esp-modbus: initial component update

This commit is contained in:
Alex Lisitsyn
2022-04-05 15:33:17 +08:00
parent d1a0493a79
commit 304a0a446a
138 changed files with 1789 additions and 1517 deletions

49
.gitignore vendored Normal file
View File

@ -0,0 +1,49 @@
.config
*.o
*.pyc
# gtags
GTAGS
GRTAGS
GPATH
# emacs
.dir-locals.el
# emacs temp file suffixes
*~
.#*
\#*#
# eclipse setting
.settings
# MacOS directory files
.DS_Store
# Test files
test/build
test/sdkconfig
test/sdkconfig.old
# Doc build artifacts
docs/_build/
docs/doxygen-warning-log.txt
docs/sphinx-warning-log.txt
docs/sphinx-warning-log-sanitized.txt
docs/xml/
docs/xml_in/
docs/man/
docs/doxygen_sqlite3.db
TEST_LOGS
# gcov coverage reports
*.gcda
*.gcno
coverage.info
coverage_report/
# VS Code Settings
.vscode/

177
.gitlab-ci.yml Normal file
View File

@ -0,0 +1,177 @@
stages:
- build
- deploy
variables:
# System environment
ESP_DOCS_ENV_IMAGE: "$CI_DOCKER_REGISTRY/esp-idf-doc-env-v5.0:2-2"
ESP_DOCS_PATH: "$CI_PROJECT_DIR"
# GitLab-CI environment
GET_SOURCES_ATTEMPTS: "10"
ARTIFACT_DOWNLOAD_ATTEMPTS: "10"
GIT_SUBMODULE_STRATEGY: none
ESP_IDF_GIT: "https://gitlab-ci-token:${CI_JOB_TOKEN}@${GITLAB_HTTPS_SERVER}/espressif/esp-idf.git"
.setup_idf_tools: &setup_idf_tools |
tools/idf_tools.py --non-interactive install && eval "$(tools/idf_tools.py --non-interactive export)" || exit 1
.add_gh_key_remote: &add_gh_key_remote |
command -v ssh-agent >/dev/null || exit 1
eval $(ssh-agent -s)
printf '%s\n' "${GH_PUSH_KEY}" | tr -d '\r' | ssh-add - > /dev/null
mkdir -p ~/.ssh && chmod 700 ~/.ssh
[[ -f /.dockerenv ]] && echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > ~/.ssh/config || ssh-keyscan -t rsa github.com >> ~/.ssh/known_hosts
git remote remove github || true
git remote add github ${GH_PUSH_REPO}
after_script:
# Just for cleaning space, no other causes
- git clean -ffdx
# This template gets expanded multiple times, once for every IDF version.
# IDF version is specified by setting the espressif/idf image tag.
#
# EXAMPLE_TARGETS sets the list of IDF_TARGET values to build examples for.
# It should be equal to the list of targets supported by the specific IDF version.
#
# TEST_TARGETS sets the list of IDF_TARGET values to build the test_app for.
# It should contain only the targets with optimized assembly implementations.
#
.build_template:
stage: build
tags:
- build
- internet
script:
- ./build_all.sh
variables:
EXAMPLE_TARGETS: "esp32"
TEST_TARGETS: "esp32"
build_idf_v4.1:
extends: .build_template
image: espressif/idf:release-v4.1
build_idf_v4.2:
extends: .build_template
image: espressif/idf:release-v4.2
variables:
EXAMPLE_TARGETS: "esp32 esp32s2"
build_idf_v4.3:
extends: .build_template
image: espressif/idf:release-v4.3
variables:
EXAMPLE_TARGETS: "esp32 esp32s2 esp32c3"
build_idf_v4.4:
extends: .build_template
image: espressif/idf:release-v4.4
variables:
EXAMPLE_TARGETS: "esp32 esp32s2 esp32s3 esp32c3"
TEST_TARGETS: "esp32 esp32s3"
build_idf_latest:
extends: .build_template
image: espressif/idf:latest
variables:
EXAMPLE_TARGETS: "esp32 esp32s2 esp32s3 esp32c3"
TEST_TARGETS: "esp32 esp32s3"
# GNU Make based build system is not supported starting from IDF v5.0
SKIP_GNU_MAKE_BUILD: 1
build_docs:
stage: build
image: $ESP_DOCS_ENV_IMAGE
tags:
- build_docs
artifacts:
when: always
paths:
- docs/_build/*/*/*.txt
- docs/_build/*/*/html/*
expire_in: 4 days
# No cleaning when the artifacts
after_script: []
script:
- cd docs
- pip install -r requirements.txt
- build-docs -l en -t esp32
.deploy_docs_template:
stage: deploy
image: $ESP_DOCS_ENV_IMAGE
tags:
- deploy_docs
needs:
- build_docs
only:
changes:
- "docs/**/*"
script:
- source ${CI_PROJECT_DIR}/docs/utils.sh
- add_doc_server_ssh_keys $DOCS_DEPLOY_PRIVATEKEY $DOCS_DEPLOY_SERVER $DOCS_DEPLOY_SERVER_USER
- export GIT_VER=$(git describe --always)
- pip install -r ${CI_PROJECT_DIR}/docs/requirements.txt
- deploy-docs
deploy_docs_preview:
extends:
- .deploy_docs_template
except:
refs:
- master
variables:
TYPE: "preview"
DOCS_BUILD_DIR: "${CI_PROJECT_DIR}/docs/_build/"
DOCS_DEPLOY_PRIVATEKEY: "$DOCS_DEPLOY_KEY"
DOCS_DEPLOY_SERVER: "$DOCS_SERVER"
DOCS_DEPLOY_SERVER_USER: "$DOCS_SERVER_USER"
DOCS_DEPLOY_PATH: "$DOCS_PATH"
DOCS_DEPLOY_URL_BASE: "https://$DOCS_PREVIEW_SERVER_URL/docs/esp-modbus"
deploy_docs_production:
extends:
- .deploy_docs_template
only:
refs:
- master
variables:
TYPE: "production"
DOCS_BUILD_DIR: "${CI_PROJECT_DIR}/docs/_build/"
DOCS_DEPLOY_PRIVATEKEY: "$DOCS_PROD_DEPLOY_KEY"
DOCS_DEPLOY_SERVER: "$DOCS_PROD_SERVER"
DOCS_DEPLOY_SERVER_USER: "$DOCS_PROD_SERVER_USER"
DOCS_DEPLOY_PATH: "$DOCS_PROD_PATH"
DOCS_DEPLOY_URL_BASE: "https://docs.espressif.com/projects/esp-modbus"
push_master_to_github:
stage: deploy
tags:
- deploy
only:
- master
- /^release\/v/
- /^v\d+\.\d+(\.\d+)?($|-)/
when: on_success
script:
- git clone --depth 1 ${ESP_IDF_GIT} esp-idf
- *add_gh_key_remote
- esp-idf/tools/ci/push_to_github.sh
upload_to_component_manager:
stage: deploy
image: python:3.10-alpine
tags:
- deploy
rules:
- if: '$CI_COMMIT_BRANCH == "master"'
- if: '$FORCE_PUSH_COMPONENT == "1"'
script:
- pip install idf-component-manager
- export IDF_COMPONENT_API_TOKEN=${ESP_MODBUS_API_KEY}
- python -m idf_component_manager upload-component --allow-existing --name=esp-modbus --namespace=espressif

View File

@ -1,3 +1,5 @@
# The following five lines of boilerplate have to be in your project's
# CMakeLists in this exact order for cmake to work correctly
set(srcs
"common/esp_modbus_master.c"
"common/esp_modbus_slave.c"
@ -44,14 +46,20 @@ set(srcs
set(include_dirs common/include)
set(priv_include_dirs common port modbus modbus/ascii modbus/functions
modbus/rtu modbus/tcp modbus/include)
modbus/rtu modbus/tcp modbus/include)
list(APPEND priv_include_dirs serial_slave/port serial_slave/modbus_controller
serial_master/port serial_master/modbus_controller
tcp_slave/port tcp_slave/modbus_controller
tcp_master/port tcp_master/modbus_controller)
serial_master/port serial_master/modbus_controller
tcp_slave/port tcp_slave/modbus_controller
tcp_master/port tcp_master/modbus_controller)
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/freemodbus/" ${srcs})
add_prefix(include_dirs "${CMAKE_CURRENT_LIST_DIR}/freemodbus/" ${include_dirs})
add_prefix(priv_include_dirs "${CMAKE_CURRENT_LIST_DIR}/freemodbus/" ${priv_include_dirs})
message(STATUS "DEBUG: Use esp-modbus component folder: ${CMAKE_CURRENT_LIST_DIR}.")
idf_component_register(SRCS "${srcs}"
INCLUDE_DIRS "${include_dirs}"
PRIV_INCLUDE_DIRS "${priv_include_dirs}"
REQUIRES driver)
REQUIRES driver lwip)

92
build_all.sh Executable file
View File

@ -0,0 +1,92 @@
#!/bin/bash
#
# Build the test app and all examples from the examples directory.
# Expects TEST_TARGETS environment variables to be set.
# Each variable is the list of IDF_TARGET values to build the examples and
# the test app for, respectively.
#
# -----------------------------------------------------------------------------
# Safety settings (see https://gist.github.com/ilg-ul/383869cbb01f61a51c4d).
if [[ -n "${DEBUG_SHELL}" ]]
then
set -x # Activate the expand mode if DEBUG is anything but empty.
fi
if [[ -z "${EXAMPLE_TARGETS}" || -z "${TEST_TARGETS}" ]]
then
echo "EXAMPLE_TARGETS and TEST_TARGETS environment variables must be set before calling this script"
exit 1
fi
if [[ -z "${SKIP_GNU_MAKE_BUILD}" ]]
then
echo "SKIP_GNU_MAKE_BUILD not set, will build with GNU Make based build system as well."
export SKIP_GNU_MAKE_BUILD=0
fi
set -o errexit # Exit if command failed.
set -o pipefail # Exit if pipe failed.
set -o nounset # Exit if variable not set.
STARS='***************************************************'
# -----------------------------------------------------------------------------
die() {
echo "${1:-"Unknown Error"}" 1>&2
exit 1
}
# build_for_targets <target list>
# call this in the project directory
function build_for_targets
{
target_list="$1"
for IDF_TARGET in ${target_list}
do
export IDF_TARGET
if [[ "${IDF_TARGET}" = "esp32" ]] && [[ "${SKIP_GNU_MAKE_BUILD}" = "0" ]]
then
echo "${STARS}"
echo "Building in $PWD with Make"
# -j option will be set via MAKEFLAGS in .gitlab-ci.yml
# shellcheck disable=SC2015
make defconfig && make || die "Make build in ${PWD} has failed"
rm -rf build
fi
echo "${STARS}"
echo "Building in $PWD with CMake for ${IDF_TARGET}"
if [[ ${IDF_TARGET} != "esp32" ]]
then
# IDF 4.0 doesn't support idf.py set-target, and only supports esp32.
idf.py set-target "${IDF_TARGET}"
fi
idf.py build || die "CMake build in ${PWD} has failed for ${IDF_TARGET}"
idf.py fullclean
done
}
function build_folders
{
pushd "$1"
EXAMPLES=$(find . -maxdepth 1 -mindepth 1 -type d | cut -d '/' -f 2)
for NAME in ${EXAMPLES}
do
cd "${NAME}"
build_for_targets "$2"
cd ..
done
popd
}
echo "${STARS}"
# Build the tests
build_folders test/serial "${TEST_TARGETS}"
echo "${STARS}"
# Build the tests
build_folders test/tcp "${TEST_TARGETS}"
echo "${STARS}"

29
component.mk Normal file
View File

@ -0,0 +1,29 @@
INCLUDEDIRS := common/include
PRIV_INCLUDEDIRS := common port modbus modbus/ascii modbus/functions
PRIV_INCLUDEDIRS += modbus/rtu modbus/tcp modbus/include
PRIV_INCLUDEDIRS += serial_slave/port serial_slave/modbus_controller
PRIV_INCLUDEDIRS += serial_master/port serial_master/modbus_controller
PRIV_INCLUDEDIRS += tcp_slave/port tcp_slave/modbus_controller
PRIV_INCLUDEDIRS += tcp_master/port tcp_master/modbus_controller
SRCDIRS := common
SRCDIRS += modbus modbus/ascii modbus/functions modbus/rtu modbus/tcp
SRCDIRS += serial_slave/port serial_slave/modbus_controller
SRCDIRS += serial_master/port serial_master/modbus_controller
SRCDIRS += tcp_slave/port tcp_slave/modbus_controller
SRCDIRS += tcp_master/port tcp_master/modbus_controller
SRCDIRS += port
COMPONENT_PRIV_INCLUDEDIRS = $(addprefix freemodbus/, \
$(PRIV_INCLUDEDIRS) \
)
COMPONENT_SRCDIRS = $(addprefix freemodbus/, \
$(SRCDIRS) \
)
COMPONENT_ADD_INCLUDEDIRS = $(addprefix freemodbus/, \
$(INCLUDEDIRS) \
)

57
docs/Doxyfile Normal file
View File

@ -0,0 +1,57 @@
# This is Doxygen configuration file
#
# Doxygen provides over 260 configuration statements
# To make this file easier to follow,
# it contains only statements that are non-default
#
# NOTE:
# It is recommended not to change defaults unless specifically required
# Test any changes how they affect generated documentation
# Make sure that correct warnings are generated to flag issues with documented code
#
# For the complete list of configuration statements see:
# http://doxygen.nl/manual/config.html
PROJECT_NAME = "IDF Programming Guide"
## The 'INPUT' statement below is used as input by script 'gen-df-input.py'
## to automatically generate API reference list files heder_file.inc
## These files are placed in '_inc' directory
## and used to include in API reference documentation
INPUT = \
$(PROJECT_PATH)/freemodbus/common/include/esp_modbus_common.h \
$(PROJECT_PATH)/freemodbus/common/include/esp_modbus_slave.h \
$(PROJECT_PATH)/freemodbus/common/include/esp_modbus_master.h \
## Get warnings for functions that have no documentation for their parameters or return value
##
WARN_NO_PARAMDOC = YES
## Enable preprocessing and remove __attribute__(...) expressions from the INPUT files
##
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = \
$(ENV_DOXYGEN_DEFINES) \
## Do not complain about not having dot
##
HAVE_DOT = NO
## Generate XML that is required for Breathe
##
GENERATE_XML = YES
XML_OUTPUT = xml
GENERATE_HTML = NO
HAVE_DOT = NO
GENERATE_LATEX = NO
GENERATE_MAN = YES
GENERATE_RTF = NO
## Skip distracting progress messages
##
QUIET = YES

11
docs/README.md Normal file
View File

@ -0,0 +1,11 @@
# ESP-Modbus Library
This folder represents the official documentation for the ESP-Modbus library (**esp-modbus component documentation**). The Modbus is a data communications protocol originally published by Modicon (now Schneider Electric) in 1979 for use with its programmable logic controllers (PLCs). The Modbus has become a de facto standard communication protocol and is now a commonly available means of connecting industrial electronic devices. This library supports Modbus communication in the networks that are based on RS485 or Ethernet interfaces.
# Hosted Documentation
* English: https://docs.espressif.com/projects/esp-modbus/
# Building Documentation
The documentation is built using the python package `esp-docs`, which can be installed by running `pip install esp-docs`. Running `build-docs --help` will give a summary of available options. For more information see the `esp-docs` documentation at https://github.com/espressif/esp-docs/blob/master/README.md

260
docs/_static/404-page__en.svg vendored Normal file
View File

@ -0,0 +1,260 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 23.0.2, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1"
id="图层_1" xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 1000 580"
style="enable-background:new 0 0 1000 580;" xml:space="preserve">
<style type="text/css">
.st0{fill:#FFFFFF;}
.st1{fill:url(#polygon12_1_);}
.st2{fill:url(#polygon21_1_);}
.st3{opacity:0.27;fill:url(#circle42_1_);enable-background:new ;}
.st4{fill:url(#polygon58_1_);}
.st5{fill:#444444;stroke:#FFFFFF;stroke-width:0.834;stroke-miterlimit:10;}
.st6{fill:none;stroke:#FFFFFF;stroke-width:1.1033;stroke-miterlimit:10;}
.st7{fill:none;stroke:#353535;stroke-width:1.1033;stroke-miterlimit:10;}
.st8{fill:#FFFFFF;stroke:#444444;stroke-width:0.834;stroke-miterlimit:10;}
.st9{fill:#444444;stroke:#FFFFFF;stroke-width:0.8485;stroke-miterlimit:10;}
.st10{fill:none;stroke:#FFFFFF;stroke-width:1.1226;stroke-miterlimit:10;}
.st11{fill:none;stroke:#353535;stroke-width:1.1226;stroke-miterlimit:10;}
.st12{fill:#FFFFFF;stroke:#444444;stroke-width:0.8485;stroke-miterlimit:10;}
.st13{fill:#353535;}
.st14{fill:#444444;stroke:#FFFFFF;stroke-width:0.9321;stroke-miterlimit:10;}
.st15{fill:none;stroke:#FFFFFF;stroke-width:1.046;stroke-miterlimit:10;}
.st16{fill:none;stroke:#353535;stroke-width:1.046;stroke-miterlimit:10;}
.st17{fill:#FFFFFF;stroke:#444444;stroke-width:0.7906;stroke-miterlimit:10;}
.st18{opacity:0.59;fill:#E0E0E0;enable-background:new ;}
.st19{fill:#FFFFFF;stroke:#444444;stroke-width:2;stroke-miterlimit:10;}
.st20{fill:none;stroke:#444444;stroke-width:2;stroke-miterlimit:10;}
.st21{fill:none;stroke:#444444;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;}
.st22{enable-background:new ;}
.st23{fill:#4D4D4D;}
</style>
<rect id="BG_2_" x="-1" y="-9.5" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476" class="st0" width="1012.9" height="600.4">
</rect>
<linearGradient id="polygon12_1_" gradientUnits="userSpaceOnUse" x1="1014.7582" y1="90.2012" x2="1077.5918" y2="356.7023" gradientTransform="matrix(0.9556 0.295 -0.2974 0.9605 -400.3649 -336.724)">
<stop offset="4.835800e-02" style="stop-color:#9FA0A0"/>
<stop offset="0.5227" style="stop-color:#D7D8D8;stop-opacity:0.4381"/>
<stop offset="0.8926" style="stop-color:#FFFFFF;stop-opacity:0"/>
</linearGradient>
<polygon id="polygon12" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476" class="st1" points="608.7,371.9
511.9,134.7 490.9,134.1 430.7,377.1 ">
</polygon>
<linearGradient id="polygon21_1_" gradientUnits="userSpaceOnUse" x1="197.9478" y1="434.8972" x2="282.0578" y2="791.6389" gradientTransform="matrix(0.9983 -5.887031e-02 5.887031e-02 0.9983 28.0536 -430.7623)">
<stop offset="4.835800e-02" style="stop-color:#898989"/>
<stop offset="0.5874" style="stop-color:#D7D7D7;stop-opacity:0.3616"/>
<stop offset="0.8926" style="stop-color:#FFFFFF;stop-opacity:0"/>
</linearGradient>
<polygon id="polygon21" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476" class="st2" points="325.4,155.1
289.2,163.9 291.9,437 480.9,450.4 ">
</polygon>
<radialGradient id="circle42_1_" cx="836.3" cy="506.5986" r="65.7125" gradientTransform="matrix(1 0 0 1 12 -19.0997)" gradientUnits="userSpaceOnUse">
<stop offset="0" style="stop-color:#FFFFFF"/>
<stop offset="1" style="stop-color:#FFFFFF;stop-opacity:0"/>
</radialGradient>
<circle id="circle42" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476" class="st3" cx="848.3" cy="487.5" r="68.3">
</circle>
<linearGradient id="polygon58_1_" gradientUnits="userSpaceOnUse" x1="1863.538" y1="415.4688" x2="1929.7196" y2="696.1702" gradientTransform="matrix(0.8607 0.5092 -0.5092 0.8607 -635.7186 -1225.6498)">
<stop offset="4.835800e-02" style="stop-color:#898989"/>
<stop offset="0.5874" style="stop-color:#D7D7D7;stop-opacity:0.3616"/>
<stop offset="0.8926" style="stop-color:#FFFFFF;stop-opacity:0"/>
</linearGradient>
<polygon id="polygon58" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476" class="st4" points="547.4,383
763.1,428.2 713.7,163.4 683.8,156 ">
</polygon>
<g id="g94" transform="rotate(9.0573675,796.06564,263.99283)" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476">
<path id="path60" inkscape:connector-curvature="0" class="st5" d="M520,160.2l-75.8,10.4c-5.6,0.8-10.8-3.2-11.5-8.7l0,0
c-0.8-5.6,3.2-10.8,8.7-11.5l75.8-10.4c5.6-0.8,10.8,3.2,11.5,8.7l0,0C529.5,154.3,525.6,159.4,520,160.2L520,160.2z"/>
<ellipse id="circle62" transform="matrix(0.1574 -0.9875 0.9875 0.1574 220.2397 577.3303)" class="st6" cx="448.4" cy="159.6" rx="5.6" ry="5.6"/>
<ellipse id="circle64" transform="matrix(0.1574 -0.9875 0.9875 0.1574 241.8959 596.7076)" class="st6" cx="470.6" cy="156.6" rx="5.6" ry="5.6"/>
<ellipse id="circle66" transform="matrix(0.1574 -0.9875 0.9875 0.1574 304.0202 547.2599)" class="st7" cx="472.7" cy="95.5" rx="3.9" ry="3.9"/>
<ellipse id="circle68" transform="matrix(0.1574 -0.9875 0.9875 0.1574 263.9857 616.4264)" class="st6" cx="493.2" cy="153.5" rx="5.6" ry="5.6"/>
<ellipse id="circle70" transform="matrix(0.1574 -0.9875 0.9875 0.1574 285.6079 635.2634)" class="st6" cx="515.1" cy="150.3" rx="5.6" ry="5.6"/>
<path id="path72" inkscape:connector-curvature="0" class="st8" d="M510,139.5l-61.3,8.4l-0.4-2.8c-0.2-1.5,0.8-2.9,2.3-3.1
l55.7-7.7c1.5-0.2,2.9,0.8,3.1,2.3L510,139.5z"/>
<path id="path74" inkscape:connector-curvature="0" class="st8" d="M519.9,161.7L444.9,172l0.3,2.4c0.3,1.7,1.8,2.8,3.4,2.6
l69.1-9.5c1.7-0.3,2.8-1.8,2.6-3.4L519.9,161.7z"/>
<path id="path76" inkscape:connector-curvature="0" class="st7" d="M508.2,170.4l-50.5,6.9l0.4,3c0.2,1.3,1.5,2.3,2.8,2.2l45.5-6.3
c1.3-0.2,2.3-1.5,2.2-2.8L508.2,170.4z"/>
<path id="path78" inkscape:connector-curvature="0" class="st7" d="M499.5,133.7l-43.7,6l-1.8-13.2c-1-7.3,4.1-14,11.3-15l17.3-2.4
c7.3-1,14,4.1,15,11.3L499.5,133.7z"/>
<line id="line80" class="st7" x1="473.5" y1="100.6" x2="474.6" y2="109.1"/>
<line id="line82" class="st7" x1="471.6" y1="119.4" x2="464.5" y2="131.7"/>
<line id="line84" class="st7" x1="485.9" y1="117.9" x2="478.7" y2="130.2"/>
<path id="path86" inkscape:connector-curvature="0" class="st8" d="M470.7,182.8L467,193c-0.2,0.5,0.5,0.9,0.8,0.5l10.5-11.3
c0.3-0.3,0-0.9-0.4-0.8l-6.8,1C471,182.5,470.8,182.6,470.7,182.8z"/>
<path id="path88" inkscape:connector-curvature="0" class="st8" d="M460.7,184l-6.3,9.2c-0.3,0.5,0.3,1,0.8,0.7l12.8-10.1
c0.4-0.3,0.2-0.9-0.4-0.9l-6.6,0.9C460.9,183.9,460.8,184,460.7,184L460.7,184z"/>
<path id="path90" inkscape:connector-curvature="0" class="st8" d="M496.6,179l6.3,8.8c0.3,0.4-0.2,1-0.7,0.8l-13.2-8
c-0.4-0.3-0.3-0.8,0.2-0.9l6.8-0.8C496.3,178.8,496.5,178.9,496.6,179L496.6,179z"/>
<path id="path92" inkscape:connector-curvature="0" class="st8" d="M506.7,177.5l8.5,7.2c0.4,0.3,0,1.1-0.5,0.8l-15.1-6.3
c-0.5-0.2-0.4-0.9,0.1-0.9l6.6-0.9C506.4,177.4,506.5,177.4,506.7,177.5L506.7,177.5z"/>
</g>
<g id="g130" transform="translate(-131.09867,-443.26745)" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476">
<path id="path96" inkscape:connector-curvature="0" class="st9" d="M875,594.1l-76.7-13.2c-5.6-0.9-9.4-6.4-8.5-12l0,0
c0.9-5.6,6.4-9.4,12-8.5l76.7,13.2c5.6,0.9,9.4,6.4,8.5,12l0,0C885.9,591.3,880.6,595.1,875,594.1z"/>
<circle id="circle98" class="st10" cx="805.6" cy="571.5" r="5.7"/>
<circle id="circle100" class="st10" cx="828.2" cy="575.4" r="5.7"/>
<circle id="circle102" class="st11" cx="849" cy="516.8" r="4"/>
<circle id="circle104" class="st10" cx="851" cy="579.3" r="5.7"/>
<circle id="circle106" class="st10" cx="873.2" cy="583" r="5.7"/>
<path id="path108" inkscape:connector-curvature="0" class="st12" d="M871.6,570.9l-61.9-10.7l0.5-2.8c0.3-1.5,1.7-2.5,3.2-2.3
l56.4,9.8c1.5,0.3,2.5,1.7,2.3,3.2L871.6,570.9z"/>
<path id="path110" inkscape:connector-curvature="0" class="st12" d="M874.4,595.5l-76-13.2l-0.4,2.5c-0.3,1.7,0.8,3.3,2.5,3.6
l69.8,12c1.7,0.3,3.3-0.8,3.6-2.5L874.4,595.5z"/>
<path id="path112" inkscape:connector-curvature="0" class="st13" d="M860.3,600.3l-51.1-8.8l-0.5,3.1c-0.3,1.4,0.7,2.7,2.1,3l46,8
c1.4,0.3,2.7-0.7,3-2.1L860.3,600.3z"/>
<path id="path114" inkscape:connector-curvature="0" class="st11" d="M863.2,562.2l-44.2-7.6l2.3-13.3c1.3-7.3,8.3-12.3,15.6-11
l17.5,3.1c7.3,1.3,12.3,8.3,11,15.6L863.2,562.2z"/>
<line id="line116" class="st11" x1="848.1" y1="522.1" x2="846.6" y2="530.6"/>
<line id="line118" class="st11" x1="840.5" y1="539.7" x2="829.8" y2="549.5"/>
<line id="line120" class="st11" x1="854.8" y1="542.6" x2="844.2" y2="552.3"/>
<path id="path122" inkscape:connector-curvature="0" class="st12" d="M820.1,600.8l-6.8,8.7c-0.3,0.4,0.2,1,0.7,0.8l13.7-7.6
c0.4-0.3,0.3-0.8-0.2-0.9l-7-1.1C820.5,600.6,820.3,600.7,820.1,600.8L820.1,600.8z"/>
<path id="path124" inkscape:connector-curvature="0" class="st12" d="M810,599l-8.9,7c-0.4,0.3-0.1,1.1,0.5,0.8l15.5-5.9
c0.5-0.2,0.4-0.8-0.1-1l-6.6-1.2C810.3,598.8,810.1,598.9,810,599L810,599z"/>
<path id="path126" inkscape:connector-curvature="0" class="st12" d="M846.4,605.1l3.5,10.5c0.2,0.5-0.5,0.9-0.8,0.5l-10.4-11.8
c-0.3-0.3,0-0.9,0.5-0.8l6.9,1.3C846.3,604.9,846.4,605,846.4,605.1L846.4,605.1z"/>
<path id="path128" inkscape:connector-curvature="0" class="st12" d="M856.6,606.8l6,9.6c0.3,0.5-0.3,1-0.8,0.7l-12.7-10.7
c-0.4-0.3-0.1-1,0.4-0.8l6.6,1.2C856.4,606.6,856.5,606.7,856.6,606.8L856.6,606.8z"/>
</g>
<g id="g166" transform="translate(6.564267,-535.67492)" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476">
<path id="path132" inkscape:connector-curvature="0" class="st14" d="M331.5,670.9l-70.2,18.3c-5.1,1.3-10.4-1.8-11.7-6.9l0,0
c-1.3-5.1,1.8-10.4,6.9-11.7l70.2-18.3c5.1-1.3,10.4,1.8,11.7,6.9l0,0C339.7,664.2,336.7,669.6,331.5,670.9z"/>
<circle id="circle134" class="st15" cx="264.1" cy="678.3" r="5.3"/>
<circle id="circle136" class="st15" cx="284.7" cy="673" r="5.3"/>
<circle id="circle138" class="st16" cx="279.7" cy="615.2" r="3.7"/>
<circle id="circle140" class="st15" cx="305.5" cy="667.5" r="5.3"/>
<circle id="circle142" class="st15" cx="325.8" cy="662.1" r="5.3"/>
<path id="path144" inkscape:connector-curvature="0" class="st17" d="M319.7,652.5L263,667.3l-0.7-2.5c-0.4-1.4,0.5-2.8,1.9-3.2
l51.6-13.4c1.4-0.4,2.8,0.5,3.2,1.9L319.7,652.5z"/>
<path id="path146" inkscape:connector-curvature="0" class="st17" d="M331.5,672.3L262,690.4l0.6,2.2c0.4,1.6,2,2.5,3.5,2.1
l63.9-16.7c1.6-0.4,2.5-2,2.1-3.5L331.5,672.3z"/>
<path id="path148" inkscape:connector-curvature="0" class="st13" d="M321.5,681.8L274.8,694l0.7,2.8c0.4,1.3,1.7,2.1,2.9,1.7
l42.1-11c1.3-0.4,2.1-1.7,1.7-2.9L321.5,681.8z"/>
<path id="path150" inkscape:connector-curvature="0" class="st16" d="M309.3,648.2l-40.5,10.5l-3.2-12.2c-1.8-6.7,2.3-13.6,9-15.4
l16-4.2c6.7-1.8,13.6,2.3,15.4,9L309.3,648.2z"/>
<line id="line152" class="st16" x1="281" y1="620.1" x2="283.1" y2="627.9"/>
<line id="line154" class="st16" x1="281.4" y1="637.9" x2="276.1" y2="650.3"/>
<line id="line156" class="st16" x1="294.6" y1="634.9" x2="289.3" y2="647.3"/>
<path id="path158" inkscape:connector-curvature="0" class="st17" d="M287.6,697.6l-2.3,10.1c-0.1,0.5,0.6,0.8,0.8,0.4l8.7-11.7
c0.3-0.4-0.1-0.8-0.5-0.7l-6.3,1.8C287.8,697.3,287.6,697.4,287.6,697.6L287.6,697.6z"/>
<path id="path160" inkscape:connector-curvature="0" class="st17" d="M278.3,699.9l-4.8,9.3c-0.3,0.5,0.4,0.9,0.7,0.6l10.9-10.9
c0.4-0.4,0-0.9-0.5-0.8l-6.1,1.6C278.5,699.8,278.4,699.8,278.3,699.9L278.3,699.9z"/>
<path id="path162" inkscape:connector-curvature="0" class="st17" d="M311.6,691.2l7,7.6c0.4,0.4-0.1,0.9-0.6,0.7l-13.3-6.1
c-0.4-0.2-0.4-0.7,0.1-0.9l6.3-1.6C311.3,691,311.5,691.1,311.6,691.2z"/>
<path id="path164" inkscape:connector-curvature="0" class="st17" d="M320.8,688.7l8.8,5.8c0.5,0.3,0.1,1-0.4,0.8l-14.9-4.2
c-0.5-0.1-0.5-0.8,0-0.9l6.1-1.6C320.6,688.6,320.7,688.6,320.8,688.7z"/>
</g>
<path id="path168" inkscape:connector-curvature="0" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476" class="st18" d="
M241.1,524.1h-1c0.4-1.2,0.6-2.4,0.6-3.7c0-7-5.7-12.7-12.7-12.7h-3.3c-2.7,0-5.2,0.9-7.2,2.3c-1.2-0.8-2.7-1.3-4.3-1.3
c-0.7,0-1.4,0.1-2.1,0.3c-0.1-3.9-3.3-7.1-7.2-7.1h-0.3c-2.2,0-4.1,1-5.4,2.5l0,0c2.7-3.8,4.4-8.5,4.4-13.6
c0-13-10.6-23.5-23.5-23.5c-13,0-23.5,10.6-23.5,23.5c0,0.7,0,1.3,0.1,1.9c-2.9,0.3-5.7,1.3-8,2.9c-3.2-4.3-8.2-7.1-13.9-7.1l0,0
c-9.5,0-17.3,7.8-17.3,17.3c0,0.1,0,0.3,0,0.4c-1.8-0.9-3.7-1.5-5.9-1.5c-6.9,0-12.6,5.7-12.6,12.6c0,0.7,0.1,1.5,0.2,2.2H92
c-3,0-5.5,1.9-6.5,4.5h-9.9c-2.5,0-4.5,2-4.5,4.5s2,4.5,4.5,4.5h149.2h3.3h13.1c2.5,0,4.5-2,4.5-4.5
C245.6,526.1,243.6,524.1,241.1,524.1L241.1,524.1z"/>
<path id="path170" inkscape:connector-curvature="0" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476" class="st18" d="
M898.4,516.3h-0.9c0.3-1,0.5-2.1,0.5-3.3c0-6.2-5.1-11.3-11.3-11.3h-2.9c-2.4,0-4.6,0.8-6.4,2c-1.1-0.7-2.4-1.1-3.8-1.1
c-0.6,0-1.2,0.1-1.8,0.3c-0.1-3.5-2.9-6.3-6.4-6.3H865c-1.9,0-3.6,0.9-4.8,2.2l0,0c2.4-3.4,3.9-7.6,3.9-12
c0-11.5-9.4-20.9-20.9-20.9s-20.9,9.4-20.9,20.9c0,0.6,0,1.2,0.1,1.7c-2.6,0.2-5,1.2-7.1,2.6c-2.8-3.8-7.3-6.3-12.3-6.3l0,0
c-8.5,0-15.4,6.9-15.4,15.4c0,0.1,0,0.2,0,0.4c-1.6-0.8-3.3-1.4-5.2-1.4c-6.2,0-11.2,5-11.2,11.2c0,0.7,0.1,1.3,0.2,1.9h-5.5
c-2.6,0-4.9,1.7-5.8,4h-8.8c-2.2,0-4,1.8-4,4s1.8,4,4,4h132.5h2.9h11.6c2.2,0,4-1.8,4-4C902.4,518.1,900.6,516.3,898.4,516.3
L898.4,516.3z"/>
<g id="g184" transform="translate(10.641067,-115.56078)" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476">
<g id="g178">
<path id="path172" inkscape:connector-curvature="0" class="st19" d="M149.5,586c2.4,4.6,6.2,8.3,10.8,10.8c3.6,1.9,7.6,3,11.9,3
c14.2,0,25.7-11.5,25.7-25.7c0-4.3-1.1-8.4-3-11.9c-2.4-4.6-6.2-8.3-10.8-10.8c-3.6-1.9-7.6-3-11.9-3c-14.2,0-25.7,11.5-25.7,25.7
C146.6,578.4,147.7,582.4,149.5,586z"/>
<path id="path174" inkscape:connector-curvature="0" class="st18" d="M194.1,562.5c-2.3-4.4-6-8.1-10.4-10.4
c-3.4-1.8-7.4-2.9-11.5-2.9c-9.5,0-17.7,5.3-21.8,13.1c4-2.8,8.9-4.4,14.1-4.4c4.2,0,8.1,1,11.5,2.9c4.4,2.3,8.1,6,10.4,10.4
c1.8,3.4,2.9,7.4,2.9,11.5c0,4.2-1.1,8.2-2.9,11.7c6.4-4.5,10.6-11.9,10.6-20.3C197,569.8,196,565.9,194.1,562.5L194.1,562.5z"/>
<path id="path176" inkscape:connector-curvature="0" class="st20" d="M149.5,586c-7.7,10-11.6,17.8-9.3,20.1s10.1-1.6,20.1-9.3
c5.6-4.4,12-9.9,18.3-16.3c6.4-6.4,11.9-12.7,16.3-18.3c7.7-10,11.6-17.8,9.3-20.1s-10.1,1.6-20.1,9.3"/>
</g>
<path id="path180" inkscape:connector-curvature="0" class="st21" d="M154,566.3c0.5-1.2,1.1-2.3,1.8-3.4c0.7-1.1,1.5-2,2.4-2.9
s1.9-1.7,2.9-2.4c1.1-0.7,2.2-1.3,3.4-1.8s2.4-0.9,3.7-1.2s2.6-0.4,4-0.4"/>
<path id="path182" inkscape:connector-curvature="0" class="st21" d="M152.4,574.1c0-1.4,0.1-2.7,0.4-4"/>
</g>
<g id="g192" transform="translate(-0.2304,235.22748)" inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476">
<polygon id="polygon186" class="st19" points="843.4,216.1 850,204.1 856.6,216.1 868.7,222.7 856.6,229.3 850,241.4 843.4,229.3
831.4,222.7 "/>
<polygon id="polygon188" class="st19" points="868.4,248.1 873.4,239.1 878.3,248.1 887.4,253.1 878.3,258 873.4,267.1 868.4,258
859.4,253.1 "/>
<polygon id="polygon190" class="st19" points="884.1,207.8 887.4,201.7 890.7,207.8 896.7,211.1 890.7,214.4 887.4,220.4
884.1,214.4 878,211.1 "/>
</g>
<g inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476" class="st22">
<path class="st23" d="M332.8,346.5l65.5-89.9h24.1v89.6h17.5v20.8h-17.5v28.8h-27.9v-28.8h-61.7V346.5z M358.9,346.1h35.6v-34.4
c0-5.9,0.2-11.6,0.8-17h-0.9c-4.9,7.8-8,12.7-9.4,14.6L358.9,346.1z"/>
<path class="st23" d="M450.4,326.2c0-11.1,1.1-21,3.2-29.6c2.1-8.6,4.9-15.5,8.2-20.7c3.3-5.2,7.3-9.4,11.9-12.8
c4.6-3.3,9.1-5.6,13.5-6.8c4.4-1.2,9-1.8,13.7-1.8c16.3,0,28.8,6.4,37.5,19.1c8.7,12.7,13.1,30.3,13.1,52.6
c0,22.1-4.4,39.6-13.1,52.4c-8.7,12.8-21.2,19.2-37.4,19.2c-4.5,0-8.9-0.6-13.2-1.7c-4.3-1.1-8.7-3.3-13.4-6.6
c-4.6-3.2-8.7-7.4-12.1-12.5c-3.5-5.1-6.3-12-8.6-20.8C451.5,347.6,450.4,337.6,450.4,326.2z M479.4,326.2
c0,33.8,7.2,50.7,21.6,50.7c14.2,0,21.3-16.9,21.3-50.7c0-33.8-7.2-50.7-21.5-50.7C486.5,275.5,479.4,292.4,479.4,326.2z"/>
<path class="st23" d="M562.4,346.5l65.5-89.9h24.1v89.6h17.5v20.8h-17.5v28.8h-27.8v-28.8h-61.7V346.5z M588.5,346.1h35.6v-34.4
c0-5.9,0.2-11.6,0.8-17h-0.9c-4.9,7.8-8,12.7-9.4,14.6L588.5,346.1z"/>
</g>
<g inkscape:export-xdpi="96.009476" inkscape:export-ydpi="96.009476">
<path class="st23" d="M435.8,197.2c0-6.4,1.6-11.6,4.9-15.5c3.2-3.9,7.5-5.9,12.8-5.9c5.3,0,9.6,2,12.8,5.9
c3.2,3.9,4.8,9.1,4.8,15.5c0,6.4-1.6,11.6-4.8,15.4c-3.2,3.9-7.5,5.8-12.8,5.8c-5.3,0-9.6-1.9-12.8-5.8
C437.5,208.8,435.8,203.6,435.8,197.2z M443.6,197.2c0,4.6,0.9,8.2,2.6,10.8c1.7,2.7,4.2,4,7.3,4c3.1,0,5.5-1.3,7.2-4
c1.7-2.7,2.6-6.3,2.6-10.9c0-4.6-0.9-8.2-2.6-10.8c-1.7-2.7-4.1-4-7.2-4c-3.1,0-5.5,1.3-7.2,4C444.5,189,443.6,192.7,443.6,197.2z"
/>
<path class="st23" d="M474.8,202.7c0-4.4,1.2-8.2,3.5-11.2c2.3-3.1,5.8-4.6,10.4-4.6c3.1,0,5.7,0.8,7.9,2.3
c2.2,1.6,3.7,3.5,4.6,5.8c0.9,2.3,1.4,4.9,1.4,7.7c0,1.4-0.1,2.7-0.4,4c-0.2,1.3-0.7,2.7-1.3,4.2c-0.7,1.5-1.5,2.7-2.5,3.8
c-1,1.1-2.3,2-4,2.7c-1.7,0.7-3.6,1.1-5.7,1.1c-2.1,0-4-0.3-5.6-1c-1.7-0.7-3-1.5-4-2.6c-1-1.1-1.8-2.3-2.5-3.7
c-0.7-1.4-1.1-2.8-1.4-4.2C475,205.6,474.8,204.1,474.8,202.7z M482.3,202.7c0,3.4,0.6,5.8,1.9,7.3c1.3,1.5,2.8,2.3,4.5,2.3
c1.7,0,3.1-0.8,4.5-2.3c1.3-1.5,2-4,2-7.3c0-3.4-0.7-5.8-2-7.4c-1.3-1.5-2.8-2.3-4.5-2.3c-1.7,0-3.2,0.8-4.5,2.3
C482.9,196.8,482.3,199.3,482.3,202.7z"/>
<path class="st23" d="M507.9,229.5v-41.8h6.9v3.3c1.9-2.8,4.3-4.3,7.4-4.3c3.6,0,6.7,1.4,9.1,4.3c2.4,2.8,3.6,6.7,3.6,11.5
c0,2.8-0.4,5.2-1.2,7.3c-0.8,2.1-1.8,3.8-3.1,5c-1.3,1.2-2.6,2.1-4.1,2.7c-1.4,0.6-2.9,0.9-4.4,0.9c-1.8,0-3.3-0.4-4.5-1.2
c-1.2-0.8-2.1-1.7-2.7-2.7v14.9H507.9z M515,202.6c0,3,0.5,5.3,1.6,7.1c1.1,1.7,2.6,2.6,4.6,2.6c1.9,0,3.4-0.8,4.6-2.5
c1.1-1.7,1.7-4.1,1.7-7.2c0-3-0.6-5.3-1.7-7c-1.1-1.7-2.7-2.6-4.6-2.6c-2,0-3.5,0.9-4.6,2.7C515.6,197.4,515,199.8,515,202.6z"/>
<path class="st23" d="M537.8,211.3l5.1-3c2,3,4.6,4.5,7.9,4.5c1.5,0,2.6-0.3,3.4-0.9c0.8-0.6,1.2-1.4,1.2-2.3c0-0.3,0-0.6-0.1-0.8
c-0.1-0.3-0.2-0.5-0.4-0.7c-0.2-0.2-0.4-0.4-0.6-0.6c-0.2-0.2-0.4-0.4-0.8-0.6c-0.4-0.2-0.7-0.4-0.9-0.5c-0.2-0.1-0.6-0.3-1.1-0.5
c-0.5-0.2-0.9-0.3-1.2-0.4c-0.3-0.1-0.7-0.2-1.3-0.4c-0.6-0.2-1-0.3-1.3-0.4c-2.6-0.8-4.6-1.9-6.2-3.2c-1.6-1.3-2.3-3.2-2.3-5.7
c0-2.7,1.1-4.8,3.4-6.4c2.3-1.6,5-2.4,8.3-2.4c2.5,0,4.8,0.6,7,1.9c2.2,1.3,3.8,3,4.9,5l-4.8,2.9c-2.1-2.7-4.5-4-7.1-4
c-1.4,0-2.5,0.3-3.2,0.8c-0.8,0.6-1.1,1.3-1.1,2.2c0,0.3,0,0.6,0.1,0.9c0.1,0.3,0.2,0.5,0.4,0.8c0.2,0.2,0.4,0.4,0.6,0.6
c0.2,0.2,0.5,0.4,0.8,0.6c0.4,0.2,0.7,0.4,0.9,0.5c0.3,0.1,0.6,0.3,1.1,0.4c0.5,0.2,0.8,0.3,1.1,0.4c0.3,0.1,0.7,0.2,1.2,0.4
c0.5,0.2,0.9,0.3,1.2,0.4c5.9,2,8.9,4.9,8.9,8.9c0,2.5-1,4.6-3.1,6.4c-2.1,1.7-5,2.6-8.8,2.6c-2.9,0-5.6-0.7-7.9-2
S539.1,213.4,537.8,211.3z"/>
<path class="st23" d="M568.2,217.7v-8.3h9.3v8.3H568.2z M576.4,205.9h-7l-0.5-29.4h8L576.4,205.9z"/>
</g>
<g>
<path class="st23" d="M333.4,464.8v-27.1h12c3.2,0,5.7,0.8,7.5,2.3c1.8,1.5,2.7,3.6,2.7,6.1c0,2.6-0.9,4.6-2.8,6.1
s-4.3,2.2-7.4,2.2H339v10.3H333.4z M339,450.2h5.7c1.6,0,2.9-0.4,3.8-1.1c0.9-0.7,1.4-1.7,1.4-3c0-1.3-0.4-2.3-1.3-3
c-0.9-0.7-2.2-1.1-3.8-1.1H339V450.2z"/>
<path class="st23" d="M354.1,464.8l10.8-27.1h6l10.8,27.1h-5.9l-2.3-6.4h-11.2l-2.3,6.4H354.1z M363.7,454.4h8.3l-2.2-6.4
c-0.5-1.5-1.1-3.3-1.8-5.5h-0.2c-0.2,0.7-0.5,1.6-0.9,2.8c-0.4,1.2-0.7,2.1-0.9,2.6L363.7,454.4z"/>
<path class="st23" d="M383,451.2c0-4.1,1.3-7.5,3.8-10.2c2.5-2.6,5.9-4,10-4c1.3,0,2.5,0.2,3.7,0.5c1.2,0.3,2.1,0.7,2.9,1.2
c0.8,0.5,1.5,1,2.2,1.7c0.7,0.6,1.2,1.2,1.5,1.7c0.4,0.5,0.7,1,0.9,1.5l-4.8,1.4c-0.4-0.5-0.8-1-1.1-1.3c-0.3-0.3-0.7-0.7-1.2-1.2
s-1.1-0.8-1.8-1s-1.4-0.3-2.3-0.3c-2.5,0-4.5,0.9-5.9,2.7c-1.4,1.8-2.1,4.2-2.1,7.2c0,3,0.7,5.4,2.2,7.2c1.5,1.8,3.3,2.7,5.6,2.7
c2,0,3.5-0.5,4.6-1.4c1.1-1,1.8-2.2,2-3.8c0.1-1.3,0.2-2,0.2-2.1h-7.1v-4.3h12.5v15.3H405l-0.5-2.4c-1.7,2-4.4,3-8,3
c-3.8,0-7-1.3-9.6-3.8C384.3,459,383,455.5,383,451.2z"/>
<path class="st23" d="M413.9,464.8v-27.1H434v4.3h-14.6v6.7h13.1v4.2h-13.1v7.6h14.9v4.3H413.9z"/>
<path class="st23" d="M448.1,464.8v-27.1h5.8l8.5,14.1l3.3,5.5h0.2c-0.4-2.6-0.6-5.2-0.6-7.9v-11.7h5.6v27.1h-5.8l-8.5-13.8
l-3.3-5.7h-0.2c0.4,2.5,0.6,5.1,0.6,7.9v11.6H448.1z"/>
<path class="st23" d="M475.4,451.3c0-4.3,1.2-7.7,3.6-10.3c2.4-2.6,5.6-3.9,9.5-3.9c4,0,7.1,1.3,9.5,3.9c2.4,2.6,3.6,6,3.6,10.3
c0,4.3-1.2,7.7-3.6,10.3c-2.4,2.6-5.6,3.9-9.5,3.9s-7.1-1.3-9.5-3.9C476.6,458.9,475.4,455.5,475.4,451.3z M481.2,451.3
c0,3,0.6,5.4,1.9,7.2c1.3,1.8,3.1,2.7,5.4,2.7c2.3,0,4.1-0.9,5.4-2.6c1.3-1.8,1.9-4.2,1.9-7.2c0-3-0.6-5.4-1.9-7.2
c-1.3-1.8-3.1-2.7-5.4-2.7c-2.3,0-4.1,0.9-5.4,2.7C481.9,445.8,481.2,448.2,481.2,451.3z"/>
<path class="st23" d="M502.7,442v-4.3h22.7v4.3h-8.6v22.8h-5.6V442H502.7z"/>
<path class="st23" d="M538.3,464.8v-27.1h19.6v4.3h-13.9v7.1h12.5v4.2h-12.5v11.4H538.3z"/>
<path class="st23" d="M559.9,451.3c0-4.3,1.2-7.7,3.6-10.3c2.4-2.6,5.6-3.9,9.5-3.9c4,0,7.1,1.3,9.5,3.9c2.4,2.6,3.6,6,3.6,10.3
c0,4.3-1.2,7.7-3.6,10.3c-2.4,2.6-5.6,3.9-9.5,3.9c-4,0-7.1-1.3-9.5-3.9C561.1,458.9,559.9,455.5,559.9,451.3z M565.7,451.3
c0,3,0.6,5.4,1.9,7.2c1.3,1.8,3.1,2.7,5.4,2.7c2.3,0,4.1-0.9,5.4-2.6c1.3-1.8,1.9-4.2,1.9-7.2c0-3-0.6-5.4-1.9-7.2
c-1.3-1.8-3.1-2.7-5.4-2.7c-2.3,0-4.1,0.9-5.4,2.7C566.3,445.8,565.7,448.2,565.7,451.3z"/>
<path class="st23" d="M590.5,454.6v-16.9h5.6v16.9c0,4.4,1.9,6.5,5.7,6.5c3.8,0,5.7-2.2,5.7-6.5v-16.9h5.6v16.9
c0,3.5-0.9,6.2-2.8,8c-1.9,1.9-4.7,2.8-8.5,2.8c-3.6,0-6.4-0.9-8.4-2.7S590.5,458.2,590.5,454.6z"/>
<path class="st23" d="M619.3,464.8v-27.1h5.8l8.5,14.1l3.3,5.5h0.2c-0.4-2.6-0.6-5.2-0.6-7.9v-11.7h5.6v27.1h-5.8l-8.5-13.8
l-3.3-5.7h-0.2c0.4,2.5,0.6,5.1,0.6,7.9v11.6H619.3z"/>
<path class="st23" d="M648.3,464.8v-27.1h9.2c4.6,0,8.2,1.2,10.7,3.5s3.7,5.7,3.7,10c0,1.4-0.1,2.8-0.4,4c-0.3,1.3-0.8,2.5-1.4,3.7
c-0.7,1.2-1.6,2.2-2.6,3c-1.1,0.8-2.4,1.5-4.1,2c-1.7,0.5-3.6,0.8-5.8,0.8H648.3z M653.9,460.5h3c3,0,5.3-0.7,6.8-2.2
c1.5-1.5,2.3-3.8,2.3-7.1c0-3.3-0.8-5.7-2.4-7.2s-3.8-2.1-6.7-2.1h-3.1V460.5z"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 22 KiB

BIN
docs/_static/modbus-data-mapping.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

BIN
docs/_static/modbus-segment.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

20
docs/conf_common.py Normal file
View File

@ -0,0 +1,20 @@
from esp_docs.conf_docs import * # noqa: F403,F401
extensions += ['sphinx_copybutton',
# Needed as a trigger for running doxygen
'esp_docs.esp_extensions.dummy_build_system',
'esp_docs.esp_extensions.run_doxygen'
]
# link roles config
github_repo = 'espressif/esp-modbus'
# context used by sphinx_idf_theme
html_context['github_user'] = 'espressif'
html_context['github_repo'] = 'esp-modbus'
# Extra options required by sphinx_idf_theme
project_slug = 'esp-modbus'
idf_targets = ['esp32', 'esp32s2', 'esp32c3']
languages = ['en']

View File

@ -1,662 +0,0 @@
ESP-Modbus
==========
Overview
--------
The Modbus serial communication protocol is de facto standard protocol widely used to connect industrial electronic devices. Modbus allows communication among many devices connected to the same network, for example, a system that measures temperature and humidity and communicates the results to a computer. The Modbus protocol uses several types of data: Holding Registers, Input Registers, Coils (single bit output), Discrete Inputs. Versions of the Modbus protocol exist for serial port and for Ethernet and other protocols that support the Internet protocol suite.
There are many variants of Modbus protocols, some of them are:
* ``Modbus RTU`` — This is used in serial communication and makes use of a compact, binary representation of the data for protocol communication. The RTU format follows the commands/data with a cyclic redundancy check checksum as an error check mechanism to ensure the reliability of data. Modbus RTU is the most common implementation available for Modbus. A Modbus RTU message must be transmitted continuously without inter-character hesitations. Modbus messages are framed (separated) by idle (silent) periods. The RS-485 interface communication is usually used for this type.
* ``Modbus ASCII`` — This is used in serial communication and makes use of ASCII characters for protocol communication. The ASCII format uses a longitudinal redundancy check checksum. Modbus ASCII messages are framed by leading colon (":") and trailing newline (CR/LF).
* ``Modbus TCP/IP or Modbus TCP`` — This is a Modbus variant used for communications over TCP/IP networks, connecting over port 502. It does not require a checksum calculation, as lower layers already provide checksum protection.
The following document (and included code snippets) requires some familiarity with the Modbus protocol. Refer to the Modbus Organization's with protocol specifications for specifics.
Messaging Model And Data Mapping
--------------------------------
Modbus is an application protocol that defines rules for messaging structure and data organization that are independent of the data transmission medium. Traditional serial Modbus is a register-based protocol that defines message transactions that occur between master(s) and slave devices (multiple masters are allowed on using Modbus TCP/IP). The slave devices listen for communication from the master and simply respond as instructed. The master(s) always controls communication and may communicate directly to one slave, or all connected slaves, but the slaves cannot communicate directly with each other.
.. figure:: ../../../_static/modbus-segment.png
:align: center
:scale: 80%
:alt: Modbus segment diagram
:figclass: align-center
Modbus segment diagram
.. note:: It is assumed that the number of slaves and their register maps are known by the Modbus master before the start of stack.
The register map of each slave device is usually part of its device manual. A Slave device usually permits configuration of its short slave address and communication options that are used within the device's network segment.
The Modbus protocol allows devices to map data to four types of registers (Holding, Input, Discrete, Coil). The figure below illustrates an example mapping of a device's data to the four types of registers.
.. figure:: ../../../_static/modbus-data-mapping.png
:align: center
:scale: 80%
:alt: Modbus data mapping
:figclass: align-center
Modbus data mapping
The following sections give an overview of how to use the ESP_Modbus component found under `components/freemodbus`. The sections cover initialization of a Modbus port, and the setup a master or slave device accordingly:
- :ref:`modbus_api_port_initialization`
- :ref:`modbus_api_slave_overview`
- :ref:`modbus_api_master_overview`
.. _modbus_api_port_initialization:
Modbus Port Initialization
^^^^^^^^^^^^^^^^^^^^^^^^^^
The ESP_Modbus supports Modbus SERIAL and TCP ports and a port must be initialized before calling any other Modbus API. The functions below are used to create and then initialize Modbus controller interface (either master or slave) over a particular transmission medium (either Serial or TCP/IP):
- :cpp:func:`mbc_slave_init`
- :cpp:func:`mbc_master_init`
- :cpp:func:`mbc_slave_init_tcp`
- :cpp:func:`mbc_master_init_tcp`
The API call uses the first parameter to recognize the type of port being initialized. Supported enumeration for different ports: :cpp:enumerator:`MB_PORT_SERIAL_MASTER`, :cpp:enumerator:`MB_PORT_SERIAL_SLAVE` accordingly.
The parameters :cpp:enumerator:`MB_PORT_TCP_MASTER`, :cpp:enumerator:`MB_PORT_TCP_SLAVE` are reserved for internal usage.
.. code:: c
void* master_handler = NULL; // Pointer to allocate interface structure
// Initialization of Modbus master for serial port
esp_err_t err = mbc_master_init(MB_PORT_SERIAL_MASTER, &master_handler);
if (master_handler == NULL || err != ESP_OK) {
ESP_LOGE(TAG, "mb controller initialization fail.");
}
This example code to initialize slave port:
.. code:: c
void* slave_handler = NULL; // Pointer to allocate interface structure
// Initialization of Modbus slave for TCP
esp_err_t err = mbc_slave_init_tcp(&slave_handler);
if (slave_handler == NULL || err != ESP_OK) {
// Error handling is performed here
ESP_LOGE(TAG, "mb controller initialization fail.");
}
.. _modbus_api_master_overview:
Modbus Master API Overview
--------------------------
The following overview describes how to setup Modbus master communication. The overview reflects a typical programming workflow and is broken down into the sections provided below:
1. :ref:`modbus_api_port_initialization` - Initialization of Modbus controller interface for the selected port.
2. :ref:`modbus_api_master_configure_descriptor` - Configure data descriptors to access slave parameters.
3. :ref:`modbus_api_master_setup_communication_options` - Allows to setup communication options for selected port.
4. :ref:`modbus_api_master_start_communication` - Start stack and sending / receiving data.
5. :ref:`modbus_api_master_destroy` - Destroy Modbus controller and its resources.
.. _modbus_api_master_configure_descriptor:
Configuring Master Data Access
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The architectural approach of ESP_Modbus includes one level above standard Modbus IO driver.
The additional layer is called Modbus controller and its goal is to add an abstraction such as CID - characteristic identifier.
The CID is linked to a corresponding Modbus registers through the table called Data Dictionary and represents device physical parameter (such as temperature, humidity, etc.) in specific Modbus slave device.
This approach allows the upper layer (e.g., MESH or MQTT) to be isolated from Modbus specifics thus simplify Modbus integration with other protocols/networks.
The Data Dictionary is the list in the Modbus master which shall be defined by user to link each CID to its corresponding Modbus registers representation using Register Mapping table of the Modbus slave being used.
Each element in this data dictionary is of type :cpp:type:`mb_parameter_descriptor_t` and represents the description of one physical characteristic:
.. list-table:: Table 1 Modbus master Data Dictionary description
:widths: 8 10 82
:header-rows: 1
* - Field
- Description
- Detailed information
* - ``cid``
- Characteristic ID
- The identifier of characteristic (must be unique).
* - ``param_key``
- Characteristic Name
- String description of the characteristic.
* - ``param_units``
- Characteristic Units
- Physical Units of the characteristic.
* - ``mb_slave_addr``
- Modbus Slave Address
- The short address of the device with correspond parameter UID.
* - ``mb_param_type``
- Modbus Register Type
- Type of Modbus register area.
:cpp:enumerator:`MB_PARAM_INPUT`, :cpp:enumerator:`MB_PARAM_HOLDING`, :cpp:enumerator:`MB_PARAM_COIL`, :cpp:enumerator:`MB_PARAM_DISCRETE` - represents Input , Holding, Coil and Discrete input register area accordingly;
* - ``mb_reg_start``
- Modbus Register Start
- Relative register address of the characteristic in the register area.
* - ``mb_size``
- Modbus Register Size
- Length of characteristic in registers.
* - ``param_offset``
- Instance Offset
- Offset to instance of the characteristic in bytes. It is used to calculate the absolute address to the characteristic in the storage structure.
It is optional field and can be set to zero if the parameter is not used in the application.
* - ``param_type``
- Data Type
- Specifies type of the characteristic.
:cpp:enumerator:`PARAM_TYPE_U8`, :cpp:enumerator:`PARAM_TYPE_U16`, :cpp:enumerator:`PARAM_TYPE_U32` - Unsigned integer 8/16/32 bit type;
:cpp:enumerator:`PARAM_TYPE_FLOAT` - IEEE754 floating point format;
:cpp:enumerator:`PARAM_TYPE_ASCII` - ASCII string or binary data;
* - ``param_size``
- Data Size
- The storage size of the characteristic (bytes).
* - ``param_opts``
- Parameter Options
- Limits, options of characteristic used during processing of alarm in user application (optional)
* - ``access``
- Parameter access type
- Can be used in user application to define the behavior of the characteristic during processing of data in user application;
:cpp:enumerator:`PAR_PERMS_READ_WRITE_TRIGGER`, :cpp:enumerator:`PAR_PERMS_READ`, :cpp:enumerator:`PAR_PERMS_READ_WRITE_TRIGGER`;
.. note:: The ``cid`` and ``param_key`` have to be unique. Please use the prefix to the parameter key if you have several similar parameters in your register map table.
.. list-table:: Table 2 Example Register mapping table of Modbus slave
:widths: 5 5 2 10 5 5 68
:header-rows: 1
* - CID
- Register
- Length
- Range
- Type
- Units
- Description
* - 0
- 30000
- 4
- MAX_UINT
- U32
- Not defined
- Serial number of device (4 bytes) read-only
* - 1
- 30002
- 2
- MAX_UINT
- U16
- Not defined
- Software version (4 bytes) read-only
* - 2
- 40000
- 4
- -20..40
- FLOAT
- DegC
- Room temperature in DegC. Writing a temperature value to this register for single point calibration.
.. code:: c
// Enumeration of modbus slave addresses accessed by master device
enum {
MB_DEVICE_ADDR1 = 1,
MB_DEVICE_ADDR2,
MB_SLAVE_COUNT
};
// Enumeration of all supported CIDs for device
enum {
CID_SER_NUM1 = 0,
CID_SW_VER1,
CID_TEMP_DATA_1,
CID_SER_NUM2,
CID_SW_VER2,
CID_TEMP_DATA_2
};
// Example Data Dictionary for Modbus parameters in 2 slaves in the segment
mb_parameter_descriptor_t device_parameters[] = {
// CID, Name, Units, Modbus addr, register type, Modbus Reg Start Addr, Modbus Reg read length,
// Instance offset (NA), Instance type, Instance length (bytes), Options (NA), Permissions
{ CID_SER_NUM1, STR("Serial_number_1"), STR("--"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 0, 2,
0, PARAM_TYPE_U32, 4, OPTS( 0,0,0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_SW_VER1, STR("Software_version_1"), STR("--"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 2, 1,
0, PARAM_TYPE_U16, 2, OPTS( 0,0,0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_TEMP_DATA_1, STR("Temperature_1"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 0, 2,
0, PARAM_TYPE_FLOAT, 4, OPTS( 16, 30, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_SER_NUM2, STR("Serial_number_2"), STR("--"), MB_DEVICE_ADDR2, MB_PARAM_INPUT, 0, 2,
0, PARAM_TYPE_U32, 4, OPTS( 0,0,0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_SW_VER2, STR("Software_version_2"), STR("--"), MB_DEVICE_ADDR2, MB_PARAM_INPUT, 2, 1,
0, PARAM_TYPE_U16, 2, OPTS( 0,0,0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_TEMP_DATA_2, STR("Temperature_2"), STR("C"), MB_DEVICE_ADDR2, MB_PARAM_HOLDING, 0, 2,
0, PARAM_TYPE_FLOAT, 4, OPTS( 20, 30, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
};
// Calculate number of parameters in the table
uint16_t num_device_parameters = (sizeof(device_parameters) / sizeof(device_parameters[0]));
During initialization of the Modbus stack, a pointer to the Data Dictionary (called descriptor) must be provided as the parameter of the function below.
:cpp:func:`mbc_master_set_descriptor`: Initialization of master descriptor.
.. code:: c
ESP_ERROR_CHECK(mbc_master_set_descriptor(&device_parameters[0], num_device_parameters));
The Data Dictionary can be initialized from SD card, MQTT or other source before start of stack. Once the initialization and setup is done, the Modbus controller allows the reading of complex parameters from any slave included in descriptor table using its CID.
.. _modbus_api_master_setup_communication_options:
Master Communication Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Calling the setup function allows for specific communication options to be defined for port.
:cpp:func:`mbc_master_setup`
The communication structure provided as a parameter is different for serial and TCP communication mode.
Example setup for serial port:
.. code:: c
mb_communication_info_t comm_info = {
.port = MB_PORT_NUM, // Serial port number
.mode = MB_MODE_RTU, // Modbus mode of communication (MB_MODE_RTU or MB_MODE_ASCII)
.baudrate = 9600, // Modbus communication baud rate
.parity = MB_PARITY_NONE // parity option for serial port
};
ESP_ERROR_CHECK(mbc_master_setup((void*)&comm_info));
Modbus master TCP port requires additional definition of IP address table where number of addresses should be equal to number of unique slave addresses in master Modbus Data Dictionary:
The order of IP address string corresponds to short slave address in the Data Dictionary.
.. code:: c
#define MB_SLAVE_COUNT 2 // Number of slaves in the segment being accessed (as defined in Data Dictionary)
char* slave_ip_address_table[MB_SLAVE_COUNT] = {
"192.168.1.2", // Address corresponds to UID1 and set to predefined value by user
"192.168.1.3", // corresponds to UID2 in the segment
NULL // end of table
};
mb_communication_info_t comm_info = {
.ip_port = MB_TCP_PORT, // Modbus TCP port number (default = 502)
.ip_addr_type = MB_IPV4, // version of IP protocol
.ip_mode = MB_MODE_TCP, // Port communication mode
.ip_addr = (void*)slave_ip_address_table, // assign table of IP addresses
.ip_netif_ptr = esp_netif_ptr // esp_netif_ptr pointer to the corresponding network interface
};
ESP_ERROR_CHECK(mbc_master_setup((void*)&comm_info));
.. note:: Refer to :doc:`esp_netif component <../network/esp_netif>` for more information about network interface initialization.
The slave IP addresses in the table can be assigned automatically using mDNS service as described in the example.
Refer to :example:`protocols/modbus/tcp/mb_tcp_master` for more information.
.. note:: RS485 communication requires call to UART specific APIs to setup communication mode and pins. Refer to :ref:`uart-api-running-uart-communication` section of UART documentation.
.. _modbus_api_master_start_communication:
Master Communication
^^^^^^^^^^^^^^^^^^^^
The starting of the Modbus controller is the final step in enabling communication. This is performed using function below:
:cpp:func:`mbc_master_start`
.. code:: c
esp_err_t err = mbc_master_start();
if (err != ESP_OK) {
ESP_LOGE(TAG, "mb controller start fail, err=%x.", err);
}
The list of functions below are used by the Modbus master stack from a user's application:
:cpp:func:`mbc_master_send_request`: This function executes a blocking Modbus request. The master sends a data request (as defined in parameter request structure :cpp:type:`mb_param_request_t`) and then blocks until a response from corresponding slave and returns the status of command execution. This function provides a standard way for read/write access to Modbus devices in the network.
:cpp:func:`mbc_master_get_cid_info`: The function gets information about each characteristic supported in the data dictionary and returns the characteristic's description in the form of the :cpp:type:`mb_parameter_descriptor_t` structure. Each characteristic is accessed using its CID.
:cpp:func:`mbc_master_get_parameter`: The function reads the data of a characteristic defined in the parameters of a Modbus slave device. The additional data for request is taken from parameter description table.
Example:
.. code:: c
const mb_parameter_descriptor_t* param_descriptor = NULL;
uint8_t temp_data[4] = {0}; // temporary buffer to hold maximum CID size
uint8_t type = 0;
....
// Get the information for characteristic cid from data dictionary
esp_err_t err = mbc_master_get_cid_info(cid, &param_descriptor);
if ((err != ESP_ERR_NOT_FOUND) && (param_descriptor != NULL)) {
err = mbc_master_get_parameter(param_descriptor->cid, (char*)param_descriptor->param_key, (uint8_t*)temp_data, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Characteristic #%d %s (%s) value = (0x%08x) read successful.",
param_descriptor->cid,
(char*)param_descriptor->param_key,
(char*)param_descriptor->param_units,
*(uint32_t*)temp_data);
} else {
ESP_LOGE(TAG, "Characteristic #%d (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
(char*)param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
} else {
ESP_LOGE(TAG, "Could not get information for characteristic %d.", cid);
}
:cpp:func:`mbc_master_set_parameter`
The function writes characteristic's value defined as a name and cid parameter in corresponded slave device. The additional data for parameter request is taken from master parameter description table.
.. code:: c
uint8_t type = 0; // Type of parameter
uint8_t temp_data[4] = {0}; // temporary buffer
esp_err_t err = mbc_master_set_parameter(CID_TEMP_DATA_2, "Temperature_2", (uint8_t*)temp_data, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Set parameter data successfully.");
} else {
ESP_LOGE(TAG, "Set data fail, err = 0x%x (%s).", (int)err, (char*)esp_err_to_name(err));
}
.. _modbus_api_master_destroy:
Modbus Master Teardown
^^^^^^^^^^^^^^^^^^^^^^
This function stops Modbus communication stack and destroys controller interface and free all used active objects.
:cpp:func:`mbc_master_destroy`
.. code:: c
ESP_ERROR_CHECK(mbc_master_destroy());
.. _modbus_api_slave_overview:
Modbus Slave API Overview
-------------------------
The sections below represent typical programming workflow for the slave API which should be called in following order:
1. :ref:`modbus_api_port_initialization` - Initialization of Modbus controller interface for the selected port.
2. :ref:`modbus_api_slave_configure_descriptor` - Configure data descriptors to access slave parameters.
3. :ref:`modbus_api_slave_setup_communication_options` - Allows to setup communication options for selected port.
4. :ref:`modbus_api_slave_communication` - Start stack and sending / receiving data. Filter events when master accesses the register areas.
5. :ref:`modbus_api_slave_destroy` - Destroy Modbus controller and its resources.
.. _modbus_api_slave_configure_descriptor:
Configuring Slave Data Access
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following functions must be called when the Modbus controller slave port is already initialized. Refer to :ref:`modbus_api_port_initialization`.
The slave stack requires the user to define structures (memory storage areas) that store the Modbus parameters accessed by stack. These structures should be prepared by the user and be assigned to the Modbus controller interface using :cpp:func:`mbc_slave_set_descriptor` API call before the start of communication. The slave task can call the :cpp:func:`mbc_slave_check_event` function which will block until the Modbus master access the slave. The slave task can then get information about the data being accessed.
.. note:: One slave can define several area descriptors per each type of Modbus register area with different start_offset.
Register area is defined by using the :cpp:type:`mb_register_area_descriptor_t` structure.
.. list-table:: Table 3 Modbus register area descriptor
:widths: 8 92
:header-rows: 1
* - Field
- Description
* - ``start_offset``
- Zero based register relative offset for defined register area. Example: register address = 40002 ( 4x register area - Function 3 - holding register ), start_offset = 2
* - ``type``
- Type of the Modbus register area. Refer to :cpp:type:`mb_param_type_t` for more information.
* - ``address``
- A pointer to the memory area which is used to store the register data for this area descriptor.
* - ``size``
- The size of the memory area in bytes which is used to store register data.
:cpp:func:`mbc_slave_set_descriptor`
The function initializes Modbus communication descriptors for each type of Modbus register area (Holding Registers, Input Registers, Coils (single bit output), Discrete Inputs). Once areas are initialized and the :cpp:func:`mbc_slave_start()` API is called the Modbus stack can access the data in user data structures by request from master.
.. code:: c
#define MB_REG_INPUT_START_AREA0 (0)
#define MB_REG_HOLDING_START_AREA0 (0)
#define MB_REG_HOLD_CNT (100)
#define MB_REG_INPUT_CNT (100)
mb_register_area_descriptor_t reg_area; // Modbus register area descriptor structure
unit16_t holding_reg_area[MB_REG_HOLD_CNT] = {0}; // storage area for holding registers
unit16_t input_reg_area[MB_REG_INPUT_CNT] = {0}; // storage area for input registers
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START_AREA0; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_area[0]; // Set pointer to storage instance
reg_area.size = sizeof(holding_reg_area) << 1; // Set the size of register storage area in bytes
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START_AREA0;
reg_area.address = (void*)&input_reg_area[0];
reg_area.size = sizeof(input_reg_area) << 1;
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
At least one area descriptor per each Modbus register type must be set in order to provide register access to its area. If the master tries to access an undefined area, the stack will generate a Modbus exception.
Direct access to register area from user application must be protected by critical section:
.. code:: c
portENTER_CRITICAL(&param_lock);
holding_reg_area[2] += 10;
portEXIT_CRITICAL(&param_lock);
.. _modbus_api_slave_setup_communication_options:
Slave Communication Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The function initializes the Modbus controller interface and its active context (tasks, RTOS objects and other resources).
:cpp:func:`mbc_slave_setup`
The function is used to setup communication parameters of the Modbus stack.
Example initialization of Modbus TCP communication:
.. code:: c
esp_netif_init();
...
mb_communication_info_t comm_info = {
.ip_port = MB_TCP_PORT, // Modbus TCP port number (default = 502)
.ip_addr_type = MB_IPV4, // version of IP protocol
.ip_mode = MB_MODE_TCP, // Port communication mode
.ip_addr = NULL, // This field keeps the client IP address to bind, NULL - bind to any client
.ip_netif_ptr = esp_netif_ptr // esp_netif_ptr - pointer to the corresponding network interface
};
// Setup communication parameters and start stack
ESP_ERROR_CHECK(mbc_slave_setup((void*)&comm_info));
Example initialization of Modbus serial communication:
.. code:: c
#define MB_SLAVE_DEV_SPEED 9600
#define MB_SLAVE_ADDR 1
#define MB_SLAVE_PORT_NUM 2
...
// Setup communication parameters and start stack
mb_communication_info_t comm_info = {
.mode = MB_MODE_RTU, // Communication type
.slave_addr = MB_SLAVE_ADDR, // Short address of the slave
.port = MB_SLAVE_PORT_NUM, // UART physical port number
.baudrate = MB_SLAVE_DEV_SPEED, // Baud rate for communication
.parity = MB_PARITY_NONE // Parity option
};
ESP_ERROR_CHECK(mbc_slave_setup((void*)&comm_info));
.. _modbus_api_slave_communication:
Slave Communication
^^^^^^^^^^^^^^^^^^^
The function below is used to start Modbus controller interface and allows communication.
:cpp:func:`mbc_slave_start`
.. code:: c
ESP_ERROR_CHECK(mbc_slave_start());
:cpp:func:`mbc_slave_check_event`
The blocking call to function waits for a event specified (represented as an event mask parameter). Once the master accesses the parameter and the event mask matches the parameter type, the application task will be unblocked and function will return the corresponding event :cpp:type:`mb_event_group_t` which describes the type of register access being done.
:cpp:func:`mbc_slave_get_param_info`
The function gets information about accessed parameters from the Modbus controller event queue. The KConfig :ref:`CONFIG_FMB_CONTROLLER_NOTIFY_QUEUE_SIZE` key can be used to configure the notification queue size. The timeout parameter allows a timeout to be specified when waiting for a notification. The :cpp:type:`mb_param_info_t` structure contains information about accessed parameter.
.. list-table:: Table 4 Description of the register info structure: :cpp:type:`mb_param_info_t`
:widths: 10 90
:header-rows: 1
* - Field
- Description
* - ``time_stamp``
- the time stamp of the event when defined parameter is accessed
* - ``mb_offset``
- start Modbus register accessed by master
* - ``type``
- type of the Modbus register area being accessed (See the :cpp:type:`mb_event_group_t` for more information)
* - ``address``
- memory address that corresponds to accessed register in defined area descriptor
* - ``size``
- number of registers being accessed by master
Example to get event when holding or input registers accessed in the slave:
.. code:: c
#define MB_READ_MASK (MB_EVENT_INPUT_REG_RD | MB_EVENT_HOLDING_REG_RD)
#define MB_WRITE_MASK (MB_EVENT_HOLDING_REG_WR)
#define MB_READ_WRITE_MASK (MB_READ_MASK | MB_WRITE_MASK)
#define MB_PAR_INFO_GET_TOUT (10 / portTICK_PERIOD_MS)
....
// The function blocks while waiting for register access
mb_event_group_t event = mbc_slave_check_event(MB_READ_WRITE_MASK);
// Get information about data accessed from master
ESP_ERROR_CHECK(mbc_slave_get_param_info(&reg_info, MB_PAR_INFO_GET_TOUT));
const char* rw_str = (event & MB_READ_MASK) ? "READ" : "WRITE";
// Filter events and process them accordingly
if (event & (MB_EVENT_HOLDING_REG_WR | MB_EVENT_HOLDING_REG_RD)) {
ESP_LOGI(TAG, "HOLDING %s (%u us), ADDR:%u, TYPE:%u, INST_ADDR:0x%.4x, SIZE:%u",
rw_str,
(uint32_t)reg_info.time_stamp,
(uint32_t)reg_info.mb_offset,
(uint32_t)reg_info.type,
(uint32_t)reg_info.address,
(uint32_t)reg_info.size);
} else if (event & (MB_EVENT_INPUT_REG_RD)) {
ESP_LOGI(TAG, "INPUT %s (%u us), ADDR:%u, TYPE:%u, INST_ADDR:0x%.4x, SIZE:%u",
rw_str,
(uint32_t)reg_info.time_stamp,
(uint32_t)reg_info.mb_offset,
(uint32_t)reg_info.type,
(uint32_t)reg_info.address,
(uint32_t)reg_info.size);
}
.. _modbus_api_slave_destroy:
Modbus Slave Teardown
^^^^^^^^^^^^^^^^^^^^^
This function stops the Modbus communication stack, destroys the controller interface, and frees all used active objects allocated for the slave.
:cpp:func:`mbc_slave_destroy`
.. code:: c
ESP_ERROR_CHECK(mbc_slave_destroy());
Possible Communication Issues And Solutions
-------------------------------------------
If the examples do not work as expected and slave and master boards are not able to communicate correctly, it is possible to find the reason for errors. The most important errors are described in master example output and formatted as below:
.. highlight:: none
::
E (1692332) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x107) (ESP_ERR_TIMEOUT).
.. list-table:: Table 5 Modbus error codes and troubleshooting
:widths: 5 30 65
:header-rows: 1
* - Error
- Description
- Possible solution
* - 0x106
- ``ESP_ERR_NOT_SUPPORTED`` - Invalid register request - slave returned an exception because the requested register is not supported.
- Refer to slave register map. Check the master data dictionary for correctness.
* - 0x107
- ``ESP_ERR_TIMEOUT`` - Slave response timeout - Modbus slave did not send response during configured slave response timeout.
- Measure and increase the maximum slave response timeout `idf.py menuconfig`, option :ref:`CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND`.
Check physical connection or network configuration and make sure that the slave response can reach the master side.
If the application has some high performance tasks with higher priority than :ref:`CONFIG_FMB_PORT_TASK_PRIO` it is recommended to place Modbus tasks on the other core using an option :ref:`CONFIG_FMB_PORT_TASK_AFFINITY`.
Configure the Modbus task's priority :ref:`CONFIG_FMB_PORT_TASK_PRIO` to ensure that the task gets sufficient processing time to handle Modbus stack events.
* - 0x108
- ``ESP_ERR_INVALID_RESPONSE`` - Received unsupported response from slave or frame check failure. Master can not execute command handler because the command is either not supported or is incorrect.
- Check the physical connection then refer to register map of your slave to configure the master data dictionary properly.
* - 0x103
- ``ESP_ERR_INVALID_STATE`` - Critical failure or FSM sequence failure or master FSM is busy processing previous request.
- Make sure your physical connection is working properly. Increase task stack size and check Modbus initialization sequence.
Application Example
-------------------
The examples below use the FreeModbus library port for serial TCP slave and master implementations accordingly. The selection of stack is performed through KConfig menu option "Enable Modbus stack support ..." for appropriate communication mode and related configuration keys.
- :example:`protocols/modbus/serial/mb_slave`
- :example:`protocols/modbus/serial/mb_master`
- :example:`protocols/modbus/tcp/mb_tcp_slave`
- :example:`protocols/modbus/tcp/mb_tcp_master`
Please refer to the specific example README.md for details.
Protocol References
-------------------
- ``https://modbus.org/specs.php``: Modbus Organization with protocol specifications.
API Reference
-------------
.. include-build-file:: inc/esp_modbus_common.inc
.. include-build-file:: inc/esp_modbus_master.inc
.. include-build-file:: inc/esp_modbus_slave.inc

View File

@ -0,0 +1,72 @@
Possible Communication Issues And Solutions
-------------------------------------------
If the examples do not work as expected and slave and master boards are not able to communicate correctly, it is possible to find the reason for errors. The most important errors are described in master example output and formatted as below:
.. highlight:: none
::
E (1692332) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x107) (ESP_ERR_TIMEOUT).
.. list-table:: Table 5 Modbus error codes and troubleshooting
:widths: 5 30 65
:header-rows: 1
* - Error
- Description
- Possible solution
* - 0x106
- ``ESP_ERR_NOT_SUPPORTED`` - Invalid register request - slave returned an exception because the requested register is not supported.
- Refer to slave register map. Check the master data dictionary for correctness.
* - 0x107
- ``ESP_ERR_TIMEOUT`` - Slave response timeout - Modbus slave did not send response during configured slave response timeout.
- Measure and increase the maximum slave response timeout `idf.py menuconfig`, option ``CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND``.
Check physical connection or network configuration and make sure that the slave response can reach the master side.
If the application has some high performance tasks with higher priority than ``CONFIG_FMB_PORT_TASK_PRIO`` it is recommended to place Modbus tasks on the other core using an option ``CONFIG_FMB_PORT_TASK_AFFINITY``.
Configure the Modbus task's priority ``CONFIG_FMB_PORT_TASK_PRIO`` to ensure that the task gets sufficient processing time to handle Modbus stack events.
* - 0x108
- ``ESP_ERR_INVALID_RESPONSE`` - Received unsupported response from slave or frame check failure. Master can not execute command handler because the command is either not supported or is incorrect.
- Check the physical connection then refer to register map of your slave to configure the master data dictionary properly.
* - 0x103
- ``ESP_ERR_INVALID_STATE`` - Critical failure or FSM sequence failure or master FSM is busy processing previous request.
- Make sure your physical connection is working properly. Increase task stack size and check Modbus initialization sequence.
Application Example
-------------------
The examples below use the FreeModbus library port for serial TCP slave and master implementations accordingly. The selection of stack is performed through KConfig menu option "Enable Modbus stack support ..." for appropriate communication mode and related configuration keys.
.. _example_mb_slave:
- `Modbus serial slave example <https://github.com/espressif/esp-idf/tree/master/examples/protocols/modbus/serial/mb_slave>`__
.. _example_mb_master:
- `Modbus serial master example <https://github.com/espressif/esp-idf/tree/master/examples/protocols/modbus/serial/mb_master>`__
.. _example_mb_tcp_master:
- `Modbus TCP master example <https://github.com/espressif/esp-idf/tree/master/examples/protocols/modbus/tcp/mb_tcp_master>`__
.. _example_mb_tcp_slave:
- `Modbus TCP slave example <https://github.com/espressif/esp-idf/tree/master/examples/protocols/modbus/tcp/mb_tcp_slave>`__
Please refer to the specific example README.md for details.
.. _modbus_organization:
Protocol References
-------------------
- `Modbus Organization with protocol specifications <https://modbus.org/specs.php>`__
API Reference
-------------
.. include-build-file:: inc/esp_modbus_common.inc
.. include-build-file:: inc/esp_modbus_master.inc
.. include-build-file:: inc/esp_modbus_slave.inc

27
docs/en/conf.py Normal file
View File

@ -0,0 +1,27 @@
# -*- coding: utf-8 -*-
#
# English Language RTD & Sphinx config file
#
# Uses ../conf_common.py for most non-language-specific settings.
# Importing conf_common adds all the non-language-specific
# parts to this conf module
try:
from conf_common import * # noqa: F403,F401
except ImportError:
import os
import sys
sys.path.insert(0, os.path.abspath('../'))
from conf_common import * # noqa: F403,F401
import datetime
current_year = datetime.datetime.now().year
# General information about the project.
project = u'ESP-Modbus Programming Guide'
copyright = u'2019 - {}, Espressif Systems (Shanghai) Co., Ltd'.format(current_year)
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
language = 'en'

14
docs/en/index.rst Normal file
View File

@ -0,0 +1,14 @@
ESP-Modbus Library
==================
An Espressif ESP-Modbus Library (esp-modbus) is a library to support Modbus communication in the networks based on RS485 or Ethernet interfaces.
The Modbus is a data communications protocol originally published by Modicon (now Schneider Electric) in 1979 for use with its programmable logic controllers (PLCs).
.. toctree::
:maxdepth: 1
The Overview, Messaging Model And Data Mapping <overview_messaging_and_mapping>
Modbus Port Initialization <port_initialization>
Modbus Master API <master_api_overview>
Modbus Slave API <slave_api_overview>
Applications and References <applications_and_references>

View File

@ -0,0 +1,300 @@
.. _modbus_api_master_overview:
Modbus Master API Overview
--------------------------
The following overview describes how to setup Modbus master communication. The overview reflects a typical programming workflow and is broken down into the sections provided below:
1. :ref:`modbus_api_port_initialization` - Initialization of Modbus controller interface for the selected port.
2. :ref:`modbus_api_master_configure_descriptor` - Configure data descriptors to access slave parameters.
3. :ref:`modbus_api_master_setup_communication_options` - Allows to setup communication options for selected port.
4. :ref:`modbus_api_master_start_communication` - Start stack and sending / receiving data.
5. :ref:`modbus_api_master_destroy` - Destroy Modbus controller and its resources.
.. _modbus_api_master_configure_descriptor:
Configuring Master Data Access
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The architectural approach of ESP_Modbus includes one level above standard Modbus IO driver.
The additional layer is called Modbus controller and its goal is to add an abstraction such as CID - characteristic identifier.
The CID is linked to a corresponding Modbus registers through the table called Data Dictionary and represents device physical parameter (such as temperature, humidity, etc.) in specific Modbus slave device.
This approach allows the upper layer (e.g., MESH or MQTT) to be isolated from Modbus specifics thus simplify Modbus integration with other protocols/networks.
The Data Dictionary is the list in the Modbus master which shall be defined by user to link each CID to its corresponding Modbus registers representation using Register Mapping table of the Modbus slave being used.
Each element in this data dictionary is of type :cpp:type:`mb_parameter_descriptor_t` and represents the description of one physical characteristic:
.. list-table:: Table 1 Modbus master Data Dictionary description
:widths: 8 10 82
:header-rows: 1
* - Field
- Description
- Detailed information
* - ``cid``
- Characteristic ID
- The identifier of characteristic (must be unique).
* - ``param_key``
- Characteristic Name
- String description of the characteristic.
* - ``param_units``
- Characteristic Units
- Physical Units of the characteristic.
* - ``mb_slave_addr``
- Modbus Slave Address
- The short address of the device with correspond parameter UID.
* - ``mb_param_type``
- Modbus Register Type
- Type of Modbus register area.
:cpp:enumerator:`MB_PARAM_INPUT`, :cpp:enumerator:`MB_PARAM_HOLDING`, :cpp:enumerator:`MB_PARAM_COIL`, :cpp:enumerator:`MB_PARAM_DISCRETE` - represents Input , Holding, Coil and Discrete input register area accordingly;
* - ``mb_reg_start``
- Modbus Register Start
- Relative register address of the characteristic in the register area.
* - ``mb_size``
- Modbus Register Size
- Length of characteristic in registers.
* - ``param_offset``
- Instance Offset
- Offset to instance of the characteristic in bytes. It is used to calculate the absolute address to the characteristic in the storage structure.
It is optional field and can be set to zero if the parameter is not used in the application.
* - ``param_type``
- Data Type
- Specifies type of the characteristic.
:cpp:enumerator:`PARAM_TYPE_U8`, :cpp:enumerator:`PARAM_TYPE_U16`, :cpp:enumerator:`PARAM_TYPE_U32` - Unsigned integer 8/16/32 bit type;
:cpp:enumerator:`PARAM_TYPE_FLOAT` - IEEE754 floating point format;
:cpp:enumerator:`PARAM_TYPE_ASCII` - ASCII string or binary data;
* - ``param_size``
- Data Size
- The storage size of the characteristic (bytes).
* - ``param_opts``
- Parameter Options
- Limits, options of characteristic used during processing of alarm in user application (optional)
* - ``access``
- Parameter access type
- Can be used in user application to define the behavior of the characteristic during processing of data in user application;
:cpp:enumerator:`PAR_PERMS_READ_WRITE_TRIGGER`, :cpp:enumerator:`PAR_PERMS_READ`, :cpp:enumerator:`PAR_PERMS_READ_WRITE_TRIGGER`;
.. note:: The ``cid`` and ``param_key`` have to be unique. Please use the prefix to the parameter key if you have several similar parameters in your register map table.
.. list-table:: Table 2 Example Register mapping table of Modbus slave
:widths: 5 5 2 10 5 5 68
:header-rows: 1
* - CID
- Register
- Length
- Range
- Type
- Units
- Description
* - 0
- 30000
- 4
- MAX_UINT
- U32
- Not defined
- Serial number of device (4 bytes) read-only
* - 1
- 30002
- 2
- MAX_UINT
- U16
- Not defined
- Software version (4 bytes) read-only
* - 2
- 40000
- 4
- -20..40
- FLOAT
- DegC
- Room temperature in DegC. Writing a temperature value to this register for single point calibration.
.. code:: c
// Enumeration of modbus slave addresses accessed by master device
enum {
MB_DEVICE_ADDR1 = 1,
MB_DEVICE_ADDR2,
MB_SLAVE_COUNT
};
// Enumeration of all supported CIDs for device
enum {
CID_SER_NUM1 = 0,
CID_SW_VER1,
CID_TEMP_DATA_1,
CID_SER_NUM2,
CID_SW_VER2,
CID_TEMP_DATA_2
};
// Example Data Dictionary for Modbus parameters in 2 slaves in the segment
mb_parameter_descriptor_t device_parameters[] = {
// CID, Name, Units, Modbus addr, register type, Modbus Reg Start Addr, Modbus Reg read length,
// Instance offset (NA), Instance type, Instance length (bytes), Options (NA), Permissions
{ CID_SER_NUM1, STR("Serial_number_1"), STR("--"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 0, 2,
0, PARAM_TYPE_U32, 4, OPTS( 0,0,0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_SW_VER1, STR("Software_version_1"), STR("--"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 2, 1,
0, PARAM_TYPE_U16, 2, OPTS( 0,0,0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_TEMP_DATA_1, STR("Temperature_1"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 0, 2,
0, PARAM_TYPE_FLOAT, 4, OPTS( 16, 30, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_SER_NUM2, STR("Serial_number_2"), STR("--"), MB_DEVICE_ADDR2, MB_PARAM_INPUT, 0, 2,
0, PARAM_TYPE_U32, 4, OPTS( 0,0,0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_SW_VER2, STR("Software_version_2"), STR("--"), MB_DEVICE_ADDR2, MB_PARAM_INPUT, 2, 1,
0, PARAM_TYPE_U16, 2, OPTS( 0,0,0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_TEMP_DATA_2, STR("Temperature_2"), STR("C"), MB_DEVICE_ADDR2, MB_PARAM_HOLDING, 0, 2,
0, PARAM_TYPE_FLOAT, 4, OPTS( 20, 30, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
};
// Calculate number of parameters in the table
uint16_t num_device_parameters = (sizeof(device_parameters) / sizeof(device_parameters[0]));
During initialization of the Modbus stack, a pointer to the Data Dictionary (called descriptor) must be provided as the parameter of the function below.
:cpp:func:`mbc_master_set_descriptor`: Initialization of master descriptor.
.. code:: c
ESP_ERROR_CHECK(mbc_master_set_descriptor(&device_parameters[0], num_device_parameters));
The Data Dictionary can be initialized from SD card, MQTT or other source before start of stack. Once the initialization and setup is done, the Modbus controller allows the reading of complex parameters from any slave included in descriptor table using its CID.
.. _modbus_api_master_setup_communication_options:
Master Communication Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Calling the setup function allows for specific communication options to be defined for port.
:cpp:func:`mbc_master_setup`
The communication structure provided as a parameter is different for serial and TCP communication mode.
Example setup for serial port:
.. code:: c
mb_communication_info_t comm_info = {
.port = MB_PORT_NUM, // Serial port number
.mode = MB_MODE_RTU, // Modbus mode of communication (MB_MODE_RTU or MB_MODE_ASCII)
.baudrate = 9600, // Modbus communication baud rate
.parity = MB_PARITY_NONE // parity option for serial port
};
ESP_ERROR_CHECK(mbc_master_setup((void*)&comm_info));
Modbus master TCP port requires additional definition of IP address table where number of addresses should be equal to number of unique slave addresses in master Modbus Data Dictionary:
The order of IP address string corresponds to short slave address in the Data Dictionary.
.. code:: c
#define MB_SLAVE_COUNT 2 // Number of slaves in the segment being accessed (as defined in Data Dictionary)
char* slave_ip_address_table[MB_SLAVE_COUNT] = {
"192.168.1.2", // Address corresponds to UID1 and set to predefined value by user
"192.168.1.3", // corresponds to UID2 in the segment
NULL // end of table
};
mb_communication_info_t comm_info = {
.ip_port = MB_TCP_PORT, // Modbus TCP port number (default = 502)
.ip_addr_type = MB_IPV4, // version of IP protocol
.ip_mode = MB_MODE_TCP, // Port communication mode
.ip_addr = (void*)slave_ip_address_table, // assign table of IP addresses
.ip_netif_ptr = esp_netif_ptr // esp_netif_ptr pointer to the corresponding network interface
};
ESP_ERROR_CHECK(mbc_master_setup((void*)&comm_info));
.. note:: Refer to `esp_netif component <https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_netif.html>`__ for more information about network interface initialization.
The slave IP addresses in the table can be assigned automatically using mDNS service as described in the example.
Refer to :ref:`example TCP master <example_mb_tcp_master>` for more information.
.. note:: RS485 communication requires call to UART specific APIs to setup communication mode and pins. Refer to the `UART communication section <https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html#uart-api-running-uart-communication>`__ in documentation.
.. _modbus_api_master_start_communication:
Master Communication
^^^^^^^^^^^^^^^^^^^^
The starting of the Modbus controller is the final step in enabling communication. This is performed using function below:
:cpp:func:`mbc_master_start`
.. code:: c
esp_err_t err = mbc_master_start();
if (err != ESP_OK) {
ESP_LOGE(TAG, "mb controller start fail, err=%x.", err);
}
The list of functions below are used by the Modbus master stack from a user's application:
:cpp:func:`mbc_master_send_request`: This function executes a blocking Modbus request. The master sends a data request (as defined in parameter request structure :cpp:type:`mb_param_request_t`) and then blocks until a response from corresponding slave and returns the status of command execution. This function provides a standard way for read/write access to Modbus devices in the network.
:cpp:func:`mbc_master_get_cid_info`: The function gets information about each characteristic supported in the data dictionary and returns the characteristic's description in the form of the :cpp:type:`mb_parameter_descriptor_t` structure. Each characteristic is accessed using its CID.
:cpp:func:`mbc_master_get_parameter`: The function reads the data of a characteristic defined in the parameters of a Modbus slave device. The additional data for request is taken from parameter description table.
Example:
.. code:: c
const mb_parameter_descriptor_t* param_descriptor = NULL;
uint8_t temp_data[4] = {0}; // temporary buffer to hold maximum CID size
uint8_t type = 0;
....
// Get the information for characteristic cid from data dictionary
esp_err_t err = mbc_master_get_cid_info(cid, &param_descriptor);
if ((err != ESP_ERR_NOT_FOUND) && (param_descriptor != NULL)) {
err = mbc_master_get_parameter(param_descriptor->cid, (char*)param_descriptor->param_key, (uint8_t*)temp_data, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Characteristic #%d %s (%s) value = (0x%08x) read successful.",
param_descriptor->cid,
(char*)param_descriptor->param_key,
(char*)param_descriptor->param_units,
*(uint32_t*)temp_data);
} else {
ESP_LOGE(TAG, "Characteristic #%d (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
(char*)param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
} else {
ESP_LOGE(TAG, "Could not get information for characteristic %d.", cid);
}
:cpp:func:`mbc_master_set_parameter`
The function writes characteristic's value defined as a name and cid parameter in corresponded slave device. The additional data for parameter request is taken from master parameter description table.
.. code:: c
uint8_t type = 0; // Type of parameter
uint8_t temp_data[4] = {0}; // temporary buffer
esp_err_t err = mbc_master_set_parameter(CID_TEMP_DATA_2, "Temperature_2", (uint8_t*)temp_data, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Set parameter data successfully.");
} else {
ESP_LOGE(TAG, "Set data fail, err = 0x%x (%s).", (int)err, (char*)esp_err_to_name(err));
}
.. _modbus_api_master_destroy:
Modbus Master Teardown
^^^^^^^^^^^^^^^^^^^^^^
This function stops Modbus communication stack and destroys controller interface and free all used active objects.
:cpp:func:`mbc_master_destroy`
.. code:: c
ESP_ERROR_CHECK(mbc_master_destroy());

View File

@ -0,0 +1,47 @@
ESP-Modbus
==========
Overview
--------
The Modbus serial communication protocol is de facto standard protocol widely used to connect industrial electronic devices. Modbus allows communication among many devices connected to the same network, for example, a system that measures temperature and humidity and communicates the results to a computer. The Modbus protocol uses several types of data: Holding Registers, Input Registers, Coils (single bit output), Discrete Inputs. Versions of the Modbus protocol exist for serial port and for Ethernet and other protocols that support the Internet protocol suite. There are many variants of Modbus protocols, some of them are:
* ``Modbus RTU`` — This is used in serial communication and makes use of a compact, binary representation of the data for protocol communication. The RTU format follows the commands/data with a cyclic redundancy check checksum as an error check mechanism to ensure the reliability of data. Modbus RTU is the most common implementation available for Modbus. A Modbus RTU message must be transmitted continuously without inter-character hesitations. Modbus messages are framed (separated) by idle (silent) periods. The RS-485 interface communication is usually used for this type.
* ``Modbus ASCII`` — This is used in serial communication and makes use of ASCII characters for protocol communication. The ASCII format uses a longitudinal redundancy check checksum. Modbus ASCII messages are framed by leading colon (":") and trailing newline (CR/LF).
* ``Modbus TCP/IP or Modbus TCP`` — This is a Modbus variant used for communications over TCP/IP networks, connecting over port 502. It does not require a checksum calculation, as lower layers already provide checksum protection.
.. note:: This documentation (and included code snippets) requires some familiarity with the Modbus protocol. Refer to the Modbus Organization's with protocol specifications for specifics :ref:`modbus_organization`.
Messaging Model And Data Mapping
--------------------------------
Modbus is an application protocol that defines rules for messaging structure and data organization that are independent of the data transmission medium. Traditional serial Modbus is a register-based protocol that defines message transactions that occur between master(s) and slave devices (multiple masters are allowed on using Modbus TCP/IP). The slave devices listen for communication from the master and simply respond as instructed. The master(s) always controls communication and may communicate directly to one slave, or all connected slaves, but the slaves cannot communicate directly with each other.
.. figure:: ../_static/modbus-segment.png
:align: center
:scale: 80%
:alt: Modbus segment diagram
:figclass: align-center
Modbus segment diagram
.. note:: It is assumed that the number of slaves and their register maps are known by the Modbus master before the start of stack.
The register map of each slave device is usually part of its device manual. A Slave device usually permits configuration of its short slave address and communication options that are used within the device's network segment.
The Modbus protocol allows devices to map data to four types of registers (Holding, Input, Discrete, Coil). The figure below illustrates an example mapping of a device's data to the four types of registers.
.. figure:: ../_static/modbus-data-mapping.png
:align: center
:scale: 80%
:alt: Modbus data mapping
:figclass: align-center
Modbus data mapping
The following sections give an overview of how to use the ESP_Modbus component found under `components/freemodbus`. The sections cover initialization of a Modbus port, and the setup a master or slave device accordingly:
- :ref:`modbus_api_port_initialization`
- :ref:`modbus_api_slave_overview`
- :ref:`modbus_api_master_overview`

View File

@ -0,0 +1,35 @@
.. _modbus_api_port_initialization:
Modbus Port Initialization
^^^^^^^^^^^^^^^^^^^^^^^^^^
The ESP_Modbus supports Modbus SERIAL and TCP ports and a port must be initialized before calling any other Modbus API. The functions below are used to create and then initialize Modbus controller interface (either master or slave) over a particular transmission medium (either Serial or TCP/IP):
- :cpp:func:`mbc_slave_init`
- :cpp:func:`mbc_master_init`
- :cpp:func:`mbc_slave_init_tcp`
- :cpp:func:`mbc_master_init_tcp`
The API call uses the first parameter to recognize the type of port being initialized. Supported enumeration for different ports: :cpp:enumerator:`MB_PORT_SERIAL_MASTER`, :cpp:enumerator:`MB_PORT_SERIAL_SLAVE` accordingly.
The parameters :cpp:enumerator:`MB_PORT_TCP_MASTER`, :cpp:enumerator:`MB_PORT_TCP_SLAVE` are reserved for internal usage.
.. code:: c
void* master_handler = NULL; // Pointer to allocate interface structure
// Initialization of Modbus master for serial port
esp_err_t err = mbc_master_init(MB_PORT_SERIAL_MASTER, &master_handler);
if (master_handler == NULL || err != ESP_OK) {
ESP_LOGE(TAG, "mb controller initialization fail.");
}
This example code to initialize slave port:
.. code:: c
void* slave_handler = NULL; // Pointer to allocate interface structure
// Initialization of Modbus slave for TCP
esp_err_t err = mbc_slave_init_tcp(&slave_handler);
if (slave_handler == NULL || err != ESP_OK) {
// Error handling is performed here
ESP_LOGE(TAG, "mb controller initialization fail.");
}

View File

@ -0,0 +1,215 @@
.. _modbus_api_slave_overview:
Modbus Slave API Overview
-------------------------
The sections below represent typical programming workflow for the slave API which should be called in following order:
1. :ref:`modbus_api_port_initialization` - Initialization of Modbus controller interface for the selected port.
2. :ref:`modbus_api_slave_configure_descriptor` - Configure data descriptors to access slave parameters.
3. :ref:`modbus_api_slave_setup_communication_options` - Allows to setup communication options for selected port.
4. :ref:`modbus_api_slave_communication` - Start stack and sending / receiving data. Filter events when master accesses the register areas.
5. :ref:`modbus_api_slave_destroy` - Destroy Modbus controller and its resources.
.. _modbus_api_slave_configure_descriptor:
Configuring Slave Data Access
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following functions must be called when the Modbus controller slave port is already initialized. Refer to :ref:`modbus_api_port_initialization`.
The slave stack requires the user to define structures (memory storage areas) that store the Modbus parameters accessed by stack. These structures should be prepared by the user and be assigned to the Modbus controller interface using :cpp:func:`mbc_slave_set_descriptor` API call before the start of communication. The slave task can call the :cpp:func:`mbc_slave_check_event` function which will block until the Modbus master access the slave. The slave task can then get information about the data being accessed.
.. note:: One slave can define several area descriptors per each type of Modbus register area with different start_offset.
Register area is defined by using the :cpp:type:`mb_register_area_descriptor_t` structure.
.. list-table:: Table 3 Modbus register area descriptor
:widths: 8 92
:header-rows: 1
* - Field
- Description
* - ``start_offset``
- Zero based register relative offset for defined register area. Example: register address = 40002 ( 4x register area - Function 3 - holding register ), start_offset = 2
* - ``type``
- Type of the Modbus register area. Refer to :cpp:type:`mb_param_type_t` for more information.
* - ``address``
- A pointer to the memory area which is used to store the register data for this area descriptor.
* - ``size``
- The size of the memory area in bytes which is used to store register data.
:cpp:func:`mbc_slave_set_descriptor`
The function initializes Modbus communication descriptors for each type of Modbus register area (Holding Registers, Input Registers, Coils (single bit output), Discrete Inputs). Once areas are initialized and the :cpp:func:`mbc_slave_start()` API is called the Modbus stack can access the data in user data structures by request from master.
.. code:: c
#define MB_REG_INPUT_START_AREA0 (0)
#define MB_REG_HOLDING_START_AREA0 (0)
#define MB_REG_HOLD_CNT (100)
#define MB_REG_INPUT_CNT (100)
mb_register_area_descriptor_t reg_area; // Modbus register area descriptor structure
unit16_t holding_reg_area[MB_REG_HOLD_CNT] = {0}; // storage area for holding registers
unit16_t input_reg_area[MB_REG_INPUT_CNT] = {0}; // storage area for input registers
reg_area.type = MB_PARAM_HOLDING; // Set type of register area
reg_area.start_offset = MB_REG_HOLDING_START_AREA0; // Offset of register area in Modbus protocol
reg_area.address = (void*)&holding_reg_area[0]; // Set pointer to storage instance
reg_area.size = sizeof(holding_reg_area) << 1; // Set the size of register storage area in bytes
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
reg_area.type = MB_PARAM_INPUT;
reg_area.start_offset = MB_REG_INPUT_START_AREA0;
reg_area.address = (void*)&input_reg_area[0];
reg_area.size = sizeof(input_reg_area) << 1;
ESP_ERROR_CHECK(mbc_slave_set_descriptor(reg_area));
At least one area descriptor per each Modbus register type must be set in order to provide register access to its area. If the master tries to access an undefined area, the stack will generate a Modbus exception.
Direct access to register area from user application must be protected by critical section:
.. code:: c
portENTER_CRITICAL(&param_lock);
holding_reg_area[2] += 10;
portEXIT_CRITICAL(&param_lock);
.. _modbus_api_slave_setup_communication_options:
Slave Communication Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The function initializes the Modbus controller interface and its active context (tasks, RTOS objects and other resources).
:cpp:func:`mbc_slave_setup`
The function is used to setup communication parameters of the Modbus stack.
Example initialization of Modbus TCP communication:
.. code:: c
esp_netif_init();
...
mb_communication_info_t comm_info = {
.ip_port = MB_TCP_PORT, // Modbus TCP port number (default = 502)
.ip_addr_type = MB_IPV4, // version of IP protocol
.ip_mode = MB_MODE_TCP, // Port communication mode
.ip_addr = NULL, // This field keeps the client IP address to bind, NULL - bind to any client
.ip_netif_ptr = esp_netif_ptr // esp_netif_ptr - pointer to the corresponding network interface
};
// Setup communication parameters and start stack
ESP_ERROR_CHECK(mbc_slave_setup((void*)&comm_info));
Example initialization of Modbus serial communication:
.. code:: c
#define MB_SLAVE_DEV_SPEED 9600
#define MB_SLAVE_ADDR 1
#define MB_SLAVE_PORT_NUM 2
...
// Setup communication parameters and start stack
mb_communication_info_t comm_info = {
.mode = MB_MODE_RTU, // Communication type
.slave_addr = MB_SLAVE_ADDR, // Short address of the slave
.port = MB_SLAVE_PORT_NUM, // UART physical port number
.baudrate = MB_SLAVE_DEV_SPEED, // Baud rate for communication
.parity = MB_PARITY_NONE // Parity option
};
ESP_ERROR_CHECK(mbc_slave_setup((void*)&comm_info));
.. _modbus_api_slave_communication:
Slave Communication
^^^^^^^^^^^^^^^^^^^
The function below is used to start Modbus controller interface and allows communication.
:cpp:func:`mbc_slave_start`
.. code:: c
ESP_ERROR_CHECK(mbc_slave_start());
:cpp:func:`mbc_slave_check_event`
The blocking call to function waits for a event specified (represented as an event mask parameter). Once the master accesses the parameter and the event mask matches the parameter type, the application task will be unblocked and function will return the corresponding event :cpp:type:`mb_event_group_t` which describes the type of register access being done.
:cpp:func:`mbc_slave_get_param_info`
The function gets information about accessed parameters from the Modbus controller event queue. The KConfig ``CONFIG_FMB_CONTROLLER_NOTIFY_QUEUE_SIZE`` key can be used to configure the notification queue size. The timeout parameter allows a timeout to be specified when waiting for a notification. The :cpp:type:`mb_param_info_t` structure contains information about accessed parameter.
.. list-table:: Table 4 Description of the register info structure: :cpp:type:`mb_param_info_t`
:widths: 10 90
:header-rows: 1
* - Field
- Description
* - ``time_stamp``
- the time stamp of the event when defined parameter is accessed
* - ``mb_offset``
- start Modbus register accessed by master
* - ``type``
- type of the Modbus register area being accessed (See the :cpp:type:`mb_event_group_t` for more information)
* - ``address``
- memory address that corresponds to accessed register in defined area descriptor
* - ``size``
- number of registers being accessed by master
Example to get event when holding or input registers accessed in the slave:
.. code:: c
#define MB_READ_MASK (MB_EVENT_INPUT_REG_RD | MB_EVENT_HOLDING_REG_RD)
#define MB_WRITE_MASK (MB_EVENT_HOLDING_REG_WR)
#define MB_READ_WRITE_MASK (MB_READ_MASK | MB_WRITE_MASK)
#define MB_PAR_INFO_GET_TOUT (10 / portTICK_RATE_MS)
....
// The function blocks while waiting for register access
mb_event_group_t event = mbc_slave_check_event(MB_READ_WRITE_MASK);
// Get information about data accessed from master
ESP_ERROR_CHECK(mbc_slave_get_param_info(&reg_info, MB_PAR_INFO_GET_TOUT));
const char* rw_str = (event & MB_READ_MASK) ? "READ" : "WRITE";
// Filter events and process them accordingly
if (event & (MB_EVENT_HOLDING_REG_WR | MB_EVENT_HOLDING_REG_RD)) {
ESP_LOGI(TAG, "HOLDING %s (%u us), ADDR:%u, TYPE:%u, INST_ADDR:0x%.4x, SIZE:%u",
rw_str,
(uint32_t)reg_info.time_stamp,
(uint32_t)reg_info.mb_offset,
(uint32_t)reg_info.type,
(uint32_t)reg_info.address,
(uint32_t)reg_info.size);
} else if (event & (MB_EVENT_INPUT_REG_RD)) {
ESP_LOGI(TAG, "INPUT %s (%u us), ADDR:%u, TYPE:%u, INST_ADDR:0x%.4x, SIZE:%u",
rw_str,
(uint32_t)reg_info.time_stamp,
(uint32_t)reg_info.mb_offset,
(uint32_t)reg_info.type,
(uint32_t)reg_info.address,
(uint32_t)reg_info.size);
}
.. _modbus_api_slave_destroy:
Modbus Slave Teardown
^^^^^^^^^^^^^^^^^^^^^
This function stops the Modbus communication stack, destroys the controller interface, and frees all used active objects allocated for the slave.
:cpp:func:`mbc_slave_destroy`
.. code:: c
ESP_ERROR_CHECK(mbc_slave_destroy());

1
docs/requirements.txt Normal file
View File

@ -0,0 +1 @@
esp-docs==0.2.0

18
docs/utils.sh Normal file
View File

@ -0,0 +1,18 @@
# Bash helper functions for adding SSH keys
function add_ssh_keys() {
local key_string="${1}"
mkdir -p ~/.ssh
chmod 700 ~/.ssh
echo -n "${key_string}" >~/.ssh/id_rsa_base64
base64 --decode --ignore-garbage ~/.ssh/id_rsa_base64 >~/.ssh/id_rsa
chmod 600 ~/.ssh/id_rsa
}
function add_doc_server_ssh_keys() {
local key_string="${1}"
local server_url="${2}"
local server_user="${3}"
add_ssh_keys "${key_string}"
echo -e "Host ${server_url}\n\tStrictHostKeyChecking no\n\tUser ${server_user}\n" >>~/.ssh/config
}

View File

@ -1,82 +0,0 @@
# Modbus Master-Slave Example
## Overview
These two projects illustrate the communication between Modbus master and slave device in the segment.
Master initializes Modbus interface driver and then reads parameters from slave device in the segment.
After several successful read attempts slave sets the alarm relay (end of test condition).
Once master reads the alarm it stops communication and destroy driver.
The examples:
* `examples/protocols/modbus/serial/mb_master` - Modbus serial master ASCII/RTU
* `examples/protocols/modbus/serial/mb_slave` - Modbus serial slave ASCII/RTU
See README.md for each individual project for more information.
## How to use example
### Hardware Required
This example can be run on any commonly available ESP32 development board.
The master and slave boards should be connected to each other through the RS485 interface line driver.
See the connection schematic in README.md files of each example.
### Configure the project
This example test requires communication mode setting for master and slave be the same and slave address set to 1.
Please refer to README.md files of each example project for more information.
## About common_component in this example
The folder "mb_example_common" includes definitions of parameter structures for master and slave device (both projects share the same parameters).
However, currently it is for example purpose only and can be modified for particular application.
## Example Output
Example of Slave output:
```
I (343) SLAVE_TEST: Modbus slave stack initialized.
I (343) SLAVE_TEST: Start modbus test...
I (81463) SLAVE_TEST: HOLDING READ (81150420 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
I (82463) SLAVE_TEST: HOLDING READ (82150720 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
I (83573) SLAVE_TEST: HOLDING READ (83260630 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
I (84603) SLAVE_TEST: HOLDING READ (84290530 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
I (85703) SLAVE_TEST: HOLDING READ (85396692 us), ADDR:1, TYPE:2, INST_ADDR:0x3ffb2868, SIZE:6
```
Example of Modbus Master output:
```
I (399) MASTER_TEST: Modbus master stack initialized...
I (499) MASTER_TEST: Start modbus test...
I (549) MASTER_TEST: Characteristic #0 Data_channel_0 (Volts) value = 1.230000 (0x3f9d70a4) read successful.
I (629) MASTER_TEST: Characteristic #1 Humidity_1 (%rH) value = 12.100000 (0x4141999a) read successful.
I (709) MASTER_TEST: Characteristic #2 Temperature_1 (C) value = 3.560000 (0x4063d70a) read successful.
I (769) MASTER_TEST: Characteristic #3 Humidity_2 (%rH) value = 23.400000 (0x41bb3333) read successful.
I (829) MASTER_TEST: Characteristic #4 Temperature_2 (C) value = 5.890000 (0x40bc7ae1) read successful.
I (889) MASTER_TEST: Characteristic #5 Humidity_3 (%rH) value = 34.500000 (0x420a0000) read successful.
E (949) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x108) (ESP_ERR_INVALID_RESPONSE).
E (949) MASTER_TEST: Characteristic #6 (RelayP1) read fail, err = 264 (ESP_ERR_INVALID_RESPONSE).
E (1029) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x108) (ESP_ERR_INVALID_RESPONSE).
E (1029) MASTER_TEST: Characteristic #7 (RelayP2) read fail, err = 264 (ESP_ERR_INVALID_RESPONSE).
```
## Troubleshooting
If the examples do not work as expected and slave and master boards are not able to communicate correctly it is possible to find the reason for errors.
The most important errors are described in master example output and formatted as below:
```
E (1692332) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x107) (ESP_ERR_TIMEOUT).
```
ESP_ERR_TIMEOUT (0x107) - Modbus slave device does not respond during configured timeout. Check the connection and ability for communication using uart_echo_rs485 example or increase
Kconfig value CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND (CONFIG_FMB_SERIAL_ASCII_TIMEOUT_RESPOND_MS).
ESP_ERR_NOT_SUPPORTED (0x106), ESP_ERR_INVALID_RESPONSE (0x108) - Modbus slave device does not support requested command or register and sent exeption response.
ESP_ERR_INVALID_STATE (0x103) - Modbus stack is not configured correctly or can't work correctly due to critical failure.

View File

@ -1,290 +0,0 @@
# SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: Apache-2.0
# Need Python 3 string formatting functions
from __future__ import print_function
import logging
import os
import re
from threading import Thread
import ttfw_idf
LOG_LEVEL = logging.DEBUG
LOGGER_NAME = 'modbus_test'
# Allowed parameter reads
TEST_READ_MIN_COUNT = 10 # Minimum number of correct readings
TEST_READ_MAX_ERR_COUNT = 2 # Maximum allowed read errors during initialization
TEST_THREAD_EXPECT_TIMEOUT = 120 # Test theread expect timeout in seconds
TEST_THREAD_JOIN_TIMEOUT = 180 # Test theread join timeout in seconds
# Test definitions
TEST_MASTER_RTU = 'master_rtu'
TEST_SLAVE_RTU = 'slave_rtu'
TEST_MASTER_ASCII = 'master_ascii'
TEST_SLAVE_ASCII = 'slave_ascii'
# Define tuple of strings to expect for each DUT.
#
master_expect = ('MASTER_TEST: Modbus master stack initialized...', 'MASTER_TEST: Start modbus test...', 'MASTER_TEST: Destroy master...')
slave_expect = ('SLAVE_TEST: Modbus slave stack initialized.', 'SLAVE_TEST: Start modbus test...', 'SLAVE_TEST: Modbus controller destroyed.')
# The dictionary for expected values in listing
expect_dict_master_ok = {'START': (),
'READ_PAR_OK': (),
'ALARM_MSG': (u'7',)}
expect_dict_master_err = {'READ_PAR_ERR': (u'263', u'ESP_ERR_TIMEOUT'),
'READ_STK_ERR': (u'107', u'ESP_ERR_TIMEOUT')}
# The dictionary for regular expression patterns to check in listing
pattern_dict_master_ok = {'START': (r'.*I \([0-9]+\) MASTER_TEST: Start modbus test...'),
'READ_PAR_OK': (r'.*I\s\([0-9]+\) MASTER_TEST: Characteristic #[0-9]+ [a-zA-Z0-9_]+'
r'\s\([a-zA-Z\%\/]+\) value = [a-zA-Z0-9\.\s]*\(0x[a-zA-Z0-9]+\) read successful.'),
'ALARM_MSG': (r'.*I \([0-9]*\) MASTER_TEST: Alarm triggered by cid #([0-9]+).')}
pattern_dict_master_err = {'READ_PAR_ERR_TOUT': (r'.*E \([0-9]+\) MASTER_TEST: Characteristic #[0-9]+'
r'\s\([a-zA-Z0-9_]+\) read fail, err = [0-9]+ \([_A-Z]+\).'),
'READ_STK_ERR_TOUT': (r'.*E \([0-9]+\) MB_CONTROLLER_MASTER: [a-zA-Z0-9_]+\([0-9]+\):\s'
r'SERIAL master get parameter failure error=\(0x([a-zA-Z0-9]+)\) \(([_A-Z]+)\).')}
# The dictionary for expected values in listing
expect_dict_slave_ok = {'START': (),
'READ_PAR_OK': (),
'DESTROY': ()}
# The dictionary for regular expression patterns to check in listing
pattern_dict_slave_ok = {'START': (r'.*I \([0-9]+\) SLAVE_TEST: Start modbus test...'),
'READ_PAR_OK': (r'.*I\s\([0-9]+\) SLAVE_TEST: [A-Z]+ READ \([a-zA-Z0-9_]+ us\),\s'
r'ADDR:[0-9]+, TYPE:[0-9]+, INST_ADDR:0x[a-zA-Z0-9]+, SIZE:[0-9]+'),
'DESTROY': (r'.*I\s\([0-9]+\) SLAVE_TEST: Modbus controller destroyed.')}
logger = logging.getLogger(LOGGER_NAME)
class DutTestThread(Thread):
def __init__(self, dut=None, name=None, expect=None):
""" Initialize the thread parameters
"""
self.tname = name
self.dut = dut
self.expected = expect
self.result = False
self.data = None
super(DutTestThread, self).__init__()
def run(self):
""" The function implements thread functionality
"""
# Must reset again as flashing during start_app will reset multiple times, causing unexpected results
self.dut.reset()
# Capture output from the DUT
self.dut.start_capture_raw_data()
# Check expected strings in the listing
for string in self.expected:
self.dut.expect(string, TEST_THREAD_EXPECT_TIMEOUT)
# Check DUT exceptions
dut_exceptions = self.dut.get_exceptions()
if 'Guru Meditation Error:' in dut_exceptions:
raise Exception('%s generated an exception: %s\n' % (str(self.dut), dut_exceptions))
# Mark thread has run to completion without any exceptions
self.data = self.dut.stop_capture_raw_data()
self.result = True
def test_filter_output(data=None, start_pattern=None, end_pattern=None):
"""Use patters to filter output
"""
start_index = str(data).find(start_pattern)
end_index = str(data).find(end_pattern)
logger.debug('Listing start index= %d, end=%d' % (start_index, end_index))
if start_index == -1 or end_index == -1:
return data
return data[start_index:end_index + len(end_pattern)]
def test_expect_re(data, pattern):
"""
Check if re pattern is matched in data cache
:param data: data to process
:param pattern: compiled RegEx pattern
:return: match groups if match succeed otherwise None
"""
ret = None
if isinstance(pattern, type(u'')):
pattern = pattern.encode('utf-8')
regex = re.compile(pattern)
if isinstance(data, type(u'')):
data = data.encode('utf-8')
match = regex.search(data)
if match:
ret = tuple(None if x is None else x.decode() for x in match.groups())
index = match.end()
else:
index = None
return ret, index
def test_check_output(data=None, check_dict=None, expect_dict=None):
""" Check output for the test
Check log using regular expressions:
"""
global logger
match_count = 0
index = 0
data_lines = data.splitlines()
for key, pattern in check_dict.items():
if key not in expect_dict:
break
# Check pattern in the each line
for line in data_lines:
group, index = test_expect_re(line, pattern)
if index is not None:
logger.debug('Found key{%s}=%s, line: \n%s' % (key, group, line))
if expect_dict[key] == group:
logger.debug('The result is correct for the key:%s, expected:%s == returned:%s' % (key, str(expect_dict[key]), str(group)))
match_count += 1
return match_count
def test_check_mode(dut=None, mode_str=None, value=None):
""" Check communication mode for dut
"""
global logger
try:
opt = dut.app.get_sdkconfig()[mode_str]
logger.info('%s {%s} = %s.\n' % (str(dut), mode_str, opt))
return value == opt
except Exception:
logger.info('ENV_TEST_FAILURE: %s: Cannot find option %s in sdkconfig.' % (str(dut), mode_str))
return False
@ttfw_idf.idf_example_test(env_tag='Example_T2_RS485', target=['esp32'])
def test_modbus_serial_communication(env, comm_mode):
global logger
# Get device under test. "dut1 - master", "dut2 - slave" must be properly connected through RS485 interface driver
dut_master = env.get_dut('modbus_master', 'examples/protocols/modbus/serial/mb_master', dut_class=ttfw_idf.ESP32DUT)
dut_slave = env.get_dut('modbus_slave', 'examples/protocols/modbus/serial/mb_slave', dut_class=ttfw_idf.ESP32DUT)
try:
logger.debug('Environment vars: %s\r\n' % os.environ)
logger.debug('DUT slave sdkconfig: %s\r\n' % dut_slave.app.get_sdkconfig())
logger.debug('DUT master sdkconfig: %s\r\n' % dut_master.app.get_sdkconfig())
# Check Kconfig configuration options for each built example
if test_check_mode(dut_master, 'CONFIG_MB_COMM_MODE_ASCII', 'y') and test_check_mode(dut_slave, 'CONFIG_MB_COMM_MODE_ASCII', 'y'):
logger.info('ENV_TEST_INFO: Modbus ASCII test mode selected in the configuration. \n')
slave_name = TEST_SLAVE_ASCII
master_name = TEST_MASTER_ASCII
elif test_check_mode(dut_master, 'CONFIG_MB_COMM_MODE_RTU', 'y') and test_check_mode(dut_slave, 'CONFIG_MB_COMM_MODE_RTU', 'y'):
logger.info('ENV_TEST_INFO: Modbus RTU test mode selected in the configuration. \n')
slave_name = TEST_SLAVE_RTU
master_name = TEST_MASTER_RTU
else:
logger.error("ENV_TEST_FAILURE: Communication mode in master and slave configuration don't match.\n")
raise Exception("ENV_TEST_FAILURE: Communication mode in master and slave configuration don't match.\n")
# Check if slave address for example application is default one to be able to communicate
if not test_check_mode(dut_slave, 'CONFIG_MB_SLAVE_ADDR', '1'):
logger.error('ENV_TEST_FAILURE: Slave address option is incorrect.\n')
raise Exception('ENV_TEST_FAILURE: Slave address option is incorrect.\n')
# Flash app onto each DUT
dut_master.start_app()
dut_slave.start_app()
# Create thread for each dut
dut_master_thread = DutTestThread(dut=dut_master, name=master_name, expect=master_expect)
dut_slave_thread = DutTestThread(dut=dut_slave, name=slave_name, expect=slave_expect)
# Start each thread
dut_slave_thread.start()
dut_master_thread.start()
# Wait for threads to complete
dut_slave_thread.join(timeout=TEST_THREAD_JOIN_TIMEOUT)
dut_master_thread.join(timeout=TEST_THREAD_JOIN_TIMEOUT)
if dut_slave_thread.isAlive():
logger.error('ENV_TEST_FAILURE: The thread %s is not completed successfully after %d seconds.\n' %
(dut_slave_thread.tname, TEST_THREAD_JOIN_TIMEOUT))
raise Exception('ENV_TEST_FAILURE: The thread %s is not completed successfully after %d seconds.\n' %
(dut_slave_thread.tname, TEST_THREAD_JOIN_TIMEOUT))
if dut_master_thread.isAlive():
logger.error('ENV_TEST_FAILURE: The thread %s is not completed successfully after %d seconds.\n' %
(dut_master_thread.tname, TEST_THREAD_JOIN_TIMEOUT))
raise Exception('ENV_TEST_FAILURE: The thread %s is not completed successfully after %d seconds.\n' %
(dut_master_thread.tname, TEST_THREAD_JOIN_TIMEOUT))
finally:
dut_master.close()
dut_slave.close()
# Check if test threads completed successfully and captured data
if not dut_slave_thread.result or dut_slave_thread.data is None:
logger.error('The thread %s was not run successfully.' % dut_slave_thread.tname)
raise Exception('The thread %s was not run successfully.' % dut_slave_thread.tname)
if not dut_master_thread.result or dut_master_thread.data is None:
logger.error('The thread %s was not run successfully.' % dut_slave_thread.tname)
raise Exception('The thread %s was not run successfully.' % dut_master_thread.tname)
# Filter output to get test messages
master_output = test_filter_output(dut_master_thread.data, master_expect[0], master_expect[len(master_expect) - 1])
if master_output is not None:
logger.info('The data for master thread is captured.')
logger.debug(master_output)
slave_output = test_filter_output(dut_slave_thread.data, slave_expect[0], slave_expect[len(slave_expect) - 1])
if slave_output is not None:
logger.info('The data for slave thread is captured.')
logger.debug(slave_output)
# Check if parameters are read correctly by master
match_count = test_check_output(master_output, pattern_dict_master_ok, expect_dict_master_ok)
if match_count < TEST_READ_MIN_COUNT:
logger.error('There are errors reading parameters from %s, %d' % (dut_master_thread.tname, match_count))
raise Exception('There are errors reading parameters from %s, %d' % (dut_master_thread.tname, match_count))
logger.info('OK pattern test for %s, match_count=%d.' % (dut_master_thread.tname, match_count))
# If the test completed successfully (alarm triggered) but there are some errors during reading of parameters
match_count = test_check_output(master_output, pattern_dict_master_err, expect_dict_master_err)
if match_count > TEST_READ_MAX_ERR_COUNT:
logger.error('There are errors reading parameters from %s, %d' % (dut_master_thread.tname, match_count))
raise Exception('There are errors reading parameters from %s, %d' % (dut_master_thread.tname, match_count))
logger.info('ERROR pattern test for %s, match_count=%d.' % (dut_master_thread.tname, match_count))
match_count = test_check_output(slave_output, pattern_dict_slave_ok, expect_dict_slave_ok)
if match_count < TEST_READ_MIN_COUNT:
logger.error('There are errors reading parameters from %s, %d' % (dut_slave_thread.tname, match_count))
raise Exception('There are errors reading parameters from %s, %d' % (dut_slave_thread.tname, match_count))
logger.info('OK pattern test for %s, match_count=%d.' % (dut_slave_thread.tname, match_count))
if __name__ == '__main__':
logger = logging.getLogger(LOGGER_NAME)
# create file handler which logs even debug messages
fh = logging.FileHandler('modbus_test.log')
fh.setLevel(logging.DEBUG)
logger.setLevel(logging.DEBUG)
# create console handler
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
# set format of output for both handlers
formatter = logging.Formatter('%(levelname)s:%(message)s')
ch.setFormatter(formatter)
fh.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.info('Start script %s.' % os.path.basename(__file__))
test_modbus_serial_communication()
logging.shutdown()

View File

@ -1,8 +0,0 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/protocols/modbus/mb_example_common)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(modbus_master)

View File

@ -1,9 +0,0 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/protocols/modbus/mb_example_common)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(modbus_slave)

View File

@ -1,58 +0,0 @@
# Modbus TCP Master-Slave Example
## Overview
These two projects illustrate the communication between Modbus master and slave device in the segment.
Master initializes Modbus interface driver and then reads parameters from slave device in the segment.
After several successful read attempts slave sets the alarm relay (end of test condition).
Once master reads the alarm it stops communication and destroy driver.
The examples:
* `examples/protocols/modbus/tcp/mb_tcp_master` - Modbus TCP master
* `examples/protocols/modbus/tcp/mb_tcp_slave` - Modbus TCP slave
See README.md for each individual project for more information.
## How to use example
### Hardware Required
This example can be run on any commonly available ESP32(-S2) development board.
The master and slave boards should be connected to the same network (see the README.md file in example folder) and slave address `CONFIG_MB_SLAVE_ADDR` be defined for slave board(s).
See the connection schematic in README.md files of each example.
### Configure the project
This example test requires communication mode setting for master and slave be the same and slave address set to 1.
Please refer to README.md files of each example project for more information. This example uses the default option `CONFIG_MB_SLAVE_IP_FROM_STDIN` to resolve slave IP address and supports IPv4 address type for communication in this case.
## About common_component in this example
The folder "mb_example_common" one level above includes definitions of parameter structures for master and slave device (both projects share the same parameters).
However, currently it is for example purpose only and can be modified for particular application.
## Example Output
Refer to README.md file in the appropriate example folder for more information about master and slave log output.
## Troubleshooting
If the examples do not work as expected and slave and master boards are not able to communicate correctly it is possible to find the reason for errors.
The most important errors are described in master example output and formatted as below:
```
E (1692332) MB_CONTROLLER_MASTER: mbc_master_get_parameter(111): SERIAL master get parameter failure error=(0x107) (ESP_ERR_TIMEOUT).
```
ESP_ERR_TIMEOUT (0x107) - Modbus slave device does not respond during configured timeout.
Check ability for communication pinging each slave configured in the master parameter description table or use command on your host machine to find modbus slave using mDNS (requires `CONFIG_MB_MDNS_IP_RESOLVER` option be enabled):
```>dns-sd -L mb_slave_tcp_XX _modbus._tcp .```
where XX is the short slave address (index) of the slave configured in the Kconfig of slave example.
Also it is possible to increase Kconfig value `CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND` to compensate network communication delays between master and slaves.
ESP_ERR_NOT_SUPPORTED (0x106), ESP_ERR_INVALID_RESPONSE (0x108) - Modbus slave device does not support requested command or register and sent exeption response.
ESP_ERR_INVALID_STATE (0x103) - Modbus stack is not configured correctly or can't work correctly due to critical failure.

View File

@ -1,308 +0,0 @@
# SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: Apache-2.0
import logging
import os
import re
from threading import Thread
import ttfw_idf
from tiny_test_fw import DUT
LOG_LEVEL = logging.DEBUG
LOGGER_NAME = 'modbus_test'
# Allowed options for the test
TEST_READ_MAX_ERR_COUNT = 3 # Maximum allowed read errors during initialization
TEST_THREAD_JOIN_TIMEOUT = 60 # Test theread join timeout in seconds
TEST_EXPECT_STR_TIMEOUT = 30 # Test expect timeout in seconds
TEST_MASTER_TCP = 'mb_tcp_master'
TEST_SLAVE_TCP = 'mb_tcp_slave'
STACK_DEFAULT = 0
STACK_IPV4 = 1
STACK_IPV6 = 2
STACK_INIT = 3
STACK_CONNECT = 4
STACK_START = 5
STACK_PAR_OK = 6
STACK_PAR_FAIL = 7
STACK_DESTROY = 8
pattern_dict_slave = {STACK_IPV4: (r'.*I \([0-9]+\) example_connect: - IPv4 address: ([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}).*'),
STACK_IPV6: (r'.*I \([0-9]+\) example_connect: - IPv6 address: (([A-Fa-f0-9]{1,4}::?){1,7}[A-Fa-f0-9]{1,4}).*'),
STACK_INIT: (r'.*I \(([0-9]+)\) MB_TCP_SLAVE_PORT: (Protocol stack initialized).'),
STACK_CONNECT: (r'.*I\s\(([0-9]+)\) MB_TCP_SLAVE_PORT: Socket \(#[0-9]+\), accept client connection from address: '
r'([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}).*'),
STACK_START: (r'.*I\s\(([0-9]+)\) SLAVE_TEST: (Start modbus test).*'),
STACK_PAR_OK: (r'.*I\s\(([0-9]+)\) SLAVE_TEST: ([A-Z]+ [A-Z]+) \([a-zA-Z0-9_]+ us\),\s'
r'ADDR:([0-9]+), TYPE:[0-9]+, INST_ADDR:0x[a-zA-Z0-9]+, SIZE:[0-9]+'),
STACK_PAR_FAIL: (r'.*E \(([0-9]+)\) SLAVE_TEST: Response time exceeds configured [0-9]+ [ms], ignore packet.*'),
STACK_DESTROY: (r'.*I\s\(([0-9]+)\) SLAVE_TEST: (Modbus controller destroyed).')}
pattern_dict_master = {STACK_IPV4: (r'.*I \([0-9]+\) example_connect: - IPv4 address: ([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}).*'),
STACK_IPV6: (r'.*I \([0-9]+\) example_connect: - IPv6 address: (([A-Fa-f0-9]{1,4}::?){1,7}[A-Fa-f0-9]{1,4}).*'),
STACK_INIT: (r'.*I \(([0-9]+)\) MASTER_TEST: (Modbus master stack initialized).*'),
STACK_CONNECT: (r'.*.*I\s\(([0-9]+)\) MB_TCP_MASTER_PORT: (Connected [0-9]+ slaves), start polling.*'),
STACK_START: (r'.*I \(([0-9]+)\) MASTER_TEST: (Start modbus test).*'),
STACK_PAR_OK: (r'.*I\s\(([0-9]+)\) MASTER_TEST: Characteristic #[0-9]+ ([a-zA-Z0-9_]+)'
r'\s\([a-zA-Z\%\/]+\) value = [a-zA-Z0-9\.]+ \(0x[a-zA-Z0-9]+\) read successful.*'),
STACK_PAR_FAIL: (r'.*E \(([0-9]+)\) MASTER_TEST: Characteristic #[0-9]+\s\(([a-zA-Z0-9_]+)\)\s'
r'read fail, err = [0-9]+ \([_A-Z]+\).*'),
STACK_DESTROY: (r'.*I\s\(([0-9]+)\) MASTER_TEST: (Destroy master).*')}
logger = logging.getLogger(LOGGER_NAME)
class DutTestThread(Thread):
""" Test thread class
"""
def __init__(self, dut=None, name=None, ip_addr=None, expect=None):
""" Initialize the thread parameters
"""
self.tname = name
self.dut = dut
self.expected = expect
self.data = None
self.ip_addr = ip_addr
self.test_finish = False
self.param_fail_count = 0
self.param_ok_count = 0
self.test_stage = STACK_DEFAULT
super(DutTestThread, self).__init__()
def __enter__(self):
logger.debug('Restart %s.', self.tname)
# Reset DUT first
self.dut.reset()
# Capture output from the DUT
self.dut.start_capture_raw_data(capture_id=self.dut.name)
return self
def __exit__(self, exc_type, exc_value, traceback):
""" The exit method of context manager
"""
if exc_type is not None or exc_value is not None:
logger.info('Thread %s rised an exception type: %s, value: %s', self.tname, str(exc_type), str(exc_value))
def run(self):
""" The function implements thread functionality
"""
# Initialize slave IP for master board
if (self.ip_addr is not None):
self.set_ip(0)
# Check expected strings in the listing
self.test_start(TEST_EXPECT_STR_TIMEOUT)
# Check DUT exceptions
dut_exceptions = self.dut.get_exceptions()
if 'Guru Meditation Error:' in dut_exceptions:
raise RuntimeError('%s generated an exception(s): %s\n' % (str(self.dut), dut_exceptions))
# Mark thread has run to completion without any exceptions
self.data = self.dut.stop_capture_raw_data(capture_id=self.dut.name)
def set_ip(self, index=0):
""" The method to send slave IP to master application
"""
message = r'.*Waiting IP([0-9]{1,2}) from stdin.*'
# Read all data from previous restart to get prompt correctly
self.dut.read()
result = self.dut.expect(re.compile(message), timeout=TEST_EXPECT_STR_TIMEOUT)
if int(result[0]) != index:
raise RuntimeError('Incorrect index of IP=%s for %s\n' % (result[0], str(self.dut)))
# Use the same slave IP address for all characteristics during the test
self.dut.write('IP0=' + self.ip_addr, '\n', False)
self.dut.write('IP1=' + self.ip_addr, '\n', False)
self.dut.write('IP2=' + self.ip_addr, '\n', False)
logger.debug('Set IP address=%s for %s', self.ip_addr, self.tname)
message = r'.*IP\([0-9]+\) = \[([0-9a-zA-Z\.\:]+)\] set from stdin.*'
result = self.dut.expect(re.compile(message), timeout=TEST_EXPECT_STR_TIMEOUT)
logger.debug('Thread %s initialized with slave IP=%s.', self.tname, self.ip_addr)
def test_start(self, timeout_value):
""" The method to initialize and handle test stages
"""
def handle_get_ip4(data):
""" Handle get_ip v4
"""
logger.debug('%s[STACK_IPV4]: %s', self.tname, str(data))
self.test_stage = STACK_IPV4
def handle_get_ip6(data):
""" Handle get_ip v6
"""
logger.debug('%s[STACK_IPV6]: %s', self.tname, str(data))
self.test_stage = STACK_IPV6
def handle_init(data):
""" Handle init
"""
logger.debug('%s[STACK_INIT]: %s', self.tname, str(data))
self.test_stage = STACK_INIT
def handle_connect(data):
""" Handle connect
"""
logger.debug('%s[STACK_CONNECT]: %s', self.tname, str(data))
self.test_stage = STACK_CONNECT
def handle_test_start(data):
""" Handle connect
"""
logger.debug('%s[STACK_START]: %s', self.tname, str(data))
self.test_stage = STACK_START
def handle_par_ok(data):
""" Handle parameter ok
"""
logger.debug('%s[READ_PAR_OK]: %s', self.tname, str(data))
if self.test_stage >= STACK_START:
self.param_ok_count += 1
self.test_stage = STACK_PAR_OK
def handle_par_fail(data):
""" Handle parameter fail
"""
logger.debug('%s[READ_PAR_FAIL]: %s', self.tname, str(data))
self.param_fail_count += 1
self.test_stage = STACK_PAR_FAIL
def handle_destroy(data):
""" Handle destroy
"""
logger.debug('%s[DESTROY]: %s', self.tname, str(data))
self.test_stage = STACK_DESTROY
self.test_finish = True
while not self.test_finish:
try:
self.dut.expect_any((re.compile(self.expected[STACK_IPV4]), handle_get_ip4),
(re.compile(self.expected[STACK_IPV6]), handle_get_ip6),
(re.compile(self.expected[STACK_INIT]), handle_init),
(re.compile(self.expected[STACK_CONNECT]), handle_connect),
(re.compile(self.expected[STACK_START]), handle_test_start),
(re.compile(self.expected[STACK_PAR_OK]), handle_par_ok),
(re.compile(self.expected[STACK_PAR_FAIL]), handle_par_fail),
(re.compile(self.expected[STACK_DESTROY]), handle_destroy),
timeout=timeout_value)
except DUT.ExpectTimeout:
logger.debug('%s, expect timeout on stage #%d (%s seconds)', self.tname, self.test_stage, timeout_value)
self.test_finish = True
def test_check_mode(dut=None, mode_str=None, value=None):
""" Check communication mode for dut
"""
global logger
try:
opt = dut.app.get_sdkconfig()[mode_str]
logger.debug('%s {%s} = %s.\n', str(dut), mode_str, opt)
return value == opt
except Exception:
logger.error('ENV_TEST_FAILURE: %s: Cannot find option %s in sdkconfig.', str(dut), mode_str)
return False
@ttfw_idf.idf_example_test(env_tag='Example_Modbus_TCP', target=['esp32'])
def test_modbus_tcp_communication(env, comm_mode):
global logger
rel_project_path = os.path.join('examples', 'protocols', 'modbus', 'tcp')
# Get device under test. Both duts must be able to be connected to WiFi router
dut_master = env.get_dut('modbus_tcp_master', os.path.join(rel_project_path, TEST_MASTER_TCP))
dut_slave = env.get_dut('modbus_tcp_slave', os.path.join(rel_project_path, TEST_SLAVE_TCP))
log_file = os.path.join(env.log_path, 'modbus_tcp_test.log')
print('Logging file name: %s' % log_file)
try:
# create file handler which logs even debug messages
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(log_file)
fh.setLevel(logging.DEBUG)
# set format of output for both handlers
formatter = logging.Formatter('%(levelname)s:%(message)s')
fh.setFormatter(formatter)
logger.addHandler(fh)
# create console handler
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
# set format of output for both handlers
formatter = logging.Formatter('%(levelname)s:%(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
# Check Kconfig configuration options for each built example
if (test_check_mode(dut_master, 'CONFIG_FMB_COMM_MODE_TCP_EN', 'y') and
test_check_mode(dut_slave, 'CONFIG_FMB_COMM_MODE_TCP_EN', 'y')):
slave_name = TEST_SLAVE_TCP
master_name = TEST_MASTER_TCP
else:
logger.error('ENV_TEST_FAILURE: IP resolver mode do not match in the master and slave implementation.\n')
raise RuntimeError('ENV_TEST_FAILURE: IP resolver mode do not match in the master and slave implementation.\n')
address = None
if test_check_mode(dut_master, 'CONFIG_MB_SLAVE_IP_FROM_STDIN', 'y'):
logger.info('ENV_TEST_INFO: Set slave IP address through STDIN.\n')
# Flash app onto DUT (Todo: Debug case when the slave flashed before master then expect does not work correctly for no reason
dut_slave.start_app()
dut_master.start_app()
if test_check_mode(dut_master, 'CONFIG_EXAMPLE_CONNECT_IPV6', 'y'):
address = dut_slave.expect(re.compile(pattern_dict_slave[STACK_IPV6]), TEST_EXPECT_STR_TIMEOUT)
else:
address = dut_slave.expect(re.compile(pattern_dict_slave[STACK_IPV4]), TEST_EXPECT_STR_TIMEOUT)
if address is not None:
print('Found IP slave address: %s' % address[0])
else:
raise RuntimeError('ENV_TEST_FAILURE: Slave IP address is not found in the output. Check network settings.\n')
else:
raise RuntimeError('ENV_TEST_FAILURE: Slave IP resolver is not configured correctly.\n')
# Create thread for each dut
with DutTestThread(dut=dut_master, name=master_name, ip_addr=address[0], expect=pattern_dict_master) as dut_master_thread:
with DutTestThread(dut=dut_slave, name=slave_name, ip_addr=None, expect=pattern_dict_slave) as dut_slave_thread:
# Start each thread
dut_slave_thread.start()
dut_master_thread.start()
# Wait for threads to complete
dut_slave_thread.join(timeout=TEST_THREAD_JOIN_TIMEOUT)
dut_master_thread.join(timeout=TEST_THREAD_JOIN_TIMEOUT)
if dut_slave_thread.is_alive():
logger.error('ENV_TEST_FAILURE: The thread %s is not completed successfully after %d seconds.\n',
dut_slave_thread.tname, TEST_THREAD_JOIN_TIMEOUT)
raise RuntimeError('ENV_TEST_FAILURE: The thread %s is not completed successfully after %d seconds.\n' %
(dut_slave_thread.tname, TEST_THREAD_JOIN_TIMEOUT))
if dut_master_thread.is_alive():
logger.error('TEST_FAILURE: The thread %s is not completed successfully after %d seconds.\n',
dut_master_thread.tname, TEST_THREAD_JOIN_TIMEOUT)
raise RuntimeError('TEST_FAILURE: The thread %s is not completed successfully after %d seconds.\n' %
(dut_master_thread.tname, TEST_THREAD_JOIN_TIMEOUT))
logger.info('TEST_INFO: %s error count = %d, %s error count = %d.\n',
dut_master_thread.tname, dut_master_thread.param_fail_count,
dut_slave_thread.tname, dut_slave_thread.param_fail_count)
logger.info('TEST_INFO: %s ok count = %d, %s ok count = %d.\n',
dut_master_thread.tname, dut_master_thread.param_ok_count,
dut_slave_thread.tname, dut_slave_thread.param_ok_count)
if ((dut_master_thread.param_fail_count > TEST_READ_MAX_ERR_COUNT) or
(dut_slave_thread.param_fail_count > TEST_READ_MAX_ERR_COUNT) or
(dut_slave_thread.param_ok_count == 0) or
(dut_master_thread.param_ok_count == 0)):
raise RuntimeError('TEST_FAILURE: %s parameter read error(ok) count = %d(%d), %s parameter read error(ok) count = %d(%d).\n' %
(dut_master_thread.tname, dut_master_thread.param_fail_count, dut_master_thread.param_ok_count,
dut_slave_thread.tname, dut_slave_thread.param_fail_count, dut_slave_thread.param_ok_count))
logger.info('TEST_SUCCESS: The Modbus parameter test is completed successfully.\n')
finally:
dut_master.close()
dut_slave.close()
logging.shutdown()
if __name__ == '__main__':
test_modbus_tcp_communication()

View File

@ -15,6 +15,7 @@ extern "C" {
#if __has_include("esp_check.h")
#include "esp_check.h"
#include "esp_log.h"
#define MB_RETURN_ON_FALSE(a, err_code, tag, format, ...) ESP_RETURN_ON_FALSE(a, err_code, tag, format __VA_OPT__(,) __VA_ARGS__)
@ -24,7 +25,7 @@ extern "C" {
#define MB_RETURN_ON_FALSE(a, err_code, tag, format, ...) do { \
if (!(a)) { \
MB_LOGE(tag, "%s(%d): " format, __FUNCTION__, __LINE__ __VA_OPT__(,) __VA_ARGS__); \
ESP_LOGE(tag, "%s(%d): " format, __FUNCTION__, __LINE__ __VA_OPT__(,) __VA_ARGS__); \
return err_code; \
} \
} while(0)

View File

@ -9,6 +9,7 @@
#include <stdint.h> // for standard int types definition
#include <stddef.h> // for NULL and std defines
#include "soc/soc.h" // for BITN definitions
#include "esp_modbus_common.h" // for common types
#ifdef __cplusplus

View File

@ -10,6 +10,7 @@
// Public interface header for slave
#include <stdint.h> // for standard int types definition
#include <stddef.h> // for NULL and std defines
#include "soc/soc.h" // for BITN definitions
#include "freertos/FreeRTOS.h" // for task creation and queues access
#include "freertos/event_groups.h" // for event groups
#include "esp_modbus_common.h" // for common types

View File

@ -151,26 +151,33 @@ eMBErrorCode
eMBASCIIReceive( UCHAR * pucRcvAddress, UCHAR ** pucFrame, USHORT * pusLength )
{
eMBErrorCode eStatus = MB_ENOERR;
UCHAR *pucMBASCIIFrame = ( UCHAR* ) ucASCIIBuf;
USHORT usFrameLength = usRcvBufferPos;
if( xMBSerialPortGetRequest( &pucMBASCIIFrame, &usFrameLength ) == FALSE )
{
return MB_EIO;
}
ENTER_CRITICAL_SECTION( );
assert( usRcvBufferPos < MB_SER_PDU_SIZE_MAX );
assert( usFrameLength < MB_SER_PDU_SIZE_MAX );
/* Length and CRC check */
if( ( usRcvBufferPos >= MB_ASCII_SER_PDU_SIZE_MIN )
&& ( prvucMBLRC( ( UCHAR * ) ucASCIIBuf, usRcvBufferPos ) == 0 ) )
if( ( usFrameLength >= MB_ASCII_SER_PDU_SIZE_MIN )
&& ( prvucMBLRC( ( UCHAR * ) pucMBASCIIFrame, usFrameLength ) == 0 ) )
{
/* Save the address field. All frames are passed to the upper layed
* and the decision if a frame is used is done there.
*/
*pucRcvAddress = ucASCIIBuf[MB_SER_PDU_ADDR_OFF];
*pucRcvAddress = pucMBASCIIFrame[MB_SER_PDU_ADDR_OFF];
/* Total length of Modbus-PDU is Modbus-Serial-Line-PDU minus
* size of address field and CRC checksum.
*/
*pusLength = ( USHORT )( usRcvBufferPos - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_LRC );
*pusLength = ( USHORT )( usFrameLength - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_LRC );
/* Return the start of the Modbus PDU to the caller. */
*pucFrame = ( UCHAR * ) & ucASCIIBuf[MB_SER_PDU_PDU_OFF];
*pucFrame = ( UCHAR * ) & pucMBASCIIFrame[MB_SER_PDU_PDU_OFF];
}
else
{
@ -186,13 +193,14 @@ eMBASCIISend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLength )
eMBErrorCode eStatus = MB_ENOERR;
UCHAR usLRC;
ENTER_CRITICAL_SECTION( );
/* Check if the receiver is still in idle state. If not we where too
* slow with processing the received frame and the master sent another
* frame on the network. We have to abort sending the frame.
*/
if( eRcvState == STATE_RX_IDLE )
{
ENTER_CRITICAL_SECTION( );
/* First byte before the Modbus-PDU is the slave address. */
pucSndBufferCur = ( UCHAR * ) pucFrame - 1;
usSndBufferCount = 1;
@ -207,6 +215,13 @@ eMBASCIISend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLength )
/* Activate the transmitter. */
eSndState = STATE_TX_START;
EXIT_CRITICAL_SECTION( );
if ( xMBSerialPortSendResponse( ( UCHAR * ) pucSndBufferCur, usSndBufferCount ) == FALSE )
{
eStatus = MB_EIO;
}
vMBPortSerialEnable( FALSE, TRUE );
}
else

View File

@ -154,29 +154,34 @@ eMBErrorCode
eMBMasterASCIIReceive( UCHAR * pucRcvAddress, UCHAR ** pucFrame, USHORT * pusLength )
{
eMBErrorCode eStatus = MB_ENOERR;
UCHAR *pucMBASCIIFrame = ( UCHAR* ) ucMasterASCIIRcvBuf;
USHORT usFrameLength = usMasterRcvBufferPos;
if( xMBMasterSerialPortGetResponse( &pucMBASCIIFrame, &usFrameLength ) == FALSE )
{
return MB_EIO;
}
ENTER_CRITICAL_SECTION( );
assert( usMasterRcvBufferPos < MB_SER_PDU_SIZE_MAX );
assert( usFrameLength < MB_SER_PDU_SIZE_MAX );
assert( pucMBASCIIFrame );
/* Length and CRC check */
if( ( usMasterRcvBufferPos >= MB_ASCII_SER_PDU_SIZE_MIN )
&& ( prvucMBLRC( ( UCHAR * ) ucMasterASCIIRcvBuf, usMasterRcvBufferPos ) == 0 ) )
if( ( usFrameLength >= MB_ASCII_SER_PDU_SIZE_MIN )
&& ( prvucMBLRC( ( UCHAR * ) pucMBASCIIFrame, usFrameLength ) == 0 ) )
{
/* Save the address field. All frames are passed to the upper layed
* and the decision if a frame is used is done there.
*/
*pucRcvAddress = ucMasterASCIIRcvBuf[MB_SER_PDU_ADDR_OFF];
* and the decision if a frame is used is done there.
*/
*pucRcvAddress = pucMBASCIIFrame[MB_SER_PDU_ADDR_OFF];
/* Total length of Modbus-PDU is Modbus-Serial-Line-PDU minus
* size of address field and CRC checksum.
*/
*pusLength = ( USHORT )( usMasterRcvBufferPos - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_LRC );
/* Total length of Modbus-PDU is Modbus-Serial-Line-PDU minus
* size of address field and CRC checksum.
*/
*pusLength = ( USHORT )( usFrameLength - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_LRC );
/* Return the start of the Modbus PDU to the caller. */
*pucFrame = ( UCHAR * ) & ucMasterASCIIRcvBuf[MB_SER_PDU_PDU_OFF];
}
else
{
/* Return the start of the Modbus PDU to the caller. */
*pucFrame = ( UCHAR * ) & pucMBASCIIFrame[MB_SER_PDU_PDU_OFF];
} else {
eStatus = MB_EIO;
}
EXIT_CRITICAL_SECTION( );
@ -191,13 +196,13 @@ eMBMasterASCIISend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLengt
if ( ucSlaveAddress > MB_MASTER_TOTAL_SLAVE_NUM ) return MB_EINVAL;
ENTER_CRITICAL_SECTION( );
/* Check if the receiver is still in idle state. If not we where too
* slow with processing the received frame and the master sent another
* frame on the network. We have to abort sending the frame.
*/
if(eRcvState == STATE_M_RX_IDLE)
{
ENTER_CRITICAL_SECTION( );
/* First byte before the Modbus-PDU is the slave address. */
pucMasterSndBufferCur = ( UCHAR * ) pucFrame - 1;
usMasterSndBufferCount = 1;
@ -208,17 +213,22 @@ eMBMasterASCIISend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLengt
/* Calculate LRC checksum for Modbus-Serial-Line-PDU. */
usLRC = prvucMBLRC( ( UCHAR * ) pucMasterSndBufferCur, usMasterSndBufferCount );
ucMasterASCIISndBuf[usMasterSndBufferCount++] = usLRC;
pucMasterSndBufferCur[usMasterSndBufferCount++] = usLRC;
/* Activate the transmitter. */
eSndState = STATE_M_TX_START;
EXIT_CRITICAL_SECTION( );
if ( xMBMasterSerialPortSendRequest( ( UCHAR * ) pucMasterSndBufferCur, usMasterSndBufferCount ) == FALSE )
{
eStatus = MB_EIO;
}
vMBMasterPortSerialEnable( FALSE, TRUE );
}
else
{
eStatus = MB_EIO;
}
EXIT_CRITICAL_SECTION( );
return eStatus;
}
@ -447,7 +457,7 @@ xMBMasterASCIITransmitFSM( void )
return xNeedPoll;
}
BOOL
BOOL MB_PORT_ISR_ATTR
xMBMasterASCIITimerT1SExpired( void )
{
BOOL xNeedPoll = FALSE;
@ -457,7 +467,6 @@ xMBMasterASCIITimerT1SExpired( void )
/* Timer t35 expired. Startup phase is finished. */
case STATE_M_RX_INIT:
xNeedPoll = xMBMasterPortEventPost(EV_MASTER_READY);
ESP_EARLY_LOGI("xMBMasterASCIITimerT1SExpired", "RX_INIT_EXPIRED");
break;
/* Start of message is not received during respond timeout.

View File

@ -41,6 +41,10 @@
#include "sdkconfig.h" // for KConfig options
#if __has_include("esp_idf_version.h")
#include "esp_idf_version.h"
#endif
#ifdef __cplusplus
PR_BEGIN_EXTERN_C
#endif
@ -73,6 +77,15 @@ PR_BEGIN_EXTERN_C
#error "None of Modbus communication mode is enabled. Please enable one of (ASCII, RTU, TCP) mode in Kconfig."
#endif
#ifdef ESP_IDF_VERSION
#if (ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 4, 0))
// Features supported from 4.4
#define MB_TIMER_SUPPORTS_ISR_DISPATCH_METHOD 1
#endif
#endif
/*! \brief This option defines the number of data bits per ASCII character.
*
* A parity bit is added before the stop bit which keeps the actual byte size at 10 bits.

View File

@ -145,6 +145,10 @@ BOOL xMBPortSerialGetByte( CHAR * pucByte );
BOOL xMBPortSerialPutByte( CHAR ucByte );
BOOL xMBSerialPortGetRequest( UCHAR **ppucMBSerialFrame, USHORT * pusSerialLength ) __attribute__ ((weak));
BOOL xMBSerialPortSendResponse( UCHAR *pucMBSerialFrame, USHORT usSerialLength ) __attribute__ ((weak));
#if MB_MASTER_RTU_ENABLED || MB_MASTER_ASCII_ENABLED
BOOL xMBMasterPortSerialInit( UCHAR ucPort, ULONG ulBaudRate,
UCHAR ucDataBits, eMBParity eParity );
@ -158,6 +162,11 @@ void vMBMasterPortSerialEnable( BOOL xRxEnable, BOOL xTxEnable );
BOOL xMBMasterPortSerialGetByte( CHAR * pucByte );
BOOL xMBMasterPortSerialPutByte( CHAR ucByte );
BOOL xMBMasterSerialPortGetResponse( UCHAR **ppucMBSerialFrame, USHORT * usSerialLength );
BOOL xMBMasterSerialPortSendRequest( UCHAR *pucMBSerialFrame, USHORT usSerialLength );
#endif
/* ----------------------- Timers functions ---------------------------------*/

View File

@ -70,18 +70,18 @@
/* ----------------------- Static variables ---------------------------------*/
static UCHAR ucMBMasterDestAddress;
static BOOL xMBRunInMasterMode = FALSE;
static UCHAR ucMBMasterDestAddress;
static BOOL xMBRunInMasterMode = FALSE;
static volatile eMBMasterErrorEventType eMBMasterCurErrorType;
static volatile USHORT usMasterSendPDULength;
static volatile USHORT usMasterSendPDULength;
static volatile eMBMode eMBMasterCurrentMode;
/*------------------------ Shared variables ---------------------------------*/
volatile UCHAR ucMasterSndBuf[MB_SERIAL_BUF_SIZE];
volatile UCHAR ucMasterRcvBuf[MB_SERIAL_BUF_SIZE];
volatile UCHAR ucMasterSndBuf[MB_SERIAL_BUF_SIZE];
volatile UCHAR ucMasterRcvBuf[MB_SERIAL_BUF_SIZE];
volatile eMBMasterTimerMode eMasterCurTimerMode;
volatile BOOL xFrameIsBroadcast = FALSE;
volatile BOOL xFrameIsBroadcast = FALSE;
static enum
{
@ -152,7 +152,7 @@ static xMBFunctionHandler xMasterFuncHandlers[MB_FUNC_HANDLERS_MAX] = {
};
/* ----------------------- Start implementation -----------------------------*/
#if MB_MASTER_TCP_ENABLED > 0
#if MB_MASTER_TCP_ENABLED
eMBErrorCode
eMBMasterTCPInit( USHORT ucTCPPort )
{

View File

@ -39,7 +39,7 @@
#include "port.h"
#include "mbconfig.h"
#if MB_MASTER_RTU_ENABLED || MB_SLAVE_RTU_ENABLED
#if (MB_MASTER_RTU_ENABLED || MB_SLAVE_RTU_ENABLED || CONFIG_MB_UTEST)
static const UCHAR aucCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,

View File

@ -155,26 +155,33 @@ eMBErrorCode
eMBRTUReceive( UCHAR * pucRcvAddress, UCHAR ** pucFrame, USHORT * pusLength )
{
eMBErrorCode eStatus = MB_ENOERR;
UCHAR *pucMBRTUFrame = ( UCHAR* ) ucRTUBuf;
USHORT usFrameLength = usRcvBufferPos;
if( xMBSerialPortGetRequest( &pucMBRTUFrame, &usFrameLength ) == FALSE )
{
return MB_EIO;
}
ENTER_CRITICAL_SECTION( );
assert( usRcvBufferPos < MB_SER_PDU_SIZE_MAX );
assert( usFrameLength < MB_SER_PDU_SIZE_MAX );
/* Length and CRC check */
if( ( usRcvBufferPos >= MB_SER_PDU_SIZE_MIN )
&& ( usMBCRC16( ( UCHAR * ) ucRTUBuf, usRcvBufferPos ) == 0 ) )
if( ( usFrameLength >= MB_SER_PDU_SIZE_MIN )
&& ( usMBCRC16( ( UCHAR * ) pucMBRTUFrame, usFrameLength ) == 0 ) )
{
/* Save the address field. All frames are passed to the upper layed
* and the decision if a frame is used is done there.
*/
*pucRcvAddress = ucRTUBuf[MB_SER_PDU_ADDR_OFF];
*pucRcvAddress = pucMBRTUFrame[MB_SER_PDU_ADDR_OFF];
/* Total length of Modbus-PDU is Modbus-Serial-Line-PDU minus
* size of address field and CRC checksum.
*/
*pusLength = ( USHORT )( usRcvBufferPos - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_CRC );
*pusLength = ( USHORT )( usFrameLength - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_CRC );
/* Return the start of the Modbus PDU to the caller. */
*pucFrame = ( UCHAR * ) & ucRTUBuf[MB_SER_PDU_PDU_OFF];
*pucFrame = ( UCHAR * ) & pucMBRTUFrame[MB_SER_PDU_PDU_OFF];
}
else
{
@ -191,14 +198,13 @@ eMBRTUSend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLength )
eMBErrorCode eStatus = MB_ENOERR;
USHORT usCRC16;
ENTER_CRITICAL_SECTION( );
/* Check if the receiver is still in idle state. If not we where to
* slow with processing the received frame and the master sent another
* frame on the network. We have to abort sending the frame.
*/
if( eRcvState == STATE_RX_IDLE )
{
ENTER_CRITICAL_SECTION( );
/* First byte before the Modbus-PDU is the slave address. */
pucSndBufferCur = ( UCHAR * ) pucFrame - 1;
usSndBufferCount = 1;
@ -214,13 +220,19 @@ eMBRTUSend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLength )
/* Activate the transmitter. */
eSndState = STATE_TX_XMIT;
EXIT_CRITICAL_SECTION( );
if( xMBSerialPortSendResponse( ( UCHAR * ) pucSndBufferCur, usSndBufferCount ) == FALSE )
{
eStatus = MB_EIO;
}
vMBPortSerialEnable( FALSE, TRUE );
}
else
{
eStatus = MB_EIO;
}
EXIT_CRITICAL_SECTION( );
return eStatus;
}
@ -272,7 +284,7 @@ xMBRTUReceiveFSM( void )
case STATE_RX_RCV:
if( usRcvBufferPos < MB_SER_PDU_SIZE_MAX )
{
if ( xStatus ) {
if( xStatus ) {
ucRTUBuf[usRcvBufferPos++] = ucByte;
}
}

View File

@ -161,26 +161,34 @@ eMBErrorCode
eMBMasterRTUReceive( UCHAR * pucRcvAddress, UCHAR ** pucFrame, USHORT * pusLength )
{
eMBErrorCode eStatus = MB_ENOERR;
UCHAR *pucMBRTUFrame = ( UCHAR* ) ucMasterRTURcvBuf;
USHORT usFrameLength = usMasterRcvBufferPos;
if( xMBMasterSerialPortGetResponse( &pucMBRTUFrame, &usFrameLength ) == FALSE )
{
return MB_EIO;
}
ENTER_CRITICAL_SECTION( );
assert( usMasterRcvBufferPos < MB_SER_PDU_SIZE_MAX );
assert( usFrameLength < MB_SER_PDU_SIZE_MAX );
assert( pucMBRTUFrame );
/* Length and CRC check */
if( ( usMasterRcvBufferPos >= MB_RTU_SER_PDU_SIZE_MIN )
&& ( usMBCRC16( ( UCHAR * ) ucMasterRTURcvBuf, usMasterRcvBufferPos ) == 0 ) )
if( ( usFrameLength >= MB_RTU_SER_PDU_SIZE_MIN )
&& ( usMBCRC16( ( UCHAR * ) pucMBRTUFrame, usFrameLength ) == 0 ) )
{
/* Save the address field. All frames are passed to the upper layed
/* Save the address field. All frames are passed to the upper layer
* and the decision if a frame is used is done there.
*/
*pucRcvAddress = ucMasterRTURcvBuf[MB_SER_PDU_ADDR_OFF];
*pucRcvAddress = pucMBRTUFrame[MB_SER_PDU_ADDR_OFF];
/* Total length of Modbus-PDU is Modbus-Serial-Line-PDU minus
* size of address field and CRC checksum.
*/
*pusLength = ( USHORT )( usMasterRcvBufferPos - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_CRC );
*pusLength = ( USHORT )( usFrameLength - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_CRC );
/* Return the start of the Modbus PDU to the caller. */
*pucFrame = ( UCHAR * ) & ucMasterRTURcvBuf[MB_SER_PDU_PDU_OFF];
*pucFrame = ( UCHAR * ) & pucMBRTUFrame[MB_SER_PDU_PDU_OFF];
}
else
{
@ -199,14 +207,13 @@ eMBMasterRTUSend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLength
if ( ucSlaveAddress > MB_MASTER_TOTAL_SLAVE_NUM ) return MB_EINVAL;
ENTER_CRITICAL_SECTION( );
/* Check if the receiver is still in idle state. If not we where to
* slow with processing the received frame and the master sent another
* frame on the network. We have to abort sending the frame.
*/
if( eRcvState == STATE_M_RX_IDLE )
{
ENTER_CRITICAL_SECTION( );
/* First byte before the Modbus-PDU is the slave address. */
pucMasterSndBufferCur = ( UCHAR * ) pucFrame - 1;
usMasterSndBufferCount = 1;
@ -217,11 +224,18 @@ eMBMasterRTUSend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLength
/* Calculate CRC16 checksum for Modbus-Serial-Line-PDU. */
usCRC16 = usMBCRC16( ( UCHAR * ) pucMasterSndBufferCur, usMasterSndBufferCount );
ucMasterRTUSndBuf[usMasterSndBufferCount++] = ( UCHAR )( usCRC16 & 0xFF );
ucMasterRTUSndBuf[usMasterSndBufferCount++] = ( UCHAR )( usCRC16 >> 8 );
pucMasterSndBufferCur[usMasterSndBufferCount++] = ( UCHAR )( usCRC16 & 0xFF );
pucMasterSndBufferCur[usMasterSndBufferCount++] = ( UCHAR )( usCRC16 >> 8 );
EXIT_CRITICAL_SECTION( );
/* Activate the transmitter. */
eSndState = STATE_M_TX_XMIT;
if ( xMBMasterSerialPortSendRequest( ( UCHAR * ) pucMasterSndBufferCur, usMasterSndBufferCount ) == FALSE )
{
eStatus = MB_EIO;
}
// The place to enable RS485 driver
vMBMasterPortSerialEnable( FALSE, TRUE );
}
@ -229,7 +243,6 @@ eMBMasterRTUSend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLength
{
eStatus = MB_EIO;
}
EXIT_CRITICAL_SECTION( );
return eStatus;
}
@ -273,11 +286,15 @@ xMBMasterRTUReceiveFSM( void )
eSndState = STATE_M_TX_IDLE;
usMasterRcvBufferPos = 0;
ucMasterRTURcvBuf[usMasterRcvBufferPos++] = ucByte;
eRcvState = STATE_M_RX_RCV;
if( xStatus && ucByte ) {
ucMasterRTURcvBuf[usMasterRcvBufferPos++] = ucByte;
eRcvState = STATE_M_RX_RCV;
}
/* Enable t3.5 timers. */
#if CONFIG_FMB_TIMER_PORT_ENABLED
vMBMasterPortTimersT35Enable( );
#endif
break;
/* We are currently receiving a frame. Reset the timer after
@ -296,7 +313,9 @@ xMBMasterRTUReceiveFSM( void )
{
eRcvState = STATE_M_RX_ERROR;
}
#if CONFIG_FMB_TIMER_PORT_ENABLED
vMBMasterPortTimersT35Enable( );
#endif
break;
}
return xStatus;

View File

@ -38,6 +38,7 @@
/* ----------------------- Modbus includes ----------------------------------*/
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "sys/lock.h"
#include "port.h"
@ -72,6 +73,13 @@ vMBPortSetMode( UCHAR ucMode )
EXIT_CRITICAL_SECTION();
}
BOOL xMBPortSerialWaitEvent(QueueHandle_t xMbUartQueue, uart_event_t* pxEvent, ULONG xTimeout)
{
BOOL xResult = (BaseType_t)xQueueReceive(xMbUartQueue, (void*)pxEvent, (TickType_t) xTimeout);
ESP_LOGD(__func__, "UART event: %d ", pxEvent->type);
return xResult;
}
#if MB_TCP_DEBUG
// This function is kept to realize legacy freemodbus frame logging functionality

View File

@ -38,8 +38,18 @@
#define PORT_COMMON_H_
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h" // for queue
#include "esp_log.h" // for ESP_LOGE macro
#include "esp_timer.h"
#include "driver/uart.h" // for uart_event_t
#if __has_include("driver/gptimer.h")
#include "driver/gptimer.h"
#else
#include "driver/timer.h"
#endif
#include "mbconfig.h"
#define INLINE inline
@ -174,6 +184,8 @@ void prvvMBTCPLogFrame( const CHAR * pucMsg, UCHAR * pucFrame, USHORT usFrameLen
void vMBPortSetMode( UCHAR ucMode );
UCHAR ucMBPortGetMode( void );
BOOL xMBPortSerialWaitEvent(QueueHandle_t xMbUartQueue, uart_event_t* pxEvent, ULONG xTimeout);
#ifdef __cplusplus
PR_END_EXTERN_C
#endif /* __cplusplus */

View File

@ -33,6 +33,8 @@
*
* File: $Id: portother.c,v 1.1 2010/06/06 13:07:20 wolti Exp $
*/
#include "driver/uart.h"
#include "port.h"
#include "driver/uart.h"
#include "freertos/queue.h" // for queue support
@ -85,15 +87,14 @@ static USHORT usMBPortSerialRxPoll(size_t xEventSize)
if (bRxStateEnabled) {
// Get received packet into Rx buffer
while(xReadStatus && (usCnt++ <= MB_SERIAL_BUF_SIZE)) {
while(xReadStatus && (usCnt++ <= xEventSize)) {
// Call the Modbus stack callback function and let it fill the buffers.
xReadStatus = pxMBFrameCBByteReceived(); // callback to execute receive FSM
}
uart_flush_input(ucUartNumber);
// Send event EV_FRAME_RECEIVED to allow stack process packet
#if !CONFIG_FMB_TIMER_PORT_ENABLED
// Let the stack know that T3.5 time is expired and data is received
(void)pxMBPortCBTimerExpired(); // calls callback xMBRTUTimerT35Expired();
pxMBPortCBTimerExpired();
#endif
ESP_LOGD(TAG, "RX: %d bytes\n", usCnt);
}
@ -126,7 +127,7 @@ static void vUartTask(void *pvParameters)
uart_event_t xEvent;
USHORT usResult = 0;
for(;;) {
if (xQueueReceive(xMbUartQueue, (void*)&xEvent, portMAX_DELAY) == pdTRUE) {
if (xMBPortSerialWaitEvent(xMbUartQueue, (void*)&xEvent, portMAX_DELAY)) {
ESP_LOGD(TAG, "MB_uart[%d] event:", ucUartNumber);
switch(xEvent.type) {
//Event of UART receving data
@ -135,6 +136,8 @@ static void vUartTask(void *pvParameters)
// This flag set in the event means that no more
// data received during configured timeout and UART TOUT feature is triggered
if (xEvent.timeout_flag) {
// Get buffered data length
ESP_ERROR_CHECK(uart_get_buffered_data_len(ucUartNumber, &xEvent.size));
// Read received data and send it to modbus stack
usResult = usMBPortSerialRxPoll(xEvent.size);
ESP_LOGD(TAG,"Timeout occured, processed: %d bytes", usResult);
@ -219,7 +222,7 @@ BOOL xMBPortSerialInit(UCHAR ucPORT, ULONG ulBaudRate,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 2,
.source_clk = UART_SCLK_APB,
.source_clk = UART_SCLK_APB
};
// Set UART config
xErr = uart_param_config(ucUartNumber, &xUartConfig);
@ -257,6 +260,17 @@ BOOL xMBPortSerialInit(UCHAR ucPORT, ULONG ulBaudRate,
return TRUE;
}
BOOL xMBSerialPortGetRequest( UCHAR **ppucMBSerialFrame, USHORT * usSerialLength )
{
BOOL eStatus = TRUE;
return eStatus;
}
BOOL xMBSerialPortSendResponse( UCHAR *pucMBSerialFrame, USHORT usSerialLength )
{
return TRUE;
}
void vMBPortSerialClose(void)
{
(void)vTaskSuspend(xMbTaskHandle);

View File

@ -89,7 +89,7 @@ static USHORT usMBMasterPortSerialRxPoll(size_t xEventSize)
USHORT usCnt = 0;
if (bRxStateEnabled) {
while(xReadStatus && (usCnt++ <= MB_SERIAL_BUF_SIZE)) {
while(xReadStatus && (usCnt++ <= xEventSize)) {
// Call the Modbus stack callback function and let it fill the stack buffers.
xReadStatus = pxMBMasterFrameCBByteReceived(); // callback to receive FSM
}
@ -134,7 +134,7 @@ static void vUartTask(void* pvParameters)
uart_event_t xEvent;
USHORT usResult = 0;
for(;;) {
if (xQueueReceive(xMbUartQueue, (void*)&xEvent, portMAX_DELAY) == pdTRUE) {
if (xMBPortSerialWaitEvent(xMbUartQueue, (void*)&xEvent, portMAX_DELAY)) {
ESP_LOGD(TAG, "MB_uart[%d] event:", ucUartNumber);
switch(xEvent.type) {
//Event of UART receiving data
@ -143,6 +143,8 @@ static void vUartTask(void* pvParameters)
// This flag set in the event means that no more
// data received during configured timeout and UART TOUT feature is triggered
if (xEvent.timeout_flag) {
// Get buffered data length
ESP_ERROR_CHECK(uart_get_buffered_data_len(ucUartNumber, &xEvent.size));
// Read received data and send it to modbus stack
usResult = usMBMasterPortSerialRxPoll(xEvent.size);
ESP_LOGD(TAG,"Timeout occured, processed: %d bytes", usResult);
@ -266,6 +268,24 @@ BOOL xMBMasterPortSerialInit( UCHAR ucPORT, ULONG ulBaudRate, UCHAR ucDataBits,
return TRUE;
}
/*
* The function is called from ASCII/RTU module to get processed data buffer. Sets the
* received buffer and its length using parameters.
*/
BOOL xMBMasterSerialPortGetResponse( UCHAR **ppucMBSerialFrame, USHORT * usSerialLength )
{
return TRUE;
}
/*
* The function is called from ASCII/RTU module to set processed data buffer
* to be sent in transmitter state machine.
*/
BOOL xMBMasterSerialPortSendRequest( UCHAR *pucMBSerialFrame, USHORT usSerialLength )
{
return TRUE;
}
void vMBMasterPortSerialClose(void)
{
(void)vTaskDelete(xMbTaskHandle);

View File

@ -74,7 +74,7 @@ BOOL xMBPortTimersInit(USHORT usTimeOut50us)
esp_timer_create_args_t xTimerConf = {
.callback = vTimerAlarmCBHandler,
.arg = NULL,
#if CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD
#if (MB_TIMER_SUPPORTS_ISR_DISPATCH_METHOD && CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD)
.dispatch_method = ESP_TIMER_ISR,
#else
.dispatch_method = ESP_TIMER_TASK,

View File

@ -71,7 +71,7 @@ BOOL xMBMasterPortTimersInit(USHORT usTimeOut50us)
esp_timer_create_args_t xTimerConf = {
.callback = vTimerAlarmCBHandler,
.arg = NULL,
#if CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD
#if (MB_TIMER_SUPPORTS_ISR_DISPATCH_METHOD && CONFIG_FMB_TIMER_USE_ISR_DISPATCH_METHOD)
.dispatch_method = ESP_TIMER_ISR,
#else
.dispatch_method = ESP_TIMER_TASK,

View File

@ -30,7 +30,7 @@ extern BOOL xMBMasterPortSerialTxPoll(void);
#define MB_RESPONSE_TICS pdMS_TO_TICKS(CONFIG_FMB_MASTER_TIMEOUT_MS_RESPOND + 10)
static mb_master_interface_t* mbm_interface_ptr = NULL; //&default_interface_inst;
static mb_master_interface_t* mbm_interface_ptr = NULL;
static const char *TAG = "MB_CONTROLLER_MASTER";
// Modbus event processing task
@ -101,7 +101,7 @@ static esp_err_t mbc_serial_master_start(void)
"mb stack initialization failure, eMBInit() returns (0x%x).", status);
status = eMBMasterEnable();
MB_MASTER_CHECK((status == MB_ENOERR), ESP_ERR_INVALID_STATE,
"mb stack set slave ID failure, eMBEnable() returned (0x%x).", (uint32_t)status);
"mb stack set slave ID failure, eMBMasterEnable() returned (0x%x).", (uint32_t)status);
// Set the mbcontroller start flag
EventBits_t flag = xEventGroupSetBits(mbm_opts->mbm_event_group,
(EventBits_t)MB_EVENT_STACK_STARTED);

View File

@ -159,7 +159,7 @@ static esp_err_t mbc_tcp_master_start(void)
status = eMBMasterEnable();
MB_MASTER_CHECK((status == MB_ENOERR), ESP_ERR_INVALID_STATE,
"mb stack set slave ID failure, eMBMasterEnable() returned (0x%x).", (uint32_t)status);
"mb stack enable failure, eMBMasterEnable() returned (0x%x).", (uint32_t)status);
// Add slave IP address for each slave to initialize connection
mb_slave_addr_entry_t *p_slave_info;
@ -172,13 +172,12 @@ static esp_err_t mbc_tcp_master_start(void)
// Add end of list condition
(void)xMBTCPPortMasterAddSlaveIp(0xFF, NULL, 0xFF);
// Wait for connection done event
bool start = (bool)xMBTCPPortMasterWaitEvent(mbm_opts->mbm_event_group,
(EventBits_t)MB_EVENT_STACK_STARTED, MB_TCP_CONNECTION_TOUT);
(EventBits_t)MB_EVENT_STACK_STARTED, MB_TCP_CONNECTION_TOUT);
MB_MASTER_CHECK((start), ESP_ERR_INVALID_STATE,
"mb stack could not connect to slaves for %d seconds.",
CONFIG_FMB_TCP_CONNECTION_TOUT_SEC);
"mb stack could not connect to slaves for %d seconds.",
CONFIG_FMB_TCP_CONNECTION_TOUT_SEC);
return ESP_OK;
}

View File

@ -560,6 +560,12 @@ static void vMBTCPPortServerTask(void *pvParameters)
pxClientInfo->xSockId, pxClientInfo->pcIpAddr, xErr);
break;
}
if (xShutdownSemaphore) {
xSemaphoreGive(xShutdownSemaphore);
vTaskDelete(NULL);
}
// Close client connection
xMBTCPPortCloseConnection(pxClientInfo);

11
idf_component.yml Normal file
View File

@ -0,0 +1,11 @@
version: "1.0.0"
description: ESP-MODBUS is the official Modbus library for Espressif SoCs.
url: https://github.com/espressif/esp-modbus
dependencies:
idf: ">=4.1"
files:
exclude:
- "docs/_build/**/*"
- "docs/_build"
- "test/**/build/**/*"
- "test/**/build"

Some files were not shown because too many files have changed in this diff Show More