Delay between pixels (#668)

* Delay inter pixel support

* s2 s3 c3 Bitbang

* deprecate NeoPixelBrightnessBus
This commit is contained in:
Michael Miller
2023-03-26 10:06:33 -07:00
committed by GitHub
parent c9c077ff5d
commit c1f3bc97d9
9 changed files with 468 additions and 505 deletions

View File

@@ -69,6 +69,7 @@ NeoTm1829Method KEYWORD1
NeoTx1812Method KEYWORD1
NeoLc8812Method KEYWORD1
NeoApa106Method KEYWORD1
NeoIntertekMethod KEYWORD1
Neo800KbpsInvertedMethod KEYWORD1
Neo400KbpsInvertedMethod KEYWORD1
NeoWs2813InvertedMethod KEYWORD1
@@ -83,6 +84,7 @@ NeoTm1829InvertedMethod KEYWORD1
NeoTx1812InvertedMethod KEYWORD1
NeoLc8812InvertedMethod KEYWORD1
NeoApa106InvertedMethod KEYWORD1
NeoInvertedIntertekMethod KEYWORD1
NeoEsp8266DmaWs2812xMethod KEYWORD1
NeoEsp8266DmaWs2816Method KEYWORD1
NeoEsp8266DmaSk6812Method KEYWORD1

View File

@@ -28,7 +28,8 @@ License along with NeoPixel. If not, see
#include "NeoPixelBus.h"
template<typename T_COLOR_FEATURE, typename T_METHOD> class NeoPixelBrightnessBus :
template<typename T_COLOR_FEATURE, typename T_METHOD> class [[deprecated("Use NeoPixelBusLg instead.")]] NeoPixelBrightnessBus :
public NeoPixelBus<T_COLOR_FEATURE, T_METHOD>
{
private:

View File

@@ -125,7 +125,15 @@ public:
const static uint32_t ResetTimeUs = 50;
};
class NeoEsp8266DmaSpeedIntertek : public NeoEsp8266DmaSpeedBase
{
public:
const static uint32_t I2sClockDivisor = 5; // 0-63
const static uint32_t I2sBaseClockDivisor = 10; // 0-63
const static uint32_t ByteSendTimeUs = 10; // us it takes to send a single pixel element
const static uint32_t ResetTimeUs = 12470;
const static uint32_t InterPixelTimeUs = 20;
};
class NeoEsp8266DmaInvertedSpeed800KbpsBase : public NeoEsp8266DmaInvertedSpeedBase
{
@@ -183,32 +191,103 @@ public:
const static uint32_t ResetTimeUs = 50;
};
class NeoEsp8266DmaInvertedSpeedIntertek : public NeoEsp8266DmaInvertedSpeedBase
{
public:
const static uint32_t I2sClockDivisor = 5; // 0-63
const static uint32_t I2sBaseClockDivisor = 10; // 0-63
const static uint32_t ByteSendTimeUs = 10; // us it takes to send a single pixel element at 800khz speed
const static uint32_t ResetTimeUs = 12470;
const static uint32_t InterPixelTimeUs = 20;
};
template<typename T_SPEED> class NeoEsp8266DmaEncode : public T_SPEED
{
public:
static size_t SpacingPixelSize(size_t sizePixel)
{
return sizePixel;
}
template<typename T_SPEED> class NeoEsp8266DmaMethodBase : NeoEsp8266I2sMethodCore
static void FillBuffers(uint8_t* i2sBuffer,
const uint8_t* data,
size_t sizeData,
[[maybe_unused]] size_t sizePixel)
{
uint16_t* pDma = (uint16_t*)i2sBuffer;
const uint8_t* pEnd = data + sizeData;
for (const uint8_t* pData = data; pData < pEnd; pData++)
{
*(pDma++) = T_SPEED::Convert(((*pData) & 0x0f));
*(pDma++) = T_SPEED::Convert(((*pData) >> 4) & 0x0f);
}
}
};
template<typename T_SPEED> class NeoEsp8266DmaPixelSpacingEncode : public T_SPEED
{
public:
static size_t SpacingPixelSize(size_t sizePixel)
{
return sizePixel + T_SPEED::InterPixelTimeUs / T_SPEED::ByteSendTimeUs;
}
static void FillBuffers(uint8_t* i2sBuffer,
const uint8_t* data,
size_t sizeData,
size_t sizePixel)
{
uint16_t* pDma = (uint16_t*)i2sBuffer;
const uint8_t* pEnd = data + sizeData;
uint8_t element = 0;
for (const uint8_t* pData = data; pData < pEnd; pData++)
{
*(pDma++) = T_SPEED::Convert(((*pData) & 0x0f));
*(pDma++) = T_SPEED::Convert(((*pData) >> 4) & 0x0f);
element++;
if (element == sizePixel)
{
element = 0;
for (uint8_t padding = 0;
padding < (T_SPEED::InterPixelTimeUs / T_SPEED::ByteSendTimeUs);
padding++)
{
*(pDma++) = T_SPEED::IdleLevel * 0xffff;
*(pDma++) = T_SPEED::IdleLevel * 0xffff;
}
}
}
}
};
template<typename T_ENCODER> class NeoEsp8266DmaMethodBase : NeoEsp8266I2sMethodCore
{
public:
typedef NeoNoSettings SettingsObject;
NeoEsp8266DmaMethodBase(uint16_t pixelCount, size_t elementSize, size_t settingsSize) :
_sizePixel(elementSize),
_sizeData(pixelCount * elementSize + settingsSize)
{
size_t dmaPixelSize = DmaBytesPerPixelBytes * elementSize;
size_t dmaPixelSize = DmaBytesPerPixelBytes * T_ENCODER::SpacingPixelSize(_sizePixel);
size_t dmaSettingsSize = DmaBytesPerPixelBytes * settingsSize;
size_t i2sBufferSize = pixelCount * dmaPixelSize + dmaSettingsSize;
// size is rounded up to nearest c_I2sByteBoundarySize
i2sBufferSize = NeoUtil::RoundUp(i2sBufferSize, c_I2sByteBoundarySize);
// normally 24 bytes creates the minimum 50us latch per spec, but
// with the new logic, this latch is used to space between mulitple states
// buffer size = (24 * (reset time / 50)) / 6
size_t i2sZeroesSize = (24L * (T_SPEED::ResetTimeUs / 50L)) / 6L;
// calculate a buffer size that takes reset amount of time
size_t i2sResetSize = T_ENCODER::ResetTimeUs * DmaBytesPerPixelBytes / T_ENCODER::ByteSendTimeUs;
// size is rounded up to nearest c_I2sByteBoundarySize
i2sResetSize = NeoUtil::RoundUp(i2sResetSize, c_I2sByteBoundarySize);
size_t is2BufMaxBlockSize = (c_maxDmaBlockSize / dmaPixelSize) * dmaPixelSize;
_data = static_cast<uint8_t*>(malloc(_sizeData));
// data cleared later in Begin()
AllocateI2s(i2sBufferSize, i2sZeroesSize, is2BufMaxBlockSize, T_SPEED::IdleLevel);
AllocateI2s(i2sBufferSize, i2sResetSize, is2BufMaxBlockSize, T_ENCODER::IdleLevel);
}
NeoEsp8266DmaMethodBase([[maybe_unused]] uint8_t pin, uint16_t pixelCount, size_t elementSize, size_t settingsSize) :
@@ -228,7 +307,7 @@ public:
// wait for any pending sends to complete
// due to internal i2s caching/send delays, this can more that once the data size
uint32_t time = micros();
while ((micros() - time) < ((getPixelTime() + T_SPEED::ResetTimeUs) * waits))
while ((micros() - time) < ((getPixelTime() + T_ENCODER::ResetTimeUs) * waits))
{
yield();
}
@@ -245,7 +324,7 @@ public:
void Initialize()
{
InitializeI2s(T_SPEED::I2sClockDivisor, T_SPEED::I2sBaseClockDivisor);
InitializeI2s(T_ENCODER::I2sClockDivisor, T_ENCODER::I2sBaseClockDivisor);
}
void IRAM_ATTR Update(bool)
@@ -255,10 +334,9 @@ public:
{
yield();
}
FillBuffers();
T_ENCODER::FillBuffers(_i2sBuffer, _data, _sizeData, _sizePixel);
// toggle state so the ISR reacts
_dmaState = NeoDmaState_Pending;
WriteI2s();
}
bool AlwaysUpdate()
@@ -285,23 +363,13 @@ private:
// due to encoding required for i2s, we need 4 bytes to encode the pulses
static const uint16_t DmaBytesPerPixelBytes = 4;
const size_t _sizePixel; // size of a pixel in _data
const size_t _sizeData; // Size of '_data' buffer
uint8_t* _data; // Holds LED color values
void FillBuffers()
{
uint16_t* pDma = (uint16_t*)_i2sBuffer;
uint8_t* pEnd = _data + _sizeData;
for (uint8_t* pData = _data; pData < pEnd; pData++)
{
*(pDma++) = T_SPEED::Convert(((*pData) & 0x0f));
*(pDma++) = T_SPEED::Convert(((*pData) >> 4) & 0x0f);
}
}
uint32_t getPixelTime() const
{
return (T_SPEED::ByteSendTimeUs * this->_sizeData);
return (T_ENCODER::ByteSendTimeUs * GetSendSize() / DmaBytesPerPixelBytes);
};
};
@@ -309,25 +377,27 @@ private:
// normal
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeedWs2812x> NeoEsp8266DmaWs2812xMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeedSk6812> NeoEsp8266DmaSk6812Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeedTm1814> NeoEsp8266DmaTm1814Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeedTm1829> NeoEsp8266DmaTm1829Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaSpeedWs2812x>> NeoEsp8266DmaWs2812xMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaSpeedSk6812>> NeoEsp8266DmaSk6812Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaSpeedTm1814>> NeoEsp8266DmaTm1814Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaSpeedTm1829>> NeoEsp8266DmaTm1829Method;
typedef NeoEsp8266DmaTm1814Method NeoEsp8266DmaTm1914Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeed800Kbps> NeoEsp8266Dma800KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeed400Kbps> NeoEsp8266Dma400KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeedApa106> NeoEsp8266DmaApa106Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaSpeed800Kbps>> NeoEsp8266Dma800KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaSpeed400Kbps>> NeoEsp8266Dma400KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaSpeedApa106>> NeoEsp8266DmaApa106Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaPixelSpacingEncode<NeoEsp8266DmaSpeedIntertek>> NeoEsp8266DmaIntertekMethod;
// inverted
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaInvertedSpeedWs2812x> NeoEsp8266DmaInvertedWs2812xMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaInvertedSpeedSk6812> NeoEsp8266DmaInvertedSk6812Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaInvertedSpeedTm1814> NeoEsp8266DmaInvertedTm1814Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaInvertedSpeedTm1829> NeoEsp8266DmaInvertedTm1829Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaInvertedSpeedWs2812x>> NeoEsp8266DmaInvertedWs2812xMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaInvertedSpeedSk6812>> NeoEsp8266DmaInvertedSk6812Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaInvertedSpeedTm1814>> NeoEsp8266DmaInvertedTm1814Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaInvertedSpeedTm1829>> NeoEsp8266DmaInvertedTm1829Method;
typedef NeoEsp8266DmaInvertedTm1814Method NeoEsp8266DmaInvertedTm1914Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaInvertedSpeed800Kbps> NeoEsp8266DmaInverted800KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaInvertedSpeed400Kbps> NeoEsp8266DmaInverted400KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaInvertedSpeedApa106> NeoEsp8266DmaInvertedApa106Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaInvertedSpeed800Kbps>> NeoEsp8266DmaInverted800KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaInvertedSpeed400Kbps>> NeoEsp8266DmaInverted400KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaEncode<NeoEsp8266DmaInvertedSpeedApa106>> NeoEsp8266DmaInvertedApa106Method;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaPixelSpacingEncode<NeoEsp8266DmaInvertedSpeedIntertek>> NeoEsp8266DmaInvertedIntertekMethod;
// Dma method is the default method for Esp8266
typedef NeoEsp8266DmaWs2812xMethod NeoWs2813Method;
@@ -341,6 +411,7 @@ typedef NeoEsp8266DmaTm1829Method NeoTm1829Method;
typedef NeoEsp8266DmaTm1914Method NeoTm1914Method;
typedef NeoEsp8266DmaSk6812Method NeoLc8812Method;
typedef NeoEsp8266DmaApa106Method NeoApa106Method;
typedef NeoEsp8266DmaIntertekMethod NeoIntertekMethod;
typedef NeoEsp8266DmaWs2812xMethod Neo800KbpsMethod;
typedef NeoEsp8266Dma400KbpsMethod Neo400KbpsMethod;
@@ -357,6 +428,7 @@ typedef NeoEsp8266DmaInvertedTm1829Method NeoTm1829InvertedMethod;
typedef NeoEsp8266DmaInvertedTm1914Method NeoTm1914InvertedMethod;
typedef NeoEsp8266DmaInvertedSk6812Method NeoLc8812InvertedMethod;
typedef NeoEsp8266DmaInvertedApa106Method NeoApa106InvertedMethod;
typedef NeoEsp8266DmaInvertedIntertekMethod NeoInvertedIntertekMethod;
typedef NeoEsp8266DmaInvertedWs2812xMethod Neo800KbpsInvertedMethod;
typedef NeoEsp8266DmaInverted400KbpsMethod Neo400KbpsInvertedMethod;

View File

@@ -142,20 +142,20 @@ public:
i2sBufferSize = i2sBufferSize + T_SPEED::BreakMabSize;
// size is rounded up to nearest I2sByteBoundarySize
i2sBufferSize = NeoUtil::RoundUp(i2sBufferSize, I2sByteBoundarySize);
// size is rounded up to nearest c_I2sByteBoundarySize
i2sBufferSize = NeoUtil::RoundUp(i2sBufferSize, c_I2sByteBoundarySize);
// size of a looping silent space rounded up to nearest I2sByteBoundarySize
size_t i2sZeroesSize = NeoUtil::RoundUp(T_SPEED::MtbpSize, I2sByteBoundarySize);
// size of a looping silent space rounded up to nearest c_I2sByteBoundarySize
size_t i2sResetSize = NeoUtil::RoundUp(T_SPEED::MtbpSize, c_I2sByteBoundarySize);
// protocol limits use of full block size to I2sByteBoundarySize
size_t is2BufMaxBlockSize = (c_maxDmaBlockSize / I2sByteBoundarySize) * I2sByteBoundarySize;
// protocol limits use of full block size to c_I2sByteBoundarySize
size_t is2BufMaxBlockSize = (c_maxDmaBlockSize / c_I2sByteBoundarySize) * c_I2sByteBoundarySize;
_data = static_cast<uint8_t*>(malloc(_sizeData));
// first "slot" cleared due to protocol requiring it to be zero
memset(_data, 0x00, 1);
AllocateI2s(i2sBufferSize, i2sZeroesSize, is2BufMaxBlockSize, T_SPEED::MtbpLevel);
AllocateI2s(i2sBufferSize, i2sResetSize, is2BufMaxBlockSize, T_SPEED::MtbpLevel);
}
NeoEsp8266I2sDmx512MethodBase([[maybe_unused]] uint8_t pin, uint16_t pixelCount, size_t elementSize, size_t settingsSize) :
@@ -204,8 +204,7 @@ public:
}
FillBuffers();
// toggle state so the ISR reacts
_dmaState = NeoDmaState_Pending;
WriteI2s();
}
bool AlwaysUpdate()
@@ -231,8 +230,6 @@ public:
private:
// given 11 sending bits per pixel byte,
static const uint16_t I2sBitsPerPixelBytes = 11;
// i2s sends 4 byte elements,
static const uint16_t I2sByteBoundarySize = 4;
const size_t _sizeData; // Size of '_data' buffer
uint8_t* _data; // Holds LED color values

View File

@@ -25,6 +25,7 @@ License along with NeoPixel. If not, see
-------------------------------------------------------------------------*/
#include <Arduino.h>
#include "NeoUtil.h"
#include "NeoEsp8266I2sMethodCore.h"
#ifdef ARDUINO_ARCH_ESP8266

View File

@@ -71,8 +71,7 @@ enum NeoDmaState
{
NeoDmaState_Idle,
NeoDmaState_Pending,
NeoDmaState_Sending,
NeoDmaState_Zeroing,
NeoDmaState_Sending
};
const uint16_t c_maxDmaBlockSize = 4095;
@@ -81,6 +80,13 @@ const uint8_t c_I2sPin = 3; // due to I2S hardware, the pin used is restricted t
class NeoEsp8266I2sMethodCore
{
private:
static const uint8_t c_StateBlockCount = 2;
static const size_t c_StateDataSize = 4; // mulitples of c_I2sByteBoundarySize
// i2s sends 4 byte elements,
static const uint16_t c_I2sByteBoundarySize = 4;
protected:
static NeoEsp8266I2sMethodCore* s_this; // for the ISR
@@ -92,11 +98,16 @@ protected:
size_t _i2sBufferSize; // total size of _i2sBuffer
uint8_t* _i2sBuffer; // holds the DMA buffer that is referenced by _i2sBufDesc
size_t _i2sZeroesSize; // total size of _i2sZeroes
uint8_t* _i2sZeroes;
size_t _i2sIdleDataTotalSize; // total size of represented zeroes, mulitple uses of _i2sIdleData
size_t _i2sIdleDataSize; // size of _i2sIdleData
uint8_t* _i2sIdleData;
uint16_t _is2BufMaxBlockSize; // max size based on size of a pixel of a single block
size_t GetSendSize() const
{
return _i2sBufferSize + _i2sIdleDataTotalSize;
}
// This routine is called as soon as the DMA routine has something to tell us. All we
// handle here is the RX_EOF_INT status, which indicate the DMA has sent a buffer whose
@@ -112,39 +123,15 @@ protected:
if ((slc_intr_status & SLCIRXEOF) && s_this)
{
switch (s_this->_dmaState)
if (s_this->_dmaState != NeoDmaState_Idle)
{
case NeoDmaState_Idle:
break;
// first two items are the state blocks
slc_queue_item* itemLoop = s_this->_i2sBufDesc;
slc_queue_item* itemLoopBreaker = itemLoop + 1;
// set to loop on idle items
itemLoopBreaker->next_link_ptr = itemLoop;
case NeoDmaState_Pending:
{
slc_queue_item* finished_item = (slc_queue_item*)SLCRXEDA;
// data block has pending data waiting to send, prepare it
// point last state block to top
(finished_item + 1)->next_link_ptr = s_this->_i2sBufDesc;
s_this->_dmaState = NeoDmaState_Sending;
}
break;
case NeoDmaState_Sending:
{
slc_queue_item* finished_item = (slc_queue_item*)SLCRXEDA;
// the data block had actual data sent
// point last state block to first state block thus
// just looping and not sending the data blocks
(finished_item + 1)->next_link_ptr = finished_item;
s_this->_dmaState = NeoDmaState_Zeroing;
}
break;
case NeoDmaState_Zeroing:
s_this->_dmaState = NeoDmaState_Idle;
break;
}
}
@@ -154,21 +141,37 @@ protected:
NeoEsp8266I2sMethodCore()
{ };
void AllocateI2s(const size_t i2sBufferSize,
const size_t i2sZeroesSize,
void AllocateI2s(const size_t i2sBufferSize, // expected multiples of c_I2sByteBoundarySize
const size_t i2sZeroesSize, // expected multiples of c_I2sByteBoundarySize
const size_t is2BufMaxBlockSize,
const uint8_t idleLevel)
{
_i2sBufferSize = i2sBufferSize;
_i2sZeroesSize = i2sZeroesSize;
_i2sIdleDataTotalSize = i2sZeroesSize;
_i2sIdleDataSize = _i2sIdleDataTotalSize;
size_t countIdleQueueItems = 1;
if (_i2sIdleDataSize > 256)
{
// reuse a single idle data buffer of 256 with multiple dma slc_queue_items
countIdleQueueItems = _i2sIdleDataSize / 256 + 1;
_i2sIdleDataSize = 256;
}
else
{
_i2sIdleDataSize = NeoUtil::RoundUp(_i2sIdleDataSize, c_I2sByteBoundarySize);
}
_is2BufMaxBlockSize = is2BufMaxBlockSize;
_i2sBuffer = static_cast<uint8_t*>(malloc(_i2sBufferSize));
// no need to initialize it, it gets overwritten on every send
_i2sZeroes = static_cast<uint8_t*>(malloc(_i2sZeroesSize));
memset(_i2sZeroes, idleLevel * 0xff, _i2sZeroesSize);
_i2sIdleData = static_cast<uint8_t*>(malloc(_i2sIdleDataSize));
memset(_i2sIdleData, idleLevel * 0xff, _i2sIdleDataSize);
_i2sBufDescCount = (_i2sBufferSize / _is2BufMaxBlockSize) + 1 +
countIdleQueueItems +
c_StateBlockCount; // need more for state/latch blocks
_i2sBufDescCount = (_i2sBufferSize / _is2BufMaxBlockSize) + 1 + 2; // need two more for state/latch blocks
_i2sBufDesc = (slc_queue_item*)malloc(_i2sBufDescCount * sizeof(slc_queue_item));
s_this = this; // store this for the ISR
@@ -183,7 +186,7 @@ protected:
free(_i2sBuffer);
free(_i2sBufDesc);
free(_i2sZeroes);
free(_i2sIdleData);
}
bool IsIdle() const
@@ -191,6 +194,19 @@ protected:
return (_dmaState == NeoDmaState_Idle);
}
void DmaItemInit(slc_queue_item* item, uint8_t* data, size_t sizeData, slc_queue_item* itemNext)
{
item->owner = 1;
item->eof = 0; // no need to trigger interrupt generally
item->sub_sof = 0;
item->datalen = sizeData;
item->blocksize = sizeData;
item->buf_ptr = data;
item->unused = 0;
item->next_link_ptr = itemNext;
}
void InitializeI2s(const uint32_t i2sClockDivisor, const uint32_t i2sBaseClockDivisor)
{
StopI2s();
@@ -198,52 +214,61 @@ protected:
pinMode(c_I2sPin, FUNCTION_1); // I2S0_DATA
uint8_t* is2Buffer = _i2sBuffer;
uint32_t is2BufferSize = _i2sBufferSize;
uint16_t indexDesc;
uint8_t* is2BufferEnd = _i2sBuffer + _i2sBufferSize;
uint32_t is2BufferSize;
uint16_t indexDesc = 0;
// prepare the two state/latch descriptors
uint16_t stateDataSize = min(c_StateDataSize, _i2sIdleDataSize);
while (indexDesc < c_StateBlockCount)
{
DmaItemInit(&_i2sBufDesc[indexDesc], _i2sIdleData, stateDataSize, &(_i2sBufDesc[indexDesc + 1]));
indexDesc++;
}
// prepare main data block decriptors that point into our one static dma buffer
for (indexDesc = 0; indexDesc < (_i2sBufDescCount - 2); indexDesc++)
is2BufferSize = _i2sBufferSize;
while (is2Buffer < is2BufferEnd)
{
uint32_t blockSize = (is2BufferSize > _is2BufMaxBlockSize) ? _is2BufMaxBlockSize : is2BufferSize;
_i2sBufDesc[indexDesc].owner = 1;
_i2sBufDesc[indexDesc].eof = 0; // no need to trigger interrupt generally
_i2sBufDesc[indexDesc].sub_sof = 0;
_i2sBufDesc[indexDesc].datalen = blockSize;
_i2sBufDesc[indexDesc].blocksize = blockSize;
_i2sBufDesc[indexDesc].buf_ptr = is2Buffer;
_i2sBufDesc[indexDesc].unused = 0;
_i2sBufDesc[indexDesc].next_link_ptr = reinterpret_cast<struct slc_queue_item*>(&(_i2sBufDesc[indexDesc + 1]));
DmaItemInit(&_i2sBufDesc[indexDesc], is2Buffer, blockSize, &(_i2sBufDesc[indexDesc + 1]));
is2Buffer += blockSize;
is2BufferSize -= blockSize;
indexDesc++;
}
// prepare the two state/latch descriptors
for (; indexDesc < _i2sBufDescCount; indexDesc++)
// last data item triggers EOF ISR
_i2sBufDesc[indexDesc - 1].eof = 1;
// prepare idle block decriptors that point into our one idle dma buffer
is2BufferSize = _i2sIdleDataTotalSize;
while (indexDesc < _i2sBufDescCount)
{
_i2sBufDesc[indexDesc].owner = 1;
_i2sBufDesc[indexDesc].eof = 0; // no need to trigger interrupt generally
_i2sBufDesc[indexDesc].sub_sof = 0;
_i2sBufDesc[indexDesc].datalen = sizeof(_i2sZeroes);
_i2sBufDesc[indexDesc].blocksize = sizeof(_i2sZeroes);
_i2sBufDesc[indexDesc].buf_ptr = _i2sZeroes;
_i2sBufDesc[indexDesc].unused = 0;
_i2sBufDesc[indexDesc].next_link_ptr = reinterpret_cast<struct slc_queue_item*>(&(_i2sBufDesc[indexDesc + 1]));
uint32_t blockSize = (is2BufferSize > _i2sIdleDataSize) ? _i2sIdleDataSize : is2BufferSize;
DmaItemInit(&_i2sBufDesc[indexDesc], _i2sIdleData, blockSize, &(_i2sBufDesc[indexDesc + 1]));
is2Buffer += blockSize;
is2BufferSize -= blockSize;
indexDesc++;
}
// the first state block will trigger the interrupt
_i2sBufDesc[indexDesc - 2].eof = 1;
// the last item will loop to the first item
_i2sBufDesc[indexDesc - 1].next_link_ptr = reinterpret_cast<struct slc_queue_item*>(&(_i2sBufDesc[0]));
// the last state block will loop to the first state block by defualt
_i2sBufDesc[indexDesc - 1].next_link_ptr = reinterpret_cast<struct slc_queue_item*>(&(_i2sBufDesc[indexDesc - 2]));
_i2sBufDesc[c_StateBlockCount - 1].next_link_ptr = reinterpret_cast<struct slc_queue_item*>(&(_i2sBufDesc[0]));
// setup the rest of i2s DMA
//
ETS_SLC_INTR_DISABLE();
// start off in sending state as that is what it will be all setup to be
// start off in idel state as that is what it will be all setup to be
// for the interrupt
_dmaState = NeoDmaState_Sending;
_dmaState = NeoDmaState_Idle;
SLCC0 |= SLCRXLR | SLCTXLR;
SLCC0 &= ~(SLCRXLR | SLCTXLR);
@@ -301,6 +326,18 @@ protected:
I2SC |= I2STXS; // Start transmission
}
void WriteI2s()
{
// first two items are the state blocks
slc_queue_item* itemLoopBreaker = &(_i2sBufDesc[1]);
slc_queue_item* itemData = itemLoopBreaker + 1;
// set to NOT loop on idle items
itemLoopBreaker->next_link_ptr = itemData;
_dmaState = NeoDmaState_Sending;
}
void StopI2s()
{
ETS_SLC_INTR_DISABLE();

View File

@@ -163,6 +163,8 @@ protected:
// synchronous uart method
//
// used by NeoEsp8266UartMethodBase
// T_UARTFEATURE - (UartFeature0 | UartFeature1)
// T_UARTCONTEXT - (NeoEsp8266UartContext | NeoEsp8266UartInterruptContext)
//
template<typename T_UARTFEATURE, typename T_UARTCONTEXT> class NeoEsp8266Uart : public NeoEsp8266UartBase
{
@@ -217,6 +219,8 @@ protected:
// every call to NeoPixelBus.Show() and must not be cached.
//
// used by NeoEsp8266UartMethodBase
// T_UARTFEATURE - (UartFeature0 | UartFeature1)
// T_UARTCONTEXT - (NeoEsp8266UartContext | NeoEsp8266UartInterruptContext)
//
template<typename T_UARTFEATURE, typename T_UARTCONTEXT> class NeoEsp8266AsyncUart : public NeoEsp8266UartBase
{
@@ -348,6 +352,11 @@ public:
// NeoEsp8266UartMethodBase is a light shell arround NeoEsp8266Uart or NeoEsp8266AsyncUart that
// implements the methods needed to operate as a NeoPixelBus method.
//
// T_SPEED - (NeoEsp8266UartSpeed*)
// T_BASE - (NeoEsp8266Uart | NeoEsp8266AsyncUart)
// T_INVERT - (NeoEsp8266UartNotInverted | NeoEsp8266UartInverted)
//
template<typename T_SPEED, typename T_BASE, typename T_INVERT>
class NeoEsp8266UartMethodBase: public T_BASE
{

View File

@@ -28,24 +28,67 @@ License along with NeoPixel. If not, see
#include <Arduino.h>
// ESP32C3 I2S is not supported yet
#if !defined(CONFIG_IDF_TARGET_ESP32C3)
static inline uint32_t getCycleCount(void)
{
uint32_t ccount;
#if defined(CONFIG_IDF_TARGET_ESP32C3)
__asm__ __volatile__("csrr %0,0x7e2":"=r" (ccount));
//ccount = esp_cpu_get_ccount();
#else
__asm__ __volatile__("rsr %0,ccount":"=a" (ccount));
#endif
return ccount;
}
void IRAM_ATTR NeoEspBitBangBase_send_pixels(uint8_t* pixels, uint8_t* end, uint8_t pin, uint32_t t0h, uint32_t t1h, uint32_t period)
void IRAM_ATTR neoEspBitBangWriteSpacingPixels(const uint8_t* pixels,
const uint8_t* end,
uint8_t pin,
uint32_t t0h,
uint32_t t1h,
uint32_t period,
size_t sizePixel,
uint32_t tSpacing,
bool invert)
{
const uint32_t pinRegister = _BV(pin);
uint32_t setValue = _BV(pin);
uint32_t clearValue = _BV(pin);
uint8_t mask = 0x80;
uint8_t subpix = *pixels++;
uint8_t element = 0;
uint32_t cyclesStart = 0; // trigger emediately
uint32_t cyclesNext = 0;
#if defined(ARDUINO_ARCH_ESP32)
#if defined(CONFIG_IDF_TARGET_ESP32C3)
volatile uint32_t* setRegister = &GPIO.out_w1ts.val;
volatile uint32_t* clearRegister = &GPIO.out_w1tc.val;
setValue = _BV(pin);
clearValue = _BV(pin);
#else
volatile uint32_t* setRegister = &GPIO.out_w1ts;
volatile uint32_t* clearRegister = &GPIO.out_w1tc;
#endif // defined(CONFIG_IDF_TARGET_ESP32C3)
#else
uint32_t setRegister = PERIPHS_GPIO_BASEADDR + GPIO_OUT_W1TS_ADDRESS;
uint32_t clearRegister = PERIPHS_GPIO_BASEADDR + GPIO_OUT_W1TC_ADDRESS;
if (pin == 16)
{
setRegister = RTC_GPIO_OUT;
clearRegister = RTC_GPIO_OUT;
// reading AND writing RTC_GPIO_OUT is too slow inside the loop so
// we only do writing in the loop
clearValue = (READ_PERI_REG(RTC_GPIO_OUT) & (uint32)0xfffffffe);
setValue = clearValue | 1;
}
#endif // defined(ARDUINO_ARCH_ESP32)
if (invert)
{
std::swap(setRegister, clearRegister);
std::swap(setValue, clearValue);
}
for (;;)
{
// do the checks here while we are waiting on time to pass
@@ -61,9 +104,9 @@ void IRAM_ATTR NeoEspBitBangBase_send_pixels(uint8_t* pixels, uint8_t* end, uint
// set pin state
#if defined(ARDUINO_ARCH_ESP32)
GPIO.out_w1ts = pinRegister;
*setRegister = setValue;
#else
GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, pinRegister);
WRITE_PERI_REG(setRegister, setValue);
#endif
// wait for the LOW
@@ -71,9 +114,9 @@ void IRAM_ATTR NeoEspBitBangBase_send_pixels(uint8_t* pixels, uint8_t* end, uint
// reset pin start
#if defined(ARDUINO_ARCH_ESP32)
GPIO.out_w1tc = pinRegister;
*clearRegister = clearValue;
#else
GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, pinRegister);
WRITE_PERI_REG(clearRegister, clearValue);
#endif
cyclesNext = cyclesStart;
@@ -92,176 +135,22 @@ void IRAM_ATTR NeoEspBitBangBase_send_pixels(uint8_t* pixels, uint8_t* end, uint
// reset mask to first bit and get the next byte
mask = 0x80;
subpix = *pixels++;
}
}
}
#if defined(ARDUINO_ARCH_ESP8266)
void IRAM_ATTR NeoEspBitBangBase_send_pixels_pin16(uint8_t *pixels, uint8_t *end, uint32_t t0h, uint32_t t1h, uint32_t period)
{
uint8_t mask = 0x80;
uint8_t subpix = *pixels++;
uint32_t cyclesStart = 0; // trigger emediately
uint32_t cyclesNext = 0;
// reading and writing RTC_GPIO_OUT is too slow inside the loop
uint32_t gpio_clear = (READ_PERI_REG(RTC_GPIO_OUT) & (uint32)0xfffffffe);
uint32_t gpio_set = gpio_clear | 1;
for (;;)
{
// do the checks here while we are waiting on time to pass
uint32_t cyclesBit = t0h;
if (subpix & mask)
{
cyclesBit = t1h;
}
// after we have done as much work as needed for this next bit
// now wait for the HIGH
while (((cyclesStart = getCycleCount()) - cyclesNext) < period);
// set pin state
WRITE_PERI_REG(RTC_GPIO_OUT, gpio_set);
// wait for the LOW
while ((getCycleCount() - cyclesStart) < cyclesBit);
// reset pin start
WRITE_PERI_REG(RTC_GPIO_OUT, gpio_clear);
cyclesNext = cyclesStart;
// next bit
mask >>= 1;
if (mask == 0)
{
// no more bits to send in this byte
// check for another byte
if (pixels >= end)
// if pixel spacing is needed
if (tSpacing)
{
// no more bytes to send so stop
break;
element++;
if (element == sizePixel)
{
element = 0;
// wait for pixel spacing
while ((getCycleCount() - cyclesNext) < tSpacing);
}
}
// reset mask to first bit and get the next byte
mask = 0x80;
subpix = *pixels++;
}
}
}
#endif // defined(ARDUINO_ARCH_ESP8266)
void IRAM_ATTR NeoEspBitBangBase_send_pixels_inv(uint8_t* pixels, uint8_t* end, uint8_t pin, uint32_t t0h, uint32_t t1h, uint32_t period)
{
const uint32_t pinRegister = _BV(pin);
uint8_t mask = 0x80;
uint8_t subpix = *pixels++;
uint32_t cyclesStart = 0; // trigger emediately
uint32_t cyclesNext = 0;
for (;;)
{
// do the checks here while we are waiting on time to pass
uint32_t cyclesBit = t0h;
if (subpix & mask)
{
cyclesBit = t1h;
}
// after we have done as much work as needed for this next bit
// now wait for the HIGH
while (((cyclesStart = getCycleCount()) - cyclesNext) < period);
// set pin state
#if defined(ARDUINO_ARCH_ESP32)
GPIO.out_w1tc = pinRegister;
#else
GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, pinRegister);
#endif
// wait for the LOW
while ((getCycleCount() - cyclesStart) < cyclesBit);
// reset pin start
#if defined(ARDUINO_ARCH_ESP32)
GPIO.out_w1ts = pinRegister;
#else
GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, pinRegister);
#endif
cyclesNext = cyclesStart;
// next bit
mask >>= 1;
if (mask == 0)
{
// no more bits to send in this byte
// check for another byte
if (pixels >= end)
{
// no more bytes to send so stop
break;
}
// reset mask to first bit and get the next byte
mask = 0x80;
subpix = *pixels++;
}
}
}
#if defined(ARDUINO_ARCH_ESP8266)
void IRAM_ATTR NeoEspBitBangBase_send_pixels_inv_pin16(uint8_t *pixels, uint8_t *end, uint32_t t0h, uint32_t t1h, uint32_t period)
{
uint8_t mask = 0x80;
uint8_t subpix = *pixels++;
uint32_t cyclesStart = 0; // trigger emediately
uint32_t cyclesNext = 0;
// reading and writing RTC_GPIO_OUT is too slow inside the loop
uint32_t gpio_clear = (READ_PERI_REG(RTC_GPIO_OUT) & (uint32)0xfffffffe);
uint32_t gpio_set = gpio_clear | 1;
for (;;)
{
// do the checks here while we are waiting on time to pass
uint32_t cyclesBit = t0h;
if (subpix & mask)
{
cyclesBit = t1h;
}
// after we have done as much work as needed for this next bit
// now wait for the HIGH
while (((cyclesStart = getCycleCount()) - cyclesNext) < period);
// set pin state
WRITE_PERI_REG(RTC_GPIO_OUT, gpio_clear);
// wait for the LOW
while ((getCycleCount() - cyclesStart) < cyclesBit);
// reset pin start
WRITE_PERI_REG(RTC_GPIO_OUT, gpio_set);
cyclesNext = cyclesStart;
// next bit
mask >>= 1;
if (mask == 0)
{
// no more bits to send in this byte
// check for another byte
if (pixels >= end)
{
// no more bytes to send so stop
break;
}
// reset mask to first bit and get the next byte
mask = 0x80;
subpix = *pixels++;
}
}
}
#endif // defined(ARDUINO_ARCH_ESP8266)
#endif // !defined(CONFIG_IDF_TARGET_ESP32C3)
#endif // defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32)

View File

@@ -28,221 +28,169 @@ License along with NeoPixel. If not, see
#if defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32)
// ESP32C3 I2S is not supported yet
#if !defined(CONFIG_IDF_TARGET_ESP32C3)
#if defined(ARDUINO_ARCH_ESP8266)
#include <eagle_soc.h>
#endif
#if defined(CONFIG_IDF_TARGET_ESP32C3)
#define CYCLES_LOOPTEST (1) // adjustment due to loop exit test instruction cycles
#elif defined(CONFIG_IDF_TARGET_ESP32S3)
#define CYCLES_LOOPTEST (2) // adjustment due to loop exit test instruction cycles
#else
#define CYCLES_LOOPTEST (4) // adjustment due to loop exit test instruction cycles
#endif
class NeoEspSpeedWs2811
extern void neoEspBitBangWriteSpacingPixels(const uint8_t* pixels,
const uint8_t* end,
uint8_t pin,
uint32_t t0h,
uint32_t t1h,
uint32_t period,
size_t sizePixel,
uint32_t tSpacing,
bool invert);
class NeoEspNotInverted
{
public:
const static uint8_t IdleLevel = LOW;
};
class NeoEspInverted
{
public:
const static uint8_t IdleLevel = HIGH;
};
class NeoEspBitBangSpeedWs2811
{
public:
const static uint32_t T0H = (F_CPU / 3333333 - CYCLES_LOOPTEST); // 0.3us
const static uint32_t T1H = (F_CPU / 1052632 - CYCLES_LOOPTEST); // 0.95us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
static const uint32_t ResetTimeUs = 300;
const static uint32_t TInterPixel = 0;
};
class NeoEspSpeedTm1814
{
public:
const static uint32_t T0H = (F_CPU / 2916666 - CYCLES_LOOPTEST); // 0.35us
const static uint32_t T1H = (F_CPU / 1666666 - CYCLES_LOOPTEST); // 0.75us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
};
class NeoEspSpeedTm1829
{
public:
const static uint32_t T0H = (F_CPU / 3333333 - CYCLES_LOOPTEST); // 0.3us
const static uint32_t T1H = (F_CPU / 1250000 - CYCLES_LOOPTEST); // 0.8us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
};
class NeoEspSpeed800Mhz
class NeoEspBitBangSpeedWs2812x
{
public:
const static uint32_t T0H = (F_CPU / 2500000 - CYCLES_LOOPTEST); // 0.4us
const static uint32_t T1H = (F_CPU / 1250000 - CYCLES_LOOPTEST); // 0.8us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
static const uint32_t ResetTimeUs = 300;
const static uint32_t TInterPixel = 0;
};
class NeoEspSpeed400Mhz
class NeoEspBitBangSpeedSk6812
{
public:
const static uint32_t T0H = (F_CPU / 2000000 - CYCLES_LOOPTEST);
const static uint32_t T1H = (F_CPU / 833333 - CYCLES_LOOPTEST);
const static uint32_t Period = (F_CPU / 400000 - CYCLES_LOOPTEST);
const static uint32_t T0H = (F_CPU / 2500000 - CYCLES_LOOPTEST); // 0.4us
const static uint32_t T1H = (F_CPU / 1250000 - CYCLES_LOOPTEST); // 0.8us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
static const uint32_t ResetTimeUs = 80;
const static uint32_t TInterPixel = 0;
};
class NeoEspSpeedApa106
// Tm1814 normal is inverted signal
class NeoEspBitBangSpeedTm1814
{
public:
const static uint32_t T0H = (F_CPU / 2916666 - CYCLES_LOOPTEST); // 0.35us
const static uint32_t T1H = (F_CPU / 1666666 - CYCLES_LOOPTEST); // 0.75us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
static const uint32_t ResetTimeUs = 200;
const static uint32_t TInterPixel = 0;
};
// Tm1829 normal is inverted signal
class NeoEspBitBangSpeedTm1829
{
public:
const static uint32_t T0H = (F_CPU / 3333333 - CYCLES_LOOPTEST); // 0.3us
const static uint32_t T1H = (F_CPU / 1250000 - CYCLES_LOOPTEST); // 0.8us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
static const uint32_t ResetTimeUs = 200;
const static uint32_t TInterPixel = 0;
};
class NeoEspBitBangSpeed800Kbps
{
public:
const static uint32_t T0H = (F_CPU / 2500000 - CYCLES_LOOPTEST); // 0.4us
const static uint32_t T1H = (F_CPU / 1250000 - CYCLES_LOOPTEST); // 0.8us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
static const uint32_t ResetTimeUs = 50;
const static uint32_t TInterPixel = 0;
};
class NeoEspBitBangSpeed400Kbps
{
public:
const static uint32_t T0H = (F_CPU / 2000000 - CYCLES_LOOPTEST);
const static uint32_t T1H = (F_CPU / 833333 - CYCLES_LOOPTEST);
const static uint32_t Period = (F_CPU / 400000 - CYCLES_LOOPTEST);
static const uint32_t ResetTimeUs = 50;
const static uint32_t TInterPixel = 0;
};
class NeoEspBitBangSpeedApa106
{
public:
const static uint32_t T0H = (F_CPU / 2857143 - CYCLES_LOOPTEST); // 0.35us
const static uint32_t T1H = (F_CPU / 740741 - CYCLES_LOOPTEST); // 1.35
const static uint32_t Period = (F_CPU / 606061 - CYCLES_LOOPTEST); // 1.65us
static const uint32_t ResetTimeUs = 50;
const static uint32_t TInterPixel = 0;
};
extern void NeoEspBitBangBase_send_pixels(uint8_t* pixels, uint8_t* end, uint8_t pin, uint32_t t0h, uint32_t t1h, uint32_t period);
extern void NeoEspBitBangBase_send_pixels_inv(uint8_t *pixels, uint8_t *end, uint8_t pin, uint32_t t0h, uint32_t t1h, uint32_t period);
#if defined(ARDUINO_ARCH_ESP8266)
extern void NeoEspBitBangBase_send_pixels_pin16(uint8_t *pixels, uint8_t *end, uint32_t t0h, uint32_t t1h, uint32_t period);
extern void NeoEspBitBangBase_send_pixels_inv_pin16(uint8_t *pixels, uint8_t *end, uint32_t t0h, uint32_t t1h, uint32_t period);
#endif
class NeoEspPinset
class NeoEspBitBangSpeedIntertek
{
public:
const static uint8_t IdleLevel = LOW;
const static uint32_t T0H = (F_CPU / 2500000 - CYCLES_LOOPTEST); // 0.4us
const static uint32_t T1H = (F_CPU / 1250000 - CYCLES_LOOPTEST); // 0.8us
const static uint32_t Period = (F_CPU / 800000 - CYCLES_LOOPTEST); // 1.25us per bit
inline static void send_pixels_impl(uint8_t* pixels, uint8_t* end, uint8_t pin, uint32_t t0h, uint32_t t1h, uint32_t period)
const static uint32_t ResetTimeUs = 12470;
const static uint32_t TInterPixel = (F_CPU / 50000); // 20us
};
template<typename T_SPEED, typename T_INVERTED> class NeoEspBitBangEncode : public T_SPEED, public T_INVERTED
{
public:
static void WritePixels(uint8_t pin,
const uint8_t* data,
size_t sizeData,
size_t sizePixel)
{
#if defined(ARDUINO_ARCH_ESP8266)
if (pin == 16)
NeoEspBitBangBase_send_pixels_pin16(pixels, end, t0h, t1h, period);
else
NeoEspBitBangBase_send_pixels(pixels, end, pin, t0h, t1h, period);
#else
NeoEspBitBangBase_send_pixels(pixels, end, pin, t0h, t1h, period);
#endif
neoEspBitBangWriteSpacingPixels(data,
data + sizeData,
pin,
T_SPEED::T0H,
T_SPEED::T1H,
T_SPEED::Period,
sizePixel,
T_SPEED::TInterPixel,
T_INVERTED::IdleLevel);
}
};
class NeoEspPinsetInverted
{
public:
const static uint8_t IdleLevel = HIGH;
inline static void send_pixels_impl(uint8_t* pixels, uint8_t* end, uint8_t pin, uint32_t t0h, uint32_t t1h, uint32_t period)
{
#if defined(ARDUINO_ARCH_ESP8266)
if (pin == 16)
NeoEspBitBangBase_send_pixels_inv_pin16(pixels, end, t0h, t1h, period);
else
NeoEspBitBangBase_send_pixels_inv(pixels, end, pin, t0h, t1h, period);
#else
NeoEspBitBangBase_send_pixels_inv(pixels, end, pin, t0h, t1h, period);
#endif
}
};
template<typename T_SPEED, typename T_PINSET> class NeoEspBitBangBase
{
public:
static void send_pixels(uint8_t* pixels, uint8_t* end, uint8_t pin)
{
T_PINSET::send_pixels_impl(pixels, end, pin, T_SPEED::T0H, T_SPEED::T1H, T_SPEED::Period);
}
};
class NeoEspBitBangSpeedWs2811 : public NeoEspBitBangBase<NeoEspSpeedWs2811, NeoEspPinset>
{
public:
static const uint32_t ResetTimeUs = 300;
};
class NeoEspBitBangSpeedWs2812x : public NeoEspBitBangBase<NeoEspSpeed800Mhz, NeoEspPinset>
{
public:
static const uint32_t ResetTimeUs = 300;
};
class NeoEspBitBangSpeedSk6812 : public NeoEspBitBangBase<NeoEspSpeed800Mhz, NeoEspPinset>
{
public:
static const uint32_t ResetTimeUs = 80;
};
// normal is inverted signal
class NeoEspBitBangSpeedTm1814 : public NeoEspBitBangBase<NeoEspSpeedTm1814, NeoEspPinsetInverted>
{
public:
static const uint32_t ResetTimeUs = 200;
};
// normal is inverted signal
class NeoEspBitBangSpeedTm1829 : public NeoEspBitBangBase<NeoEspSpeedTm1829, NeoEspPinsetInverted>
{
public:
static const uint32_t ResetTimeUs = 200;
};
class NeoEspBitBangSpeed800Kbps : public NeoEspBitBangBase<NeoEspSpeed800Mhz, NeoEspPinset>
{
public:
static const uint32_t ResetTimeUs = 50;
};
class NeoEspBitBangSpeed400Kbps : public NeoEspBitBangBase<NeoEspSpeed400Mhz, NeoEspPinset>
{
public:
static const uint32_t ResetTimeUs = 50;
};
class NeoEspBitBangSpeedApa106 : public NeoEspBitBangBase<NeoEspSpeedApa106, NeoEspPinset>
{
public:
static const uint32_t ResetTimeUs = 50;
};
class NeoEspBitBangInvertedSpeedWs2811 : public NeoEspBitBangBase<NeoEspSpeedWs2811, NeoEspPinsetInverted>
{
public:
static const uint32_t ResetTimeUs = 300;
};
class NeoEspBitBangInvertedSpeedWs2812x : public NeoEspBitBangBase<NeoEspSpeed800Mhz, NeoEspPinsetInverted>
{
public:
static const uint32_t ResetTimeUs = 300;
};
class NeoEspBitBangInvertedSpeedSk6812 : public NeoEspBitBangBase<NeoEspSpeed800Mhz, NeoEspPinsetInverted>
{
public:
static const uint32_t ResetTimeUs = 80;
};
// normal is inverted signal, so inverted is normal
class NeoEspBitBangInvertedSpeedTm1814 : public NeoEspBitBangBase<NeoEspSpeedTm1814, NeoEspPinset>
{
public:
static const uint32_t ResetTimeUs = 200;
};
// normal is inverted signal, so inverted is normal
class NeoEspBitBangInvertedSpeedTm1829 : public NeoEspBitBangBase<NeoEspSpeedTm1829, NeoEspPinset>
{
public:
static const uint32_t ResetTimeUs = 200;
};
class NeoEspBitBangInvertedSpeed800Kbps : public NeoEspBitBangBase<NeoEspSpeed800Mhz, NeoEspPinsetInverted>
{
public:
static const uint32_t ResetTimeUs = 50;
};
class NeoEspBitBangInvertedSpeed400Kbps : public NeoEspBitBangBase<NeoEspSpeed400Mhz, NeoEspPinsetInverted>
{
public:
static const uint32_t ResetTimeUs = 50;
};
class NeoEspBitBangInvertedSpeedApa106 : public NeoEspBitBangBase<NeoEspSpeedApa106, NeoEspPinsetInverted>
{
public:
static const uint32_t ResetTimeUs = 50;
};
template<typename T_SPEED, typename T_PINSET> class NeoEspBitBangMethodBase
template<typename T_ENCODER> class NeoEspBitBangMethodBase
{
public:
typedef NeoNoSettings SettingsObject;
NeoEspBitBangMethodBase(uint8_t pin, uint16_t pixelCount, size_t elementSize, size_t settingsSize) :
_sizePixel(elementSize),
_sizeData(pixelCount * elementSize + settingsSize),
_pin(pin)
{
@@ -263,12 +211,12 @@ public:
{
uint32_t delta = micros() - _endTime;
return (delta >= T_SPEED::ResetTimeUs);
return (delta >= T_ENCODER::ResetTimeUs);
}
void Initialize()
{
digitalWrite(_pin, T_PINSET::IdleLevel);
digitalWrite(_pin, T_ENCODER::IdleLevel);
_endTime = micros();
}
@@ -288,15 +236,18 @@ public:
// Need 100% focus on instruction timing
#if defined(ARDUINO_ARCH_ESP32)
delay(1); // required
// delay(1); // required ?
portMUX_TYPE updateMux = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&updateMux);
#else
noInterrupts();
noInterrupts();
#endif
T_SPEED::send_pixels(_data, _data + _sizeData, _pin);
T_ENCODER::WritePixels(_pin,
_data,
_sizeData,
_sizePixel);
#if defined(ARDUINO_ARCH_ESP32)
portEXIT_CRITICAL(&updateMux);
@@ -329,6 +280,7 @@ public:
}
private:
const size_t _sizePixel; // size of a pixel in _data
const size_t _sizeData; // Size of '_data' buffer below
const uint8_t _pin; // output pin number
@@ -339,14 +291,15 @@ private:
#if defined(ARDUINO_ARCH_ESP32)
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedWs2811, NeoEspPinset> NeoEsp32BitBangWs2811Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedWs2812x, NeoEspPinset> NeoEsp32BitBangWs2812xMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedSk6812, NeoEspPinset> NeoEsp32BitBangSk6812Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedTm1814, NeoEspPinsetInverted> NeoEsp32BitBangTm1814Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedTm1829, NeoEspPinsetInverted> NeoEsp32BitBangTm1829Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeed800Kbps, NeoEspPinset> NeoEsp32BitBang800KbpsMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeed400Kbps, NeoEspPinset> NeoEsp32BitBang400KbpsMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedApa106, NeoEspPinset> NeoEsp32BitBangApa106Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedWs2811, NeoEspNotInverted>> NeoEsp32BitBangWs2811Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedWs2812x, NeoEspNotInverted>> NeoEsp32BitBangWs2812xMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedSk6812, NeoEspNotInverted>> NeoEsp32BitBangSk6812Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedTm1814, NeoEspInverted>> NeoEsp32BitBangTm1814Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedTm1829, NeoEspInverted>> NeoEsp32BitBangTm1829Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeed800Kbps, NeoEspNotInverted>> NeoEsp32BitBang800KbpsMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeed400Kbps, NeoEspNotInverted>> NeoEsp32BitBang400KbpsMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedApa106, NeoEspNotInverted>> NeoEsp32BitBangApa106Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedIntertek, NeoEspNotInverted>> NeoEsp32BitBangIntertekMethod;
typedef NeoEsp32BitBangWs2812xMethod NeoEsp32BitBangWs2813Method;
typedef NeoEsp32BitBang800KbpsMethod NeoEsp32BitBangWs2812Method;
@@ -354,14 +307,15 @@ typedef NeoEsp32BitBangWs2812xMethod NeoEsp32BitBangWs2816Method;
typedef NeoEsp32BitBangTm1814Method NeoEsp32BitBangTm1914Method;
typedef NeoEsp32BitBangSk6812Method NeoEsp32BitBangLc8812Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedWs2811, NeoEspPinsetInverted> NeoEsp32BitBangWs2811InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedWs2812x, NeoEspPinsetInverted> NeoEsp32BitBangWs2812xInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedSk6812, NeoEspPinsetInverted> NeoEsp32BitBangSk6812InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedTm1814, NeoEspPinset> NeoEsp32BitBangTm1814InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedTm1829, NeoEspPinset> NeoEsp32BitBangTm1829InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeed800Kbps, NeoEspPinsetInverted> NeoEsp32BitBang800KbpsInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeed400Kbps, NeoEspPinsetInverted> NeoEsp32BitBang400KbpsInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedApa106, NeoEspPinsetInverted> NeoEsp32BitBangApa106InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedWs2811, NeoEspInverted>> NeoEsp32BitBangWs2811InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedWs2812x, NeoEspInverted>> NeoEsp32BitBangWs2812xInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedSk6812, NeoEspInverted>> NeoEsp32BitBangSk6812InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedTm1814, NeoEspNotInverted>> NeoEsp32BitBangTm1814InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedTm1829, NeoEspNotInverted>> NeoEsp32BitBangTm1829InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeed800Kbps, NeoEspInverted>> NeoEsp32BitBang800KbpsInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeed400Kbps, NeoEspInverted>> NeoEsp32BitBang400KbpsInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedApa106, NeoEspInverted>> NeoEsp32BitBangApa106InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedIntertek, NeoEspInverted>> NeoEsp32BitBangIntertekInvertedMethod;
typedef NeoEsp32BitBangWs2812xInvertedMethod NeoEsp32BitBangWs2813InvertedMethod;
typedef NeoEsp32BitBang800KbpsInvertedMethod NeoEsp32BitBangWs2812InvertedMethod;
@@ -369,16 +323,17 @@ typedef NeoEsp32BitBangWs2812xInvertedMethod NeoEsp32BitBangWs2816InvertedMethod
typedef NeoEsp32BitBangTm1814InvertedMethod NeoEsp32BitBangTm1914InvertedMethod;
typedef NeoEsp32BitBangSk6812InvertedMethod NeoEsp32BitBangLc8812InvertedMethod;
#else
#else // defined(ARDUINO_ARCH_ESP8266)
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedWs2811, NeoEspPinset> NeoEsp8266BitBangWs2811Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedWs2812x, NeoEspPinset> NeoEsp8266BitBangWs2812xMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedSk6812, NeoEspPinset> NeoEsp8266BitBangSk6812Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedTm1814, NeoEspPinsetInverted> NeoEsp8266BitBangTm1814Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedTm1829, NeoEspPinsetInverted> NeoEsp8266BitBangTm1829Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeed800Kbps, NeoEspPinset> NeoEsp8266BitBang800KbpsMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeed400Kbps, NeoEspPinset> NeoEsp8266BitBang400KbpsMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangSpeedApa106, NeoEspPinset> NeoEsp8266BitBangApa106Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedWs2811, NeoEspNotInverted>> NeoEsp8266BitBangWs2811Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedWs2812x, NeoEspNotInverted>> NeoEsp8266BitBangWs2812xMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedSk6812, NeoEspNotInverted>> NeoEsp8266BitBangSk6812Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedTm1814, NeoEspInverted>> NeoEsp8266BitBangTm1814Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedTm1829, NeoEspInverted>> NeoEsp8266BitBangTm1829Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeed800Kbps, NeoEspNotInverted>> NeoEsp8266BitBang800KbpsMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeed400Kbps, NeoEspNotInverted>> NeoEsp8266BitBang400KbpsMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedApa106, NeoEspNotInverted>> NeoEsp8266BitBangApa106Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedIntertek, NeoEspNotInverted>> NeoEsp8266BitBangIntertekMethod;
typedef NeoEsp8266BitBangWs2812xMethod NeoEsp8266BitBangWs2813Method;
typedef NeoEsp8266BitBang800KbpsMethod NeoEsp8266BitBangWs2812Method;
@@ -386,14 +341,15 @@ typedef NeoEsp8266BitBangWs2812xMethod NeoEsp8266BitBangWs2816Method;
typedef NeoEsp8266BitBangTm1814Method NeoEsp8266BitBangTm1914Method;
typedef NeoEsp8266BitBangSk6812Method NeoEsp8266BitBangLc8812Method;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedWs2811, NeoEspPinsetInverted> NeoEsp8266BitBangWs2811InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedWs2812x, NeoEspPinsetInverted> NeoEsp8266BitBangWs2812xInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedSk6812, NeoEspPinsetInverted> NeoEsp8266BitBangSk6812InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedTm1814, NeoEspPinset> NeoEsp8266BitBangTm1814InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedTm1829, NeoEspPinset> NeoEsp8266BitBangTm1829InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeed800Kbps, NeoEspPinsetInverted> NeoEsp8266BitBang800KbpsInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeed400Kbps, NeoEspPinsetInverted> NeoEsp8266BitBang400KbpsInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangInvertedSpeedApa106, NeoEspPinsetInverted> NeoEsp8266BitBangApa106InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedWs2811, NeoEspInverted>> NeoEsp8266BitBangWs2811InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedWs2812x, NeoEspInverted>> NeoEsp8266BitBangWs2812xInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedSk6812, NeoEspInverted>> NeoEsp8266BitBangSk6812InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedTm1814, NeoEspNotInverted>> NeoEsp8266BitBangTm1814InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedTm1829, NeoEspNotInverted>> NeoEsp8266BitBangTm1829InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeed800Kbps, NeoEspInverted>> NeoEsp8266BitBang800KbpsInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeed400Kbps, NeoEspInverted>> NeoEsp8266BitBang400KbpsInvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedApa106, NeoEspInverted>> NeoEsp8266BitBangApa106InvertedMethod;
typedef NeoEspBitBangMethodBase<NeoEspBitBangEncode<NeoEspBitBangSpeedIntertek, NeoEspInverted>> NeoEsp8266BitBangIntertekInvertedMethod;
typedef NeoEsp8266BitBangWs2812xInvertedMethod NeoEsp8266BitBangWs2813InvertedMethod;
typedef NeoEsp8266BitBang800KbpsInvertedMethod NeoEsp8266BitBangWs2812InvertedMethod;
@@ -401,9 +357,8 @@ typedef NeoEsp8266BitBangWs2812xInvertedMethod NeoEsp8266BitBangWs2816InvertedMe
typedef NeoEsp8266BitBangTm1814InvertedMethod NeoEsp8266BitBangTm1914InvertedMethod;
typedef NeoEsp8266BitBangSk6812InvertedMethod NeoEsp8266BitBangLc8812InvertedMethod;
#endif
#endif // defined(ARDUINO_ARCH_ESP32)
// ESP bitbang doesn't have defaults and should avoided except for testing
#endif // !defined(CONFIG_IDF_TARGET_ESP32C3)
#endif // defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32)