mirror of
https://github.com/espressif/esp-idf.git
synced 2025-07-31 03:07:21 +02:00
Merge branch 'bugfix/hwcrypto_mpi_ecp' into 'master'
mbedtls: Don't unnecessarily grow the result of a hardware bignum operation See merge request idf/esp-idf!3041
This commit is contained in:
@ -26,6 +26,7 @@
|
||||
#include <limits.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/param.h>
|
||||
#include "mbedtls/bignum.h"
|
||||
#include "rom/bigint.h"
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
@ -41,6 +42,20 @@
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
|
||||
/* Some implementation notes:
|
||||
*
|
||||
* - Naming convention x_words, y_words, z_words for number of words (limbs) used in a particular
|
||||
* bignum. This number may be less than the size of the bignum
|
||||
*
|
||||
* - Naming convention hw_words for the hardware length of the operation. This number is always
|
||||
* rounded up to a 512 bit multiple, and may be larger than any of the numbers involved in the
|
||||
* calculation.
|
||||
*
|
||||
* - Timing behaviour of these functions will depend on the length of the inputs. This is fundamentally
|
||||
* the same constraint as the software mbedTLS implementations, and relies on the same
|
||||
* countermeasures (exponent blinding, etc) which are used in mbedTLS.
|
||||
*/
|
||||
|
||||
static const __attribute__((unused)) char *TAG = "bignum";
|
||||
|
||||
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
|
||||
@ -103,49 +118,49 @@ void esp_mpi_release_hardware( void )
|
||||
_lock_release(&mpi_lock);
|
||||
}
|
||||
|
||||
/* Number of words used to hold 'mpi', rounded up to nearest
|
||||
16 words (512 bits) to match hardware support.
|
||||
/* Convert bit count to word count
|
||||
*/
|
||||
static inline size_t bits_to_words(size_t bits)
|
||||
{
|
||||
return (bits + 31) / 32;
|
||||
}
|
||||
|
||||
/* Round up number of words to nearest
|
||||
512 bit (16 word) block count.
|
||||
*/
|
||||
static inline size_t hardware_words(size_t words)
|
||||
{
|
||||
return (words + 0xF) & ~0xF;
|
||||
}
|
||||
|
||||
/* Number of words used to hold 'mpi'.
|
||||
|
||||
Equivalent of bits_to_words(mbedtls_mpi_bitlen(mpi)), but uses less cycles if the
|
||||
exact bit count is not needed.
|
||||
|
||||
Note that mpi->n (size of memory buffer) may be higher than this
|
||||
number, if the high bits are mostly zeroes.
|
||||
|
||||
This implementation may cause the caller to leak a small amount of
|
||||
timing information when an operation is performed (length of a
|
||||
given mpi value, rounded to nearest 512 bits), but not all mbedTLS
|
||||
RSA operations succeed if we use mpi->N as-is (buffers are too long).
|
||||
*/
|
||||
static inline size_t hardware_words_needed(const mbedtls_mpi *mpi)
|
||||
static inline size_t word_length(const mbedtls_mpi *mpi)
|
||||
{
|
||||
size_t res = 1;
|
||||
for(size_t i = 0; i < mpi->n; i++) {
|
||||
if( mpi->p[i] != 0 ) {
|
||||
res = i + 1;
|
||||
for(size_t i = mpi->n; i > 0; i--) {
|
||||
if( mpi->p[i - 1] != 0 ) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
res = (res + 0xF) & ~0xF;
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Convert number of bits to number of words, rounded up to nearest
|
||||
512 bit (16 word) block count.
|
||||
*/
|
||||
static inline size_t bits_to_hardware_words(size_t num_bits)
|
||||
{
|
||||
return ((num_bits + 511) / 512) * 16;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
If hw_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
|
||||
As this function only writes to DPORT memory, no DPORT_STALL_OTHER_CPU_START()
|
||||
is required.
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = num_words < mpi->n ? num_words : mpi->n;
|
||||
uint32_t copy_words = hw_words < mpi->n ? hw_words : mpi->n;
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
@ -153,7 +168,7 @@ static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, s
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
for (int i = copy_words; i < hw_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
|
||||
@ -164,27 +179,21 @@ static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, s
|
||||
|
||||
Reads num_words words from block.
|
||||
|
||||
Can return a failure result if fails to grow the MPI result.
|
||||
|
||||
Cannot be called inside DPORT_STALL_OTHER_CPU_START() (as may allocate memory).
|
||||
Bignum 'x' should already be grown to at least num_words by caller (can be done while
|
||||
calculation is in progress, to save some cycles)
|
||||
*/
|
||||
static inline int mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(x, num_words) );
|
||||
assert(x->n >= num_words);
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(x->p, mem_base, num_words);
|
||||
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for(size_t i = num_words; i < x->n; i++) {
|
||||
x->p[i] = 0;
|
||||
}
|
||||
|
||||
asm volatile ("memw");
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
@ -245,9 +254,6 @@ static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
|
||||
Because the only DPORT operations here are writes,
|
||||
does not need protecting via DPORT_STALL_OTHER_CPU_START();
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
@ -261,9 +267,6 @@ static inline void start_op(uint32_t op_reg)
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
|
||||
This should NOT be called inside a DPORT_STALL_OTHER_CPU_START(), as it will stall the other CPU for an unacceptably long
|
||||
period (and - depending on config - may require interrupts enabled).
|
||||
*/
|
||||
static inline void wait_op_complete(uint32_t op_reg)
|
||||
{
|
||||
@ -284,7 +287,7 @@ static inline void wait_op_complete(uint32_t op_reg)
|
||||
}
|
||||
|
||||
/* Sub-stages of modulo multiplication/exponentiation operations */
|
||||
inline static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
inline static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words, size_t z_words);
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
@ -293,27 +296,33 @@ inline static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X,
|
||||
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
|
||||
{
|
||||
int ret;
|
||||
size_t num_words = hardware_words_needed(M);
|
||||
size_t x_bits = mbedtls_mpi_bitlen(X);
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
size_t m_bits = mbedtls_mpi_bitlen(M);
|
||||
size_t z_bits = MIN(m_bits, x_bits + y_bits);
|
||||
size_t x_words = bits_to_words(x_bits);
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t m_words = bits_to_words(m_bits);
|
||||
size_t z_words = bits_to_words(z_bits);
|
||||
size_t hw_words = hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
|
||||
mbedtls_mpi Rinv;
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
/* Calculate and load the first stage montgomery multiplication */
|
||||
mbedtls_mpi_init(&Rinv);
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, num_words));
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, hw_words));
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* (As the following are all writes to DPORT memory, no DPORT_STALL_OTHER_CPU_START is required.) */
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, hw_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MULT_START_REG);
|
||||
@ -321,7 +330,7 @@ int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* execute second stage */
|
||||
ret = modular_multiply_finish(Z, X, Y, num_words);
|
||||
ret = modular_multiply_finish(Z, X, Y, hw_words, z_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
@ -343,31 +352,20 @@ int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M, mbedtls_mpi* _Rinv )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t z_words = hardware_words_needed(Z);
|
||||
size_t x_words = hardware_words_needed(X);
|
||||
size_t y_words = hardware_words_needed(Y);
|
||||
size_t m_words = hardware_words_needed(M);
|
||||
size_t num_words;
|
||||
size_t x_words = word_length(X);
|
||||
size_t y_words = word_length(Y);
|
||||
size_t m_words = word_length(M);
|
||||
|
||||
/* "all numbers must be the same length", so choose longest number
|
||||
as cardinal length of operation...
|
||||
*/
|
||||
size_t hw_words = hardware_words(MAX(m_words, MAX(x_words, y_words)));
|
||||
|
||||
mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
|
||||
mbedtls_mpi *Rinv; /* points to _Rinv (if not NULL) othwerwise &RR_new */
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
/* "all numbers must be the same length", so choose longest number
|
||||
as cardinal length of operation...
|
||||
*/
|
||||
num_words = z_words;
|
||||
if (x_words > num_words) {
|
||||
num_words = x_words;
|
||||
}
|
||||
if (y_words > num_words) {
|
||||
num_words = y_words;
|
||||
}
|
||||
if (m_words > num_words) {
|
||||
num_words = m_words;
|
||||
}
|
||||
|
||||
if (num_words * 32 > 4096) {
|
||||
if (hw_words * 32 > 4096) {
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
}
|
||||
|
||||
@ -380,30 +378,31 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi
|
||||
Rinv = _Rinv;
|
||||
}
|
||||
if (Rinv->p == NULL) {
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, hw_words));
|
||||
}
|
||||
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* (As the following are all writes to DPORT memory, no DPORT_STALL_OTHER_CPU_START is required.) */
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
DPORT_REG_WRITE(RSA_MODEXP_MODE_REG, (num_words / 16) - 1);
|
||||
DPORT_REG_WRITE(RSA_MODEXP_MODE_REG, (hw_words / 16) - 1);
|
||||
|
||||
/* Load M, X, Rinv, M-prime (M-prime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, hw_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
start_op(RSA_START_MODEXP_REG);
|
||||
|
||||
/* X ^ Y may actually be shorter than M, but unlikely when used for crypto */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, m_words) );
|
||||
|
||||
wait_op_complete(RSA_START_MODEXP_REG);
|
||||
|
||||
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, m_words);
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
cleanup:
|
||||
@ -417,55 +416,56 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi
|
||||
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
|
||||
|
||||
/* Second & final step of a modular multiply - load second multiplication
|
||||
* factor Y, run the multiply, read back the result into Z.
|
||||
* factor Y, run the operation (modular inverse), read back the result
|
||||
* into Z.
|
||||
*
|
||||
* Called from both mbedtls_mpi_exp_mod and mbedtls_mpi_mod_mpi.
|
||||
*
|
||||
* @param Z result value
|
||||
* @param X first multiplication factor (used to set sign of result).
|
||||
* @param Y second multiplication factor.
|
||||
* @param num_words size of modulo operation, in words (limbs).
|
||||
* Should already be rounded up to a multiple of 16 words (512 bits) & range checked.
|
||||
* @param hw_words Size of the hardware operation, in words
|
||||
* @param z_words Size of the expected result, in words (may be less than hw_words).
|
||||
* Z will be grown to at least this length.
|
||||
*
|
||||
* Caller must have already called esp_mpi_acquire_hardware().
|
||||
*/
|
||||
static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words, size_t z_words)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
/* Load Y to X input memory block, rerun */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, z_words) );
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* Read result into Z */
|
||||
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
|
||||
Z->s = X->s * Y->s;
|
||||
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
|
||||
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t Y_bits, size_t words_result);
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words);
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t Y_bits, size_t z_words);
|
||||
|
||||
/* Z = X * Y */
|
||||
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t bits_x, bits_y, words_x, words_y, words_mult, words_z;
|
||||
|
||||
/* Count words needed for X & Y in hardware */
|
||||
bits_x = mbedtls_mpi_bitlen(X);
|
||||
bits_y = mbedtls_mpi_bitlen(Y);
|
||||
/* Convert bit counts to words, rounded up to 512-bit
|
||||
(16 word) blocks */
|
||||
words_x = bits_to_hardware_words(bits_x);
|
||||
words_y = bits_to_hardware_words(bits_y);
|
||||
size_t x_bits = mbedtls_mpi_bitlen(X);
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
size_t x_words = bits_to_words(x_bits);
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t z_words = bits_to_words(x_bits + y_bits);
|
||||
size_t hw_words = hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
|
||||
|
||||
/* Short-circuit eval if either argument is 0 or 1.
|
||||
|
||||
@ -473,31 +473,22 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
argument will sometimes call in here when one
|
||||
argument is too large for the hardware unit, but the other
|
||||
argument is zero or one.
|
||||
|
||||
This leaks some timing information, although overall there is a
|
||||
lot less timing variation than a software MPI approach.
|
||||
*/
|
||||
if (bits_x == 0 || bits_y == 0) {
|
||||
if (x_bits == 0 || y_bits == 0) {
|
||||
mbedtls_mpi_lset(Z, 0);
|
||||
return 0;
|
||||
}
|
||||
if (bits_x == 1) {
|
||||
if (x_bits == 1) {
|
||||
ret = mbedtls_mpi_copy(Z, Y);
|
||||
Z->s *= X->s;
|
||||
return ret;
|
||||
}
|
||||
if (bits_y == 1) {
|
||||
if (y_bits == 1) {
|
||||
ret = mbedtls_mpi_copy(Z, X);
|
||||
Z->s *= Y->s;
|
||||
return ret;
|
||||
}
|
||||
|
||||
words_mult = (words_x > words_y ? words_x : words_y);
|
||||
|
||||
/* Result Z has to have room for double the larger factor */
|
||||
words_z = words_mult * 2;
|
||||
|
||||
|
||||
/* If either factor is over 2048 bits, we can't use the standard hardware multiplier
|
||||
(it assumes result is double longest factor, and result is max 4096 bits.)
|
||||
|
||||
@ -505,21 +496,19 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
multiplication doesn't have the same restriction, so result is simply the
|
||||
number of bits in X plus number of bits in in Y.)
|
||||
*/
|
||||
if (words_mult * 32 > 2048) {
|
||||
/* Calculate new length of Z */
|
||||
words_z = bits_to_hardware_words(bits_x + bits_y);
|
||||
if (words_z * 32 <= 4096) {
|
||||
if (hw_words * 32 > 2048) {
|
||||
if (z_words * 32 <= 4096) {
|
||||
/* Note: it's possible to use mpi_mult_mpi_overlong
|
||||
for this case as well, but it's very slightly
|
||||
slower and requires a memory allocation.
|
||||
*/
|
||||
return mpi_mult_mpi_failover_mod_mult(Z, X, Y, words_z);
|
||||
return mpi_mult_mpi_failover_mod_mult(Z, X, Y, z_words);
|
||||
} else {
|
||||
/* Still too long for the hardware unit... */
|
||||
if(bits_y > bits_x) {
|
||||
return mpi_mult_mpi_overlong(Z, X, Y, bits_y, words_z);
|
||||
if(y_words > x_words) {
|
||||
return mpi_mult_mpi_overlong(Z, X, Y, y_words, z_words);
|
||||
} else {
|
||||
return mpi_mult_mpi_overlong(Z, Y, X, bits_x, words_z);
|
||||
return mpi_mult_mpi_overlong(Z, Y, X, x_words, z_words);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -529,8 +518,8 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, words_mult);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + words_mult * 4, Y, words_mult);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + hw_words * 4, Y, hw_words);
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
@ -540,17 +529,20 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
/* "mode" register loaded with number of 512-bit blocks in result,
|
||||
plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
|
||||
*/
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (words_z / 16) + 7);
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, ((hw_words * 2) / 16) + 7);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, z_words) );
|
||||
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* Read back the result */
|
||||
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, words_z);
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
|
||||
Z->s = X->s * Y->s;
|
||||
|
||||
cleanup:
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
return ret;
|
||||
@ -560,7 +552,7 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
||||
A or B are >2048 bits so can't use the standard multiplication method.
|
||||
|
||||
Result (A bits + B bits) must still be less than 4096 bits.
|
||||
Result (z_words, based on A bits + B bits) must still be less than 4096 bits.
|
||||
|
||||
This case is simpler than the general case modulo multiply of
|
||||
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
||||
@ -573,29 +565,30 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words)
|
||||
{
|
||||
int ret = 0;
|
||||
size_t hw_words = hardware_words(z_words);
|
||||
|
||||
/* Load coefficients to hardware */
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for(int i = 0; i < num_words; i++) {
|
||||
for(int i = 0; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
/* Mprime = 1 */
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
|
||||
|
||||
/* Load X */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
|
||||
/* Rinv = 1 */
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
for(int i = 1; i < num_words; i++) {
|
||||
for(int i = 1; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
@ -604,7 +597,7 @@ static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X,
|
||||
wait_op_complete(RSA_MULT_START_REG);
|
||||
|
||||
/* finish the modular multiplication */
|
||||
ret = modular_multiply_finish(Z, X, Y, num_words);
|
||||
ret = modular_multiply_finish(Z, X, Y, hw_words, z_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
@ -628,29 +621,28 @@ static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X,
|
||||
Note that this function may recurse multiple times, if both X & Y
|
||||
are too long for the hardware multiplication unit.
|
||||
*/
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t bits_y, size_t words_result)
|
||||
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words)
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi Ztemp;
|
||||
const size_t limbs_y = (bits_y + biL - 1) / biL;
|
||||
/* Rather than slicing in two on bits we slice on limbs (32 bit words) */
|
||||
const size_t limbs_slice = limbs_y / 2;
|
||||
const size_t words_slice = y_words / 2;
|
||||
/* Yp holds lower bits of Y (declared to reuse Y's array contents to save on copying) */
|
||||
const mbedtls_mpi Yp = {
|
||||
.p = Y->p,
|
||||
.n = limbs_slice,
|
||||
.n = words_slice,
|
||||
.s = Y->s
|
||||
};
|
||||
/* Ypp holds upper bits of Y, right shifted (also reuses Y's array contents) */
|
||||
const mbedtls_mpi Ypp = {
|
||||
.p = Y->p + limbs_slice,
|
||||
.n = limbs_y - limbs_slice,
|
||||
.p = Y->p + words_slice,
|
||||
.n = y_words - words_slice,
|
||||
.s = Y->s
|
||||
};
|
||||
mbedtls_mpi_init(&Ztemp);
|
||||
|
||||
/* Grow Z to result size early, avoid interim allocations */
|
||||
mbedtls_mpi_grow(Z, words_result);
|
||||
mbedtls_mpi_grow(Z, z_words);
|
||||
|
||||
/* Get result Ztemp = Yp * X (need temporary variable Ztemp) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(&Ztemp, X, &Yp) );
|
||||
@ -659,7 +651,7 @@ static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbe
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(Z, X, &Ypp) );
|
||||
|
||||
/* Z = Z << b */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, limbs_slice * biL) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, words_slice * 32) );
|
||||
|
||||
/* Z += Ztemp */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
|
||||
|
77
components/mbedtls/test/test_ecp.c
Normal file
77
components/mbedtls/test/test_ecp.c
Normal file
@ -0,0 +1,77 @@
|
||||
/* mbedTLS Elliptic Curve functionality tests
|
||||
|
||||
Focus on testing functionality where we use ESP32 hardware
|
||||
accelerated crypto features.
|
||||
|
||||
*/
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <stdbool.h>
|
||||
#include <esp_system.h>
|
||||
|
||||
#include <mbedtls/entropy.h>
|
||||
#include <mbedtls/ctr_drbg.h>
|
||||
#include <mbedtls/ecdh.h>
|
||||
#include <mbedtls/ecdsa.h>
|
||||
#include <mbedtls/error.h>
|
||||
|
||||
#include "unity.h"
|
||||
|
||||
/* Note: negative value here so that assert message prints a grep-able
|
||||
error hex value (mbedTLS uses -N for error codes) */
|
||||
#define TEST_ASSERT_MBEDTLS_OK(X) TEST_ASSERT_EQUAL_HEX32(0, -(X))
|
||||
|
||||
TEST_CASE("mbedtls ECDH Generate Key", "[mbedtls]")
|
||||
{
|
||||
mbedtls_ecdh_context ctx;
|
||||
mbedtls_entropy_context entropy;
|
||||
mbedtls_ctr_drbg_context ctr_drbg;
|
||||
|
||||
mbedtls_ecdh_init(&ctx);
|
||||
mbedtls_ctr_drbg_init(&ctr_drbg);
|
||||
|
||||
mbedtls_entropy_init(&entropy);
|
||||
TEST_ASSERT_MBEDTLS_OK( mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, NULL, 0) );
|
||||
|
||||
TEST_ASSERT_MBEDTLS_OK( mbedtls_ecp_group_load(&ctx.grp, MBEDTLS_ECP_DP_CURVE25519) );
|
||||
|
||||
TEST_ASSERT_MBEDTLS_OK( mbedtls_ecdh_gen_public(&ctx.grp, &ctx.d, &ctx.Q,
|
||||
mbedtls_ctr_drbg_random, &ctr_drbg ) );
|
||||
|
||||
mbedtls_ecdh_free(&ctx);
|
||||
mbedtls_ctr_drbg_free(&ctr_drbg);
|
||||
mbedtls_entropy_free(&entropy);
|
||||
}
|
||||
|
||||
TEST_CASE("mbedtls ECP self-tests", "[mbedtls]")
|
||||
{
|
||||
TEST_ASSERT_EQUAL(0, mbedtls_ecp_self_test(1));
|
||||
}
|
||||
|
||||
TEST_CASE("mbedtls ECP mul w/ koblitz", "[mbedtls]")
|
||||
{
|
||||
/* Test case code via https://github.com/espressif/esp-idf/issues/1556 */
|
||||
mbedtls_entropy_context ctxEntropy;
|
||||
mbedtls_ctr_drbg_context ctxRandom;
|
||||
mbedtls_ecdsa_context ctxECDSA;
|
||||
const char* pers = "myecdsa";
|
||||
|
||||
mbedtls_entropy_init(&ctxEntropy);
|
||||
mbedtls_ctr_drbg_init(&ctxRandom);
|
||||
TEST_ASSERT_MBEDTLS_OK( mbedtls_ctr_drbg_seed(&ctxRandom, mbedtls_entropy_func, &ctxEntropy,
|
||||
(const unsigned char*) pers, strlen(pers)) );
|
||||
|
||||
mbedtls_ecdsa_init(&ctxECDSA);
|
||||
|
||||
TEST_ASSERT_MBEDTLS_OK( mbedtls_ecdsa_genkey(&ctxECDSA, MBEDTLS_ECP_DP_SECP256K1,
|
||||
mbedtls_ctr_drbg_random, &ctxRandom) );
|
||||
|
||||
|
||||
TEST_ASSERT_MBEDTLS_OK(mbedtls_ecp_mul(&ctxECDSA.grp, &ctxECDSA.Q, &ctxECDSA.d, &ctxECDSA.grp.G,
|
||||
mbedtls_ctr_drbg_random, &ctxRandom) );
|
||||
|
||||
mbedtls_ecdsa_free(&ctxECDSA);
|
||||
mbedtls_ctr_drbg_free(&ctxRandom);
|
||||
mbedtls_entropy_free(&ctxEntropy);
|
||||
}
|
||||
|
Reference in New Issue
Block a user