mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-05 05:34:32 +02:00
mpi: refactor bignum into common and hw specific components
Closes IDF-1174
This commit is contained in:
@@ -11,9 +11,9 @@
|
||||
#define IDF_PERFORMANCE_MAX_TIME_SHA512_32KB 4500
|
||||
|
||||
#define IDF_PERFORMANCE_MAX_RSA_2048KEY_PUBLIC_OP 19000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_2048KEY_PRIVATE_OP 180000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_4096KEY_PUBLIC_OP 65000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_4096KEY_PRIVATE_OP 850000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_2048KEY_PRIVATE_OP 190000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_4096KEY_PUBLIC_OP 90000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_4096KEY_PRIVATE_OP 870000
|
||||
|
||||
#define IDF_PERFORMANCE_MAX_SPI_PER_TRANS_NO_POLLING 30
|
||||
#define IDF_PERFORMANCE_MAX_SPI_PER_TRANS_NO_POLLING_NO_DMA 27
|
||||
|
@@ -9,10 +9,10 @@
|
||||
#define IDF_PERFORMANCE_MAX_TIME_SHA1_32KB 900
|
||||
#define IDF_PERFORMANCE_MAX_TIME_SHA512_32KB 800
|
||||
|
||||
#define IDF_PERFORMANCE_MAX_RSA_2048KEY_PUBLIC_OP 14000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_2048KEY_PRIVATE_OP 100000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_4096KEY_PUBLIC_OP 60000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_4096KEY_PRIVATE_OP 600000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_2048KEY_PUBLIC_OP 19000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_2048KEY_PRIVATE_OP 160000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_4096KEY_PUBLIC_OP 90000
|
||||
#define IDF_PERFORMANCE_MAX_RSA_4096KEY_PRIVATE_OP 850000
|
||||
|
||||
#define IDF_PERFORMANCE_MAX_SPI_PER_TRANS_NO_POLLING 32
|
||||
#define IDF_PERFORMANCE_MAX_SPI_PER_TRANS_NO_POLLING_NO_DMA 30
|
||||
|
@@ -37,6 +37,7 @@ TEST_CASE("box tests", "[libsodium]")
|
||||
TEST_ASSERT_EQUAL(0, box2_xmain());
|
||||
}
|
||||
|
||||
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2)
|
||||
extern int ed25519_convert_xmain(void);
|
||||
|
||||
TEST_CASE("ed25519_convert tests", "[libsodium][timeout=60]")
|
||||
@@ -44,7 +45,7 @@ TEST_CASE("ed25519_convert tests", "[libsodium][timeout=60]")
|
||||
printf("Running ed25519_convert\n");
|
||||
TEST_ASSERT_EQUAL(0, ed25519_convert_xmain() );
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
extern int sign_xmain(void);
|
||||
|
||||
|
@@ -76,8 +76,9 @@ target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/esp_hardware.c"
|
||||
"${COMPONENT_DIR}/port/esp_mem.c"
|
||||
"${COMPONENT_DIR}/port/esp_timing.c"
|
||||
"${COMPONENT_DIR}/port/esp_sha.c"
|
||||
"${COMPONENT_DIR}/port/esp_bignum.c"
|
||||
"${COMPONENT_DIR}/port/esp_aes_xts.c"
|
||||
"${COMPONENT_DIR}/port/${idf_target}/esp_bignum.c"
|
||||
"${COMPONENT_DIR}/port/${idf_target}/bignum.c"
|
||||
"${COMPONENT_DIR}/port/${idf_target}/aes.c"
|
||||
"${COMPONENT_DIR}/port/${idf_target}/sha.c"
|
||||
"${COMPONENT_DIR}/port/${idf_target}/esp_sha1.c"
|
||||
|
@@ -1,30 +1,52 @@
|
||||
/**
|
||||
* \brief Multi-precision integer library, ESP-IDF hardware accelerated parts
|
||||
*
|
||||
* based on mbedTLS implementation
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "driver/periph_ctrl.h"
|
||||
#include <mbedtls/bignum.h>
|
||||
#include "esp32/esp_bignum.h"
|
||||
|
||||
#include "bignum_impl.h"
|
||||
#include <sys/param.h>
|
||||
|
||||
/* Round up number of words to nearest
|
||||
512 bit (16 word) block count.
|
||||
*/
|
||||
size_t hardware_words(size_t words)
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return (words + 0xF) & ~0xF;
|
||||
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_ll( void )
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
while(DPORT_REG_READ(RSA_CLEAN_REG) != 1);
|
||||
while (DPORT_REG_READ(RSA_CLEAN_REG) != 1)
|
||||
{ }
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_ll( void )
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
@@ -42,7 +64,7 @@ void esp_mpi_disable_hardware_ll( void )
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = hw_words < mpi->n ? hw_words : mpi->n;
|
||||
uint32_t copy_words = MIN(hw_words, mpi->n);
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
@@ -53,8 +75,6 @@ static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, s
|
||||
for (int i = copy_words; i < hw_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
|
||||
/* Note: not executing memw here, can do it before we start a bignum operation */
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
@@ -73,7 +93,7 @@ static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_w
|
||||
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for(size_t i = num_words; i < x->n; i++) {
|
||||
for (size_t i = num_words; i < x->n; i++) {
|
||||
x->p[i] = 0;
|
||||
}
|
||||
}
|
||||
@@ -95,24 +115,24 @@ static inline void start_op(uint32_t op_reg)
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete()
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while(DPORT_REG_READ(RSA_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
while (DPORT_REG_READ(RSA_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_ll(mbedtls_mpi *Z, size_t z_words)
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
}
|
||||
|
||||
/* Z = (X * Y) mod M */
|
||||
void esp_mpi_mul_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words)
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words)
|
||||
{
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
@@ -126,17 +146,17 @@ void esp_mpi_mul_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mb
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
wait_op_complete();
|
||||
|
||||
/* execute second stage */
|
||||
/* Load Y to X input memory block, rerun */
|
||||
/* Load Y to X input memory block, rerun */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
}
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words)
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
@@ -157,15 +177,14 @@ void esp_mpi_mul_mpi_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_wo
|
||||
}
|
||||
|
||||
|
||||
int esp_mont_ll(mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M,
|
||||
mbedtls_mpi_uint Mprime,
|
||||
size_t hw_words,
|
||||
bool again)
|
||||
int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
|
||||
mbedtls_mpi_uint Mprime,
|
||||
size_t hw_words,
|
||||
bool again)
|
||||
{
|
||||
// Note Z may be the same pointer as X or Y
|
||||
int ret = 0;
|
||||
|
||||
|
||||
// montgomery mult prepare
|
||||
if (again == false) {
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
@@ -190,7 +209,7 @@ int esp_mont_ll(mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, cons
|
||||
if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
|
||||
}
|
||||
cleanup:
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -213,12 +232,12 @@ int esp_mont_ll(mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, cons
|
||||
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
size_t hw_words = num_words;
|
||||
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for(int i = 0; i < hw_words; i++) {
|
||||
for (int i = 0; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
/* Mprime = 1 */
|
||||
@@ -230,15 +249,17 @@ void esp_mpi_mult_mpi_failover_mod_mult_ll(const mbedtls_mpi *X, const mbedtls_m
|
||||
/* Load X */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
|
||||
/* Rinv = 1 */
|
||||
/* Rinv = 1, write first word */
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
for(int i = 1; i < hw_words; i++) {
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (int i = 1; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
wait_op_complete();
|
||||
|
||||
/* finish the modular multiplication */
|
||||
/* Load Y to X input memory block, rerun */
|
||||
|
@@ -1,739 +0,0 @@
|
||||
/**
|
||||
* \brief Multi-precision integer library, ESP32 hardware accelerated parts
|
||||
*
|
||||
* based on mbedTLS implementation
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <malloc.h>
|
||||
#include <limits.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/param.h>
|
||||
#include "esp32/rom/bigint.h"
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_system.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_attr.h"
|
||||
|
||||
#include <mbedtls/bignum.h>
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "driver/periph_ctrl.h"
|
||||
|
||||
/* Some implementation notes:
|
||||
*
|
||||
* - Naming convention x_words, y_words, z_words for number of words (limbs) used in a particular
|
||||
* bignum. This number may be less than the size of the bignum
|
||||
*
|
||||
* - Naming convention hw_words for the hardware length of the operation. This number is always
|
||||
* rounded up to a 512 bit multiple, and may be larger than any of the numbers involved in the
|
||||
* calculation.
|
||||
*
|
||||
* - Timing behaviour of these functions will depend on the length of the inputs. This is fundamentally
|
||||
* the same constraint as the software mbedTLS implementations, and relies on the same
|
||||
* countermeasures (exponent blinding, etc) which are used in mbedTLS.
|
||||
*/
|
||||
|
||||
static const __attribute__((unused)) char *TAG = "bignum";
|
||||
|
||||
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
|
||||
#define biL (ciL << 3) /* bits in limb */
|
||||
|
||||
static _lock_t mpi_lock;
|
||||
|
||||
void esp_mpi_acquire_hardware( void )
|
||||
{
|
||||
/* newlib locks lazy initialize on ESP-IDF */
|
||||
_lock_acquire(&mpi_lock);
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
while(DPORT_REG_READ(RSA_CLEAN_REG) != 1);
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
}
|
||||
|
||||
void esp_mpi_release_hardware( void )
|
||||
{
|
||||
DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
_lock_release(&mpi_lock);
|
||||
}
|
||||
|
||||
/* Convert bit count to word count
|
||||
*/
|
||||
static inline size_t bits_to_words(size_t bits)
|
||||
{
|
||||
return (bits + 31) / 32;
|
||||
}
|
||||
|
||||
/* Round up number of words to nearest
|
||||
512 bit (16 word) block count.
|
||||
*/
|
||||
static inline size_t hardware_words(size_t words)
|
||||
{
|
||||
return (words + 0xF) & ~0xF;
|
||||
}
|
||||
|
||||
/* Number of words used to hold 'mpi'.
|
||||
|
||||
Equivalent of bits_to_words(mbedtls_mpi_bitlen(mpi)), but uses less cycles if the
|
||||
exact bit count is not needed.
|
||||
|
||||
Note that mpi->n (size of memory buffer) may be higher than this
|
||||
number, if the high bits are mostly zeroes.
|
||||
*/
|
||||
static inline size_t word_length(const mbedtls_mpi *mpi)
|
||||
{
|
||||
for(size_t i = mpi->n; i > 0; i--) {
|
||||
if( mpi->p[i - 1] != 0 ) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If hw_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = hw_words < mpi->n ? hw_words : mpi->n;
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = mpi->p[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < hw_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
|
||||
/* Note: not executing memw here, can do it before we start a bignum operation */
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
|
||||
Bignum 'x' should already be grown to at least num_words by caller (can be done while
|
||||
calculation is in progress, to save some cycles)
|
||||
*/
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
assert(x->n >= num_words);
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(x->p, mem_base, num_words);
|
||||
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for(size_t i = num_words; i < x->n; i++) {
|
||||
x->p[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
|
||||
* where B^-1(B-1) mod N=1. Actually, only the least significant part of
|
||||
* N' is needed, hence the definition N0'=N' mod b. We reproduce below the
|
||||
* simple algorithm from an article by Dusse and Kaliski to efficiently
|
||||
* find N0' from N0 and b
|
||||
*/
|
||||
static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
|
||||
{
|
||||
int i;
|
||||
uint64_t t = 1;
|
||||
uint64_t two_2_i_minus_1 = 2; /* 2^(i-1) */
|
||||
uint64_t two_2_i = 4; /* 2^i */
|
||||
uint64_t N = M->p[0];
|
||||
|
||||
for (i = 2; i <= 32; i++) {
|
||||
if ((mbedtls_mpi_uint) N * t % two_2_i >= two_2_i_minus_1) {
|
||||
t += two_2_i_minus_1;
|
||||
}
|
||||
|
||||
two_2_i_minus_1 <<= 1;
|
||||
two_2_i <<= 1;
|
||||
}
|
||||
|
||||
return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
|
||||
}
|
||||
|
||||
/* Calculate Rinv = RR^2 mod M, where:
|
||||
*
|
||||
* R = b^n where b = 2^32, n=num_words,
|
||||
* R = 2^N (where N=num_bits)
|
||||
* RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
|
||||
*
|
||||
* This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
|
||||
* so caller should cache the result where possible.
|
||||
*
|
||||
* DO NOT call this function while holding esp_mpi_acquire_hardware().
|
||||
*
|
||||
*/
|
||||
static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
|
||||
{
|
||||
int ret;
|
||||
size_t num_bits = num_words * 32;
|
||||
mbedtls_mpi RR;
|
||||
mbedtls_mpi_init(&RR);
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&RR);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
DPORT_REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(uint32_t op_reg)
|
||||
{
|
||||
while(DPORT_REG_READ(RSA_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Sub-stages of modulo multiplication/exponentiation operations */
|
||||
inline static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words, size_t z_words);
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
|
||||
{
|
||||
int ret;
|
||||
size_t x_bits = mbedtls_mpi_bitlen(X);
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
size_t m_bits = mbedtls_mpi_bitlen(M);
|
||||
size_t z_bits = MIN(m_bits, x_bits + y_bits);
|
||||
size_t x_words = bits_to_words(x_bits);
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t m_words = bits_to_words(m_bits);
|
||||
size_t z_words = bits_to_words(z_bits);
|
||||
size_t hw_words = hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
|
||||
mbedtls_mpi Rinv;
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
/* Calculate and load the first stage montgomery multiplication */
|
||||
mbedtls_mpi_init(&Rinv);
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, hw_words));
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, hw_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* execute second stage */
|
||||
ret = modular_multiply_finish(Z, X, Y, hw_words, z_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&Rinv);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
||||
|
||||
static int mont(mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M,
|
||||
mbedtls_mpi_uint Mprime,
|
||||
size_t hw_words,
|
||||
bool again)
|
||||
{
|
||||
// Note Z may be the same pointer as X or Y
|
||||
int ret = 0;
|
||||
|
||||
// montgomery mult prepare
|
||||
if (again == false) {
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, hw_words / 16 - 1);
|
||||
}
|
||||
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Y, hw_words);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* Read back the result */
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, hw_words);
|
||||
|
||||
/* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
|
||||
if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
|
||||
}
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the most significant one-bit.
|
||||
*/
|
||||
static size_t mbedtls_mpi_msb( const mbedtls_mpi* X )
|
||||
{
|
||||
int i, j;
|
||||
if (X != NULL && X->n != 0) {
|
||||
for (i = X->n - 1; i >= 0; i--) {
|
||||
if (X->p[i] != 0) {
|
||||
for (j = biL - 1; j >= 0; j--) {
|
||||
if ((X->p[i] & (1 << j)) != 0) {
|
||||
return (i * biL) + j;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Montgomery exponentiation: Z = X ^ Y mod M (HAC 14.94)
|
||||
*/
|
||||
static int mpi_montgomery_exp_calc( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M,
|
||||
mbedtls_mpi* Rinv,
|
||||
size_t hw_words,
|
||||
mbedtls_mpi_uint Mprime )
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi X_, one;
|
||||
|
||||
mbedtls_mpi_init(&X_);
|
||||
mbedtls_mpi_init(&one);
|
||||
if( ( ( ret = mbedtls_mpi_grow(&one, hw_words) ) != 0 ) ||
|
||||
( ( ret = mbedtls_mpi_set_bit(&one, 0, 1) ) != 0 ) ) {
|
||||
goto cleanup2;
|
||||
}
|
||||
|
||||
// Algorithm from HAC 14.94
|
||||
{
|
||||
// 0 determine t (highest bit set in y)
|
||||
int t = mbedtls_mpi_msb(Y);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
// 1.1 x_ = mont(x, R^2 mod m)
|
||||
// = mont(x, rb)
|
||||
MBEDTLS_MPI_CHK( mont(&X_, X, Rinv, M, Mprime, hw_words, false) );
|
||||
|
||||
// 1.2 z = R mod m
|
||||
// now z = R mod m = Mont (R^2 mod m, 1) mod M (as Mont(x) = X&R^-1 mod M)
|
||||
MBEDTLS_MPI_CHK( mont(Z, Rinv, &one, M, Mprime, hw_words, true) );
|
||||
|
||||
// 2 for i from t down to 0
|
||||
for (int i = t; i >= 0; i--) {
|
||||
// 2.1 z = mont(z,z)
|
||||
if (i != t) { // skip on the first iteration as is still unity
|
||||
MBEDTLS_MPI_CHK( mont(Z, Z, Z, M, Mprime, hw_words, true) );
|
||||
}
|
||||
|
||||
// 2.2 if y[i] = 1 then z = mont(A, x_)
|
||||
if (mbedtls_mpi_get_bit(Y, i)) {
|
||||
MBEDTLS_MPI_CHK( mont(Z, Z, &X_, M, Mprime, hw_words, true) );
|
||||
}
|
||||
}
|
||||
|
||||
// 3 z = Mont(z, 1)
|
||||
MBEDTLS_MPI_CHK( mont(Z, Z, &one, M, Mprime, hw_words, true) );
|
||||
}
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&X_);
|
||||
mbedtls_mpi_free(&one);
|
||||
esp_mpi_release_hardware();
|
||||
return ret;
|
||||
|
||||
cleanup2:
|
||||
mbedtls_mpi_free(&one);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Z = X ^ Y mod M
|
||||
*
|
||||
* _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
|
||||
*
|
||||
* (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*
|
||||
*/
|
||||
int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M, mbedtls_mpi* _Rinv )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t x_words = word_length(X);
|
||||
size_t y_words = word_length(Y);
|
||||
size_t m_words = word_length(M);
|
||||
|
||||
/* "all numbers must be the same length", so choose longest number
|
||||
as cardinal length of operation...
|
||||
*/
|
||||
size_t hw_words = hardware_words(MAX(m_words, MAX(x_words, y_words)));
|
||||
|
||||
mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
|
||||
mbedtls_mpi *Rinv; /* points to _Rinv (if not NULL) othwerwise &RR_new */
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
if (mbedtls_mpi_cmp_int(M, 0) <= 0 || (M->p[0] & 1) == 0) {
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (mbedtls_mpi_cmp_int(Y, 0) < 0) {
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (mbedtls_mpi_cmp_int(Y, 0) == 0) {
|
||||
return mbedtls_mpi_lset(Z, 1);
|
||||
}
|
||||
|
||||
if (hw_words * 32 > 4096) {
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
}
|
||||
|
||||
/* Determine RR pointer, either _RR for cached value
|
||||
or local RR_new */
|
||||
if (_Rinv == NULL) {
|
||||
mbedtls_mpi_init(&Rinv_new);
|
||||
Rinv = &Rinv_new;
|
||||
} else {
|
||||
Rinv = _Rinv;
|
||||
}
|
||||
if (Rinv->p == NULL) {
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, hw_words));
|
||||
}
|
||||
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
// Montgomery exponentiation: Z = X ^ Y mod M (HAC 14.94)
|
||||
MBEDTLS_MPI_CHK( mpi_montgomery_exp_calc(Z, X, Y, M, Rinv, hw_words, Mprime) );
|
||||
|
||||
// Compensate for negative X
|
||||
if (X->s == -1 && (Y->p[0] & 1) != 0) {
|
||||
Z->s = -1;
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(Z, M, Z));
|
||||
} else {
|
||||
Z->s = 1;
|
||||
}
|
||||
|
||||
cleanup:
|
||||
if (_Rinv == NULL) {
|
||||
mbedtls_mpi_free(&Rinv_new);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
|
||||
|
||||
/* Second & final step of a modular multiply - load second multiplication
|
||||
* factor Y, run the operation (modular inverse), read back the result
|
||||
* into Z.
|
||||
*
|
||||
* Called from both mbedtls_mpi_exp_mod and mbedtls_mpi_mod_mpi.
|
||||
*
|
||||
* @param Z result value
|
||||
* @param X first multiplication factor (used to set sign of result).
|
||||
* @param Y second multiplication factor.
|
||||
* @param hw_words Size of the hardware operation, in words
|
||||
* @param z_words Size of the expected result, in words (may be less than hw_words).
|
||||
* Z will be grown to at least this length.
|
||||
*
|
||||
* Caller must have already called esp_mpi_acquire_hardware().
|
||||
*/
|
||||
static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words, size_t z_words)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
/* Load Y to X input memory block, rerun */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, z_words) );
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
|
||||
Z->s = X->s * Y->s;
|
||||
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
|
||||
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words);
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t Y_bits, size_t z_words);
|
||||
|
||||
/* Z = X * Y */
|
||||
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t x_bits = mbedtls_mpi_bitlen(X);
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
size_t x_words = bits_to_words(x_bits);
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t z_words = bits_to_words(x_bits + y_bits);
|
||||
size_t hw_words = hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
|
||||
|
||||
/* Short-circuit eval if either argument is 0 or 1.
|
||||
|
||||
This is needed as the mpi modular division
|
||||
argument will sometimes call in here when one
|
||||
argument is too large for the hardware unit, but the other
|
||||
argument is zero or one.
|
||||
*/
|
||||
if (x_bits == 0 || y_bits == 0) {
|
||||
mbedtls_mpi_lset(Z, 0);
|
||||
return 0;
|
||||
}
|
||||
if (x_bits == 1) {
|
||||
ret = mbedtls_mpi_copy(Z, Y);
|
||||
Z->s *= X->s;
|
||||
return ret;
|
||||
}
|
||||
if (y_bits == 1) {
|
||||
ret = mbedtls_mpi_copy(Z, X);
|
||||
Z->s *= Y->s;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Grow Z to result size early, avoid interim allocations */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, z_words) );
|
||||
|
||||
/* If either factor is over 2048 bits, we can't use the standard hardware multiplier
|
||||
(it assumes result is double longest factor, and result is max 4096 bits.)
|
||||
|
||||
However, we can fail over to mod_mult for up to 4096 bits of result (modulo
|
||||
multiplication doesn't have the same restriction, so result is simply the
|
||||
number of bits in X plus number of bits in in Y.)
|
||||
*/
|
||||
if (hw_words * 32 > 2048) {
|
||||
if (z_words * 32 <= 4096) {
|
||||
/* Note: it's possible to use mpi_mult_mpi_overlong
|
||||
for this case as well, but it's very slightly
|
||||
slower and requires a memory allocation.
|
||||
*/
|
||||
return mpi_mult_mpi_failover_mod_mult(Z, X, Y, z_words);
|
||||
} else {
|
||||
/* Still too long for the hardware unit... */
|
||||
if(y_words > x_words) {
|
||||
return mpi_mult_mpi_overlong(Z, X, Y, y_words, z_words);
|
||||
} else {
|
||||
return mpi_mult_mpi_overlong(Z, Y, X, x_words, z_words);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Otherwise, we can use the (faster) multiply hardware unit */
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + hw_words * 4, Y, hw_words);
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 0);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks in result,
|
||||
plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
|
||||
*/
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, ((hw_words * 2) / 16) + 7);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* Read back the result */
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
|
||||
Z->s = X->s * Y->s;
|
||||
|
||||
cleanup:
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
|
||||
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
||||
A or B are >2048 bits so can't use the standard multiplication method.
|
||||
|
||||
Result (z_words, based on A bits + B bits) must still be less than 4096 bits.
|
||||
|
||||
This case is simpler than the general case modulo multiply of
|
||||
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
||||
|
||||
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
|
||||
isn't actually modulo anything.
|
||||
* Mprime and Rinv are therefore predictable as follows:
|
||||
Mprime = 1
|
||||
Rinv = 1
|
||||
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words)
|
||||
{
|
||||
int ret = 0;
|
||||
size_t hw_words = hardware_words(z_words);
|
||||
|
||||
/* Load coefficients to hardware */
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for(int i = 0; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
/* Mprime = 1 */
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
|
||||
|
||||
/* Load X */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
|
||||
/* Rinv = 1 */
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
for(int i = 1; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* finish the modular multiplication */
|
||||
ret = modular_multiply_finish(Z, X, Y, hw_words, z_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Deal with the case when X & Y are too long for the hardware unit, by splitting one operand
|
||||
into two halves.
|
||||
|
||||
Y must be the longer operand
|
||||
|
||||
Slice Y into Yp, Ypp such that:
|
||||
Yp = lower 'b' bits of Y
|
||||
Ypp = upper 'b' bits of Y (right shifted)
|
||||
|
||||
Such that
|
||||
Z = X * Y
|
||||
Z = X * (Yp + Ypp<<b)
|
||||
Z = (X * Yp) + (X * Ypp<<b)
|
||||
|
||||
Note that this function may recurse multiple times, if both X & Y
|
||||
are too long for the hardware multiplication unit.
|
||||
*/
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words)
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi Ztemp;
|
||||
/* Rather than slicing in two on bits we slice on limbs (32 bit words) */
|
||||
const size_t words_slice = y_words / 2;
|
||||
/* Yp holds lower bits of Y (declared to reuse Y's array contents to save on copying) */
|
||||
const mbedtls_mpi Yp = {
|
||||
.p = Y->p,
|
||||
.n = words_slice,
|
||||
.s = Y->s
|
||||
};
|
||||
/* Ypp holds upper bits of Y, right shifted (also reuses Y's array contents) */
|
||||
const mbedtls_mpi Ypp = {
|
||||
.p = Y->p + words_slice,
|
||||
.n = y_words - words_slice,
|
||||
.s = Y->s
|
||||
};
|
||||
mbedtls_mpi_init(&Ztemp);
|
||||
|
||||
/* Get result Ztemp = Yp * X (need temporary variable Ztemp) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(&Ztemp, X, &Yp) );
|
||||
|
||||
/* Z = Ypp * Y */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(Z, X, &Ypp) );
|
||||
|
||||
/* Z = Z << b */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, words_slice * 32) );
|
||||
|
||||
/* Z += Ztemp */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&Ztemp);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */
|
||||
|
@@ -1,10 +1,10 @@
|
||||
/**
|
||||
* \brief Multi-precision integer library, ESP32C hardware accelerated parts
|
||||
* \brief Multi-precision integer library, ESP32 S2 hardware accelerated parts
|
||||
*
|
||||
* based on mbedTLS implementation
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
||||
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
@@ -21,32 +21,31 @@
|
||||
*
|
||||
*/
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "driver/periph_ctrl.h"
|
||||
#include <mbedtls/bignum.h>
|
||||
#include "esp32s2/esp_bignum.h"
|
||||
#include "bignum_impl.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include <sys/param.h>
|
||||
|
||||
size_t hardware_words(size_t words)
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_ll( void )
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_MEM_PD);
|
||||
|
||||
while(DPORT_REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
while (DPORT_REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_ll( void )
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
@@ -60,10 +59,10 @@ void esp_mpi_disable_hardware_ll( void )
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = num_words < mpi->n ? num_words : mpi->n;
|
||||
uint32_t copy_words = MIN(num_words, mpi->n);
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
@@ -79,16 +78,15 @@ inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t n
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
|
||||
*/
|
||||
inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(x->p, mem_base, num_words);
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for(size_t i = num_words; i < x->n; i++) {
|
||||
for (size_t i = num_words; i < x->n; i++) {
|
||||
x->p[i] = 0;
|
||||
}
|
||||
}
|
||||
@@ -111,10 +109,10 @@ static inline void start_op(uint32_t op_reg)
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete()
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while(DPORT_REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
while (DPORT_REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
@@ -122,7 +120,7 @@ static inline void wait_op_complete()
|
||||
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_ll(mbedtls_mpi *Z, size_t z_words)
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
@@ -133,9 +131,9 @@ void esp_mpi_read_result_ll(mbedtls_mpi *Z, size_t z_words)
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
void esp_mpi_mul_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words-1));
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
@@ -149,11 +147,11 @@ void esp_mpi_mul_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mb
|
||||
|
||||
/* Z = (X ^ Y) mod M
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words-1));
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
@@ -175,7 +173,7 @@ void esp_mpi_exp_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mb
|
||||
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
@@ -183,71 +181,40 @@ void esp_mpi_mul_mpi_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_w
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words*2 - 1));
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words * 2 - 1));
|
||||
start_op(RSA_MULT_START_REG);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
/**
|
||||
* @brief Special-case of (X * Y), where we use hardware montgomery mod
|
||||
multiplication to calculate result where either A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for(int i = 0; i < num_words; i++) {
|
||||
for (int i = 0; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, num_words -1);
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, num_words - 1);
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
|
||||
/* Rinv = 1 */
|
||||
/* Rinv = 1, write first word */
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
for(int i = 1; i < num_words; i++) {
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (int i = 1; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
||||
|
||||
|
||||
int esp_mont_ll(mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M,
|
||||
mbedtls_mpi_uint Mprime,
|
||||
size_t hw_words,
|
||||
bool again)
|
||||
{
|
||||
// Note Z may be the same pointer as X or Y
|
||||
int ret = 0;
|
||||
|
||||
|
||||
// montgomery mult prepare
|
||||
if (again == false) {
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, hw_words - 1);
|
||||
}
|
||||
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Y, hw_words);
|
||||
|
||||
start_op(RSA_MODEXP_START_REG);
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
|
||||
|
||||
wait_op_complete();
|
||||
|
||||
/* Read back the result */
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, hw_words);
|
||||
|
||||
|
||||
/* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
|
||||
if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
|
||||
}
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
@@ -1,595 +0,0 @@
|
||||
/**
|
||||
* \brief Multi-precision integer library, ESP32C hardware accelerated parts
|
||||
*
|
||||
* based on mbedTLS implementation
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <malloc.h>
|
||||
#include <limits.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/param.h>
|
||||
#include "mbedtls/bignum.h"
|
||||
#include "esp32s2/rom/bigint.h"
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
#include "esp_system.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_attr.h"
|
||||
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
|
||||
static const __attribute__((unused)) char *TAG = "bignum";
|
||||
|
||||
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
|
||||
#define biL (ciL << 3) /* bits in limb */
|
||||
|
||||
|
||||
static _lock_t mpi_lock;
|
||||
|
||||
void esp_mpi_acquire_hardware( void )
|
||||
{
|
||||
/* newlib locks lazy initialize on ESP-IDF */
|
||||
_lock_acquire(&mpi_lock);
|
||||
|
||||
DPORT_REG_SET_BIT(DPORT_PERIP_CLK_EN1_REG, DPORT_CRYPTO_RSA_CLK_EN);
|
||||
/* also clear reset on digital signature, otherwise RSA is held in reset */
|
||||
DPORT_REG_CLR_BIT(DPORT_PERIP_RST_EN1_REG, DPORT_CRYPTO_RSA_RST
|
||||
| DPORT_CRYPTO_DS_RST);
|
||||
|
||||
DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_MEM_PD);
|
||||
|
||||
while (DPORT_REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
}
|
||||
|
||||
void esp_mpi_release_hardware( void )
|
||||
{
|
||||
DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
/* don't reset digital signature unit, as this resets AES also */
|
||||
DPORT_REG_SET_BIT(DPORT_PERIP_RST_EN1_REG, DPORT_CRYPTO_RSA_RST);
|
||||
DPORT_REG_CLR_BIT(DPORT_PERIP_CLK_EN1_REG, DPORT_CRYPTO_RSA_CLK_EN);
|
||||
|
||||
_lock_release(&mpi_lock);
|
||||
}
|
||||
|
||||
/* Convert bit count to word count
|
||||
*/
|
||||
static inline size_t bits_to_words(size_t bits)
|
||||
{
|
||||
return (bits + 31) / 32;
|
||||
}
|
||||
|
||||
|
||||
/* Return the number of words actually used to represent an mpi
|
||||
number.
|
||||
*/
|
||||
static size_t mpi_words(const mbedtls_mpi *mpi)
|
||||
{
|
||||
for (size_t i = mpi->n; i > 0; i--) {
|
||||
if (mpi->p[i - 1] != 0) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = num_words < mpi->n ? num_words : mpi->n;
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = mpi->p[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
|
||||
/* Note: not executing memw here, can do it before we start a bignum operation */
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
|
||||
Can return a failure result if fails to grow the MPI result.
|
||||
|
||||
*/
|
||||
static inline int mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(x, num_words) );
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(x->p, mem_base, num_words);
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < x->n; i++) {
|
||||
x->p[i] = 0;
|
||||
}
|
||||
|
||||
asm volatile ("memw");
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
|
||||
* where B^-1(B-1) mod N=1. Actually, only the least significant part of
|
||||
* N' is needed, hence the definition N0'=N' mod b. We reproduce below the
|
||||
* simple algorithm from an article by Dusse and Kaliski to efficiently
|
||||
* find N0' from N0 and b
|
||||
*/
|
||||
static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
|
||||
{
|
||||
int i;
|
||||
uint64_t t = 1;
|
||||
uint64_t two_2_i_minus_1 = 2; /* 2^(i-1) */
|
||||
uint64_t two_2_i = 4; /* 2^i */
|
||||
uint64_t N = M->p[0];
|
||||
|
||||
for (i = 2; i <= 32; i++) {
|
||||
if ((mbedtls_mpi_uint) N * t % two_2_i >= two_2_i_minus_1) {
|
||||
t += two_2_i_minus_1;
|
||||
}
|
||||
|
||||
two_2_i_minus_1 <<= 1;
|
||||
two_2_i <<= 1;
|
||||
}
|
||||
|
||||
return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
|
||||
}
|
||||
|
||||
/* Calculate Rinv = RR^2 mod M, where:
|
||||
*
|
||||
* R = b^n where b = 2^32, n=num_words,
|
||||
* R = 2^N (where N=num_bits)
|
||||
* RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
|
||||
*
|
||||
* This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
|
||||
* so caller should cache the result where possible.
|
||||
*
|
||||
* DO NOT call this function while holding esp_mpi_acquire_hardware().
|
||||
*
|
||||
*/
|
||||
static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
|
||||
{
|
||||
int ret;
|
||||
size_t num_bits = num_words * 32;
|
||||
mbedtls_mpi RR;
|
||||
mbedtls_mpi_init(&RR);
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&RR);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
DPORT_REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(uint32_t op_reg)
|
||||
{
|
||||
while (DPORT_REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
|
||||
{
|
||||
|
||||
int ret;
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
size_t x_words = mpi_words(X);
|
||||
size_t y_words = mpi_words(Y);
|
||||
size_t m_words = mpi_words(M);
|
||||
mbedtls_mpi Rinv;
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
size_t num_words = MAX(MAX(m_words, x_words), y_words);
|
||||
|
||||
if (num_words * 32 > 4096) {
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
}
|
||||
|
||||
/* Calculate and load the first stage montgomery multiplication */
|
||||
mbedtls_mpi_init(&Rinv);
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, num_words));
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
|
||||
/* Enable acceleration options */
|
||||
DPORT_REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
wait_op_complete(RSA_MOD_MULT_START_REG);
|
||||
|
||||
DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
|
||||
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, m_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&Rinv);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
||||
|
||||
/*
|
||||
* Sliding-window exponentiation: Z = X^Y mod M (HAC 14.85)
|
||||
*
|
||||
* _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
|
||||
*
|
||||
* (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*
|
||||
*/
|
||||
int mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
size_t x_words = mpi_words(X);
|
||||
size_t y_words = mpi_words(Y);
|
||||
size_t m_words = mpi_words(M);
|
||||
size_t num_words;
|
||||
|
||||
mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
|
||||
mbedtls_mpi *Rinv; /* points to _Rinv (if not NULL) othwerwise &RR_new */
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
/* "all numbers must be the same length", so choose longest number
|
||||
as cardinal length of operation...
|
||||
*/
|
||||
num_words = MAX(m_words, MAX(x_words, y_words));
|
||||
|
||||
if (mbedtls_mpi_cmp_int(M, 0) <= 0 || (M->p[0] & 1) == 0) {
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (mbedtls_mpi_cmp_int(Y, 0) < 0) {
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (mbedtls_mpi_cmp_int(Y, 0) == 0) {
|
||||
return mbedtls_mpi_lset(Z, 1);
|
||||
}
|
||||
|
||||
if (num_words * 32 > 4096) {
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
}
|
||||
|
||||
/* Determine RR pointer, either _RR for cached value
|
||||
or local RR_new */
|
||||
if (_Rinv == NULL) {
|
||||
mbedtls_mpi_init(&Rinv_new);
|
||||
Rinv = &Rinv_new;
|
||||
} else {
|
||||
Rinv = _Rinv;
|
||||
}
|
||||
if (Rinv->p == NULL) {
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
|
||||
}
|
||||
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, num_words - 1);
|
||||
|
||||
/* Load M, X, Rinv, M-prime (M-prime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
/* Enable acceleration options */
|
||||
DPORT_REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
||||
|
||||
start_op(RSA_MODEXP_START_REG);
|
||||
wait_op_complete(RSA_MODEXP_START_REG);
|
||||
|
||||
DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 0);
|
||||
|
||||
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, m_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
// Compensate for negative X
|
||||
if (X->s == -1 && (Y->p[0] & 1) != 0) {
|
||||
Z->s = -1;
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(Z, M, Z));
|
||||
} else {
|
||||
Z->s = 1;
|
||||
}
|
||||
|
||||
cleanup:
|
||||
if (_Rinv == NULL) {
|
||||
mbedtls_mpi_free(&Rinv_new);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
|
||||
|
||||
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
|
||||
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words);
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words);
|
||||
|
||||
/* Z = X * Y */
|
||||
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t x_bits = mbedtls_mpi_bitlen(X);
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
size_t x_words = bits_to_words(x_bits);
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t num_words = MAX(x_words, y_words);
|
||||
size_t z_words = x_words + y_words;
|
||||
|
||||
/* Short-circuit eval if either argument is 0 or 1.
|
||||
|
||||
This is needed as the mpi modular division
|
||||
argument will sometimes call in here when one
|
||||
argument is too large for the hardware unit, but the other
|
||||
argument is zero or one.
|
||||
|
||||
This leaks some timing information, although overall there is a
|
||||
lot less timing variation than a software MPI approach.
|
||||
*/
|
||||
if (x_bits == 0 || y_bits == 0) {
|
||||
mbedtls_mpi_lset(Z, 0);
|
||||
return 0;
|
||||
}
|
||||
if (x_bits == 1) {
|
||||
ret = mbedtls_mpi_copy(Z, Y);
|
||||
Z->s *= X->s;
|
||||
return ret;
|
||||
}
|
||||
if (y_bits == 1) {
|
||||
ret = mbedtls_mpi_copy(Z, X);
|
||||
Z->s *= Y->s;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* If either factor is over 2048 bits, we can't use the standard hardware multiplier
|
||||
(it assumes result is double longest factor, and result is max 4096 bits.)
|
||||
|
||||
However, we can fail over to mod_mult for up to 4096 bits of result (modulo
|
||||
multiplication doesn't have the same restriction, so result is simply the
|
||||
number of bits in X plus number of bits in in Y.)
|
||||
*/
|
||||
|
||||
|
||||
|
||||
if (num_words * 32 > 2048) {
|
||||
if (z_words * 32 <= 4096) {
|
||||
/* Note: it's possible to use mpi_mult_mpi_overlong
|
||||
for this case as well, but it's very slightly
|
||||
slower and requires a memory allocation.
|
||||
*/
|
||||
return mpi_mult_mpi_failover_mod_mult(Z, X, Y, z_words);
|
||||
} else {
|
||||
/* Still too long for the hardware unit... */
|
||||
mbedtls_mpi_grow(Z, z_words);
|
||||
if (y_words > x_words) {
|
||||
return mpi_mult_mpi_overlong(Z, X, Y, y_words, z_words);
|
||||
} else {
|
||||
return mpi_mult_mpi_overlong(Z, Y, X, x_words, z_words);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Otherwise, we can use the (faster) multiply hardware unit */
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + num_words * 4, Y, num_words);
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 0);
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words * 2 - 1));
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* Read back the result */
|
||||
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
|
||||
Z->s = X->s * Y->s;
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
|
||||
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
||||
A or B are >2048 bits so can't use the standard multiplication method.
|
||||
|
||||
Result (number of words, based on A bits + B bits) must still be less than 4096 bits.
|
||||
|
||||
This case is simpler than the general case modulo multiply of
|
||||
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
||||
|
||||
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
|
||||
isn't actually modulo anything.
|
||||
* Mprime and Rinv are therefore predictable as follows:
|
||||
Mprime = 1
|
||||
Rinv = 1
|
||||
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
/* Load coefficients to hardware */
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (int i = 0; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, num_words - 1);
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
|
||||
/* Rinv = 1 */
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
for (int i = 1; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
wait_op_complete(RSA_MOD_MULT_START_REG);
|
||||
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Deal with the case when X & Y are too long for the hardware unit, by splitting one operand
|
||||
into two halves.
|
||||
|
||||
Y must be the longer operand
|
||||
|
||||
Slice Y into Yp, Ypp such that:
|
||||
Yp = lower 'b' bits of Y
|
||||
Ypp = upper 'b' bits of Y (right shifted)
|
||||
|
||||
Such that
|
||||
Z = X * Y
|
||||
Z = X * (Yp + Ypp<<b)
|
||||
Z = (X * Yp) + (X * Ypp<<b)
|
||||
|
||||
Note that this function may recurse multiple times, if both X & Y
|
||||
are too long for the hardware multiplication unit.
|
||||
*/
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words)
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi Ztemp;
|
||||
/* Rather than slicing in two on bits we slice on limbs (32 bit words) */
|
||||
const size_t words_slice = y_words / 2;
|
||||
/* Yp holds lower bits of Y (declared to reuse Y's array contents to save on copying) */
|
||||
const mbedtls_mpi Yp = {
|
||||
.p = Y->p,
|
||||
.n = words_slice,
|
||||
.s = Y->s
|
||||
};
|
||||
/* Ypp holds upper bits of Y, right shifted (also reuses Y's array contents) */
|
||||
const mbedtls_mpi Ypp = {
|
||||
.p = Y->p + words_slice,
|
||||
.n = y_words - words_slice,
|
||||
.s = Y->s
|
||||
};
|
||||
mbedtls_mpi_init(&Ztemp);
|
||||
|
||||
/* Get result Ztemp = Yp * X (need temporary variable Ztemp) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(&Ztemp, X, &Yp) );
|
||||
|
||||
/* Z = Ypp * Y */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(Z, X, &Ypp) );
|
||||
|
||||
/* Z = Z << b */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, words_slice * 32) );
|
||||
|
||||
/* Z += Ztemp */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&Ztemp);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */
|
||||
|
@@ -30,22 +30,11 @@
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_system.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_attr.h"
|
||||
#include "bignum_impl.h"
|
||||
|
||||
#include <mbedtls/bignum.h>
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#include "esp32/bignum.h"
|
||||
#include "esp32/rom/bigint.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32S2
|
||||
#include "esp32s2/bignum.h"
|
||||
#include "esp32s2/rom/bigint.h"
|
||||
#endif
|
||||
|
||||
/* Some implementation notes:
|
||||
*
|
||||
@@ -53,7 +42,7 @@
|
||||
* bignum. This number may be less than the size of the bignum
|
||||
*
|
||||
* - Naming convention hw_words for the hardware length of the operation. This number maybe be rounded up
|
||||
* rounded up for targets that requres this (e.g. ESP32), and may be larger than any of the numbers
|
||||
* for targets that requres this (e.g. ESP32), and may be larger than any of the numbers
|
||||
* involved in the calculation.
|
||||
*
|
||||
* - Timing behaviour of these functions will depend on the length of the inputs. This is fundamentally
|
||||
@@ -79,7 +68,7 @@ static inline size_t bits_to_words(size_t bits)
|
||||
/* Return the number of words actually used to represent an mpi
|
||||
number.
|
||||
*/
|
||||
|
||||
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
||||
static size_t mpi_words(const mbedtls_mpi *mpi)
|
||||
{
|
||||
for (size_t i = mpi->n; i > 0; i--) {
|
||||
@@ -90,18 +79,20 @@ static size_t mpi_words(const mbedtls_mpi *mpi)
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif //MBEDTLS_MPI_EXP_MOD_ALT
|
||||
|
||||
void esp_mpi_acquire_hardware( void )
|
||||
{
|
||||
/* newlib locks lazy initialize on ESP-IDF */
|
||||
_lock_acquire(&mpi_lock);
|
||||
|
||||
/* Enable RSA hardware */
|
||||
esp_mpi_enable_hardware_ll();
|
||||
esp_mpi_enable_hardware_hw_op();
|
||||
}
|
||||
|
||||
void esp_mpi_release_hardware( void )
|
||||
{
|
||||
esp_mpi_disable_hardware_ll();
|
||||
esp_mpi_disable_hardware_hw_op();
|
||||
|
||||
_lock_release(&mpi_lock);
|
||||
}
|
||||
@@ -158,9 +149,9 @@ static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&RR);
|
||||
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -185,7 +176,7 @@ int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t m_words = bits_to_words(m_bits);
|
||||
size_t z_words = bits_to_words(z_bits);
|
||||
size_t hw_words = hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
|
||||
size_t hw_words = esp_mpi_hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
|
||||
mbedtls_mpi Rinv;
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
@@ -196,27 +187,27 @@ int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
/* Load and start a (X * Y) mod M calculation */
|
||||
esp_mpi_mul_mpi_mod_ll(X, Y, M, &Rinv, Mprime, hw_words);
|
||||
esp_mpi_mul_mpi_mod_hw_op(X, Y, M, &Rinv, Mprime, hw_words);
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Z, z_words));
|
||||
|
||||
esp_mpi_read_result_ll(Z, z_words);
|
||||
esp_mpi_read_result_hw_op(Z, z_words);
|
||||
Z->s = X->s * Y->s;
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
mbedtls_mpi_free(&Rinv);
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&Rinv);
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
||||
|
||||
#if USE_MONT_EXPONENATIATION
|
||||
#ifdef ESP_MPI_USE_MONT_EXP
|
||||
/*
|
||||
* Return the most significant one-bit.
|
||||
*/
|
||||
static size_t mbedtls_mpi_msb( const mbedtls_mpi* X )
|
||||
static size_t mbedtls_mpi_msb( const mbedtls_mpi *X )
|
||||
{
|
||||
int i, j;
|
||||
if (X != NULL && X->n != 0) {
|
||||
@@ -236,18 +227,18 @@ static size_t mbedtls_mpi_msb( const mbedtls_mpi* X )
|
||||
/*
|
||||
* Montgomery exponentiation: Z = X ^ Y mod M (HAC 14.94)
|
||||
*/
|
||||
static int mpi_montgomery_exp_calc( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M,
|
||||
mbedtls_mpi* Rinv,
|
||||
size_t hw_words,
|
||||
mbedtls_mpi_uint Mprime )
|
||||
static int mpi_montgomery_exp_calc( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
|
||||
mbedtls_mpi *Rinv,
|
||||
size_t hw_words,
|
||||
mbedtls_mpi_uint Mprime )
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi X_, one;
|
||||
|
||||
mbedtls_mpi_init(&X_);
|
||||
mbedtls_mpi_init(&one);
|
||||
if( ( ( ret = mbedtls_mpi_grow(&one, hw_words) ) != 0 ) ||
|
||||
( ( ret = mbedtls_mpi_set_bit(&one, 0, 1) ) != 0 ) ) {
|
||||
if ( ( ( ret = mbedtls_mpi_grow(&one, hw_words) ) != 0 ) ||
|
||||
( ( ret = mbedtls_mpi_set_bit(&one, 0, 1) ) != 0 ) ) {
|
||||
goto cleanup2;
|
||||
}
|
||||
|
||||
@@ -260,36 +251,34 @@ static int mpi_montgomery_exp_calc( mbedtls_mpi* Z, const mbedtls_mpi* X, const
|
||||
|
||||
// 1.1 x_ = mont(x, R^2 mod m)
|
||||
// = mont(x, rb)
|
||||
MBEDTLS_MPI_CHK( esp_mont_ll(&X_, X, Rinv, M, Mprime, hw_words, false) );
|
||||
MBEDTLS_MPI_CHK( esp_mont_hw_op(&X_, X, Rinv, M, Mprime, hw_words, false) );
|
||||
|
||||
// 1.2 z = R mod m
|
||||
// now z = R mod m = Mont (R^2 mod m, 1) mod M (as Mont(x) = X&R^-1 mod M)
|
||||
MBEDTLS_MPI_CHK( esp_mont_ll(Z, Rinv, &one, M, Mprime, hw_words, true) );
|
||||
MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Rinv, &one, M, Mprime, hw_words, true) );
|
||||
|
||||
// 2 for i from t down to 0
|
||||
for (int i = t; i >= 0; i--) {
|
||||
// 2.1 z = mont(z,z)
|
||||
if (i != t) { // skip on the first iteration as is still unity
|
||||
MBEDTLS_MPI_CHK( esp_mont_ll(Z, Z, Z, M, Mprime, hw_words, true) );
|
||||
MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, Z, M, Mprime, hw_words, true) );
|
||||
}
|
||||
|
||||
// 2.2 if y[i] = 1 then z = mont(A, x_)
|
||||
if (mbedtls_mpi_get_bit(Y, i)) {
|
||||
MBEDTLS_MPI_CHK( esp_mont_ll(Z, Z, &X_, M, Mprime, hw_words, true) );
|
||||
MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, &X_, M, Mprime, hw_words, true) );
|
||||
}
|
||||
}
|
||||
|
||||
// 3 z = Mont(z, 1)
|
||||
MBEDTLS_MPI_CHK( esp_mont_ll(Z, Z, &one, M, Mprime, hw_words, true) );
|
||||
MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, &one, M, Mprime, hw_words, true) );
|
||||
}
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&X_);
|
||||
mbedtls_mpi_free(&one);
|
||||
cleanup:
|
||||
esp_mpi_release_hardware();
|
||||
return ret;
|
||||
|
||||
cleanup2:
|
||||
cleanup2:
|
||||
mbedtls_mpi_free(&X_);
|
||||
mbedtls_mpi_free(&one);
|
||||
return ret;
|
||||
}
|
||||
@@ -304,7 +293,7 @@ static int mpi_montgomery_exp_calc( mbedtls_mpi* Z, const mbedtls_mpi* X, const
|
||||
* (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*
|
||||
*/
|
||||
int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M, mbedtls_mpi* _Rinv )
|
||||
int mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t x_words = mpi_words(X);
|
||||
@@ -315,7 +304,7 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi
|
||||
/* "all numbers must be the same length", so choose longest number
|
||||
as cardinal length of operation...
|
||||
*/
|
||||
size_t num_words = hardware_words(MAX(m_words, MAX(x_words, y_words)));
|
||||
size_t num_words = esp_mpi_hardware_words(MAX(m_words, MAX(x_words, y_words)));
|
||||
|
||||
mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
|
||||
mbedtls_mpi *Rinv; /* points to _Rinv (if not NULL) othwerwise &RR_new */
|
||||
@@ -352,18 +341,22 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
// Montgomery exponentiation: Z = X ^ Y mod M (HAC 14.94)
|
||||
#if USE_MONT_EXPONENATIATION
|
||||
#ifdef ESP_MPI_USE_MONT_EXP
|
||||
ret = mpi_montgomery_exp_calc(Z, X, Y, M, Rinv, num_words, Mprime) ;
|
||||
MBEDTLS_MPI_CHK(ret);
|
||||
#else
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
esp_mpi_exp_mpi_mod_ll(X, Y, M, Rinv, Mprime, num_words);
|
||||
esp_mpi_exp_mpi_mod_hw_op(X, Y, M, Rinv, Mprime, num_words);
|
||||
ret = mbedtls_mpi_grow(Z, m_words);
|
||||
esp_mpi_read_result_ll(Z, m_words);
|
||||
|
||||
if (ret != 0) {
|
||||
esp_mpi_release_hardware();
|
||||
goto cleanup;
|
||||
}
|
||||
esp_mpi_read_result_hw_op(Z, m_words);
|
||||
esp_mpi_release_hardware();
|
||||
#endif
|
||||
MBEDTLS_MPI_CHK(ret);
|
||||
|
||||
// Compensate for negative X
|
||||
if (X->s == -1 && (Y->p[0] & 1) != 0) {
|
||||
Z->s = -1;
|
||||
@@ -385,8 +378,8 @@ cleanup:
|
||||
|
||||
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
|
||||
|
||||
static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t Y_bits, size_t z_words);
|
||||
static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words);
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words);
|
||||
|
||||
/* Z = X * Y */
|
||||
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
||||
@@ -397,7 +390,7 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
size_t x_words = bits_to_words(x_bits);
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t z_words = bits_to_words(x_bits + y_bits);
|
||||
size_t hw_words = hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
|
||||
size_t hw_words = esp_mpi_hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
|
||||
|
||||
/* Short-circuit eval if either argument is 0 or 1.
|
||||
|
||||
@@ -440,7 +433,7 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
return mpi_mult_mpi_failover_mod_mult(Z, X, Y, z_words);
|
||||
} else {
|
||||
/* Still too long for the hardware unit... */
|
||||
if(y_words > x_words) {
|
||||
if (y_words > x_words) {
|
||||
return mpi_mult_mpi_overlong(Z, X, Y, y_words, z_words);
|
||||
} else {
|
||||
return mpi_mult_mpi_overlong(Z, Y, X, x_words, z_words);
|
||||
@@ -451,8 +444,8 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
/* Otherwise, we can use the (faster) multiply hardware unit */
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
esp_mpi_mul_mpi_ll(X, Y, hw_words);
|
||||
esp_mpi_read_result_ll(Z, z_words);
|
||||
esp_mpi_mul_mpi_hw_op(X, Y, hw_words);
|
||||
esp_mpi_read_result_hw_op(Z, z_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
@@ -513,7 +506,7 @@ static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbe
|
||||
/* Z += Ztemp */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
|
||||
|
||||
cleanup:
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&Ztemp);
|
||||
|
||||
return ret;
|
||||
@@ -537,16 +530,16 @@ static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbe
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
|
||||
static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words)
|
||||
{
|
||||
int ret;
|
||||
size_t hw_words = hardware_words(num_words);
|
||||
size_t hw_words = esp_mpi_hardware_words(z_words);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
esp_mpi_mult_mpi_failover_mod_mult_ll(X, Y, hw_words );
|
||||
esp_mpi_mult_mpi_failover_mod_mult_hw_op(X, Y, hw_words );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
|
||||
esp_mpi_read_result_ll(Z, hw_words);
|
||||
esp_mpi_read_result_hw_op(Z, hw_words);
|
||||
|
||||
Z->s = X->s * Y->s;
|
||||
cleanup:
|
||||
|
83
components/mbedtls/port/include/bignum_impl.h
Normal file
83
components/mbedtls/port/include/bignum_impl.h
Normal file
@@ -0,0 +1,83 @@
|
||||
#ifndef _ESP_BIGNUM_H_
|
||||
#define _ESP_BIGNUM_H_
|
||||
|
||||
#include <mbedtls/bignum.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
/* Use montgomery exponentiation (HAC 14.94) for calculating X ^ Y mod M,
|
||||
this may be faster for some targets. The hardware acceleration support for modular
|
||||
exponentiation on the ESP32 is slow for public key operations, so use montgomery
|
||||
exponentiation instead.
|
||||
*/
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#define ESP_MPI_USE_MONT_EXP
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Enable the MPI hardware
|
||||
*
|
||||
*/
|
||||
void esp_mpi_enable_hardware_hw_op( void );
|
||||
|
||||
/**
|
||||
* @brief Disable the MPI hardware
|
||||
*
|
||||
*/
|
||||
void esp_mpi_disable_hardware_hw_op( void );
|
||||
|
||||
/**
|
||||
* @brief Calculate the number of words needed to represent the input word in hardware
|
||||
*
|
||||
* @param words The number of words to be represented
|
||||
*
|
||||
* @return size_t Number of words required
|
||||
*/
|
||||
size_t esp_mpi_hardware_words(size_t words);
|
||||
|
||||
/**
|
||||
* @brief Starts a (X * Y) Mod M calculation in hardware. Rinv and M_prime needs to be precalculated in software.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words);
|
||||
|
||||
/**
|
||||
* @brief Starts a (X * Y) calculation in hardware.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
|
||||
/**
|
||||
* @brief Special-case of (X * Y), where we use hardware montgomery mod
|
||||
multiplication to calculate result where either A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
|
||||
/**
|
||||
* @brief Read out the result from the previous calculation.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words);
|
||||
|
||||
#ifdef ESP_MPI_USE_MONT_EXP
|
||||
/**
|
||||
* @brief Starts a montgomery multiplication calculation in hardware
|
||||
*
|
||||
*/
|
||||
int esp_mont_hw_op(mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M,
|
||||
mbedtls_mpi_uint Mprime,
|
||||
size_t hw_words,
|
||||
bool again);
|
||||
|
||||
#else
|
||||
|
||||
/**
|
||||
* @brief Starts a (X ^ Y) Mod M calculation in hardware. Rinv and M_prime needs to be precalculated in software.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words);
|
||||
|
||||
#endif //ESP_MPI_USE_MONT_EXP
|
||||
|
||||
#endif
|
@@ -1,33 +0,0 @@
|
||||
#ifndef _ESP_BIGNUM_H_
|
||||
#define _ESP_BIGNUM_H_
|
||||
|
||||
#include <mbedtls/bignum.h>
|
||||
|
||||
|
||||
/* Use montgomery exponentiation (HAC 14.94) for calculating X ^ Y mod M,
|
||||
this may be faster for targets without acceleration options (e.g. ESP32)
|
||||
*/
|
||||
#define USE_MONT_EXPONENATIATION 1
|
||||
|
||||
size_t hardware_words(size_t words);
|
||||
|
||||
void esp_mpi_mul_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words);
|
||||
void esp_mpi_exp_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words);
|
||||
int esp_mont_ll(mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M,
|
||||
mbedtls_mpi_uint Mprime,
|
||||
size_t hw_words,
|
||||
bool again);
|
||||
|
||||
void esp_mpi_mul_mpi_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
|
||||
void esp_mpi_read_result_ll(mbedtls_mpi *Z, size_t z_words);
|
||||
|
||||
void esp_mpi_enable_hardware_ll( void );
|
||||
void esp_mpi_disable_hardware_ll( void );
|
||||
|
||||
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
|
||||
|
||||
|
||||
#endif
|
@@ -1,31 +0,0 @@
|
||||
#ifndef _ESP_BIGNUM_H_
|
||||
#define _ESP_BIGNUM_H_
|
||||
|
||||
#include <mbedtls/bignum.h>
|
||||
|
||||
/* Use montgomery exponentiation (HAC 14.94) for calculating X ^ Y mod M,
|
||||
this may be faster for targets without acceleration options (e.g. ESP32)
|
||||
*/
|
||||
#define USE_MONT_EXPONENATIATION 1
|
||||
|
||||
size_t hardware_words(size_t words);
|
||||
|
||||
void esp_mpi_mul_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words);
|
||||
void esp_mpi_exp_mpi_mod_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words);
|
||||
|
||||
void esp_mpi_mul_mpi_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
|
||||
void esp_mpi_read_result_ll(mbedtls_mpi *Z, size_t z_words);
|
||||
|
||||
void esp_mpi_enable_hardware_ll( void );
|
||||
void esp_mpi_disable_hardware_ll( void );
|
||||
|
||||
//inline size_t hardware_words(size_t words);
|
||||
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_ll(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
int esp_mont_ll(mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M,
|
||||
mbedtls_mpi_uint Mprime,
|
||||
size_t hw_words,
|
||||
bool again);
|
||||
|
||||
#endif
|
@@ -27,7 +27,7 @@
|
||||
|
||||
typedef struct crypto_bignum crypto_bignum;
|
||||
|
||||
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2)
|
||||
|
||||
static struct wpabuf *wpabuf_alloc2(size_t len)
|
||||
{
|
||||
struct wpabuf *buf = (struct wpabuf *)os_zalloc(sizeof(struct wpabuf) + len);
|
||||
@@ -267,6 +267,5 @@ TEST_CASE("Test SAE functionality with ECC group", "[wpa3_sae]")
|
||||
ESP_LOGI("SAE Test", "=========== Complete ============");
|
||||
|
||||
}
|
||||
#endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2)
|
||||
|
||||
#endif /* CONFIG_WPA3_SAE */
|
||||
|
Reference in New Issue
Block a user