Update to sam guyer's FastLED fork. Should reduce or eliminate flashing.

This commit is contained in:
Brian Bulkowski
2020-07-18 19:22:02 -07:00
parent 463bb2145d
commit 38d97dbca3
12 changed files with 628 additions and 1277 deletions

View File

@ -13,6 +13,7 @@ set(srcs
"wiring.cpp"
"hal/esp32-hal-misc.c"
"hal/esp32-hal-gpio.c"
"platforms/esp/32/clockless_rmt_esp32.cpp"
)
# everything needs the ESP32 flag, not sure why this won't work

View File

@ -49,6 +49,11 @@ template<uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint32_t _SPI_CLOCK_DIVIDER>
class SPIOutput : public NRF52SPIOutput<_DATA_PIN, _CLOCK_PIN, _SPI_CLOCK_DIVIDER> {};
#endif
#if defined(FASTLED_APOLLO3) && defined(FASTLED_ALL_PINS_HARDWARE_SPI)
template<uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint32_t _SPI_CLOCK_DIVIDER>
class SPIOutput : public APOLLO3HardwareSPIOutput<_DATA_PIN, _CLOCK_PIN, _SPI_CLOCK_DIVIDER> {};
#endif
#if defined(SPI_DATA) && defined(SPI_CLOCK)
#if defined(FASTLED_TEENSY3) && defined(ARM_HARDWARE_SPI)

View File

@ -181,7 +181,7 @@ Lib8tion is pronounced like 'libation': lie-BAY-shun
#if !defined(__AVR__)
#include <string.h>
// for memmove, memcpy, and memset if not defined here
#endif
#endif // end of !defined(__AVR__)
#if defined(__arm__)
@ -195,7 +195,7 @@ Lib8tion is pronounced like 'libation': lie-BAY-shun
// Generic ARM
#define QADD8_C 1
#define QADD7_C 1
#endif
#endif // end of defined(FASTLED_TEENSY3)
#define QSUB8_C 1
#define SCALE8_C 1
@ -213,6 +213,30 @@ Lib8tion is pronounced like 'libation': lie-BAY-shun
#define AVG15_C 1
#define BLEND8_C 1
// end of #if defined(__arm__)
#elif defined(ARDUINO_ARCH_APOLLO3)
// Default to using the standard C functions for now
#define QADD8_C 1
#define QADD7_C 1
#define QSUB8_C 1
#define SCALE8_C 1
#define SCALE16BY8_C 1
#define SCALE16_C 1
#define ABS8_C 1
#define MUL8_C 1
#define QMUL8_C 1
#define ADD8_C 1
#define SUB8_C 1
#define EASE8_C 1
#define AVG8_C 1
#define AVG7_C 1
#define AVG16_C 1
#define AVG15_C 1
#define BLEND8_C 1
// end of #elif defined(ARDUINO_ARCH_APOLLO3)
#elif defined(__AVR__)
@ -274,7 +298,9 @@ Lib8tion is pronounced like 'libation': lie-BAY-shun
#define QMUL8_AVRASM 0
#define EASE8_AVRASM 0
#define BLEND8_AVRASM 0
#endif
#endif // end of !defined(LIB8_ATTINY)
// end of #elif defined(__AVR__)
#else
@ -811,6 +837,9 @@ public:
#ifdef FASTLED_ARM
int operator*(int v) { return (v*i) + ((v*f)>>F); }
#endif
#ifdef FASTLED_APOLLO3
int operator*(int v) { return (v*i) + ((v*f)>>F); }
#endif
};
template<class T, int F, int I> static uint32_t operator*(uint32_t v, q<T,F,I> & q) { return q * v; }
@ -820,6 +849,9 @@ template<class T, int F, int I> static int16_t operator*(int16_t v, q<T,F,I> & q
#ifdef FASTLED_ARM
template<class T, int F, int I> static int operator*(int v, q<T,F,I> & q) { return q * v; }
#endif
#ifdef FASTLED_APOLLO3
template<class T, int F, int I> static int operator*(int v, q<T,F,I> & q) { return q * v; }
#endif
/// A 4.4 integer (4 bits integer, 4 bits fraction)
typedef q<uint8_t, 4,4> q44;

View File

@ -12,13 +12,19 @@
#define FASTLED_RAND16_2053 ((uint16_t)(2053))
#define FASTLED_RAND16_13849 ((uint16_t)(13849))
#if defined(LIB8_ATTINY)
#define APPLY_FASTLED_RAND16_2053(x) (x << 11) + (x << 2) + x
#else
#define APPLY_FASTLED_RAND16_2053(x) (x * FASTLED_RAND16_2053)
#endif
/// random number seed
extern uint16_t rand16seed;// = RAND16_SEED;
/// Generate an 8-bit random number
LIB8STATIC uint8_t random8()
{
rand16seed = (rand16seed * FASTLED_RAND16_2053) + FASTLED_RAND16_13849;
rand16seed = APPLY_FASTLED_RAND16_2053(rand16seed) + FASTLED_RAND16_13849;
// return the sum of the high and low bytes, for better
// mixing and non-sequential correlation
return (uint8_t)(((uint8_t)(rand16seed & 0xFF)) +
@ -28,7 +34,7 @@ LIB8STATIC uint8_t random8()
/// Generate a 16 bit random number
LIB8STATIC uint16_t random16()
{
rand16seed = (rand16seed * FASTLED_RAND16_2053) + FASTLED_RAND16_13849;
rand16seed = APPLY_FASTLED_RAND16_2053(rand16seed) + FASTLED_RAND16_13849;
return rand16seed;
}

View File

@ -7,9 +7,9 @@
#include <stdlib.h>
#endif
/// Represents a set of CRGB led objects. Provides the [] array operator, and works like a normal array in that case.
/// This should be kept in sync with the set of functions provided by CRGB as well as functions in colorutils. Note
/// that a pixel set is a window into another set of led data, it is not its own set of led data.
///// Represents a set of CRGB led objects. Provides the [] array operator, and works like a normal array in that case.
///// This should be kept in sync with the set of functions provided by CRGB as well as functions in colorutils. Note
///// that a pixel set is a window into another set of led data, it is not its own set of led data.
template<class PIXEL_TYPE>
class CPixelView {
public:

View File

@ -38,6 +38,18 @@ struct CHSV {
uint8_t raw[3];
};
/// Array access operator to index into the chsv object
inline uint8_t& operator[] (uint8_t x) __attribute__((always_inline))
{
return raw[x];
}
/// Array access operator to index into the chsv object
inline const uint8_t& operator[] (uint8_t x) const __attribute__((always_inline))
{
return raw[x];
}
/// default values are UNITIALIZED
inline CHSV() __attribute__((always_inline))
{
@ -106,7 +118,7 @@ struct CRGB {
uint8_t raw[3];
};
/// Array access operator to index into the crgb object
/// Array access operator to index into the crgb object
inline uint8_t& operator[] (uint8_t x) __attribute__((always_inline))
{
return raw[x];
@ -478,7 +490,7 @@ struct CRGB {
uint8_t max = red;
if( green > max) max = green;
if( blue > max) max = blue;
// stop div/0 when color is black
if(max > 0) {
uint16_t factor = ((uint16_t)(limit) * 256) / max;

View File

@ -1,8 +1,6 @@
#ifndef __INC_PLATFORMS_H
#define __INC_PLATFORMS_H
#define ESP32
#include "FastLED.h"
#include "fastled_config.h"
@ -36,6 +34,8 @@
#include "platforms/esp/8266/fastled_esp8266.h"
#elif defined(ESP32)
#include "platforms/esp/32/fastled_esp32.h"
#elif defined(ARDUINO_ARCH_APOLLO3)
#include "platforms/apollo3/fastled_apollo3.h"
#else
// AVR platforms
#include "platforms/avr/fastled_avr.h"

View File

@ -1,786 +0,0 @@
/*
* Integration into FastLED ClocklessController 2017 Thomas Basler
*
* Modifications Copyright (c) 2017 Martin F. Falatic
*
* Modifications Copyright (c) 2018 Samuel Z. Guyer
*
* ESP32 support is provided using the RMT peripheral device -- a unit
* on the chip designed specifically for generating (and receiving)
* precisely-timed digital signals. Nominally for use in infrared
* remote controls, we use it to generate the signals for clockless
* LED strips. The main advantage of using the RMT device is that,
* once programmed, it generates the signal asynchronously, allowing
* the CPU to continue executing other code. It is also not vulnerable
* to interrupts or other timing problems that could disrupt the signal.
*
* The implementation strategy is borrowed from previous work and from
* the RMT support built into the ESP32 IDF. The RMT device has 8
* channels, which can be programmed independently to send sequences
* of high/low bits. Memory for each channel is limited, however, so
* in order to send a long sequence of bits, we need to continuously
* refill the buffer until all the data is sent. To do this, we fill
* half the buffer and then set an interrupt to go off when that half
* is sent. Then we refill that half while the second half is being
* sent. This strategy effectively overlaps computation (by the CPU)
* and communication (by the RMT).
*
* Since the RMT device only has 8 channels, we need a strategy to
* allow more than 8 LED controllers. Our driver assigns controllers
* to channels on the fly, queuing up controllers as necessary until a
* channel is free. The main showPixels routine just fires off the
* first 8 controllers; the interrupt handler starts new controllers
* asynchronously as previous ones finish. So, for example, it can
* send the data for 8 controllers simultaneously, but 16 controllers
* would take approximately twice as much time.
*
* There is a #define that allows a program to control the total
* number of channels that the driver is allowed to use. It defaults
* to 8 -- use all the channels. Setting it to 1, for example, results
* in fully serial output:
*
* #define FASTLED_RMT_MAX_CHANNELS 1
*
* OTHER RMT APPLICATIONS
*
* The default FastLED driver takes over control of the RMT interrupt
* handler, making it hard to use the RMT device for other
* (non-FastLED) purposes. You can change it's behavior to use the ESP
* core driver instead, allowing other RMT applications to
* co-exist. To switch to this mode, add the following directive
* before you include FastLED.h:
*
* #define FASTLED_RMT_BUILTIN_DRIVER
*
* There may be a performance penalty for using this mode. We need to
* compute the RMT signal for the entire LED strip ahead of time,
* rather than overlapping it with communication. We also need a large
* buffer to hold the signal specification. Each bit of pixel data is
* represented by a 32-bit pulse specification, so it is a 32X blow-up
* in memory use.
*
*
* Based on public domain code created 19 Nov 2016 by Chris Osborn <fozztexx@fozztexx.com>
* http://insentricity.com *
*
*/
/*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
FASTLED_NAMESPACE_BEGIN
#ifdef __cplusplus
extern "C" {
#endif
#include "esp32-hal.h"
#include "esp_intr.h"
#include "driver/gpio.h"
#include "driver/rmt.h"
#include "driver/periph_ctrl.h"
#include "freertos/semphr.h"
#include "soc/rmt_struct.h"
#include "esp_log.h"
#ifdef __cplusplus
}
#endif
__attribute__ ((always_inline)) inline static uint32_t __clock_cycles() {
uint32_t cyc;
__asm__ __volatile__ ("rsr %0,ccount":"=a" (cyc));
return cyc;
}
#define FASTLED_HAS_CLOCKLESS 1
// -- Configuration constants
#define DIVIDER 2 /* 4, 8 still seem to work, but timings become marginal */
#define MAX_PULSES 32 /* A channel has a 64 "pulse" buffer - we use half per pass */
// -- Convert ESP32 cycles back into nanoseconds
#define ESPCLKS_TO_NS(_CLKS) (((long)(_CLKS) * 1000L) / F_CPU_MHZ)
// -- Convert nanoseconds into RMT cycles
#define F_CPU_RMT ( 80000000L)
#define NS_PER_SEC (1000000000L)
#define CYCLES_PER_SEC (F_CPU_RMT/DIVIDER)
#define NS_PER_CYCLE ( NS_PER_SEC / CYCLES_PER_SEC )
#define NS_TO_CYCLES(n) ( (n) / NS_PER_CYCLE )
// -- Convert ESP32 cycles to RMT cycles
#define TO_RMT_CYCLES(_CLKS) NS_TO_CYCLES(ESPCLKS_TO_NS(_CLKS))
// -- Number of cycles to signal the strip to latch
#define RMT_RESET_DURATION NS_TO_CYCLES(50000)
// -- Core or custom driver
#ifndef FASTLED_RMT_BUILTIN_DRIVER
#define FASTLED_RMT_BUILTIN_DRIVER false
#endif
// -- Max number of controllers we can support
#ifndef FASTLED_RMT_MAX_CONTROLLERS
#define FASTLED_RMT_MAX_CONTROLLERS 32
#endif
// -- Number of RMT channels to use (up to 8)
// Redefine this value to 1 to force serial output
#ifndef FASTLED_RMT_MAX_CHANNELS
#define FASTLED_RMT_MAX_CHANNELS 8
#endif
// -- Array of all controllers
static CLEDController * gControllers[FASTLED_RMT_MAX_CONTROLLERS];
// -- Current set of active controllers, indexed by the RMT
// channel assigned to them.
static CLEDController * gOnChannel[FASTLED_RMT_MAX_CHANNELS];
static int gNumControllers = 0;
static int gNumStarted = 0;
static int gNumDone = 0;
static int gNext = 0;
static intr_handle_t gRMT_intr_handle = NULL;
// -- Global semaphore for the whole show process
// Semaphore is not given until all data has been sent
static xSemaphoreHandle gTX_sem = NULL;
static bool gInitialized = false;
template <int DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 5>
class ClocklessController : public CPixelLEDController<RGB_ORDER>
{
// -- RMT has 8 channels, numbered 0 to 7
rmt_channel_t mRMT_channel;
// -- Store the GPIO pin
gpio_num_t mPin;
<<<<<<< HEAD
// -- This instantiation forces a check on the pin choice
FastPin<DATA_PIN> mFastPin;
// -- Timing values for zero and one bits, derived from T1, T2, and T3
rmt_item32_t mZero;
rmt_item32_t mOne;
=======
// -- Timing values for zero and one bits, derived from T1, T2, and T3
rmt_item32_t mZero;
rmt_item32_t mOne;
>>>>>>> upstream/master
// -- State information for keeping track of where we are in the pixel data
PixelController<RGB_ORDER> * mPixels = NULL;
void * mPixelSpace = NULL;
uint8_t mRGB_channel;
uint16_t mCurPulse;
// -- Buffer to hold all of the pulses. For the version that uses
// the RMT driver built into the ESP core.
rmt_item32_t * mBuffer;
uint16_t mBufferSize;
public:
virtual void init()
{
// -- Precompute rmt items corresponding to a zero bit and a one bit
// according to the timing values given in the template instantiation
// T1H
mOne.level0 = 1;
mOne.duration0 = TO_RMT_CYCLES(T1+T2);
// T1L
mOne.level1 = 0;
mOne.duration1 = TO_RMT_CYCLES(T3);
// T0H
mZero.level0 = 1;
mZero.duration0 = TO_RMT_CYCLES(T1);
// T0L
mZero.level1 = 0;
mZero.duration1 = TO_RMT_CYCLES(T2 + T3);
<<<<<<< HEAD
gControllers[gNumControllers] = this;
gNumControllers++;
mPin = gpio_num_t(DATA_PIN);
=======
gControllers[gNumControllers] = this;
gNumControllers++;
mPin = gpio_num_t(DATA_PIN);
>>>>>>> upstream/master
}
virtual uint16_t getMaxRefreshRate() const { return 400; }
protected:
void initRMT()
{
<<<<<<< HEAD
// -- Only need to do this once
if (gInitialized) return;
for (int i = 0; i < FASTLED_RMT_MAX_CHANNELS; i++) {
gOnChannel[i] = NULL;
// -- RMT configuration for transmission
rmt_config_t rmt_tx;
rmt_tx.channel = rmt_channel_t(i);
rmt_tx.rmt_mode = RMT_MODE_TX;
rmt_tx.gpio_num = mPin; // The particular pin will be assigned later
rmt_tx.mem_block_num = 1;
rmt_tx.clk_div = DIVIDER;
rmt_tx.tx_config.loop_en = false;
rmt_tx.tx_config.carrier_level = RMT_CARRIER_LEVEL_LOW;
rmt_tx.tx_config.carrier_en = false;
rmt_tx.tx_config.idle_level = RMT_IDLE_LEVEL_LOW;
rmt_tx.tx_config.idle_output_en = true;
// -- Apply the configuration
rmt_config(&rmt_tx);
if (FASTLED_RMT_BUILTIN_DRIVER) {
rmt_driver_install(rmt_channel_t(i), 0, 0);
} else {
// -- Set up the RMT to send 1/2 of the pulse buffer and then
// generate an interrupt. When we get this interrupt we
// fill the other half in preparation (kind of like double-buffering)
rmt_set_tx_thr_intr_en(rmt_channel_t(i), true, MAX_PULSES);
}
}
// -- Create a semaphore to block execution until all the controllers are done
if (gTX_sem == NULL) {
gTX_sem = xSemaphoreCreateBinary();
xSemaphoreGive(gTX_sem);
}
if ( ! FASTLED_RMT_BUILTIN_DRIVER) {
// -- Allocate the interrupt if we have not done so yet. This
// interrupt handler must work for all different kinds of
// strips, so it delegates to the refill function for each
// specific instantiation of ClocklessController.
if (gRMT_intr_handle == NULL)
esp_intr_alloc(ETS_RMT_INTR_SOURCE, 0, interruptHandler, 0, &gRMT_intr_handle);
}
gInitialized = true;
}
virtual void showPixels(PixelController<RGB_ORDER> & pixels)
{
if (gNumStarted == 0) {
// -- First controller: make sure everything is set up
initRMT();
xSemaphoreTake(gTX_sem, portMAX_DELAY);
}
// -- Initialize the local state, save a pointer to the pixel
// data. We need to make a copy because pixels is a local
// variable in the calling function, and this data structure
// needs to outlive this call to showPixels.
if (mPixels != NULL) delete mPixels;
mPixels = new PixelController<RGB_ORDER>(pixels);
// -- Keep track of the number of strips we've seen
gNumStarted++;
// -- The last call to showPixels is the one responsible for doing
// all of the actual worl
if (gNumStarted == gNumControllers) {
gNext = 0;
// -- First, fill all the available channels
int channel = 0;
while (channel < FASTLED_RMT_MAX_CHANNELS && gNext < gNumControllers) {
startNext(channel);
channel++;
}
// -- Wait here while the rest of the data is sent. The interrupt handler
// will keep refilling the RMT buffers until it is all sent; then it
// gives the semaphore back.
xSemaphoreTake(gTX_sem, portMAX_DELAY);
xSemaphoreGive(gTX_sem);
// -- Reset the counters
gNumStarted = 0;
gNumDone = 0;
gNext = 0;
}
}
// -- Start up the next controller
// This method is static so that it can dispatch to the appropriate
// startOnChannel method of the given controller.
static void startNext(int channel)
{
if (gNext < gNumControllers) {
ClocklessController * pController = static_cast<ClocklessController*>(gControllers[gNext]);
pController->startOnChannel(channel);
gNext++;
}
}
virtual void startOnChannel(int channel)
{
// -- Assign this channel and configure the RMT
mRMT_channel = rmt_channel_t(channel);
// -- Store a reference to this controller, so we can get it
// inside the interrupt handler
gOnChannel[channel] = this;
// -- Assign the pin to this channel
rmt_set_pin(mRMT_channel, RMT_MODE_TX, mPin);
if (FASTLED_RMT_BUILTIN_DRIVER) {
// -- Use the built-in RMT driver to send all the data in one shot
rmt_register_tx_end_callback(doneOnChannel, 0);
writeAllRMTItems();
} else {
// -- Use our custom driver to send the data incrementally
// -- Turn on the interrupts
rmt_set_tx_intr_en(mRMT_channel, true);
// -- Initialize the counters that keep track of where we are in
// the pixel data.
mCurPulse = 0;
mRGB_channel = 0;
// -- Fill both halves of the buffer
fillHalfRMTBuffer();
fillHalfRMTBuffer();
// -- Turn on the interrupts
rmt_set_tx_intr_en(mRMT_channel, true);
// -- Start the RMT TX operation
rmt_tx_start(mRMT_channel, true);
}
}
static void doneOnChannel(rmt_channel_t channel, void * arg)
{
ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
portBASE_TYPE HPTaskAwoken = 0;
// -- Turn off output on the pin
gpio_matrix_out(controller->mPin, 0x100, 0, 0);
gOnChannel[channel] = NULL;
gNumDone++;
if (gNumDone == gNumControllers) {
// -- If this is the last controller, signal that we are all done
xSemaphoreGiveFromISR(gTX_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) portYIELD_FROM_ISR();
} else {
// -- Otherwise, if there are still controllers waiting, then
// start the next one on this channel
if (gNext < gNumControllers)
startNext(channel);
}
=======
// -- Only need to do this once
if (gInitialized) return;
for (int i = 0; i < FASTLED_RMT_MAX_CHANNELS; i++) {
gOnChannel[i] = NULL;
// -- RMT configuration for transmission
rmt_config_t rmt_tx;
rmt_tx.channel = rmt_channel_t(i);
rmt_tx.rmt_mode = RMT_MODE_TX;
rmt_tx.gpio_num = mPin; // The particular pin will be assigned later
rmt_tx.mem_block_num = 1;
rmt_tx.clk_div = DIVIDER;
rmt_tx.tx_config.loop_en = false;
rmt_tx.tx_config.carrier_level = RMT_CARRIER_LEVEL_LOW;
rmt_tx.tx_config.carrier_en = false;
rmt_tx.tx_config.idle_level = RMT_IDLE_LEVEL_LOW;
rmt_tx.tx_config.idle_output_en = true;
// -- Apply the configuration
rmt_config(&rmt_tx);
if (FASTLED_RMT_BUILTIN_DRIVER) {
rmt_driver_install(rmt_channel_t(i), 0, 0);
} else {
// -- Set up the RMT to send 1/2 of the pulse buffer and then
// generate an interrupt. When we get this interrupt we
// fill the other half in preparation (kind of like double-buffering)
rmt_set_tx_thr_intr_en(rmt_channel_t(i), true, MAX_PULSES);
}
}
// -- Create a semaphore to block execution until all the controllers are done
if (gTX_sem == NULL) {
gTX_sem = xSemaphoreCreateBinary();
xSemaphoreGive(gTX_sem);
}
if ( ! FASTLED_RMT_BUILTIN_DRIVER) {
// -- Allocate the interrupt if we have not done so yet. This
// interrupt handler must work for all different kinds of
// strips, so it delegates to the refill function for each
// specific instantiation of ClocklessController.
if (gRMT_intr_handle == NULL)
esp_intr_alloc(ETS_RMT_INTR_SOURCE, 0, interruptHandler, 0, &gRMT_intr_handle);
}
gInitialized = true;
}
virtual void showPixels(PixelController<RGB_ORDER> & pixels)
{
if (gNumStarted == 0) {
// -- First controller: make sure everything is set up
initRMT();
xSemaphoreTake(gTX_sem, portMAX_DELAY);
}
// -- Initialize the local state, save a pointer to the pixel
// data. We need to make a copy because pixels is a local
// variable in the calling function, and this data structure
// needs to outlive this call to showPixels.
if (mPixels != NULL) delete mPixels;
mPixels = new PixelController<RGB_ORDER>(pixels);
// -- Keep track of the number of strips we've seen
gNumStarted++;
// -- The last call to showPixels is the one responsible for doing
// all of the actual worl
if (gNumStarted == gNumControllers) {
gNext = 0;
// -- First, fill all the available channels
int channel = 0;
while (channel < FASTLED_RMT_MAX_CHANNELS && gNext < gNumControllers) {
startNext(channel);
channel++;
}
// -- Wait here while the rest of the data is sent. The interrupt handler
// will keep refilling the RMT buffers until it is all sent; then it
// gives the semaphore back.
xSemaphoreTake(gTX_sem, portMAX_DELAY);
xSemaphoreGive(gTX_sem);
// -- Reset the counters
gNumStarted = 0;
gNumDone = 0;
gNext = 0;
}
}
// -- Start up the next controller
// This method is static so that it can dispatch to the appropriate
// startOnChannel method of the given controller.
static void startNext(int channel)
{
if (gNext < gNumControllers) {
ClocklessController * pController = static_cast<ClocklessController*>(gControllers[gNext]);
pController->startOnChannel(channel);
gNext++;
}
}
virtual void startOnChannel(int channel)
{
// -- Assign this channel and configure the RMT
mRMT_channel = rmt_channel_t(channel);
// -- Store a reference to this controller, so we can get it
// inside the interrupt handler
gOnChannel[channel] = this;
// -- Assign the pin to this channel
rmt_set_pin(mRMT_channel, RMT_MODE_TX, mPin);
if (FASTLED_RMT_BUILTIN_DRIVER) {
// -- Use the built-in RMT driver to send all the data in one shot
rmt_register_tx_end_callback(doneOnChannel, 0);
writeAllRMTItems();
} else {
// -- Use our custom driver to send the data incrementally
// -- Turn on the interrupts
rmt_set_tx_intr_en(mRMT_channel, true);
// -- Initialize the counters that keep track of where we are in
// the pixel data.
mCurPulse = 0;
mRGB_channel = 0;
// -- Fill both halves of the buffer
fillHalfRMTBuffer();
fillHalfRMTBuffer();
// -- Turn on the interrupts
rmt_set_tx_intr_en(mRMT_channel, true);
// -- Start the RMT TX operation
rmt_tx_start(mRMT_channel, true);
}
}
static void doneOnChannel(rmt_channel_t channel, void * arg)
{
ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
portBASE_TYPE HPTaskAwoken = 0;
// -- Turn off output on the pin
gpio_matrix_out(controller->mPin, 0x100, 0, 0);
gOnChannel[channel] = NULL;
gNumDone++;
if (gNumDone == gNumControllers) {
// -- If this is the last controller, signal that we are all done
xSemaphoreGiveFromISR(gTX_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) portYIELD_FROM_ISR();
} else {
// -- Otherwise, if there are still controllers waiting, then
// start the next one on this channel
if (gNext < gNumControllers)
startNext(channel);
}
>>>>>>> upstream/master
}
static IRAM_ATTR void interruptHandler(void *arg)
{
// -- The basic structure of this code is borrowed from the
// interrupt handler in esp-idf/components/driver/rmt.c
uint32_t intr_st = RMT.int_st.val;
uint8_t channel;
for (channel = 0; channel < FASTLED_RMT_MAX_CHANNELS; channel++) {
int tx_done_bit = channel * 3;
int tx_next_bit = channel + 24;
if (gOnChannel[channel] != NULL) {
<<<<<<< HEAD
ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
// -- More to send on this channel
if (intr_st & BIT(tx_next_bit)) {
RMT.int_clr.val |= BIT(tx_next_bit);
// -- Refill the half of the buffer that we just finished,
// allowing the other half to proceed.
controller->fillHalfRMTBuffer();
}
// -- Transmission is complete on this channel
if (intr_st & BIT(tx_done_bit)) {
RMT.int_clr.val |= BIT(tx_done_bit);
doneOnChannel(rmt_channel_t(channel), 0);
=======
ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
// -- More to send on this channel
if (intr_st & BIT(tx_next_bit)) {
RMT.int_clr.val |= BIT(tx_next_bit);
// -- Refill the half of the buffer that we just finished,
// allowing the other half to proceed.
controller->fillHalfRMTBuffer();
}
// -- Transmission is complete on this channel
if (intr_st & BIT(tx_done_bit)) {
RMT.int_clr.val |= BIT(tx_done_bit);
doneOnChannel(rmt_channel_t(channel), 0);
>>>>>>> upstream/master
}
}
}
}
virtual void fillHalfRMTBuffer()
{
// -- Fill half of the RMT pulse buffer
// The buffer holds 64 total pulse items, so this loop converts
// as many pixels as can fit in half of the buffer (MAX_PULSES =
// 32 items). In our case, each pixel consists of three bytes,
// each bit turns into one pulse item -- 24 items per pixel. So,
// each half of the buffer can hold 1 and 1/3 of a pixel.
// The member variable mCurPulse keeps track of which of the 64
// items we are writing. During the first call to this method it
// fills 0-31; in the second call it fills 32-63, and then wraps
// back around to zero.
// When we run out of pixel data, just fill the remaining items
// with zero pulses.
uint16_t pulse_count = 0; // Ranges from 0-31 (half a buffer)
uint32_t byteval = 0;
uint32_t one_val = mOne.val;
uint32_t zero_val = mZero.val;
bool done_strip = false;
while (pulse_count < MAX_PULSES) {
if (! mPixels->has(1)) {
<<<<<<< HEAD
if (mCurPulse > 0) {
// -- Extend the last pulse to force the strip to latch. Honestly, I'm not
// sure if this is really necessary.
// RMTMEM.chan[mRMT_channel].data32[mCurPulse-1].duration1 = RMT_RESET_DURATION;
}
=======
>>>>>>> upstream/master
done_strip = true;
break;
}
// -- Cycle through the R,G, and B values in the right order
switch (mRGB_channel) {
case 0:
byteval = mPixels->loadAndScale0();
mRGB_channel = 1;
break;
case 1:
byteval = mPixels->loadAndScale1();
mRGB_channel = 2;
break;
case 2:
byteval = mPixels->loadAndScale2();
mPixels->advanceData();
mPixels->stepDithering();
mRGB_channel = 0;
break;
default:
break;
}
byteval <<= 24;
// Shift bits out, MSB first, setting RMTMEM.chan[n].data32[x] to the
// rmt_item32_t value corresponding to the buffered bit value
for (register uint32_t j = 0; j < 8; j++) {
uint32_t val = (byteval & 0x80000000L) ? one_val : zero_val;
RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = val;
byteval <<= 1;
mCurPulse++;
pulse_count++;
}
<<<<<<< HEAD
=======
if (done_strip)
RMTMEM.chan[mRMT_channel].data32[mCurPulse-1].duration1 = RMT_RESET_DURATION;
>>>>>>> upstream/master
}
if (done_strip) {
// -- And fill the remaining items with zero pulses. The zero values triggers
// the tx_done interrupt.
while (pulse_count < MAX_PULSES) {
RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = 0;
mCurPulse++;
pulse_count++;
}
}
// -- When we have filled the back half the buffer, reset the position to the first half
if (mCurPulse >= MAX_PULSES*2)
mCurPulse = 0;
}
virtual void writeAllRMTItems()
{
// -- Compute the pulse values for the whole strip at once.
// Requires a large buffer
<<<<<<< HEAD
mBufferSize = mPixels->size() * 3 * 8;
=======
mBufferSize = mPixels->size() * 3 * 8;
>>>>>>> upstream/master
// TODO: need a specific number here
if (mBuffer == NULL) {
mBuffer = (rmt_item32_t *) calloc( mBufferSize, sizeof(rmt_item32_t));
}
mCurPulse = 0;
mRGB_channel = 0;
uint32_t byteval = 0;
while (mPixels->has(1)) {
// -- Cycle through the R,G, and B values in the right order
switch (mRGB_channel) {
case 0:
byteval = mPixels->loadAndScale0();
mRGB_channel = 1;
break;
case 1:
byteval = mPixels->loadAndScale1();
mRGB_channel = 2;
break;
case 2:
byteval = mPixels->loadAndScale2();
mPixels->advanceData();
mPixels->stepDithering();
mRGB_channel = 0;
break;
default:
break;
}
byteval <<= 24;
// Shift bits out, MSB first, setting RMTMEM.chan[n].data32[x] to the
// rmt_item32_t value corresponding to the buffered bit value
for (register uint32_t j = 0; j < 8; j++) {
mBuffer[mCurPulse] = (byteval & 0x80000000L) ? mOne : mZero;
byteval <<= 1;
mCurPulse++;
}
}
mBuffer[mCurPulse-1].duration1 = RMT_RESET_DURATION;
assert(mCurPulse == mBufferSize);
<<<<<<< HEAD
rmt_write_items(mRMT_channel, mBuffer, mBufferSize, false);
=======
rmt_write_items(mRMT_channel, mBuffer, mBufferSize, false);
>>>>>>> upstream/master
}
};
FASTLED_NAMESPACE_END

View File

@ -199,7 +199,10 @@ class ClocklessController : public CPixelLEDController<RGB_ORDER>
// -- Save the pixel controller
PixelController<RGB_ORDER> * mPixels;
public:
// -- Make sure we can't call show() too quickly
CMinWait<50> mWait;
public:
void init()
{
@ -363,7 +366,7 @@ protected:
freq=1/(CLOCK_DIVIDER_N+(double)CLOCK_DIVIDER_B/CLOCK_DIVIDER_A);
freq=freq*I2S_BASE_CLK;
// Serial.printf("calculted for i2s frequency:%f Mhz N:%d B:%d A:%d\n",freq/1000000,CLOCK_DIVIDER_N,CLOCK_DIVIDER_B,CLOCK_DIVIDER_A);
double pulseduration=1000000000/freq;
// double pulseduration=1000000000/freq;
// Serial.printf("Pulse duration: %f ns\n",pulseduration);
// gPulsesPerBit = (T1ns + T2ns + T3ns)/FASTLED_I2S_NS_PER_PULSE;
@ -510,8 +513,8 @@ protected:
// -- Allocate i2s interrupt
SET_PERI_REG_BITS(I2S_INT_ENA_REG(I2S_DEVICE), I2S_OUT_EOF_INT_ENA_V, 1, I2S_OUT_EOF_INT_ENA_S);
esp_err_t e = esp_intr_alloc(interruptSource, 0, // ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_LEVEL3,
&interruptHandler, 0, &gI2S_intr_handle);
esp_intr_alloc(interruptSource, 0, // ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_LEVEL3,
&interruptHandler, 0, &gI2S_intr_handle);
// -- Create a semaphore to block execution until all the controllers are done
if (gTX_sem == NULL) {
@ -574,6 +577,9 @@ protected:
fillBuffer();
fillBuffer();
// -- Make sure it's been at least 50ms since last show
mWait.wait();
i2sStart();
// -- Wait here while the rest of the data is sent. The interrupt handler
@ -584,6 +590,8 @@ protected:
i2sStop();
mWait.mark();
// -- Reset the counters
gNumStarted = 0;
}
@ -645,7 +653,7 @@ protected:
}
// -- Transpose and encode the pixel data for the DMA buffer
int buf_index = 0;
// int buf_index = 0;
for (int channel = 0; channel < NUM_COLOR_CHANNELS; channel++) {
// -- Tranpose each array: all the bit 7's, then all the bit 6's, ...

View File

@ -0,0 +1,387 @@
#define FASTLED_INTERNAL
#include "FastLED.h"
// -- Forward reference
class ESP32RMTController;
// -- Array of all controllers
// This array is filled at the time controllers are registered
// (Usually when the sketch calls addLeds)
static ESP32RMTController * gControllers[FASTLED_RMT_MAX_CONTROLLERS];
// -- Current set of active controllers, indexed by the RMT
// channel assigned to them.
static ESP32RMTController * gOnChannel[FASTLED_RMT_MAX_CHANNELS];
static int gNumControllers = 0;
static int gNumStarted = 0;
static int gNumDone = 0;
static int gNext = 0;
static intr_handle_t gRMT_intr_handle = NULL;
// -- Global semaphore for the whole show process
// Semaphore is not given until all data has been sent
static xSemaphoreHandle gTX_sem = NULL;
static bool gInitialized = false;
ESP32RMTController::ESP32RMTController(int DATA_PIN, int T1, int T2, int T3)
: mPixelData(0),
mSize(0),
mCur(0),
mWhichHalf(0),
mBuffer(0),
mBufferSize(0),
mCurPulse(0)
{
// -- Precompute rmt items corresponding to a zero bit and a one bit
// according to the timing values given in the template instantiation
// T1H
mOne.level0 = 1;
mOne.duration0 = ESP_TO_RMT_CYCLES(T1+T2); // TO_RMT_CYCLES(T1+T2);
// T1L
mOne.level1 = 0;
mOne.duration1 = ESP_TO_RMT_CYCLES(T3); // TO_RMT_CYCLES(T3);
// T0H
mZero.level0 = 1;
mZero.duration0 = ESP_TO_RMT_CYCLES(T1); // TO_RMT_CYCLES(T1);
// T0L
mZero.level1 = 0;
mZero.duration1 = ESP_TO_RMT_CYCLES(T2+T3); // TO_RMT_CYCLES(T2 + T3);
gControllers[gNumControllers] = this;
gNumControllers++;
mPin = gpio_num_t(DATA_PIN);
}
// -- Getters and setters for use in ClocklessController
uint8_t * ESP32RMTController::getPixelData(int size_in_bytes)
{
if (mPixelData == 0) {
mSize = size_in_bytes;
mPixelData = (uint8_t *) calloc( mSize, sizeof(uint8_t));
}
return mPixelData;
}
// -- Initialize RMT subsystem
// This only needs to be done once
void ESP32RMTController::init()
{
if (gInitialized) return;
for (int i = 0; i < FASTLED_RMT_MAX_CHANNELS; i++) {
gOnChannel[i] = NULL;
// -- RMT configuration for transmission
rmt_config_t rmt_tx;
rmt_tx.channel = rmt_channel_t(i);
rmt_tx.rmt_mode = RMT_MODE_TX;
rmt_tx.gpio_num = gpio_num_t(0); // The particular pin will be assigned later
rmt_tx.mem_block_num = 1;
rmt_tx.clk_div = DIVIDER;
rmt_tx.tx_config.loop_en = false;
rmt_tx.tx_config.carrier_level = RMT_CARRIER_LEVEL_LOW;
rmt_tx.tx_config.carrier_en = false;
rmt_tx.tx_config.idle_level = RMT_IDLE_LEVEL_LOW;
rmt_tx.tx_config.idle_output_en = true;
// -- Apply the configuration
rmt_config(&rmt_tx);
if (FASTLED_RMT_BUILTIN_DRIVER) {
rmt_driver_install(rmt_channel_t(i), 0, 0);
} else {
// -- Set up the RMT to send 1 pixel of the pulse buffer and then
// generate an interrupt. When we get this interrupt we
// fill the other part in preparation (kind of like double-buffering)
rmt_set_tx_thr_intr_en(rmt_channel_t(i), true, PULSES_PER_FILL);
}
}
// -- Create a semaphore to block execution until all the controllers are done
if (gTX_sem == NULL) {
gTX_sem = xSemaphoreCreateBinary();
xSemaphoreGive(gTX_sem);
}
if ( ! FASTLED_RMT_BUILTIN_DRIVER) {
// -- Allocate the interrupt if we have not done so yet. This
// interrupt handler must work for all different kinds of
// strips, so it delegates to the refill function for each
// specific instantiation of ClocklessController.
if (gRMT_intr_handle == NULL)
esp_intr_alloc(ETS_RMT_INTR_SOURCE, ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_LEVEL3, interruptHandler, 0, &gRMT_intr_handle);
}
gInitialized = true;
}
// -- Show this string of pixels
// This is the main entry point for the pixel controller
void ESP32RMTController::showPixels()
{
if (gNumStarted == 0) {
// -- First controller: make sure everything is set up
ESP32RMTController::init();
xSemaphoreTake(gTX_sem, portMAX_DELAY);
#if FASTLED_ESP32_FLASH_LOCK == 1
// -- Make sure no flash operations happen right now
spi_flash_op_lock();
#endif
}
// -- Keep track of the number of strips we've seen
gNumStarted++;
// -- The last call to showPixels is the one responsible for doing
// all of the actual worl
if (gNumStarted == gNumControllers) {
gNext = 0;
// -- First, fill all the available channels
int channel = 0;
while (channel < FASTLED_RMT_MAX_CHANNELS && gNext < gNumControllers) {
ESP32RMTController::startNext(channel);
channel++;
}
// -- Make sure it's been at least 50us since last show
mWait.wait();
// -- Start them all
for (int i = 0; i < channel; i++) {
ESP32RMTController * pController = gControllers[i];
pController->tx_start();
}
// -- Wait here while the rest of the data is sent. The interrupt handler
// will keep refilling the RMT buffers until it is all sent; then it
// gives the semaphore back.
xSemaphoreTake(gTX_sem, portMAX_DELAY);
xSemaphoreGive(gTX_sem);
mWait.mark();
// -- Reset the counters
gNumStarted = 0;
gNumDone = 0;
gNext = 0;
#if FASTLED_ESP32_FLASH_LOCK == 1
// -- Release the lock on flash operations
spi_flash_op_unlock();
#endif
}
}
// -- Start up the next controller
// This method is static so that it can dispatch to the
// appropriate startOnChannel method of the given controller.
void ESP32RMTController::startNext(int channel)
{
if (gNext < gNumControllers) {
ESP32RMTController * pController = gControllers[gNext];
pController->startOnChannel(channel);
gNext++;
}
}
// -- Start this controller on the given channel
// This function just initiates the RMT write; it does not wait
// for it to finish.
void ESP32RMTController::startOnChannel(int channel)
{
// -- Assign this channel and configure the RMT
mRMT_channel = rmt_channel_t(channel);
// -- Store a reference to this controller, so we can get it
// inside the interrupt handler
gOnChannel[channel] = this;
// -- Assign the pin to this channel
rmt_set_pin(mRMT_channel, RMT_MODE_TX, mPin);
if (FASTLED_RMT_BUILTIN_DRIVER) {
// -- Use the built-in RMT driver to send all the data in one shot
rmt_register_tx_end_callback(doneOnChannel, 0);
rmt_write_items(mRMT_channel, mBuffer, mBufferSize, false);
} else {
// -- Use our custom driver to send the data incrementally
// -- Initialize the counters that keep track of where we are in
// the pixel data.
mRMT_mem_ptr = & (RMTMEM.chan[mRMT_channel].data32[0].val);
mCur = 0;
mWhichHalf = 0;
// -- Store 2 pixels worth of data (two "buffers" full)
fillNext();
fillNext();
// -- Turn on the interrupts
rmt_set_tx_intr_en(mRMT_channel, true);
}
}
// -- Start RMT transmission
// Setting this RMT flag is what actually kicks off the peripheral
void ESP32RMTController::tx_start()
{
// dev->conf_ch[channel].conf1.tx_start = 1;
rmt_tx_start(mRMT_channel, true);
}
// -- A controller is done
// This function is called when a controller finishes writing
// its data. It is called either by the custom interrupt
// handler (below), or as a callback from the built-in
// interrupt handler. It is static because we don't know which
// controller is done until we look it up.
void ESP32RMTController::doneOnChannel(rmt_channel_t channel, void * arg)
{
ESP32RMTController * pController = gOnChannel[channel];
portBASE_TYPE HPTaskAwoken = 0;
// -- Turn off output on the pin
// SZG: Do I really need to do this?
// gpio_matrix_out(pController->mPin, 0x100, 0, 0);
gOnChannel[channel] = NULL;
gNumDone++;
if (gNumDone == gNumControllers) {
// -- If this is the last controller, signal that we are all done
if (FASTLED_RMT_BUILTIN_DRIVER) {
xSemaphoreGive(gTX_sem);
} else {
xSemaphoreGiveFromISR(gTX_sem, &HPTaskAwoken);
if (HPTaskAwoken == pdTRUE) portYIELD_FROM_ISR();
}
} else {
// -- Otherwise, if there are still controllers waiting, then
// start the next one on this channel
if (gNext < gNumControllers) {
startNext(channel);
pController->tx_start();
}
}
}
// -- Custom interrupt handler
// This interrupt handler handles two cases: a controller is
// done writing its data, or a controller needs to fill the
// next half of the RMT buffer with data.
void IRAM_ATTR ESP32RMTController::interruptHandler(void *arg)
{
// -- The basic structure of this code is borrowed from the
// interrupt handler in esp-idf/components/driver/rmt.c
uint32_t intr_st = RMT.int_st.val;
uint8_t channel;
for (channel = 0; channel < FASTLED_RMT_MAX_CHANNELS; channel++) {
int tx_done_bit = channel * 3;
int tx_next_bit = channel + 24;
ESP32RMTController * pController = gOnChannel[channel];
if (pController != NULL) {
// -- More to send on this channel
if (intr_st & BIT(tx_next_bit)) {
RMT.int_clr.val |= BIT(tx_next_bit);
// -- Refill the half of the buffer that we just finished,
// allowing the other half to proceed.
pController->fillNext();
} else {
// -- Transmission is complete on this channel
if (intr_st & BIT(tx_done_bit)) {
RMT.int_clr.val |= BIT(tx_done_bit);
doneOnChannel(rmt_channel_t(channel), 0);
}
}
}
}
}
// -- Fill RMT buffer
// Puts 32 bits of pixel data into the next 32 slots in the RMT memory
// Each data bit is represented by a 32-bit RMT item that specifies how
// long to hold the signal high, followed by how long to hold it low.
void IRAM_ATTR ESP32RMTController::fillNext()
{
if (mCur < mSize) {
// -- Get the zero and one values into local variables
uint32_t one_val = mOne.val;
uint32_t zero_val = mZero.val;
// -- Fill 32 slots in the RMT memory
uint8_t a = mPixelData[mCur++];
uint8_t b = mPixelData[mCur++];
uint8_t c = mPixelData[mCur++];
uint8_t d = mPixelData[mCur++];
register uint32_t pixeldata = a << 24 | b << 16 | c << 8 | d;
// -- Use locals for speed
volatile register uint32_t * pItem = mRMT_mem_ptr;
// Shift bits out, MSB first, setting RMTMEM.chan[n].data32[x] to the
// rmt_item32_t value corresponding to the buffered bit value
for (register uint32_t j = 0; j < PULSES_PER_FILL; j++) {
*pItem++ = (pixeldata & 0x80000000L) ? one_val : zero_val;
// Replaces: RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = val;
pixeldata <<= 1;
}
// -- Flip to the other half, resetting the pointer if necessary
mWhichHalf++;
if (mWhichHalf == 2) {
pItem = & (RMTMEM.chan[mRMT_channel].data32[0].val);
mWhichHalf = 0;
}
// -- Store the new pointer back into the object
mRMT_mem_ptr = pItem;
} else {
// -- No more data; signal to the RMT we are done
for (uint32_t j = 0; j < PULSES_PER_FILL; j++) {
* mRMT_mem_ptr++ = 0;
}
}
}
// -- Init pulse buffer
// Set up the buffer that will hold all of the pulse items for this
// controller.
// This function is only used when the built-in RMT driver is chosen
void ESP32RMTController::initPulseBuffer(int size_in_bytes)
{
if (mBuffer == 0) {
// -- Each byte has 8 bits, each bit needs a 32-bit RMT item
int size = size_in_bytes * 8 * 4;
mBuffer = (rmt_item32_t *) calloc( mBufferSize, sizeof(rmt_item32_t));
}
mCurPulse = 0;
}
// -- Convert a byte into RMT pulses
// This function is only used when the built-in RMT driver is chosen
void ESP32RMTController::convertByte(uint32_t byteval)
{
// -- Write one byte's worth of RMT pulses to the big buffer
byteval <<= 24;
for (register uint32_t j = 0; j < 8; j++) {
mBuffer[mCurPulse] = (byteval & 0x80000000L) ? mOne : mZero;
byteval <<= 1;
mCurPulse++;
}
}

View File

@ -1,6 +1,6 @@
/*
* Integration into FastLED ClocklessController
* Copyright (c) 2018 Samuel Z. Guyer
* Copyright (c) 2018,2019,2020 Samuel Z. Guyer
* Copyright (c) 2017 Thomas Basler
* Copyright (c) 2017 Martin F. Falatic
*
@ -49,7 +49,7 @@
* co-exist. To switch to this mode, add the following directive
* before you include FastLED.h:
*
* #define FASTLED_RMT_BUILTIN_DRIVER
* #define FASTLED_RMT_BUILTIN_DRIVER 1
*
* There may be a performance penalty for using this mode. We need to
* compute the RMT signal for the entire LED strip ahead of time,
@ -58,6 +58,27 @@
* represented by a 32-bit pulse specification, so it is a 32X blow-up
* in memory use.
*
* NEW: Use of Flash memory on the ESP32 can interfere with the timing
* of pixel output. The ESP-IDF system code disables all other
* code running on *either* core during these operation. To prevent
* this from happening, define this flag. It will force flash
* operations to wait until the show() is done.
*
* #define FASTLED_ESP32_FLASH_LOCK 1
*
* NEW (June 2020): The RMT controller has been split into two
* classes: ClocklessController, which is an instantiation of the
* FastLED CPixelLEDController template, and ESP32RMTController,
* which just handles driving the RMT peripheral. One benefit of
* this design is that ESP32RMTContoller is not a template, so
* its methods can be marked with the IRAM_ATTR and end up in
* IRAM memory. Another benefit is that all of the color channel
* processing is done up-front, in the templated class, so we
* can fill the RMT buffers more quickly.
*
* IN THEORY, this design would also allow FastLED.show() to
* send the data while the program continues to prepare the next
* frame of data.
*
* Based on public domain code created 19 Nov 2016 by Chris Osborn <fozztexx@fozztexx.com>
* http://insentricity.com *
@ -101,8 +122,8 @@ extern "C" {
#include "esp_log.h"
// needed to work around issue with driver problem in 4.1 and master around 2020
#include "esp_idf_version.h"
extern void spi_flash_op_lock(void);
extern void spi_flash_op_unlock(void);
#ifdef __cplusplus
}
@ -117,17 +138,18 @@ __attribute__ ((always_inline)) inline static uint32_t __clock_cycles() {
#define FASTLED_HAS_CLOCKLESS 1
#define NUM_COLOR_CHANNELS 3
// NOT CURRENTLY IMPLEMENTED:
// -- Set to true to print debugging information about timing
// Useful for finding out if timing is being messed up by other things
// on the processor (WiFi, for example)
#ifndef FASTLED_RMT_SHOW_TIMER
#define FASTLED_RMT_SHOW_TIMER false
#endif
//#ifndef FASTLED_RMT_SHOW_TIMER
//#define FASTLED_RMT_SHOW_TIMER false
//#endif
// -- Configuration constants
#define DIVIDER 2 /* 4, 8 still seem to work, but timings become marginal */
#define MAX_PULSES 64 /* A channel has a 64 "pulse" buffer */
#define PULSES_PER_FILL 24 /* One pixel's worth of pulses */
#define PULSES_PER_FILL 32 /* Half of the channel buffer */
// -- Convert ESP32 CPU cycles to RMT device cycles, taking into account the divider
#define F_CPU_RMT ( 80000000L)
@ -140,21 +162,11 @@ __attribute__ ((always_inline)) inline static uint32_t __clock_cycles() {
#define NS_TO_CYCLES(n) ( (n) / NS_PER_CYCLE )
#define RMT_RESET_DURATION NS_TO_CYCLES(50000)
// -- Core or custom driver --- 'builtin' is the core driver which is supposedly slower
// -- Core or custom driver
#ifndef FASTLED_RMT_BUILTIN_DRIVER
// NOTE!
// there is an upstream issue with using the custom driver. This is in https://github.com/espressif/esp-idf/issues/5476
// In this, it states that in order to use one of the functions, the upstream must be modified.
//
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4,1,0)
#define FASTLED_RMT_BUILTIN_DRIVER true
#else
#define FASTLED_RMT_BUILTIN_DRIVER false
#endif
#endif
// -- Max number of controllers we can support
#ifndef FASTLED_RMT_MAX_CONTROLLERS
#define FASTLED_RMT_MAX_CONTROLLERS 32
@ -166,228 +178,163 @@ __attribute__ ((always_inline)) inline static uint32_t __clock_cycles() {
#define FASTLED_RMT_MAX_CHANNELS 8
#endif
// -- Array of all controllers
static CLEDController * gControllers[FASTLED_RMT_MAX_CONTROLLERS];
// -- Current set of active controllers, indexed by the RMT
// channel assigned to them.
static CLEDController * gOnChannel[FASTLED_RMT_MAX_CHANNELS];
static int gNumControllers = 0;
static int gNumStarted = 0;
static int gNumDone = 0;
static int gNext = 0;
static intr_handle_t gRMT_intr_handle = NULL;
// -- Global semaphore for the whole show process
// Semaphore is not given until all data has been sent
static xSemaphoreHandle gTX_sem = NULL;
static bool gInitialized = false;
// convert an integer channel into their enums.
//
static rmt_channel_t fastled_get_rmt_channel(int ch) {
assert((ch >= 0) && (ch < 8));
switch (ch) {
case 0:
return(RMT_CHANNEL_0);
case 1:
return(RMT_CHANNEL_1);
case 2:
return(RMT_CHANNEL_2);
case 3:
return(RMT_CHANNEL_3);
case 4:
return(RMT_CHANNEL_4);
case 5:
return(RMT_CHANNEL_5);
case 6:
return(RMT_CHANNEL_6);
case 7:
return(RMT_CHANNEL_7);
}
return(RMT_CHANNEL_0);
}
template <int DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 5>
class ClocklessController : public CPixelLEDController<RGB_ORDER>
class ESP32RMTController
{
private:
// -- RMT has 8 channels, numbered 0 to 7
rmt_channel_t mRMT_channel;
// -- Store the GPIO pin
gpio_num_t mPin;
// -- This instantiation forces a check on the pin choice
FastPin<DATA_PIN> mFastPin;
// -- Timing values for zero and one bits, derived from T1, T2, and T3
rmt_item32_t mZero;
rmt_item32_t mOne;
// -- Save the pixel controller
PixelController<RGB_ORDER> * mPixels;
int mCurColor;
uint16_t mCurPulse;
// -- Pixel data
uint8_t * mPixelData;
int mSize;
int mCur;
// -- RMT memory
volatile uint32_t * mRMT_mem_ptr;
int mWhichHalf;
// -- Buffer to hold all of the pulses. For the version that uses
// the RMT driver built into the ESP core.
rmt_item32_t * mBuffer;
uint16_t mBufferSize;
int mCurPulse;
// -- Make sure we can't call show() too quickly
CMinWait<50> mWait;
public:
// -- Constructor
// Mainly just stores the template parameters from the LEDController as
// member variables.
ESP32RMTController(int DATA_PIN, int T1, int T2, int T3);
// -- Getters and setters for use in ClocklessController
uint8_t * getPixelData(int size_in_bytes);
// -- Initialize RMT subsystem
// This only needs to be done once
static void init();
// -- Show this string of pixels
// This is the main entry point for the pixel controller
void IRAM_ATTR showPixels();
// -- Start up the next controller
// This method is static so that it can dispatch to the
// appropriate startOnChannel method of the given controller.
static void IRAM_ATTR startNext(int channel);
// -- Start this controller on the given channel
// This function just initiates the RMT write; it does not wait
// for it to finish.
void IRAM_ATTR startOnChannel(int channel);
// -- Start RMT transmission
// Setting this RMT flag is what actually kicks off the peripheral
void IRAM_ATTR tx_start();
// -- A controller is done
// This function is called when a controller finishes writing
// its data. It is called either by the custom interrupt
// handler (below), or as a callback from the built-in
// interrupt handler. It is static because we don't know which
// controller is done until we look it up.
static void IRAM_ATTR doneOnChannel(rmt_channel_t channel, void * arg);
// -- Custom interrupt handler
// This interrupt handler handles two cases: a controller is
// done writing its data, or a controller needs to fill the
// next half of the RMT buffer with data.
static void IRAM_ATTR interruptHandler(void *arg);
// -- Fill RMT buffer
// Puts 32 bits of pixel data into the next 32 slots in the RMT memory
// Each data bit is represented by a 32-bit RMT item that specifies how
// long to hold the signal high, followed by how long to hold it low.
void IRAM_ATTR fillNext();
// -- Init pulse buffer
// Set up the buffer that will hold all of the pulse items for this
// controller.
// This function is only used when the built-in RMT driver is chosen
void initPulseBuffer(int size_in_bytes);
// -- Convert a byte into RMT pulses
// This function is only used when the built-in RMT driver is chosen
void convertByte(uint32_t byteval);
};
template <int DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 5>
class ClocklessController : public CPixelLEDController<RGB_ORDER>
{
private:
// -- The actual controller object for ESP32
ESP32RMTController mRMTController;
// -- This instantiation forces a check on the pin choice
FastPin<DATA_PIN> mFastPin;
public:
ClocklessController()
: mRMTController(DATA_PIN, T1, T2, T3)
{}
void init()
{
// -- Allocate space to save the pixel controller
// during parallel output
mPixels = (PixelController<RGB_ORDER> *) malloc(sizeof(PixelController<RGB_ORDER>));
// -- Precompute rmt items corresponding to a zero bit and a one bit
// according to the timing values given in the template instantiation
// T1H
mOne.level0 = 1;
mOne.duration0 = ESP_TO_RMT_CYCLES(T1+T2); // TO_RMT_CYCLES(T1+T2);
// T1L
mOne.level1 = 0;
mOne.duration1 = ESP_TO_RMT_CYCLES(T3); // TO_RMT_CYCLES(T3);
// T0H
mZero.level0 = 1;
mZero.duration0 = ESP_TO_RMT_CYCLES(T1); // TO_RMT_CYCLES(T1);
// T0L
mZero.level1 = 0;
mZero.duration1 = ESP_TO_RMT_CYCLES(T2+T3); // TO_RMT_CYCLES(T2 + T3);
gControllers[gNumControllers] = this;
gNumControllers++;
mPin = gpio_num_t(DATA_PIN);
// mRMTController = new ESP32RMTController(DATA_PIN, T1, T2, T3);
}
virtual uint16_t getMaxRefreshRate() const { return 400; }
protected:
void initRMT()
// -- Load pixel data
// This method loads all of the pixel data into a separate buffer for use by
// by the RMT driver. Copying does two important jobs: it fixes the color
// order for the pixels, and it performs the scaling/adjusting ahead of time.
void loadPixelData(PixelController<RGB_ORDER> & pixels)
{
for (int i = 0; i < FASTLED_RMT_MAX_CHANNELS; i++) {
gOnChannel[i] = NULL;
// -- Make sure the buffer is allocated
int size = pixels.size() * 3;
uint8_t * pData = mRMTController.getPixelData(size);
// -- RMT configuration for transmission --- different in different ESP versions
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4,1,0)
rmt_config_t rmt_tx = RMT_DEFAULT_CONFIG_TX(mPin, fastled_get_rmt_channel(i) );
#else
rmt_config_t rmt_tx;
memset(&rmt_tx, 0, sizeof(rmt_tx));
rmt_tx.channel = fastled_get_rmt_channel(i);
rmt_tx.gpio_num = mPin;
rmt_tx.mem_block_num = 1;
rmt_tx.tx_config.carrier_level = RMT_CARRIER_LEVEL_LOW;
#endif // version before 4.1
rmt_tx.clk_div = DIVIDER;
// don't wish to have a carrier applied. Therefore carrier_en is false and the extra parameters don't matter.
rmt_tx.tx_config.loop_en = false;
rmt_tx.tx_config.carrier_en = false;
rmt_tx.tx_config.idle_level = RMT_IDLE_LEVEL_LOW;
rmt_tx.tx_config.idle_output_en = true;
// -- Apply the configuration
rmt_config(&rmt_tx);
if (FASTLED_RMT_BUILTIN_DRIVER) {
rmt_driver_install(rmt_channel_t(i), 0, 0);
} else {
// -- Set up the RMT to send 1 pixel of the pulse buffer and then
// generate an interrupt. When we get this interrupt we
// fill the other part in preparation (kind of like double-buffering)
rmt_set_tx_thr_intr_en(rmt_channel_t(i), true, PULSES_PER_FILL);
}
// -- Read out the pixel data using the pixel controller methods that
// perform the scaling and adjustments
int count = 0;
while (pixels.has(1)) {
*pData++ = pixels.loadAndScale0();
*pData++ = pixels.loadAndScale1();
*pData++ = pixels.loadAndScale2();
pixels.advanceData();
pixels.stepDithering();
count += 3;
}
// -- Create a semaphore to block execution until all the controllers are done
if (gTX_sem == NULL) {
gTX_sem = xSemaphoreCreateBinary();
xSemaphoreGive(gTX_sem);
}
// this was crashing in 4.0. I am hoping that registering the IRS through rmt_isr_register does the right thing.
if ( ! FASTLED_RMT_BUILTIN_DRIVER) {
// -- Allocate the interrupt if we have not done so yet. This
// interrupt handler must work for all different kinds of
// strips, so it delegates to the refill function for each
// specific instantiation of ClocklessController.
if (gRMT_intr_handle == NULL)
esp_intr_alloc(ETS_RMT_INTR_SOURCE, ESP_INTR_FLAG_LEVEL3, interruptHandler, 0, &gRMT_intr_handle);
}
gInitialized = true;
assert(count == size);
}
// -- Show pixels
// This is the main entry point for the controller.
virtual void IRAM_ATTR showPixels(PixelController<RGB_ORDER> & pixels)
virtual void showPixels(PixelController<RGB_ORDER> & pixels)
{
if (gNumStarted == 0) {
// -- First controller: make sure everything is set up
// -- Only need to do this once
if ( ! gInitialized) {
initRMT();
}
xSemaphoreTake(gTX_sem, portMAX_DELAY);
}
if (FASTLED_RMT_BUILTIN_DRIVER)
if (FASTLED_RMT_BUILTIN_DRIVER) {
convertAllPixelData(pixels);
else {
// -- Initialize the local state, save a pointer to the pixel
// data. We need to make a copy because pixels is a local
// variable in the calling function, and this data structure
// needs to outlive this call to showPixels.
(*mPixels) = pixels;
} else {
loadPixelData(pixels);
}
// -- Keep track of the number of strips we've seen
gNumStarted++;
// -- The last call to showPixels is the one responsible for doing
// all of the actual work
if (gNumStarted == gNumControllers) {
gNext = 0;
// -- First, fill all the available channels
int channel = 0;
while (channel < FASTLED_RMT_MAX_CHANNELS && gNext < gNumControllers) {
startNext(channel);
channel++;
}
// -- Start them all
for (int i = 0; i < channel; i++) {
ClocklessController * pController = static_cast<ClocklessController*>(gControllers[i]);
rmt_tx_start(pController->mRMT_channel, true);
}
// -- Wait here while the rest of the data is sent. The interrupt handler
// will keep refilling the RMT buffers until it is all sent; then it
// gives the semaphore back.
xSemaphoreTake(gTX_sem, portMAX_DELAY);
xSemaphoreGive(gTX_sem);
// -- Reset the counters
gNumStarted = 0;
gNumDone = 0;
gNext = 0;
}
mRMTController.showPixels();
}
// -- Convert all pixels to RMT pulses
@ -396,285 +343,25 @@ protected:
// up-front.
void convertAllPixelData(PixelController<RGB_ORDER> & pixels)
{
// -- Compute the pulse values for the whole strip at once.
// Requires a large buffer
mBufferSize = pixels.size() * 3 * 8;
if (mBuffer == NULL) {
mBuffer = (rmt_item32_t *) calloc( mBufferSize, sizeof(rmt_item32_t));
}
// -- Make sure the data buffer is allocated
mRMTController.initPulseBuffer(pixels.size() * 3);
// -- Cycle through the R,G, and B values in the right order,
// storing the pulses in the big buffer
mCurPulse = 0;
uint32_t byteval;
while (pixels.has(1)) {
byteval = pixels.loadAndScale0();
convertByte(byteval);
mRMTController.convertByte(byteval);
byteval = pixels.loadAndScale1();
convertByte(byteval);
mRMTController.convertByte(byteval);
byteval = pixels.loadAndScale2();
convertByte(byteval);
mRMTController.convertByte(byteval);
pixels.advanceData();
pixels.stepDithering();
}
mBuffer[mCurPulse-1].duration1 = RMT_RESET_DURATION;
assert(mCurPulse == mBufferSize);
}
void convertByte(uint32_t byteval)
{
// -- Write one byte's worth of RMT pulses to the big buffer
byteval <<= 24;
for (register uint32_t j = 0; j < 8; j++) {
mBuffer[mCurPulse] = (byteval & 0x80000000L) ? mOne : mZero;
byteval <<= 1;
mCurPulse++;
}
}
// -- Start up the next controller
// This method is static so that it can dispatch to the
// appropriate startOnChannel method of the given controller.
static void IRAM_ATTR startNext(int channel)
{
if (gNext < gNumControllers) {
ClocklessController * pController = static_cast<ClocklessController*>(gControllers[gNext]);
pController->startOnChannel(channel);
gNext++;
}
}
// -- Start this controller on the given channel
// This function just initiates the RMT write; it does not wait
// for it to finish.
void IRAM_ATTR startOnChannel(int channel)
{
// -- Assign this channel and configure the RMT
mRMT_channel = rmt_channel_t(channel);
// -- Store a reference to this controller, so we can get it
// inside the interrupt handler
gOnChannel[channel] = this;
// -- Assign the pin to this channel
rmt_set_pin(mRMT_channel, RMT_MODE_TX, mPin);
if (FASTLED_RMT_BUILTIN_DRIVER) {
// -- Use the built-in RMT driver to send all the data in one shot
rmt_register_tx_end_callback(doneOnChannel, 0);
rmt_write_items(mRMT_channel, mBuffer, mBufferSize, false);
} else {
// -- Use our custom driver to send the data incrementally
// -- Initialize the counters that keep track of where we are in
// the pixel data.
mRMT_mem_ptr = & (RMTMEM.chan[mRMT_channel].data32[0].val);
mCurPulse = 0;
mCurColor = 0;
// -- Store 2 pixels worth of data (two "buffers" full)
fillNext();
fillNext();
// -- Turn on the interrupts
rmt_set_tx_intr_en(mRMT_channel, true);
}
}
// -- A controller is done
// This function is called when a controller finishes writing
// its data. It is called either by the custom interrupt
// handler (below), or as a callback from the built-in
// interrupt handler. It is static because we don't know which
// controller is done until we look it up.
static void IRAM_ATTR doneOnChannel(rmt_channel_t channel, void * arg)
{
ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
portBASE_TYPE HPTaskAwoken = 0;
// -- Turn off output on the pin
gpio_matrix_out(controller->mPin, 0x100, 0, 0);
gOnChannel[channel] = NULL;
gNumDone++;
if (gNumDone == gNumControllers) {
// -- If this is the last controller, signal that we are all done
xSemaphoreGiveFromISR(gTX_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) portYIELD_FROM_ISR();
} else {
// -- Otherwise, if there are still controllers waiting, then
// start the next one on this channel
if (gNext < gNumControllers) {
startNext(channel);
// -- Start the RMT TX operation
// (I'm not sure if this is necessary here)
rmt_tx_start(controller->mRMT_channel, true);
}
}
}
// -- Custom interrupt handler
// This interrupt handler handles two cases: a controller is
// done writing its data, or a controller needs to fill the
// next half of the RMT buffer with data.
static void IRAM_ATTR interruptHandler(void *arg)
{
// -- The basic structure of this code is borrowed from the
// interrupt handler in esp-idf/components/driver/rmt.c
uint32_t intr_st = RMT.int_st.val;
uint8_t channel;
for (channel = 0; channel < FASTLED_RMT_MAX_CHANNELS; channel++) {
int tx_done_bit = channel * 3;
int tx_next_bit = channel + 24;
if (gOnChannel[channel] != NULL) {
// -- More to send on this channel
if (intr_st & BIT(tx_next_bit)) {
RMT.int_clr.val |= BIT(tx_next_bit);
// -- Refill the half of the buffer that we just finished,
// allowing the other half to proceed.
ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
controller->fillNext();
} else {
// -- Transmission is complete on this channel
if (intr_st & BIT(tx_done_bit)) {
RMT.int_clr.val |= BIT(tx_done_bit);
doneOnChannel(rmt_channel_t(channel), 0);
}
}
}
}
}
// -- Fill RMT buffer
// Puts one pixel's worth of data into the next 24 slots in the RMT memory
void IRAM_ATTR fillNext()
{
if (mPixels->has(1)) {
// bb compiler complains
//uint32_t t1 = __clock_cycles();
uint32_t one_val = mOne.val;
uint32_t zero_val = mZero.val;
// -- Get a pixel's worth of data
uint8_t byte0 = mPixels->loadAndScale0();
uint8_t byte1 = mPixels->loadAndScale1();
uint8_t byte2 = mPixels->loadAndScale2();
mPixels->advanceData();
mPixels->stepDithering();
// -- Fill 24 slots in the RMT memory
register uint32_t pixel = byte0 << 24 | byte1 << 16 | byte2 << 8;
// -- Use locals for speed
volatile register uint32_t * pItem = mRMT_mem_ptr;
register uint16_t curPulse = mCurPulse;
// Shift bits out, MSB first, setting RMTMEM.chan[n].data32[x] to the
// rmt_item32_t value corresponding to the buffered bit value
for (register uint32_t j = 0; j < 24; j++) {
uint32_t val = (pixel & 0x80000000L) ? one_val : zero_val;
*pItem++ = val;
// Replaces: RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = val;
pixel <<= 1;
curPulse++;
if (curPulse == MAX_PULSES) {
pItem = & (RMTMEM.chan[mRMT_channel].data32[0].val);
curPulse = 0;
}
}
// -- Store the new values back into the object
mCurPulse = curPulse;
mRMT_mem_ptr = pItem;
} else {
// -- No more data; signal to the RMT we are done
for (uint32_t j = 0; j < 8; j++) {
* mRMT_mem_ptr++ = 0;
}
}
}
// NO LONGER USED
// -- Fill the RMT buffer
// This function fills the next 32 slots in the RMT write
// buffer with pixel data. It also handles the case where the
// pixel data is exhausted, so we need to fill the RMT buffer
// with zeros to signal that it's done.
virtual void IRAM_ATTR fillHalfRMTBuffer()
{
uint32_t one_val = mOne.val;
uint32_t zero_val = mZero.val;
// -- Convert (up to) 32 bits of the raw pixel data into
// into RMT pulses that encode the zeros and ones.
int pulses = 0;
register uint32_t byteval;
while (pulses < 32 && mPixels->has(1)) {
// -- Get one byte
// -- Cycle through the color channels
switch (mCurColor) {
case 0:
byteval = mPixels->loadAndScale0();
break;
case 1:
byteval = mPixels->loadAndScale1();
break;
case 2:
byteval = mPixels->loadAndScale2();
mPixels->advanceData();
mPixels->stepDithering();
break;
default:
// -- This is bad!
byteval = 0;
}
mCurColor++;
if (mCurColor == NUM_COLOR_CHANNELS) mCurColor = 0;
byteval <<= 24;
// Shift bits out, MSB first, setting RMTMEM.chan[n].data32[x] to the
// rmt_item32_t value corresponding to the buffered bit value
for (register uint32_t j = 0; j < 8; j++) {
uint32_t val = (byteval & 0x80000000L) ? one_val : zero_val;
* mRMT_mem_ptr++ = val;
// Replaces: RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = val;
byteval <<= 1;
mCurPulse++;
}
pulses += 8;
}
// -- When we reach the end of the pixel data, fill the rest of the
// RMT buffer with 0's, which signals to the device that we're done.
if ( ! mPixels->has(1) ) {
while (pulses < 32) {
* mRMT_mem_ptr++ = 0;
// Replaces: RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = 0;
mCurPulse++;
pulses++;
}
}
// -- When we have filled the back half the buffer, reset the position to the first half
if (mCurPulse == MAX_PULSES) {
mRMT_mem_ptr = & (RMTMEM.chan[mRMT_channel].data32[0].val);
mCurPulse = 0;
}
}
};
FASTLED_NAMESPACE_END

View File

@ -307,10 +307,9 @@ CONFIG_ESP_IPC_USES_CALLERS_PRIORITY=y
CONFIG_ESP_MINIMAL_SHARED_STACK_SIZE=2048
CONFIG_ESP_CONSOLE_UART_DEFAULT=y
# CONFIG_ESP_CONSOLE_UART_CUSTOM is not set
# CONFIG_ESP_CONSOLE_UART_NONE is not set
# CONFIG_ESP_CONSOLE_NONE is not set
CONFIG_ESP_CONSOLE_UART=y
CONFIG_ESP_CONSOLE_UART_NUM=0
CONFIG_ESP_CONSOLE_UART_TX_GPIO=1
CONFIG_ESP_CONSOLE_UART_RX_GPIO=3
CONFIG_ESP_CONSOLE_UART_BAUDRATE=115200
CONFIG_ESP_INT_WDT=y
CONFIG_ESP_INT_WDT_TIMEOUT_MS=300
@ -647,6 +646,7 @@ CONFIG_LWIP_TCP_QUEUE_OOSEQ=y
CONFIG_LWIP_TCP_OVERSIZE_MSS=y
# CONFIG_LWIP_TCP_OVERSIZE_QUARTER_MSS is not set
# CONFIG_LWIP_TCP_OVERSIZE_DISABLE is not set
CONFIG_LWIP_TCP_RTO_TIME=3000
# end of TCP
#
@ -879,6 +879,7 @@ CONFIG_SPI_FLASH_DANGEROUS_WRITE_ABORTS=y
CONFIG_SPI_FLASH_YIELD_DURING_ERASE=y
CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS=20
CONFIG_SPI_FLASH_ERASE_YIELD_TICKS=1
CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE=8192
#
# Auto-detect flash chips
@ -986,7 +987,6 @@ CONFIG_WIFI_PROV_AUTOSTOP_TIMEOUT=30
CONFIG_WPA_MBEDTLS_CRYPTO=y
# CONFIG_WPA_DEBUG_PRINT is not set
# CONFIG_WPA_TESTING_OPTIONS is not set
# CONFIG_WPA_TLS_V12 is not set
# CONFIG_WPA_WPS_WARS is not set
# end of Supplicant
@ -1078,10 +1078,9 @@ CONFIG_MAIN_TASK_STACK_SIZE=3584
CONFIG_IPC_TASK_STACK_SIZE=1024
CONFIG_CONSOLE_UART_DEFAULT=y
# CONFIG_CONSOLE_UART_CUSTOM is not set
# CONFIG_CONSOLE_UART_NONE is not set
# CONFIG_ESP_CONSOLE_UART_NONE is not set
CONFIG_CONSOLE_UART=y
CONFIG_CONSOLE_UART_NUM=0
CONFIG_CONSOLE_UART_TX_GPIO=1
CONFIG_CONSOLE_UART_RX_GPIO=3
CONFIG_CONSOLE_UART_BAUDRATE=115200
CONFIG_INT_WDT=y
CONFIG_INT_WDT_TIMEOUT_MS=300