Merge pull request #108 from unaiur/esp8266-async-uart

Esp8266 async uart
This commit is contained in:
Michael Miller
2016-06-16 12:40:51 -07:00
committed by GitHub
3 changed files with 289 additions and 75 deletions

View File

@@ -0,0 +1,216 @@
/*-------------------------------------------------------------------------
NeoPixel library helper functions for Esp8266 UART hardware
Written by Michael C. Miller.
I invest time and resources providing this open source code,
please support me by dontating (see https://github.com/Makuna/NeoPixelBus)
-------------------------------------------------------------------------
This file is part of the Makuna/NeoPixelBus library.
NeoPixelBus is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
NeoPixelBus is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with NeoPixel. If not, see
<http://www.gnu.org/licenses/>.
-------------------------------------------------------------------------*/
#ifdef ARDUINO_ARCH_ESP8266
#include "NeoEsp8266UartMethod.h"
#include <utility>
extern "C"
{
#include <eagle_soc.h>
#include <ets_sys.h>
#include <uart.h>
#include <uart_register.h>
}
#define UART1 1
#define UART1_INV_MASK (0x3f << 19)
// Gets the number of bytes waiting in the TX FIFO of UART1
static inline uint8_t getUartTxFifoLength()
{
return (U1S >> USTXC) & 0xff;
}
// Append a byte to the TX FIFO of UART1
// You must ensure the TX FIFO isn't full
static inline void enqueue(uint8_t byte)
{
U1F = byte;
}
static const uint8_t* esp8266_uart1_async_buf;
static const uint8_t* esp8266_uart1_async_buf_end;
NeoEsp8266Uart::NeoEsp8266Uart(uint8_t pin, uint16_t pixelCount, size_t elementSize)
{
_sizePixels = pixelCount * elementSize;
_pixels = (uint8_t*)malloc(_sizePixels);
memset(_pixels, 0x00, _sizePixels);
}
NeoEsp8266Uart::~NeoEsp8266Uart()
{
free(_pixels);
// Wait until the TX fifo is empty. This way we avoid broken frames
// when destroying & creating a NeoPixelBus to change its length.
while (getUartTxFifoLength() > 0)
{
yield();
}
}
void NeoEsp8266Uart::InitializeUart(uint32_t uartBaud)
{
// Configure the serial line with 1 start bit (0), 6 data bits and 1 stop bit (1)
Serial1.begin(uartBaud, SERIAL_6N1, SERIAL_TX_ONLY);
// Invert the TX voltage associated with logic level so:
// - A logic level 0 will generate a Vcc signal
// - A logic level 1 will generate a Gnd signal
CLEAR_PERI_REG_MASK(UART_CONF0(UART1), UART1_INV_MASK);
SET_PERI_REG_MASK(UART_CONF0(UART1), (BIT(22)));
}
void NeoEsp8266Uart::UpdateUart()
{
// Since the UART can finish sending queued bytes in the FIFO in
// the background, instead of waiting for the FIFO to flush
// we annotate the start time of the frame so we can calculate
// when it will finish.
_startTime = micros();
// Then keep filling the FIFO until done
const uint8_t* ptr = _pixels;
const uint8_t* end = ptr + _sizePixels;
while (ptr != end)
{
ptr = FillUartFifo(ptr, end);
}
}
const uint8_t* ICACHE_RAM_ATTR NeoEsp8266Uart::FillUartFifo(const uint8_t* pixels, const uint8_t* end)
{
// Remember: UARTs send less significant bit (LSB) first so
// pushing ABCDEF byte will generate a 0FEDCBA1 signal,
// including a LOW(0) start & a HIGH(1) stop bits.
// Also, we have configured UART to invert logic levels, so:
const uint8_t _uartData[4] = {
0b110111, // On wire: 1 000 100 0 [Neopixel reads 00]
0b000111, // On wire: 1 000 111 0 [Neopixel reads 01]
0b110100, // On wire: 1 110 100 0 [Neopixel reads 10]
0b000100, // On wire: 1 110 111 0 [NeoPixel reads 11]
};
uint8_t avail = (UART_TX_FIFO_SIZE - getUartTxFifoLength()) / 4;
if (end - pixels > avail)
{
end = pixels + avail;
}
while (pixels < end)
{
uint8_t subpix = *pixels++;
enqueue(_uartData[(subpix >> 6) & 0x3]);
enqueue(_uartData[(subpix >> 4) & 0x3]);
enqueue(_uartData[(subpix >> 2) & 0x3]);
enqueue(_uartData[ subpix & 0x3]);
}
return pixels;
}
NeoEsp8266AsyncUart::NeoEsp8266AsyncUart(uint8_t pin, uint16_t pixelCount, size_t elementSize)
: NeoEsp8266Uart(pin, pixelCount, elementSize)
{
_asyncPixels = (uint8_t*)malloc(_sizePixels);
}
NeoEsp8266AsyncUart::~NeoEsp8266AsyncUart()
{
// Remember: the UART interrupt can be sending data from _asyncPixels in the background
while (esp8266_uart1_async_buf != esp8266_uart1_async_buf_end)
{
yield();
}
free(_asyncPixels);
}
void ICACHE_RAM_ATTR NeoEsp8266AsyncUart::InitializeUart(uint32_t uartBaud)
{
NeoEsp8266Uart::InitializeUart(uartBaud);
// Disable all interrupts
ETS_UART_INTR_DISABLE();
// Clear the RX & TX FIFOS
SET_PERI_REG_MASK(UART_CONF0(UART1), UART_RXFIFO_RST | UART_TXFIFO_RST);
CLEAR_PERI_REG_MASK(UART_CONF0(UART1), UART_RXFIFO_RST | UART_TXFIFO_RST);
// Set the interrupt handler
ETS_UART_INTR_ATTACH(IntrHandler, NULL);
// Set tx fifo trigger. 80 bytes gives us 200 microsecs to refill the FIFO
WRITE_PERI_REG(UART_CONF1(UART1), 80 << UART_TXFIFO_EMPTY_THRHD_S);
// Disable RX & TX interrupts. It is enabled by uart.c in the SDK
CLEAR_PERI_REG_MASK(UART_INT_ENA(UART1), UART_RXFIFO_FULL_INT_ENA | UART_TXFIFO_EMPTY_INT_ENA);
// Clear all pending interrupts in UART1
WRITE_PERI_REG(UART_INT_CLR(UART1), 0xffff);
// Reenable interrupts
ETS_UART_INTR_ENABLE();
}
void NeoEsp8266AsyncUart::UpdateUart()
{
// Instruct ESP8266 hardware uart1 to send the pixels asynchronously
esp8266_uart1_async_buf = _pixels;
esp8266_uart1_async_buf_end = _pixels + _sizePixels;
SET_PERI_REG_MASK(UART_INT_ENA(1), UART_TXFIFO_EMPTY_INT_ENA);
// Annotate when we started to send bytes, so we can calculate when we are ready to send again
_startTime = micros();
// Copy the pixels to the idle buffer and swap them
memcpy(_asyncPixels, _pixels, _sizePixels);
std::swap(_asyncPixels, _pixels);
}
void ICACHE_RAM_ATTR NeoEsp8266AsyncUart::IntrHandler(void* param)
{
// Interrupt handler is shared between UART0 & UART1
if (READ_PERI_REG(UART_INT_ST(UART1))) //any UART1 stuff
{
// Fill the FIFO with new data
esp8266_uart1_async_buf = FillUartFifo(esp8266_uart1_async_buf, esp8266_uart1_async_buf_end);
// Disable TX interrupt when done
if (esp8266_uart1_async_buf == esp8266_uart1_async_buf_end)
{
CLEAR_PERI_REG_MASK(UART_INT_ENA(UART1), UART_TXFIFO_EMPTY_INT_ENA);
}
// Clear all interrupts flags (just in case)
WRITE_PERI_REG(UART_INT_CLR(UART1), 0xffff);
}
if (READ_PERI_REG(UART_INT_ST(UART0)))
{
// TODO: gdbstub uses the interrupt of UART0, but there is no way to call its
// interrupt handler gdbstub_uart_hdlr since it's static.
WRITE_PERI_REG(UART_INT_CLR(UART0), 0xffff);
}
}
#endif

View File

@@ -1,5 +1,5 @@
/*-------------------------------------------------------------------------
NeoPixel library helper functions for Esp8266.
NeoPixel library helper functions for Esp8266 UART hardware
Written by Michael C. Miller.
@@ -27,64 +27,96 @@ License along with NeoPixel. If not, see
#pragma once
#ifdef ARDUINO_ARCH_ESP8266
#include <Arduino.h>
extern "C"
// NeoEsp8266Uart contains all the low level details that doesn't
// depend on the transmission speed, and therefore, it isn't a template
class NeoEsp8266Uart
{
#include "eagle_soc.h"
#include "uart_register.h"
}
protected:
NeoEsp8266Uart(uint8_t pin, uint16_t pixelCount, size_t elementSize);
// due to linker overriding ICACHE_RAM_ATTR for cpp files, this function was
// moved into a NeoPixelEsp8266.c file.
extern "C" void ICACHE_RAM_ATTR esp8266_uart1_send_pixels(uint8_t* pixels, uint8_t* end);
~NeoEsp8266Uart();
void InitializeUart(uint32_t uartBaud);
void UpdateUart();
static const uint8_t* ICACHE_RAM_ATTR FillUartFifo(const uint8_t* pixels, const uint8_t* end);
size_t _sizePixels; // Size of '_pixels' buffer below
uint8_t* _pixels; // Holds LED color values
uint32_t _startTime; // Microsecond count when last update started
};
// NeoEsp8266AsyncUart handles all transmission asynchronously using interrupts
//
// This UART controller uses two buffers that are swapped in every call to
// NeoPixelBus.Show(). One buffer contains the data that is being sent
// asynchronosly and another buffer contains the data that will be send
// in the next call to NeoPixelBus.Show().
//
// Therefore, the result of NeoPixelBus.Pixels() is invalidated after
// every call to NeoPixelBus.Show() and must not be cached.
class NeoEsp8266AsyncUart: public NeoEsp8266Uart
{
protected:
NeoEsp8266AsyncUart(uint8_t pin, uint16_t pixelCount, size_t elementSize);
~NeoEsp8266AsyncUart();
void InitializeUart(uint32_t uartBaud);
void UpdateUart();
private:
static void ICACHE_RAM_ATTR IntrHandler(void* param);
uint8_t* _asyncPixels; // Holds a copy of LED color values taken when UpdateUart began
};
// NeoEsp8266UartSpeed800Kbps contains the timing constant used to get NeoPixelBus running at 800Khz
class NeoEsp8266UartSpeed800Kbps
{
public:
static const uint32_t ByteSendTimeUs = 10; // us it takes to send a single pixel element at 800mhz speed
static const uint32_t ByteSendTimeUs = 10; // us it takes to send a single pixel element at 800khz speed
static const uint32_t UartBaud = 3200000; // 800mhz, 4 serial bytes per NeoByte
};
// NeoEsp8266UartSpeed800Kbps contains the timing constant used to get NeoPixelBus running at 400Khz
class NeoEsp8266UartSpeed400Kbps
{
public:
static const uint32_t ByteSendTimeUs = 20; // us it takes to send a single pixel element at 400mhz speed
static const uint32_t ByteSendTimeUs = 20; // us it takes to send a single pixel element at 400khz speed
static const uint32_t UartBaud = 1600000; // 400mhz, 4 serial bytes per NeoByte
};
#define UART1 1
#define UART1_INV_MASK (0x3f << 19)
template<typename T_SPEED> class NeoEsp8266UartMethodBase
// NeoEsp8266UartMethodBase is a light shell arround NeoEsp8266Uart or NeoEsp8266AsyncUart that
// implements the methods needed to operate as a NeoPixelBus method.
template<typename T_SPEED, typename T_BASE>
class NeoEsp8266UartMethodBase: public T_BASE
{
public:
NeoEsp8266UartMethodBase(uint8_t pin, uint16_t pixelCount, size_t elementSize)
: T_BASE(pin, pixelCount, elementSize)
{
_sizePixels = pixelCount * elementSize;
_pixels = (uint8_t*)malloc(_sizePixels);
memset(_pixels, 0x00, _sizePixels);
}
~NeoEsp8266UartMethodBase()
{
free(_pixels);
}
bool IsReadyToUpdate() const
{
uint32_t delta = micros() - _endTime;
return (delta >= 50L && delta <= (4294967296L - getPixelTime()));
uint32_t delta = micros() - this->_startTime;
return delta >= getPixelTime() + 50;
}
void Initialize()
{
Serial1.begin(T_SPEED::UartBaud, SERIAL_6N1, SERIAL_TX_ONLY);
this->InitializeUart(T_SPEED::UartBaud);
CLEAR_PERI_REG_MASK(UART_CONF0(UART1), UART1_INV_MASK);
SET_PERI_REG_MASK(UART_CONF0(UART1), (BIT(22)));
_endTime = micros();
// Inverting logic levels can generate a phantom bit in the led strip bus
// We need to delay 50+ microseconds the output stream to force a data
// latch and discard this bit. Otherwise, that bit would be prepended to
// the first frame corrupting it.
this->_startTime = micros() - getPixelTime();
}
void Update()
@@ -95,43 +127,34 @@ public:
// subsequent round of data until the latch time has elapsed. This
// allows the mainline code to start generating the next frame of data
// rather than stalling for the latch.
while (!IsReadyToUpdate())
while (!this->IsReadyToUpdate())
{
yield();
}
// since uart is async buffer send, we have to calc the endtime that it will take
// to correctly manage the data latch in the above code
// add the calculated time to the current time
_endTime = micros() + getPixelTime();
// esp hardware uart sending of data
esp8266_uart1_send_pixels(_pixels, _pixels + _sizePixels);
this->UpdateUart();
}
uint8_t* getPixels() const
{
return _pixels;
return this->_pixels;
};
size_t getPixelsSize() const
{
return _sizePixels;
return this->_sizePixels;
};
private:
uint32_t getPixelTime() const
{
return (T_SPEED::ByteSendTimeUs * _sizePixels);
return (T_SPEED::ByteSendTimeUs * this->_sizePixels);
};
size_t _sizePixels; // Size of '_pixels' buffer below
uint8_t* _pixels; // Holds LED color values
uint32_t _endTime; // Latch timing reference
};
typedef NeoEsp8266UartMethodBase<NeoEsp8266UartSpeed800Kbps> NeoEsp8266Uart800KbpsMethod;
typedef NeoEsp8266UartMethodBase<NeoEsp8266UartSpeed400Kbps> NeoEsp8266Uart400KbpsMethod;
typedef NeoEsp8266UartMethodBase<NeoEsp8266UartSpeed800Kbps, NeoEsp8266Uart> NeoEsp8266Uart800KbpsMethod;
typedef NeoEsp8266UartMethodBase<NeoEsp8266UartSpeed400Kbps, NeoEsp8266Uart> NeoEsp8266Uart400KbpsMethod;
typedef NeoEsp8266UartMethodBase<NeoEsp8266UartSpeed800Kbps, NeoEsp8266AsyncUart> NeoEsp8266AsyncUart800KbpsMethod;
typedef NeoEsp8266UartMethodBase<NeoEsp8266UartSpeed400Kbps, NeoEsp8266AsyncUart> NeoEsp8266AsyncUart400KbpsMethod;
#endif
#endif

View File

@@ -29,31 +29,6 @@ License along with NeoPixel. If not, see
#include <Arduino.h>
#include <eagle_soc.h>
void ICACHE_RAM_ATTR esp8266_uart1_send_pixels(uint8_t* pixels, uint8_t* end)
{
const uint8_t _uartData[4] = { 0b00110111, 0b00000111, 0b00110100, 0b00000100 };
const uint8_t _uartFifoTrigger = 124; // tx fifo should be 128 bytes. minus the four we need to send
do
{
uint8_t subpix = *pixels++;
uint8_t buf[4] = { _uartData[(subpix >> 6) & 3],
_uartData[(subpix >> 4) & 3],
_uartData[(subpix >> 2) & 3],
_uartData[subpix & 3] };
// now wait till this the FIFO buffer has room to send more
while (((U1S >> USTXC) & 0xff) > _uartFifoTrigger);
for (uint8_t i = 0; i < 4; i++)
{
// directly write the byte to transfer into the UART1 FIFO register
U1F = buf[i];
}
} while (pixels < end);
}
inline uint32_t _getCycleCount()
{
uint32_t ccount;