB_EVENT_COILS_WR);
(void)mbc_slave_send_param_info(MB_EVENT_COILS_WR, (uint16_t)address,
(uint8_t*)coils_data_buf, (uint16_t)n_coils);
break;
} // switch ( eMode )
} else {
// If the configuration or input parameters are incorrect then return error to stack
status = MB_ENOREG;
}
return status;
}
// Callback function for reading of MB Discrete Input Registers
eMBErrorCode mbc_reg_discrete_slave_cb(UCHAR* reg_buffer, USHORT address, USHORT n_discrete)
{
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
MB_EILLSTATE, "Slave stack uninitialized.");
MB_SLAVE_CHECK((reg_buffer != NULL),
MB_EINVAL, "Slave stack call failed.");
eMBErrorCode status = MB_ENOERR;
uint16_t reg_index;
uint16_t reg_bit_index;
uint16_t n_reg;
uint8_t* discrete_input_buf;
// It already plus one in modbus function method.
address--;
mb_descr_entry_t* it = mbc_slave_find_reg_descriptor(MB_PARAM_DISCRETE, address, n_discrete);
if (it != NULL) {
uint16_t reg_discrete_start = (uint16_t)it->start_offset; // MB offset of registers
n_reg = (n_discrete >> 3) + 1;
discrete_input_buf = (uint8_t*)it->p_data; // the storage address
reg_index = (uint16_t) (address - reg_discrete_start) / 8; // Get register index in the buffer for bit number
reg_bit_index = (uint16_t)(address - reg_discrete_start) % 8; // Get bit index
uint8_t* temp_buf = &discrete_input_buf[reg_index];
while (n_reg > 0) {
*reg_buffer++ = xMBUtilGetBits(&discrete_input_buf[reg_index++], reg_bit_index, 8);
n_reg--;
}
reg_buffer--;
// Last discrete
n_discrete = n_discrete % 8;
// Filling zero to high bit
*reg_buffer = *reg_buffer << (8 - n_discrete);
*reg_buffer = *reg_buffer >> (8 - n_discrete);
// Send an event to notify application task about event
(void)mbc_slave_send_param_access_notification(MB_EVENT_DISCRETE_RD);
(void)mbc_slave_send_param_info(MB_EVENT_DISCRETE_RD, (uint16_t)address,
(uint8_t*)temp_buf, (uint16_t)n_discrete);
} else {
status = MB_ENOREG;
}
return status;
}
/**
* Below are the stack callback functions to read/write registers
*/
eMBErrorCode eMBRegDiscreteCB(UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNDiscrete)
{
eMBErrorCode error = MB_ENOERR;
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
MB_SLAVE_CHECK((slave_interface_ptr->slave_reg_cb_discrete != NULL),
error,
"Slave interface is not correctly initialized.");
error = slave_interface_ptr->slave_reg_cb_discrete(pucRegBuffer, usAddress, usNDiscrete);
// Check if the callback is overridden in concrete port
if (slave_interface_ptr->slave_reg_cb_discrete) {
error = slave_interface_ptr->slave_reg_cb_discrete(pucRegBuffer, usAddress, usNDiscrete);
} else {
error = mbc_reg_discrete_slave_cb(pucRegBuffer, usAddress, usNDiscrete);
}
return error;
}
eMBErrorCode eMBRegCoilsCB(UCHAR* pucRegBuffer, USHORT usAddress,
USHORT usNCoils, eMBRegisterMode eMode)
USHORT usNCoils, eMBRegisterMode eMode)
{
eMBErrorCode error = MB_ENOERR;
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
MB_SLAVE_CHECK((slave_interface_ptr->slave_reg_cb_coils != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
error = slave_interface_ptr->slave_reg_cb_coils(pucRegBuffer, usAddress,
usNCoils, eMode);
if (slave_interface_ptr->slave_reg_cb_coils) {
error = slave_interface_ptr->slave_reg_cb_coils(pucRegBuffer, usAddress, usNCoils, eMode);
} else {
error = mbc_reg_coils_slave_cb(pucRegBuffer, usAddress, usNCoils, eMode);
}
return error;
}
eMBErrorCode eMBRegHoldingCB(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNRegs, eMBRegisterMode eMode)
USHORT usNRegs, eMBRegisterMode eMode)
{
eMBErrorCode error = MB_ENOERR;
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
MB_SLAVE_CHECK((slave_interface_ptr->slave_reg_cb_holding != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
error = slave_interface_ptr->slave_reg_cb_holding(pucRegBuffer, usAddress,
usNRegs, eMode);
if (slave_interface_ptr->slave_reg_cb_holding) {
error = slave_interface_ptr->slave_reg_cb_holding(pucRegBuffer, usAddress, usNRegs, eMode);
} else {
error = mbc_reg_holding_slave_cb(pucRegBuffer, usAddress, usNRegs, eMode);
}
return error;
}
eMBErrorCode eMBRegInputCB(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNRegs)
eMBErrorCode eMBRegInputCB(UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNRegs)
{
eMBErrorCode error = MB_ENOERR;
eMBErrorCode error = ESP_ERR_INVALID_STATE;
MB_SLAVE_CHECK((slave_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
MB_SLAVE_CHECK((slave_interface_ptr->slave_reg_cb_input != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
error = slave_interface_ptr->slave_reg_cb_input(pucRegBuffer, usAddress, usNRegs);
if (slave_interface_ptr->slave_reg_cb_input) {
error = slave_interface_ptr->slave_reg_cb_input(pucRegBuffer, usAddress, usNRegs);
} else {
error = mbc_reg_input_slave_cb(pucRegBuffer, usAddress, usNRegs);
}
return error;
}

View File

@@ -17,8 +17,10 @@
#include "driver/uart.h" // for uart defines
#include "errno.h" // for errno
#include "sys/queue.h" // for list
#include "esp_log.h" // for log write
#include "string.h" // for strerror()
#include "esp_modbus_slave.h" // for public type defines
#include "esp_modbus_callbacks.h" // for callback functions
@@ -52,6 +54,17 @@ typedef struct {
uart_parity_t parity; /*!< Modbus UART parity settings */
} mb_slave_comm_info_t;
/**
* @brief Modbus area descriptor list item
*/
typedef struct mb_descr_entry_s{
uint16_t start_offset; /*!< Modbus start address for area descriptor */
mb_param_type_t type; /*!< Type of storage area descriptor */
void* p_data; /*!< Instance address for storage area descriptor */
size_t size; /*!< Instance size for area descriptor (bytes) */
LIST_ENTRY(mb_descr_entry_s) entries; /*!< The Modbus area descriptor entry */
} mb_descr_entry_t;
/**
* @brief Modbus controller handler structure
*/
@@ -61,7 +74,7 @@ typedef struct {
TaskHandle_t mbs_task_handle; /*!< task handle */
EventGroupHandle_t mbs_event_group; /*!< controller event group */
QueueHandle_t mbs_notification_queue_handle; /*!< controller notification queue */
mb_register_area_descriptor_t mbs_area_descriptors[MB_PARAM_COUNT]; /*!< register area descriptors */
LIST_HEAD(mbs_area_descriptors_, mb_descr_entry_s) mbs_area_descriptors[MB_PARAM_COUNT]; /*!< register area descriptors */
} mb_slave_options_t;
typedef mb_event_group_t (*iface_check_event)(mb_event_group_t); /*!< Interface method check_event */

View File

@@ -110,104 +110,6 @@ static esp_err_t mbc_serial_slave_start(void)
return ESP_OK;
}
// Modbus controller destroy function
static esp_err_t mbc_serial_slave_destroy(void)
{
MB_SLAVE_CHECK((mbs_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
eMBErrorCode mb_error = MB_ENOERR;
// Stop polling by clearing correspondent bit in the event group
EventBits_t flag = xEventGroupClearBits(mbs_opts->mbs_event_group,
(EventBits_t)MB_EVENT_STACK_STARTED);
MB_SLAVE_CHECK((flag & MB_EVENT_STACK_STARTED),
ESP_ERR_INVALID_STATE, "mb stack stop event failure.");
// Disable and then destroy the Modbus stack
mb_error = eMBDisable();
MB_SLAVE_CHECK((mb_error == MB_ENOERR), ESP_ERR_INVALID_STATE, "mb stack disable failure.");
(void)vTaskDelete(mbs_opts->mbs_task_handle);
(void)vQueueDelete(mbs_opts->mbs_notification_queue_handle);
(void)vEventGroupDelete(mbs_opts->mbs_event_group);
mb_error = eMBClose();
MB_SLAVE_CHECK((mb_error == MB_ENOERR), ESP_ERR_INVALID_STATE,
"mb stack close failure returned (0x%x).", (uint32_t)mb_error);
free(mbs_interface_ptr);
vMBPortSetMode((UCHAR)MB_PORT_INACTIVE);
mbs_interface_ptr = NULL;
return ESP_OK;
}
esp_err_t mbc_serial_slave_set_descriptor(const mb_register_area_descriptor_t descr_info)
{
MB_SLAVE_CHECK((mbs_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
MB_SLAVE_CHECK(((descr_info.type < MB_PARAM_COUNT) && (descr_info.type >= MB_PARAM_HOLDING)),
ESP_ERR_INVALID_ARG, "mb incorrect modbus instance type = (0x%x).",
(uint32_t)descr_info.type);
MB_SLAVE_CHECK((descr_info.address != NULL),
ESP_ERR_INVALID_ARG, "mb instance pointer is NULL.");
MB_SLAVE_CHECK((descr_info.size >= MB_INST_MIN_SIZE) && (descr_info.size < (MB_INST_MAX_SIZE)),
ESP_ERR_INVALID_ARG, "mb instance size is incorrect = (0x%x).",
(uint32_t)descr_info.size);
mbs_opts->mbs_area_descriptors[descr_info.type] = descr_info;
return ESP_OK;
}
// The helper function to get time stamp in microseconds
static uint64_t get_time_stamp(void)
{
uint64_t time_stamp = esp_timer_get_time();
return time_stamp;
}
// Helper function to send parameter information to application task
static esp_err_t send_param_info(mb_event_group_t par_type, uint16_t mb_offset,
uint8_t* par_address, uint16_t par_size)
{
MB_SLAVE_CHECK((mbs_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
esp_err_t error = ESP_FAIL;
mb_param_info_t par_info;
// Check if queue is not full the send parameter information
par_info.type = par_type;
par_info.size = par_size;
par_info.address = par_address;
par_info.time_stamp = get_time_stamp();
par_info.mb_offset = mb_offset;
BaseType_t status = xQueueSend(mbs_opts->mbs_notification_queue_handle,
&par_info, MB_PAR_INFO_TOUT);
if (pdTRUE == status) {
ESP_LOGD(MB_SLAVE_TAG, "Queue send parameter info (type, address, size): %d, 0x%.4x, %d",
par_type, (uint32_t)par_address, par_size);
error = ESP_OK;
} else if (errQUEUE_FULL == status) {
ESP_LOGD(MB_SLAVE_TAG, "Parameter queue is overflowed.");
}
return error;
}
// Helper function to send notification
static esp_err_t send_param_access_notification(mb_event_group_t event)
{
MB_SLAVE_CHECK((mbs_interface_ptr != NULL),
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
esp_err_t err = ESP_FAIL;
mb_event_group_t bits = (mb_event_group_t)xEventGroupSetBits(mbs_opts->mbs_event_group,
(EventBits_t)event);
if (bits & event) {
ESP_LOGD(MB_SLAVE_TAG, "The MB_REG_CHANGE_EVENT = 0x%.2x is set.", (uint8_t)event);
err = ESP_OK;
}
return err;
}
// Blocking function to get event on parameter group change for application task
static mb_event_group_t mbc_serial_slave_check_event(mb_event_group_t group)
{
@@ -246,211 +148,33 @@ static esp_err_t mbc_serial_slave_get_param_info(mb_param_info_t* reg_info, uint
// This is required to suppress warning when register start address is zero
#pragma GCC diagnostic ignored "-Wtype-limits"
// Callback function for reading of MB Input Registers
eMBErrorCode eMBRegInputCBSerialSlave(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNRegs)
// Modbus controller destroy function
static esp_err_t mbc_serial_slave_destroy(void)
{
MB_SLAVE_CHECK((mbs_interface_ptr != NULL),
MB_EILLSTATE, "Slave stack uninitialized.");
MB_SLAVE_CHECK((pucRegBuffer != NULL),
MB_EINVAL, "Slave stack call failed.");
ESP_ERR_INVALID_STATE,
"Slave interface is not correctly initialized.");
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
USHORT usRegInputNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].size >> 1); // Number of input registers
USHORT usInputRegStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].start_offset; // Get Modbus start address
UCHAR* pucInputBuffer = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].address; // Get instance address
USHORT usRegs = usNRegs;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
// If input or configuration parameters are incorrect then return an error to stack layer
if ((usAddress >= usInputRegStart)
&& (pucInputBuffer != NULL)
&& (usNRegs >= 1)
&& ((usAddress + usRegs) <= (usInputRegStart + usRegInputNregs + 1))
&& (usRegInputNregs >= 1)) {
iRegIndex = (USHORT)(usAddress - usInputRegStart - 1);
iRegIndex <<= 1; // register Address to byte address
pucInputBuffer += iRegIndex;
UCHAR* pucBufferStart = pucInputBuffer;
while (usRegs > 0) {
_XFER_2_RD(pucRegBuffer, pucInputBuffer);
iRegIndex += 2;
usRegs -= 1;
}
// Send access notification
(void)send_param_access_notification(MB_EVENT_INPUT_REG_RD);
// Send parameter info to application task
(void)send_param_info(MB_EVENT_INPUT_REG_RD, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
} else {
eStatus = MB_ENOREG;
}
return eStatus;
}
eMBErrorCode mb_error = MB_ENOERR;
// Stop polling by clearing correspondent bit in the event group
EventBits_t flag = xEventGroupClearBits(mbs_opts->mbs_event_group,
(EventBits_t)MB_EVENT_STACK_STARTED);
MB_SLAVE_CHECK((flag & MB_EVENT_STACK_STARTED),
ESP_ERR_INVALID_STATE, "mb stack stop event failure.");
// Disable and then destroy the Modbus stack
mb_error = eMBDisable();
MB_SLAVE_CHECK((mb_error == MB_ENOERR), ESP_ERR_INVALID_STATE, "mb stack disable failure.");
(void)vTaskDelete(mbs_opts->mbs_task_handle);
(void)vQueueDelete(mbs_opts->mbs_notification_queue_handle);
(void)vEventGroupDelete(mbs_opts->mbs_event_group);
mb_error = eMBClose();
MB_SLAVE_CHECK((mb_error == MB_ENOERR), ESP_ERR_INVALID_STATE,
"mb stack close failure returned (0x%x).", (uint32_t)mb_error);
// Callback function for reading of MB Holding Registers
// Executed by stack when request to read/write holding registers is received
eMBErrorCode eMBRegHoldingCBSerialSlave(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNRegs, eMBRegisterMode eMode)
{
MB_SLAVE_CHECK((mbs_interface_ptr != NULL),
MB_EILLSTATE, "Slave stack uninitialized.");
MB_SLAVE_CHECK((pucRegBuffer != NULL),
MB_EINVAL, "Slave stack call failed.");
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
USHORT usRegHoldingNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].size >> 1);
USHORT usRegHoldingStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].start_offset;
UCHAR* pucHoldingBuffer = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].address;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
USHORT usRegs = usNRegs;
// Check input and configuration parameters for correctness
if ((usAddress >= usRegHoldingStart)
&& (pucHoldingBuffer != NULL)
&& ((usAddress + usRegs) <= (usRegHoldingStart + usRegHoldingNregs + 1))
&& (usRegHoldingNregs >= 1)
&& (usNRegs >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegHoldingStart - 1);
iRegIndex <<= 1; // register Address to byte address
pucHoldingBuffer += iRegIndex;
UCHAR* pucBufferStart = pucHoldingBuffer;
switch (eMode) {
case MB_REG_READ:
while (usRegs > 0) {
_XFER_2_RD(pucRegBuffer, pucHoldingBuffer);
iRegIndex += 2;
usRegs -= 1;
};
// Send access notification
(void)send_param_access_notification(MB_EVENT_HOLDING_REG_RD);
// Send parameter info
(void)send_param_info(MB_EVENT_HOLDING_REG_RD, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
break;
case MB_REG_WRITE:
while (usRegs > 0) {
_XFER_2_WR(pucHoldingBuffer, pucRegBuffer);
pucHoldingBuffer += 2;
iRegIndex += 2;
usRegs -= 1;
};
// Send access notification
(void)send_param_access_notification(MB_EVENT_HOLDING_REG_WR);
// Send parameter info
(void)send_param_info(MB_EVENT_HOLDING_REG_WR, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
break;
}
} else {
eStatus = MB_ENOREG;
}
return eStatus;
vMBPortSetMode((UCHAR)MB_PORT_INACTIVE);
return ESP_OK;
}
// Callback function for reading of MB Coils Registers
eMBErrorCode eMBRegCoilsCBSerialSlave(UCHAR* pucRegBuffer, USHORT usAddress,
USHORT usNCoils, eMBRegisterMode eMode)
{
MB_SLAVE_CHECK((mbs_interface_ptr != NULL),
MB_EILLSTATE, "Slave stack uninitialized.");
MB_SLAVE_CHECK((pucRegBuffer != NULL),
MB_EINVAL, "Slave stack call failed.");
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
USHORT usRegCoilNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].size >> 1); // number of registers in storage area
USHORT usRegCoilsStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].start_offset; // MB offset of coils registers
UCHAR* pucRegCoilsBuf = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].address;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
USHORT usCoils = usNCoils;
usAddress--; // The address is already +1
if ((usAddress >= usRegCoilsStart)
&& (usRegCoilNregs >= 1)
&& ((usAddress + usCoils) <= (usRegCoilsStart + (usRegCoilNregs << 4) + 1))
&& (pucRegCoilsBuf != NULL)
&& (usNCoils >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegCoilsStart);
CHAR* pucCoilsDataBuf = (CHAR*)(pucRegCoilsBuf + (iRegIndex >> 3));
switch (eMode) {
case MB_REG_READ:
while (usCoils > 0) {
UCHAR ucResult = xMBUtilGetBits((UCHAR*)pucRegCoilsBuf, iRegIndex, 1);
xMBUtilSetBits(pucRegBuffer, iRegIndex - (usAddress - usRegCoilsStart), 1, ucResult);
iRegIndex++;
usCoils--;
}
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_COILS_RD);
(void)send_param_info(MB_EVENT_COILS_RD, (uint16_t)usAddress,
(uint8_t*)(pucCoilsDataBuf), (uint16_t)usNCoils);
break;
case MB_REG_WRITE:
while (usCoils > 0) {
UCHAR ucResult = xMBUtilGetBits(pucRegBuffer,
iRegIndex - (usAddress - usRegCoilsStart), 1);
xMBUtilSetBits((uint8_t*)pucRegCoilsBuf, iRegIndex, 1, ucResult);
iRegIndex++;
usCoils--;
}
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_COILS_WR);
(void)send_param_info(MB_EVENT_COILS_WR, (uint16_t)usAddress,
(uint8_t*)pucCoilsDataBuf, (uint16_t)usNCoils);
break;
} // switch ( eMode )
} else {
// If the configuration or input parameters are incorrect then return error to stack
eStatus = MB_ENOREG;
}
return eStatus;
}
// Callback function for reading of MB Discrete Input Registers
eMBErrorCode eMBRegDiscreteCBSerialSlave(UCHAR* pucRegBuffer, USHORT usAddress,
USHORT usNDiscrete)
{
MB_SLAVE_CHECK((mbs_interface_ptr != NULL),
MB_EILLSTATE, "Slave stack uninitialized.");
MB_SLAVE_CHECK((pucRegBuffer != NULL),
MB_EINVAL, "Slave stack call failed.");
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
USHORT usRegDiscreteNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].size >> 1); // number of registers in storage area
USHORT usRegDiscreteStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].start_offset; // MB offset of registers
UCHAR* pucRegDiscreteBuf = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].address; // the storage address
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex, iRegBitIndex, iNReg;
UCHAR* pucDiscreteInputBuf;
iNReg = usNDiscrete / 8 + 1;
pucDiscreteInputBuf = (UCHAR*) pucRegDiscreteBuf;
// It already plus one in modbus function method.
usAddress--;
if ((usAddress >= usRegDiscreteStart)
&& (usRegDiscreteNregs >= 1)
&& (pucRegDiscreteBuf != NULL)
&& ((usAddress + usNDiscrete) <= (usRegDiscreteStart + (usRegDiscreteNregs * 16)))
&& (usNDiscrete >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegDiscreteStart) / 8; // Get register index in the buffer for bit number
iRegBitIndex = (USHORT)(usAddress - usRegDiscreteStart) % 8; // Get bit index
UCHAR* pucTempBuf = &pucDiscreteInputBuf[iRegIndex];
while (iNReg > 0) {
*pucRegBuffer++ = xMBUtilGetBits(&pucDiscreteInputBuf[iRegIndex++], iRegBitIndex, 8);
iNReg--;
}
pucRegBuffer--;
// Last discrete
usNDiscrete = usNDiscrete % 8;
// Filling zero to high bit
*pucRegBuffer = *pucRegBuffer << (8 - usNDiscrete);
*pucRegBuffer = *pucRegBuffer >> (8 - usNDiscrete);
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_DISCRETE_RD);
(void)send_param_info(MB_EVENT_DISCRETE_RD, (uint16_t)usAddress,
(uint8_t*)pucTempBuf, (uint16_t)usNDiscrete);
} else {
eStatus = MB_ENOREG;
}
return eStatus;
}
#pragma GCC diagnostic pop // require GCC
// Initialization of Modbus controller
esp_err_t mbc_serial_slave_create(void** handler)
{
@@ -504,15 +228,15 @@ esp_err_t mbc_serial_slave_create(void** handler)
mbs_interface_ptr->destroy = mbc_serial_slave_destroy;
mbs_interface_ptr->get_param_info = mbc_serial_slave_get_param_info;
mbs_interface_ptr->init = mbc_serial_slave_create;
mbs_interface_ptr->set_descriptor = mbc_serial_slave_set_descriptor;
mbs_interface_ptr->set_descriptor = NULL; // Use common set descriptor function
mbs_interface_ptr->setup = mbc_serial_slave_setup;
mbs_interface_ptr->start = mbc_serial_slave_start;
// Initialize stack callback function pointers
mbs_interface_ptr->slave_reg_cb_discrete = eMBRegDiscreteCBSerialSlave;
mbs_interface_ptr->slave_reg_cb_input = eMBRegInputCBSerialSlave;
mbs_interface_ptr->slave_reg_cb_holding = eMBRegHoldingCBSerialSlave;
mbs_interface_ptr->slave_reg_cb_coils = eMBRegCoilsCBSerialSlave;
mbs_interface_ptr->slave_reg_cb_discrete = NULL; // implemented in common layer
mbs_interface_ptr->slave_reg_cb_input = NULL;
mbs_interface_ptr->slave_reg_cb_holding = NULL;
mbs_interface_ptr->slave_reg_cb_coils = NULL;
*handler = (void*)mbs_interface_ptr;

View File

@@ -31,13 +31,6 @@
// Shared pointer to interface structure
static mb_slave_interface_t* mbs_interface_ptr = NULL;
// The helper function to get time stamp in microseconds
static uint64_t get_time_stamp(void)
{
uint64_t time_stamp = esp_timer_get_time();
return time_stamp;
}
// Modbus task function
static void modbus_tcp_slave_task(void *pvParameters)
{
@@ -123,69 +116,11 @@ static esp_err_t mbc_tcp_slave_destroy(void)
(void)vQueueDelete(mbs_opts->mbs_notification_queue_handle);
(void)vEventGroupDelete(mbs_opts->mbs_event_group);
(void)vMBTCPPortClose();
free(mbs_interface_ptr);
vMBPortSetMode((UCHAR)MB_PORT_INACTIVE);
mbs_interface_ptr = NULL;
return ESP_OK;
}
esp_err_t mbc_tcp_slave_set_descriptor(const mb_register_area_descriptor_t descr_info)
{
MB_SLAVE_ASSERT(mbs_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
MB_SLAVE_CHECK(((descr_info.type < MB_PARAM_COUNT) && (descr_info.type >= MB_PARAM_HOLDING)),
ESP_ERR_INVALID_ARG, "mb incorrect modbus instance type = (0x%x).",
(uint32_t)descr_info.type);
MB_SLAVE_CHECK((descr_info.address != NULL),
ESP_ERR_INVALID_ARG, "mb instance pointer is NULL.");
MB_SLAVE_CHECK((descr_info.size >= MB_INST_MIN_SIZE) && (descr_info.size < (MB_INST_MAX_SIZE)),
ESP_ERR_INVALID_ARG, "mb instance size is incorrect = (0x%x).",
(uint32_t)descr_info.size);
mbs_opts->mbs_area_descriptors[descr_info.type] = descr_info;
return ESP_OK;
}
// Helper function to send parameter information to application task
static esp_err_t send_param_info(mb_event_group_t par_type, uint16_t mb_offset,
uint8_t* par_address, uint16_t par_size)
{
MB_SLAVE_ASSERT(mbs_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
esp_err_t error = ESP_FAIL;
mb_param_info_t par_info;
// Check if queue is not full the send parameter information
par_info.type = par_type;
par_info.size = par_size;
par_info.address = par_address;
par_info.time_stamp = get_time_stamp();
par_info.mb_offset = mb_offset;
BaseType_t status = xQueueSend(mbs_opts->mbs_notification_queue_handle,
&par_info, MB_PAR_INFO_TOUT);
if (pdTRUE == status) {
ESP_LOGD(MB_SLAVE_TAG, "Queue send parameter info (type, address, size): %d, 0x%.4x, %d",
par_type, (uint32_t)par_address, par_size);
error = ESP_OK;
} else if (errQUEUE_FULL == status) {
ESP_LOGD(MB_SLAVE_TAG, "Parameter queue is overflowed.");
}
return error;
}
// Helper function to send notification
static esp_err_t send_param_access_notification(mb_event_group_t event)
{
MB_SLAVE_ASSERT(mbs_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
esp_err_t err = ESP_FAIL;
mb_event_group_t bits = (mb_event_group_t)xEventGroupSetBits(mbs_opts->mbs_event_group,
(EventBits_t)event);
if (bits & event) {
ESP_LOGD(MB_SLAVE_TAG, "The MB_REG_CHANGE_EVENT = 0x%.2x is set.", (uint8_t)event);
err = ESP_OK;
}
return err;
}
// Blocking function to get event on parameter group change for application task
static mb_event_group_t mbc_tcp_slave_check_event(mb_event_group_t group)
{
@@ -220,203 +155,6 @@ static esp_err_t mbc_tcp_slave_get_param_info(mb_param_info_t* reg_info, uint32_
// This is required to suppress warning when register start address is zero
#pragma GCC diagnostic ignored "-Wtype-limits"
// Callback function for reading of MB Input Registers
eMBErrorCode eMBRegInputCBTcpSlave(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNRegs)
{
MB_SLAVE_ASSERT(mbs_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
MB_SLAVE_ASSERT(pucRegBuffer != NULL);
USHORT usRegInputNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].size >> 1); // Number of input registers
USHORT usInputRegStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].start_offset; // Get Modbus start address
UCHAR* pucInputBuffer = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].address; // Get instance address
USHORT usRegs = usNRegs;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
// If input or configuration parameters are incorrect then return an error to stack layer
if ((usAddress >= usInputRegStart)
&& (pucInputBuffer != NULL)
&& (usNRegs >= 1)
&& ((usAddress + usRegs) <= (usInputRegStart + usRegInputNregs + 1))
&& (usRegInputNregs >= 1)) {
iRegIndex = (USHORT)(usAddress - usInputRegStart - 1);
iRegIndex <<= 1; // register Address to byte address
pucInputBuffer += iRegIndex;
UCHAR* pucBufferStart = pucInputBuffer;
while (usRegs > 0) {
_XFER_2_RD(pucRegBuffer, pucInputBuffer);
iRegIndex += 2;
usRegs -= 1;
}
// Send access notification
(void)send_param_access_notification(MB_EVENT_INPUT_REG_RD);
// Send parameter info to application task
(void)send_param_info(MB_EVENT_INPUT_REG_RD, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
} else {
eStatus = MB_ENOREG;
}
return eStatus;
}
// Callback function for reading of MB Holding Registers
// Executed by stack when request to read/write holding registers is received
eMBErrorCode eMBRegHoldingCBTcpSlave(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNRegs, eMBRegisterMode eMode)
{
MB_SLAVE_ASSERT(mbs_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
MB_SLAVE_ASSERT(pucRegBuffer != NULL);
USHORT usRegHoldingNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].size >> 1);
USHORT usRegHoldingStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].start_offset;
UCHAR* pucHoldingBuffer = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].address;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
USHORT usRegs = usNRegs;
// Check input and configuration parameters for correctness
if ((usAddress >= usRegHoldingStart)
&& (pucHoldingBuffer != NULL)
&& ((usAddress + usRegs) <= (usRegHoldingStart + usRegHoldingNregs + 1))
&& (usRegHoldingNregs >= 1)
&& (usNRegs >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegHoldingStart - 1);
iRegIndex <<= 1; // register Address to byte address
pucHoldingBuffer += iRegIndex;
UCHAR* pucBufferStart = pucHoldingBuffer;
switch (eMode) {
case MB_REG_READ:
while (usRegs > 0) {
_XFER_2_RD(pucRegBuffer, pucHoldingBuffer);
iRegIndex += 2;
usRegs -= 1;
};
// Send access notification
(void)send_param_access_notification(MB_EVENT_HOLDING_REG_RD);
// Send parameter info
(void)send_param_info(MB_EVENT_HOLDING_REG_RD, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
break;
case MB_REG_WRITE:
while (usRegs > 0) {
_XFER_2_WR(pucHoldingBuffer, pucRegBuffer);
pucHoldingBuffer += 2;
iRegIndex += 2;
usRegs -= 1;
};
// Send access notification
(void)send_param_access_notification(MB_EVENT_HOLDING_REG_WR);
// Send parameter info
(void)send_param_info(MB_EVENT_HOLDING_REG_WR, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
break;
}
} else {
eStatus = MB_ENOREG;
}
return eStatus;
}
// Callback function for reading of MB Coils Registers
eMBErrorCode eMBRegCoilsCBTcpSlave(UCHAR* pucRegBuffer, USHORT usAddress,
USHORT usNCoils, eMBRegisterMode eMode)
{
MB_SLAVE_ASSERT(mbs_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
MB_SLAVE_ASSERT(NULL != pucRegBuffer);
USHORT usRegCoilNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].size >> 1); // number of registers in storage area
USHORT usRegCoilsStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].start_offset; // MB offset of coils registers
UCHAR* pucRegCoilsBuf = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].address;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
USHORT usCoils = usNCoils;
usAddress--; // The address is already +1
if ((usAddress >= usRegCoilsStart)
&& (usRegCoilNregs >= 1)
&& ((usAddress + usCoils) <= (usRegCoilsStart + (usRegCoilNregs << 4) + 1))
&& (pucRegCoilsBuf != NULL)
&& (usNCoils >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegCoilsStart);
CHAR* pucCoilsDataBuf = (CHAR*)(pucRegCoilsBuf + (iRegIndex >> 3));
switch (eMode) {
case MB_REG_READ:
while (usCoils > 0) {
UCHAR ucResult = xMBUtilGetBits((UCHAR*)pucRegCoilsBuf, iRegIndex, 1);
xMBUtilSetBits(pucRegBuffer, iRegIndex - (usAddress - usRegCoilsStart), 1, ucResult);
iRegIndex++;
usCoils--;
}
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_COILS_RD);
(void)send_param_info(MB_EVENT_COILS_RD, (uint16_t)usAddress,
(uint8_t*)(pucCoilsDataBuf), (uint16_t)usNCoils);
break;
case MB_REG_WRITE:
while (usCoils > 0) {
UCHAR ucResult = xMBUtilGetBits(pucRegBuffer,
iRegIndex - (usAddress - usRegCoilsStart), 1);
xMBUtilSetBits((uint8_t*)pucRegCoilsBuf, iRegIndex, 1, ucResult);
iRegIndex++;
usCoils--;
}
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_COILS_WR);
(void)send_param_info(MB_EVENT_COILS_WR, (uint16_t)usAddress,
(uint8_t*)pucCoilsDataBuf, (uint16_t)usNCoils);
break;
} // switch ( eMode )
} else {
// If the configuration or input parameters are incorrect then return error to stack
eStatus = MB_ENOREG;
}
return eStatus;
}
// Callback function for reading of MB Discrete Input Registers
eMBErrorCode eMBRegDiscreteCBTcpSlave(UCHAR* pucRegBuffer, USHORT usAddress,
USHORT usNDiscrete)
{
MB_SLAVE_ASSERT(mbs_interface_ptr != NULL);
mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts;
MB_SLAVE_ASSERT(pucRegBuffer != NULL);
USHORT usRegDiscreteNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].size >> 1); // number of registers in storage area
USHORT usRegDiscreteStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].start_offset; // MB offset of registers
UCHAR* pucRegDiscreteBuf = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].address; // the storage address
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex, iRegBitIndex, iNReg;
UCHAR* pucDiscreteInputBuf;
iNReg = usNDiscrete / 8 + 1;
pucDiscreteInputBuf = (UCHAR*) pucRegDiscreteBuf;
// It already plus one in modbus function method.
usAddress--;
if ((usAddress >= usRegDiscreteStart)
&& (usRegDiscreteNregs >= 1)
&& (pucRegDiscreteBuf != NULL)
&& ((usAddress + usNDiscrete) <= (usRegDiscreteStart + (usRegDiscreteNregs * 16)))
&& (usNDiscrete >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegDiscreteStart) / 8; // Get register index in the buffer for bit number
iRegBitIndex = (USHORT)(usAddress - usRegDiscreteStart) % 8; // Get bit index
UCHAR* pucTempBuf = &pucDiscreteInputBuf[iRegIndex];
while (iNReg > 0) {
*pucRegBuffer++ = xMBUtilGetBits(&pucDiscreteInputBuf[iRegIndex++], iRegBitIndex, 8);
iNReg--;
}
pucRegBuffer--;
// Last discrete
usNDiscrete = usNDiscrete % 8;
// Filling zero to high bit
*pucRegBuffer = *pucRegBuffer << (8 - usNDiscrete);
*pucRegBuffer = *pucRegBuffer >> (8 - usNDiscrete);
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_DISCRETE_RD);
(void)send_param_info(MB_EVENT_DISCRETE_RD, (uint16_t)usAddress,
(uint8_t*)pucTempBuf, (uint16_t)usNDiscrete);
} else {
eStatus = MB_ENOREG;
}
return eStatus;
}
#pragma GCC diagnostic pop // require GCC
// Initialization of Modbus controller
esp_err_t mbc_tcp_slave_create(void** handler)
{
@@ -470,13 +208,13 @@ esp_err_t mbc_tcp_slave_create(void** handler)
mbs_interface_ptr->start = mbc_tcp_slave_start;
mbs_interface_ptr->check_event = mbc_tcp_slave_check_event;
mbs_interface_ptr->get_param_info = mbc_tcp_slave_get_param_info;
mbs_interface_ptr->set_descriptor = mbc_tcp_slave_set_descriptor;
mbs_interface_ptr->set_descriptor = NULL; // Use common descriptor setter
// Initialize stack callback function pointers
mbs_interface_ptr->slave_reg_cb_discrete = eMBRegDiscreteCBTcpSlave;
mbs_interface_ptr->slave_reg_cb_input = eMBRegInputCBTcpSlave;
mbs_interface_ptr->slave_reg_cb_holding = eMBRegHoldingCBTcpSlave;
mbs_interface_ptr->slave_reg_cb_coils = eMBRegCoilsCBTcpSlave;
mbs_interface_ptr->slave_reg_cb_discrete = NULL; // implemented in common layer
mbs_interface_ptr->slave_reg_cb_input = NULL;
mbs_interface_ptr->slave_reg_cb_holding = NULL;
mbs_interface_ptr->slave_reg_cb_coils = NULL;
*handler = (void*)mbs_interface_ptr;

View File

@@ -35,11 +35,15 @@ typedef struct
#pragma pack(push, 1)
typedef struct
{
float input_data0;
float input_data1;
float input_data2;
float input_data3;
uint16_t data[150];
float input_data0; // 0
float input_data1; // 2
float input_data2; // 4
float input_data3; // 6
uint16_t data[150]; // 8 + 150 = 158
float input_data4; // 158
float input_data5;
float input_data6;
float input_data7;
} input_reg_params_t;
#pragma pack(pop)
@@ -51,6 +55,10 @@ typedef struct
float holding_data2;
float holding_data3;
uint16_t test_regs[150];
float holding_data4;
float holding_data5;
float holding_data6;
float holding_data7;
} holding_reg_params_t;
#pragma pack(pop)

View File

@@ -20,10 +20,14 @@
// Please refer to documentation for selected board and target to configure pins using Kconfig.
// Defines below are used to define register start address for each type of Modbus registers
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) >> 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) >> 1))
#define MB_REG_DISCRETE_INPUT_START (0x0000)
#define MB_REG_INPUT_START (0x0000)
#define MB_REG_HOLDING_START (0x0000)
#define MB_REG_COILS_START (0x0000)
#define MB_REG_INPUT_START_AREA0 (INPUT_OFFSET(input_data0)) // register offset input area 0
#define MB_REG_INPUT_START_AREA1 (INPUT_OFFSET(input_data4)) // register offset input area 1
#define MB_REG_HOLDING_START_AREA0 (HOLD_OFFSET(holding_data0))
#define MB_REG_HOLDING_START_AREA1 (HOLD_OFFSET(holding_data4))
#define MB_PAR_INFO_GET_TOUT (10) // Timeout for get parameter info
#define MB_CHAN_DATA_MAX_VAL (6)
@@ -44,16 +48,25 @@ static portMUX_TYPE param_lock = portMUX_INITIALIZER_UNLOCKED;
static void setup_reg_data(void)
{
// Define initial state of parameters
discrete_reg_params.discrete_input1 = 1;
discrete_reg_params.discrete_input3 = 1;
discrete_reg_params.discrete_input5 = 1;
discrete_reg_params.discrete_input7 = 1;
discrete_reg_params.discrete_input0 = 1;
discrete_reg_params.discrete_input1 = 0;
discrete_reg_params.discrete_input2 = 1;
discrete_reg_params.discrete_input3 = 0;
discrete_reg_params.discrete_input4 = 1;
discrete_reg_params.discrete_input5 = 0;
discrete_reg_params.discrete_input6 = 1;
discrete_reg_params.discrete_input7 = 0;
holding_reg_params.holding_data0 = 1.34;
holding_reg_params.holding_data1 = 2.56;
holding_reg_params.holding_data2 = 3.78;
holding_reg_params.holding_data3 = 4.90;
holding_reg_params.holding_data4 = 5.67;
holding_reg_params.holding_data5 = 6.78;
holding_reg_params.holding_data6 = 7.79;
holding_reg_params.holding_data7 = 8.80;
coil_reg_params.coils_port0 = 0x55;
coil_reg_params.coils_port1 = 0xAA;
@@ -61,6 +74,11 @@ static void setup_reg_data(void)
input_reg_params.input_data1 = 2.34;
input_reg_params.input_data2 = 3.56;
input_reg_params.input_data3 = 4.78;
input_reg_params.input_data4 = 1.12;
input_reg_params.input_data5 = 2.34;
input_reg_params.input_data6 = 3.56;
input_reg_params.input_data7 = 4.78;
}
// An example application of Modbus slave. It is based on freemodbus stack.
@@ -98,16 +116,27 @@ void app_main(void)
// by mbc_slave_set_descriptor() API call then Modbus stack
// will send exception response for this register area.
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params; // Set pointer to storage instance
reg_area.size = sizeof(holding_reg_params); // Set the size of register storage instance
reg_area.start_offset = MB_REG_HOLDING_START_AREA0; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params.holding_data0; // Set pointer to storage instance
reg_area.size = sizeof(float) << 2; // Set the size of register storage instance
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START_AREA1; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params.holding_data4; // Set pointer to storage instance
reg_area.size = sizeof(float) << 2; // Set the size of register storage instance
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
// Initialization of Input Registers area
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START;
reg_area.address = (void*)&input_reg_params;
reg_area.size = sizeof(input_reg_params);
reg_area.start_offset = MB_REG_INPUT_START_AREA0;
reg_area.address = (void*)&input_reg_params.input_data0;
reg_area.size = sizeof(float) << 2;
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
// Initialization of Input Registers area
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START_AREA1;
reg_area.address = (void*)&input_reg_params.input_data4;
reg_area.size = sizeof(float) << 2;
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
// Initialization of Coils register area

View File

@@ -26,10 +26,14 @@
#define MB_MDNS_PORT (502)
// Defines below are used to define register start address for each type of Modbus registers
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) >> 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) >> 1))
#define MB_REG_DISCRETE_INPUT_START (0x0000)
#define MB_REG_INPUT_START (0x0000)
#define MB_REG_HOLDING_START (0x0000)
#define MB_REG_COILS_START (0x0000)
#define MB_REG_INPUT_START_AREA0 (INPUT_OFFSET(input_data0)) // register offset input area 0
#define MB_REG_INPUT_START_AREA1 (INPUT_OFFSET(input_data4)) // register offset input area 1
#define MB_REG_HOLDING_START_AREA0 (HOLD_OFFSET(holding_data0))
#define MB_REG_HOLDING_START_AREA1 (HOLD_OFFSET(holding_data4))
#define MB_PAR_INFO_GET_TOUT (10) // Timeout for get parameter info
#define MB_CHAN_DATA_MAX_VAL (10)
@@ -117,16 +121,24 @@ static void start_mdns_service()
static void setup_reg_data(void)
{
// Define initial state of parameters
discrete_reg_params.discrete_input1 = 1;
discrete_reg_params.discrete_input3 = 1;
discrete_reg_params.discrete_input5 = 1;
discrete_reg_params.discrete_input7 = 1;
discrete_reg_params.discrete_input0 = 1;
discrete_reg_params.discrete_input1 = 0;
discrete_reg_params.discrete_input2 = 1;
discrete_reg_params.discrete_input3 = 0;
discrete_reg_params.discrete_input4 = 1;
discrete_reg_params.discrete_input5 = 0;
discrete_reg_params.discrete_input6 = 1;
discrete_reg_params.discrete_input7 = 0;
holding_reg_params.holding_data0 = 1.34;
holding_reg_params.holding_data1 = 2.56;
holding_reg_params.holding_data2 = 3.78;
holding_reg_params.holding_data3 = 4.90;
holding_reg_params.holding_data4 = 5.67;
holding_reg_params.holding_data5 = 6.78;
holding_reg_params.holding_data6 = 7.79;
holding_reg_params.holding_data7 = 8.80;
coil_reg_params.coils_port0 = 0x55;
coil_reg_params.coils_port1 = 0xAA;
@@ -134,6 +146,10 @@ static void setup_reg_data(void)
input_reg_params.input_data1 = 2.34;
input_reg_params.input_data2 = 3.56;
input_reg_params.input_data3 = 4.78;
input_reg_params.input_data4 = 1.12;
input_reg_params.input_data5 = 2.34;
input_reg_params.input_data6 = 3.56;
input_reg_params.input_data7 = 4.78;
}
// An example application of Modbus slave. It is based on freemodbus stack.
@@ -192,16 +208,28 @@ void app_main(void)
// by mbc_slave_set_descriptor() API call then Modbus stack
// will send exception response for this register area.
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params; // Set pointer to storage instance
reg_area.size = sizeof(holding_reg_params); // Set the size of register storage instance
reg_area.start_offset = MB_REG_HOLDING_START_AREA0; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params.holding_data0; // Set pointer to storage instance
reg_area.size = sizeof(float) << 2; // Set the size of register storage instance
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START_AREA1; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_params.holding_data4; // Set pointer to storage instance
reg_area.size = sizeof(float) << 2; // Set the size of register storage instance
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
// Initialization of Input Registers area
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START;
reg_area.address = (void*)&input_reg_params;
reg_area.size = sizeof(input_reg_params);
reg_area.start_offset = MB_REG_INPUT_START_AREA0;
reg_area.address = (void*)&input_reg_params.input_data0;
reg_area.size = sizeof(float) << 2;
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
// Initialization of Input Registers area
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START_AREA1;
reg_area.address = (void*)&input_reg_params.input_data4;
reg_area.size = sizeof(float) << 2;
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
// Initialization of Coils register area