Files
bobbycar-controller-firmware/main.cpp
Daniel Brunner 0b661709da Can communication (#9)
* First tries with can

* More implementations

* More registers

* More implementations

* Moved canbus registers into protocol submodule

* CAN finishing work

* Implemented debug utilities

* back/front board compile time defines

* More compile defines

* Fixed disable mosfets stuck

* More improvements

* More refactorings

* Cleanups

* Cleanups

* Updated merged protocol
2021-05-23 17:54:44 +02:00

1976 lines
65 KiB
C++

/*
* This file is part of the hoverboard-firmware-hack project.
*
* Copyright (C) 2017-2018 Rene Hopf <renehopf@mac.com>
* Copyright (C) 2017-2018 Nico Stute <crinq@crinq.de>
* Copyright (C) 2017-2018 Niklas Fauth <niklas.fauth@kit.fail>
* Copyright (C) 2019-2020 Emanuel FERU <aerdronix@gmail.com>
* Copyright (C) 2019-2020 Daniel Brunner <daniel@brunner.ninja>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <atomic>
#include <bit>
#include <cstring>
#include "stm32f1xx_hal.h"
#include "defines.h"
#include "config.h"
#include "bobbycar-common.h"
#if FEATURE_SERIAL_CONTROL || FEATURE_SERIAL_FEEDBACK
#include "bobbycar-serial.h"
#endif
#ifdef FEATURE_CAN
#include "bobbycar-can.h"
#endif
extern "C" {
#include "BLDC_controller.h"
extern const P rtP_Left; // default settings defined in BLDC_controller_data.c
}
namespace {
const P &defaultP{rtP_Left};
TIM_HandleTypeDef htim_right;
TIM_HandleTypeDef htim_left;
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
#ifdef HUARN2
UART_HandleTypeDef huart2;
#endif
#ifdef HUARN3
UART_HandleTypeDef huart3;
#endif
#ifdef HUARN2
DMA_HandleTypeDef hdma_usart2_rx;
DMA_HandleTypeDef hdma_usart2_tx;
#endif
#ifdef HUARN3
DMA_HandleTypeDef hdma_usart3_rx;
DMA_HandleTypeDef hdma_usart3_tx;
#endif
volatile struct {
uint16_t dcr;
uint16_t dcl;
uint16_t rl1;
uint16_t rl2;
uint16_t rr1;
uint16_t rr2;
uint16_t batt1;
uint16_t l_tx2;
uint16_t temp;
uint16_t l_rx2;
} adc_buffer;
#ifdef FEATURE_CAN
CAN_HandleTypeDef CanHandle;
/* Definition for CANx clock resources */
#define CANx CAN1
#define CANx_CLK_ENABLE() __HAL_RCC_CAN1_CLK_ENABLE()
#define CANx_GPIO_CLK_ENABLE() __HAL_RCC_GPIOB_CLK_ENABLE()
#define CANx_FORCE_RESET() __HAL_RCC_CAN1_FORCE_RESET()
#define CANx_RELEASE_RESET() __HAL_RCC_CAN1_RELEASE_RESET()
/* Definition for CANx Pins */
#define CANx_TX_PIN GPIO_PIN_9
#define CANx_TX_GPIO_PORT GPIOB
#define CANx_RX_PIN GPIO_PIN_8
#define CANx_RX_GPIO_PORT GPIOB
/* Definition for CANx AFIO Remap */
#define CANx_AFIO_REMAP_CLK_ENABLE() __HAL_RCC_AFIO_CLK_ENABLE()
#define CANx_AFIO_REMAP_RX_TX_PIN() __HAL_AFIO_REMAP_CAN1_2()
/* Definition for CAN's NVIC */
#define CANx_RX_IRQn USB_LP_CAN1_RX0_IRQn
#define CANx_RX_IRQHandler USB_LP_CAN1_RX0_IRQHandler
#define CANx_TX_IRQn USB_HP_CAN1_TX_IRQn
#define CANx_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler
#endif
#ifdef LOG_TO_SERIAL
char logBuffer[512];
#endif
constexpr bool isBackBoard =
#ifdef IS_BACK
true
#else
false
#endif
;
template<std::size_t formatLength, typename ... Targs>
void myPrintf(const char (&format)[formatLength], Targs ... args)
{
#ifdef LOG_TO_SERIAL
#ifdef HUARN2
#define UART_DMA_CHANNEL DMA1_Channel7
#endif
#ifdef HUARN3
#define UART_DMA_CHANNEL DMA1_Channel2
#endif
while (UART_DMA_CHANNEL->CNDTR != 0);
char processedFormat[formatLength+2];
std::copy(std::begin(format), std::end(format), std::begin(processedFormat));
processedFormat[formatLength-1] = '\r';
processedFormat[formatLength] = '\n';
processedFormat[formatLength+1] = '\0';
const auto size = std::snprintf(logBuffer, sizeof(logBuffer), processedFormat, args ...);
if (size < 0)
return;
UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN;
UART_DMA_CHANNEL->CNDTR = size;
UART_DMA_CHANNEL->CMAR = uint64_t(logBuffer);
UART_DMA_CHANNEL->CCR |= DMA_CCR_EN;
#endif
}
// ###############################################################################
std::atomic<uint32_t> timeout;
#ifdef MOTOR_TEST
int pwm = 0;
int8_t dir = 1;
#endif
#ifdef FEATURE_SERIAL_CONTROL
int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
Command command;
Feedback feedback;
#endif
#ifdef FEATURE_CAN
std::atomic<int16_t> timeoutCntLeft = 0;
std::atomic<int16_t> timeoutCntRight = 0;
#endif
uint32_t main_loop_counter;
int16_t batVoltage = (400 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE;
int16_t board_temp_deg_c;
struct {
RT_MODEL rtM; /* Real-time model */
P rtP; /* Block parameters (auto storage) */
DW rtDW; /* Observable states */
ExtU rtU; /* External inputs */
ExtY rtY; /* External outputs */
std::atomic<bool> enable{true};
std::atomic<int16_t> iDcMax{7};
std::atomic<uint32_t> chops{};
uint8_t hallBits() const
{
return (rtU.b_hallA ? 0 : 1) | (rtU.b_hallB ? 0 : 2) | (rtU.b_hallC ? 0 : 4);
}
} left, right;
struct {
uint8_t freq = 0;
uint8_t pattern = 0;
uint32_t timer = 0;
} buzzer;
void SystemClock_Config();
#ifdef HUARN2
void UART2_Init();
#endif
#ifdef HUARN3
void UART3_Init();
#endif
#ifdef FEATURE_CAN
void CAN_Init();
#endif
void MX_GPIO_Init();
void MX_TIM_Init();
void MX_ADC1_Init();
void MX_ADC2_Init();
#ifdef FEATURE_BUTTON
void poweroff();
#endif
#ifdef MOTOR_TEST
void doMotorTest();
#endif
#ifdef FEATURE_SERIAL_CONTROL
void parseCommand();
#endif
#ifdef FEATURE_SERIAL_FEEDBACK
void sendFeedback();
#endif
#ifdef FEATURE_CAN
void parseCanCommand();
void applyIncomingCanMessage();
void sendCanFeedback();
#endif
#ifdef FEATURE_BUTTON
void handleButton();
#endif
void updateSensors();
void applyDefaultSettings();
} // anonymous namespace
int main()
{
HAL_Init();
__HAL_RCC_AFIO_CLK_ENABLE();
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0);
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0);
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0);
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0);
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0);
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
SystemClock_Config();
__HAL_RCC_DMA1_CLK_DISABLE();
MX_GPIO_Init();
MX_TIM_Init();
MX_ADC1_Init();
MX_ADC2_Init();
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_SET);
HAL_ADC_Start(&hadc1);
HAL_ADC_Start(&hadc2);
{
constexpr auto doit = [](auto &motor){
motor.rtP = defaultP;
motor.rtP.b_angleMeasEna = false;
motor.rtP.b_diagEna = DIAG_ENA;
motor.rtP.b_fieldWeakEna = FIELD_WEAK_ENA;
motor.rtP.r_fieldWeakHi = FIELD_WEAK_HI << 4;
motor.rtP.r_fieldWeakLo = FIELD_WEAK_LO << 4;
motor.rtM.defaultParam = &motor.rtP;
motor.rtM.dwork = &motor.rtDW;
motor.rtM.inputs = &motor.rtU;
motor.rtM.outputs = &motor.rtY;
};
doit(left);
doit(right);
enum { CurrentMeasAB, CurrentMeasBC, CurrentMeasAC };
#ifdef PETERS_PLATINE
left.rtP.z_selPhaCurMeasABC = CurrentMeasBC;
#else
left.rtP.z_selPhaCurMeasABC = CurrentMeasAB;
#endif
right.rtP.z_selPhaCurMeasABC = CurrentMeasBC;
}
applyDefaultSettings();
/* Initialize BLDC controllers */
BLDC_controller_initialize(&left.rtM);
BLDC_controller_initialize(&right.rtM);
for (int i = 8; i >= 0; i--)
{
buzzer.freq = (uint8_t)i;
HAL_Delay(50);
}
buzzer.freq = 0;
#ifdef HUARN2
UART2_Init();
#endif
#ifdef HUARN3
UART3_Init();
#endif
#ifdef FEATURE_CAN
CAN_Init();
#endif
#ifdef FEATURE_SERIAL_CONTROL
#ifdef HUARN2
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command));
#endif
#ifdef HUARN3
HAL_UART_Receive_DMA(&huart3, (uint8_t *)&command, sizeof(command));
#endif
#endif
while (true)
{
#ifdef FEATURE_CAN
constexpr auto DELAY_WITH_CAN_POLL = [](uint32_t Delay){
uint32_t tickstart = HAL_GetTick();
uint32_t wait = Delay;
/* Add a freq to guarantee minimum wait */
if (wait < HAL_MAX_DELAY)
{
wait += (uint32_t)(uwTickFreq);
}
while ((HAL_GetTick() - tickstart) < wait)
{
applyIncomingCanMessage();
}
};
//DELAY_WITH_CAN_POLL(5); //delay in ms
#endif
HAL_Delay(5); //delay in ms
updateSensors();
#ifdef MOTOR_TEST
doMotorTest();
#endif
#ifdef FEATURE_SERIAL_CONTROL
parseCommand();
#endif
#ifdef FEATURE_SERIAL_FEEDBACK
sendFeedback();
#endif
#ifdef FEATURE_CAN
parseCanCommand();
sendCanFeedback();
#endif
#ifdef FEATURE_BUTTON
handleButton();
#endif
main_loop_counter++;
}
}
namespace {
void updateBuzzer()
{
buzzer.timer++;
if (buzzer.freq != 0 && (buzzer.timer / 1000) % (buzzer.pattern + 1) == 0)
{
if (buzzer.timer % buzzer.freq == 0)
{
HAL_GPIO_TogglePin(BUZZER_PORT, BUZZER_PIN);
}
}
else
{
HAL_GPIO_WritePin(BUZZER_PORT, BUZZER_PIN, GPIO_PIN_RESET);
}
}
void updateMotors()
{
DMA1->IFCR = DMA_IFCR_CTCIF1;
static uint16_t offsetcount{};
static int16_t offsetrl1{2000};
static int16_t offsetrl2{2000};
static int16_t offsetrr1{2000};
static int16_t offsetrr2{2000};
static int16_t offsetdcl{2000};
static int16_t offsetdcr{2000};
if (offsetcount < 2000) // calibrate ADC offsets
{
offsetcount++;
offsetrl1 = (adc_buffer.rl1 + offsetrl1) / 2;
offsetrl2 = (adc_buffer.rl2 + offsetrl2) / 2;
offsetrr1 = (adc_buffer.rr1 + offsetrr1) / 2;
offsetrr2 = (adc_buffer.rr2 + offsetrr2) / 2;
offsetdcl = (adc_buffer.dcl + offsetdcl) / 2;
offsetdcr = (adc_buffer.dcr + offsetdcr) / 2;
return;
}
// Get Left motor currents
#ifdef PETERS_PLATINE
int16_t curL_phaB = (int16_t)(offsetrl1 - adc_buffer.rl1)*2;
int16_t curL_phaA = (int16_t)(offsetrl2 - adc_buffer.rl2)*2;
#else
int16_t curL_phaA = (int16_t)(offsetrl1 - adc_buffer.rl1);
int16_t curL_phaB = (int16_t)(offsetrl2 - adc_buffer.rl2);
#endif
int16_t curL_DC = (int16_t)(offsetdcl - adc_buffer.dcl);
// Get Right motor currents
#ifdef PETERS_PLATINE
int16_t curR_phaB = (int16_t)(offsetrr1 - adc_buffer.rr1)*2;
int16_t curR_phaC = (int16_t)(offsetrr2 - adc_buffer.rr2)*2;
#else
int16_t curR_phaB = (int16_t)(offsetrr1 - adc_buffer.rr1);
int16_t curR_phaC = (int16_t)(offsetrr2 - adc_buffer.rr2);
#endif
int16_t curR_DC = (int16_t)(offsetdcr - adc_buffer.dcr);
const bool chopL = std::abs(curL_DC) > (left.iDcMax.load() * A2BIT_CONV);
if (chopL)
left.chops++;
const bool chopR = std::abs(curR_DC) > (right.iDcMax.load() * A2BIT_CONV);
if (chopR)
right.chops++;
const uint32_t timeoutVal = ++timeout;
const bool leftEnable = left.enable.load();
const bool rightEnable = right.enable.load();
// Disable PWM when current limit is reached (current chopping)
// This is the Level 2 of current protection. The Level 1 should kick in first given by I_MOT_MAX
if (chopL || timeoutVal > 500 || !leftEnable)
LEFT_TIM->BDTR &= ~TIM_BDTR_MOE;
else
LEFT_TIM->BDTR |= TIM_BDTR_MOE;
if (chopR || timeoutVal > 500 || !rightEnable)
RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE;
else
RIGHT_TIM->BDTR |= TIM_BDTR_MOE;
// ############################### MOTOR CONTROL ###############################
static boolean_T OverrunFlag = false;
/* Check for overrun */
if (OverrunFlag)
return;
OverrunFlag = true;
constexpr int32_t pwm_res = 64000000 / 2 / PWM_FREQ; // = 2000
constexpr int32_t pwm_margin = 100; /* This margin allows to always have a window in the PWM signal for proper Phase currents measurement */
/* Make sure to stop BOTH motors in case of an error */
constexpr bool ignoreOtherMotor =
#ifdef FEATURE_IGNORE_OTHER_MOTOR
false
#else
true
#endif
;
const bool enableLFin = leftEnable && left.rtY.z_errCode == 0 && (right.rtY.z_errCode == 0 || ignoreOtherMotor);
const bool enableRFin = rightEnable && (left.rtY.z_errCode == 0 || ignoreOtherMotor) && right.rtY.z_errCode == 0;
// ========================= LEFT MOTOR ============================
// Get hall sensors values
bool hall_ul = !(LEFT_HALL_U_PORT->IDR & LEFT_HALL_U_PIN);
bool hall_vl = !(LEFT_HALL_V_PORT->IDR & LEFT_HALL_V_PIN);
bool hall_wl = !(LEFT_HALL_W_PORT->IDR & LEFT_HALL_W_PIN);
/* Set motor inputs here */
left.rtU.b_motEna = enableLFin;
left.rtU.b_hallA = hall_ul;
left.rtU.b_hallB = hall_vl;
left.rtU.b_hallC = hall_wl;
left.rtU.i_phaAB = curL_phaA;
left.rtU.i_phaBC = curL_phaB;
left.rtU.i_DCLink = curL_DC;
/* Step the controller */
BLDC_controller_step(&left.rtM);
/* Get motor outputs here */
int ul = left.rtY.DC_phaA;
int vl = left.rtY.DC_phaB;
int wl = left.rtY.DC_phaC;
/* Apply commands */
LEFT_TIM->LEFT_TIM_U = (uint16_t)std::clamp(ul + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
LEFT_TIM->LEFT_TIM_V = (uint16_t)std::clamp(vl + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
LEFT_TIM->LEFT_TIM_W = (uint16_t)std::clamp(wl + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
// =================================================================
// ========================= RIGHT MOTOR ===========================
// Get hall sensors values
bool hall_ur = !(RIGHT_HALL_U_PORT->IDR & RIGHT_HALL_U_PIN);
bool hall_vr = !(RIGHT_HALL_V_PORT->IDR & RIGHT_HALL_V_PIN);
bool hall_wr = !(RIGHT_HALL_W_PORT->IDR & RIGHT_HALL_W_PIN);
/* Set motor inputs here */
right.rtU.b_motEna = enableRFin;
right.rtU.b_hallA = hall_ur;
right.rtU.b_hallB = hall_vr;
right.rtU.b_hallC = hall_wr;
right.rtU.i_phaAB = curR_phaB;
right.rtU.i_phaBC = curR_phaC;
right.rtU.i_DCLink = curR_DC;
/* Step the controller */
BLDC_controller_step(&right.rtM);
/* Get motor outputs here */
int ur = right.rtY.DC_phaA;
int vr = right.rtY.DC_phaB;
int wr = right.rtY.DC_phaC;
/* Apply commands */
RIGHT_TIM->RIGHT_TIM_U = (uint16_t)std::clamp(ur + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
RIGHT_TIM->RIGHT_TIM_V = (uint16_t)std::clamp(vr + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
RIGHT_TIM->RIGHT_TIM_W = (uint16_t)std::clamp(wr + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
// =================================================================
/* Indicate task complete */
OverrunFlag = false;
}
// ===========================================================
/** System Clock Configuration
*/
void SystemClock_Config()
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
// PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
#ifdef HUARN2
void UART2_Init()
{
/* The code below is commented out - otwerwise Serial Receive does not work */
// #ifdef CONTROL_SERIAL_USART2
// /* DMA1_Channel6_IRQn interrupt configuration */
// HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 6);
// HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
// /* DMA1_Channel7_IRQn interrupt configuration */
// HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 7);
// HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
// #endif
// Disable serial interrupt - it is not needed
HAL_NVIC_DisableIRQ(DMA1_Channel6_IRQn); // Rx Channel
HAL_NVIC_DisableIRQ(DMA1_Channel7_IRQn); // Tx Channel
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_USART2_CLK_ENABLE();
huart2.Instance = USART2;
huart2.Init.BaudRate = USART2_BAUD;
huart2.Init.WordLength = USART2_WORDLENGTH;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.Mode = UART_MODE_TX_RX;
HAL_UART_Init(&huart2);
USART2->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS;
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Pull = GPIO_PULLUP; //GPIO_NOPULL;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT; //GPIO_MODE_AF_PP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Peripheral DMA init*/
hdma_usart2_rx.Instance = DMA1_Channel6;
hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL;
hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_rx);
__HAL_LINKDMA(&huart2, hdmarx, hdma_usart2_rx);
hdma_usart2_tx.Instance = DMA1_Channel7;
hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_tx.Init.Mode = DMA_NORMAL;
hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_tx);
__HAL_LINKDMA(&huart2, hdmatx, hdma_usart2_tx);
DMA1_Channel7->CPAR = uint64_t(&(USART2->DR));
DMA1_Channel7->CNDTR = 0;
DMA1->IFCR = DMA_IFCR_CTCIF7 | DMA_IFCR_CHTIF7 | DMA_IFCR_CGIF7;
}
#endif
#ifdef HUARN3
void UART3_Init()
{
/* The code below is commented out - otwerwise Serial Receive does not work */
// #ifdef CONTROL_SERIAL_USART3
// /* DMA1_Channel3_IRQn interrupt configuration */
// HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 3);
// HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
// /* DMA1_Channel2_IRQn interrupt configuration */
// HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 5, 2);
// HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
// #endif
// Disable serial interrupt - it is not needed
HAL_NVIC_DisableIRQ(DMA1_Channel3_IRQn); // Rx Channel
HAL_NVIC_DisableIRQ(DMA1_Channel2_IRQn); // Tx Channel
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_USART3_CLK_ENABLE();
huart3.Instance = USART3;
huart3.Init.BaudRate = USART3_BAUD;
huart3.Init.WordLength = USART3_WORDLENGTH;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
huart3.Init.Mode = UART_MODE_TX_RX;
HAL_UART_Init(&huart3);
USART3->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS;
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Peripheral DMA init*/
hdma_usart3_rx.Instance = DMA1_Channel3;
hdma_usart3_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart3_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart3_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart3_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart3_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart3_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL;
hdma_usart3_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart3_rx);
__HAL_LINKDMA(&huart3, hdmarx, hdma_usart3_rx);
hdma_usart3_tx.Instance = DMA1_Channel2;
hdma_usart3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart3_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart3_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart3_tx.Init.Mode = DMA_NORMAL;
hdma_usart3_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart3_tx);
__HAL_LINKDMA(&huart3, hdmatx, hdma_usart3_tx);
DMA1_Channel2->CPAR = (uint32_t) & (USART3->DR);
DMA1_Channel2->CNDTR = 0;
DMA1->IFCR = DMA_IFCR_CTCIF2 | DMA_IFCR_CHTIF2 | DMA_IFCR_CGIF2;
}
#endif
#ifdef FEATURE_CAN
void CAN_MspInit(CAN_HandleTypeDef *hcan);
void CAN_MspDeInit(CAN_HandleTypeDef *hcan);
void CAN_MspDeInit(CAN_HandleTypeDef *hcan);
void CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *CanHandle);
void CAN_TxMailboxCompleteCallback(CAN_HandleTypeDef *hcan);
void CAN_Init()
{
myPrintf("CAN_Init() called");
/* Configure the CAN peripheral */
CanHandle.Instance = CANx;
CanHandle.MspInitCallback = CAN_MspInit;
CanHandle.MspDeInitCallback = CAN_MspDeInit;
CanHandle.Init.TimeTriggeredMode = DISABLE;
CanHandle.Init.AutoBusOff = ENABLE;
CanHandle.Init.AutoWakeUp = DISABLE;
CanHandle.Init.AutoRetransmission = ENABLE;
CanHandle.Init.ReceiveFifoLocked = DISABLE;
CanHandle.Init.TransmitFifoPriority = DISABLE;
CanHandle.Init.Mode = CAN_MODE_NORMAL;
CanHandle.Init.SyncJumpWidth = CAN_SJW_1TQ;
CanHandle.Init.TimeSeg1 = CAN_BS1_3TQ;
CanHandle.Init.TimeSeg2 = CAN_BS2_4TQ;
CanHandle.Init.Prescaler = 16;
if (const auto result = HAL_CAN_Init(&CanHandle); result == HAL_OK)
myPrintf("HAL_CAN_Init() succeeded");
else
{
myPrintf("HAL_CAN_Init() failed with %i", result);
while (true);
}
{
/* Configure the CAN Filter */
CAN_FilterTypeDef sFilterConfig;
sFilterConfig.FilterBank = 0;
sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
//
// TTRR.....FL
sFilterConfig.FilterIdHigh = 0b00000000000;
sFilterConfig.FilterIdLow = 0b00000000000;
sFilterConfig.FilterMaskIdHigh = 0b00000000000;
sFilterConfig.FilterMaskIdLow = 0b11110000010;
// 0b0000.....0.
sFilterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;
sFilterConfig.FilterActivation = CAN_FILTER_ENABLE;
sFilterConfig.SlaveStartFilterBank = 14;
if (const auto result = HAL_CAN_ConfigFilter(&CanHandle, &sFilterConfig); result == HAL_OK)
myPrintf("HAL_CAN_ConfigFilter() succeeded");
else
{
myPrintf("HAL_CAN_ConfigFilter() failed with %i", result);
while (true);
}
}
if (const auto result = HAL_CAN_RegisterCallback(&CanHandle, HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID, CAN_RxFifo0MsgPendingCallback); result == HAL_OK)
myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID succeeded");
else
{
myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID failed with %i", result);
while (true);
}
if (false)
{
if (const auto result = HAL_CAN_RegisterCallback(&CanHandle, HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID, CAN_TxMailboxCompleteCallback); result == HAL_OK)
myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID succeeded");
else
{
myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID failed with %i", result);
while (true);
}
if (const auto result = HAL_CAN_RegisterCallback(&CanHandle, HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID, CAN_TxMailboxCompleteCallback); result == HAL_OK)
myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID succeeded");
else
{
myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID failed with %i", result);
while (true);
}
if (const auto result = HAL_CAN_RegisterCallback(&CanHandle, HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID, CAN_TxMailboxCompleteCallback); result == HAL_OK)
myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID succeeded");
else
{
myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID failed with %i", result);
while (true);
}
}
/* Start the CAN peripheral */
if (const auto result = HAL_CAN_Start(&CanHandle); result == HAL_OK)
myPrintf("HAL_CAN_Start() succeeded");
else
{
myPrintf("HAL_CAN_Start() failed with %i", result);
while (true);
}
/* Activate CAN RX notification */
if (const auto result = HAL_CAN_ActivateNotification(&CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING); result == HAL_OK)
myPrintf("HAL_CAN_ActivateNotification() CAN_IT_RX_FIFO0_MSG_PENDING succeeded");
else
{
myPrintf("HAL_CAN_ActivateNotification() CAN_IT_RX_FIFO0_MSG_PENDING failed with %i", result);
while (true);
}
if (false)
{
/* Activate CAN TX notification */
if (const auto result = HAL_CAN_ActivateNotification(&CanHandle, CAN_IT_TX_MAILBOX_EMPTY); result == HAL_OK)
myPrintf("HAL_CAN_ActivateNotification() CAN_IT_TX_MAILBOX_EMPTY succeeded");
else
{
myPrintf("HAL_CAN_ActivateNotification() CAN_IT_TX_MAILBOX_EMPTY failed with %i", result);
while (true);
}
}
}
void CAN_MspInit(CAN_HandleTypeDef *hcan)
{
myPrintf("CAN_MspInit() called");
GPIO_InitTypeDef GPIO_InitStruct;
/*##-1- Enable peripherals and GPIO Clocks #################################*/
/* CAN1 Periph clock enable */
CANx_CLK_ENABLE();
/* Enable GPIO clock ****************************************/
CANx_GPIO_CLK_ENABLE();
/* Enable AFIO clock and Remap CAN PINs to PB8 and PB9*******/
CANx_AFIO_REMAP_CLK_ENABLE();
CANx_AFIO_REMAP_RX_TX_PIN();
/*##-2- Configure peripheral GPIO ##########################################*/
/* CAN1 TX GPIO pin configuration */
GPIO_InitStruct.Pin = CANx_TX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(CANx_TX_GPIO_PORT, &GPIO_InitStruct);
/* CAN1 RX GPIO pin configuration */
GPIO_InitStruct.Pin = CANx_RX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(CANx_RX_GPIO_PORT, &GPIO_InitStruct);
/*##-3- Configure the NVIC #################################################*/
/* NVIC configuration for CAN1 Reception complete interrupt */
HAL_NVIC_SetPriority(CANx_RX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CANx_RX_IRQn);
HAL_NVIC_SetPriority(CANx_TX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CANx_TX_IRQn);
}
void CAN_MspDeInit(CAN_HandleTypeDef *hcan)
{
myPrintf("CAN_MspDeInit() called");
/*##-1- Reset peripherals ##################################################*/
CANx_FORCE_RESET();
CANx_RELEASE_RESET();
/*##-2- Disable peripherals and GPIO Clocks ################################*/
/* De-initialize the CAN1 TX GPIO pin */
HAL_GPIO_DeInit(CANx_TX_GPIO_PORT, CANx_TX_PIN);
/* De-initialize the CAN1 RX GPIO pin */
HAL_GPIO_DeInit(CANx_RX_GPIO_PORT, CANx_RX_PIN);
/*##-4- Disable the NVIC for CAN reception #################################*/
HAL_NVIC_DisableIRQ(CANx_RX_IRQn);
}
void CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *CanHandle)
{
//myPrintf("CAN_RxFifo0MsgPendingCallback() called");
applyIncomingCanMessage();
}
void CAN_TxMailboxCompleteCallback(CAN_HandleTypeDef *hcan)
{
myPrintf("CAN_TxMailboxCompleteCallback() called");
// slightly yucky, but we don't want to block inside the IRQ handler
//if (HAL_CAN_GetTxMailboxesFreeLevel(hcan) >= 2)
//{
// can_feedc0de_poll();
//}
}
#endif
void MX_GPIO_Init()
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = LEFT_HALL_U_PIN;
HAL_GPIO_Init(LEFT_HALL_U_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_HALL_V_PIN;
HAL_GPIO_Init(LEFT_HALL_V_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_HALL_W_PIN;
HAL_GPIO_Init(LEFT_HALL_W_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_U_PIN;
HAL_GPIO_Init(RIGHT_HALL_U_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_V_PIN;
HAL_GPIO_Init(RIGHT_HALL_V_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_W_PIN;
HAL_GPIO_Init(RIGHT_HALL_W_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = CHARGER_PIN;
HAL_GPIO_Init(CHARGER_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = BUTTON_PIN;
HAL_GPIO_Init(BUTTON_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pin = LED_PIN;
HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = BUZZER_PIN;
HAL_GPIO_Init(BUZZER_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = OFF_PIN;
HAL_GPIO_Init(OFF_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pin = LEFT_DC_CUR_PIN;
HAL_GPIO_Init(LEFT_DC_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_U_CUR_PIN;
HAL_GPIO_Init(LEFT_U_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_V_CUR_PIN;
HAL_GPIO_Init(LEFT_V_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_DC_CUR_PIN;
HAL_GPIO_Init(RIGHT_DC_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_U_CUR_PIN;
HAL_GPIO_Init(RIGHT_U_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_V_CUR_PIN;
HAL_GPIO_Init(RIGHT_V_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = DCLINK_PIN;
HAL_GPIO_Init(DCLINK_PORT, &GPIO_InitStruct);
//Analog in
GPIO_InitStruct.Pin = GPIO_PIN_3;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pin = LEFT_TIM_UH_PIN;
HAL_GPIO_Init(LEFT_TIM_UH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_VH_PIN;
HAL_GPIO_Init(LEFT_TIM_VH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_WH_PIN;
HAL_GPIO_Init(LEFT_TIM_WH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_UL_PIN;
HAL_GPIO_Init(LEFT_TIM_UL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_VL_PIN;
HAL_GPIO_Init(LEFT_TIM_VL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_WL_PIN;
HAL_GPIO_Init(LEFT_TIM_WL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_UH_PIN;
HAL_GPIO_Init(RIGHT_TIM_UH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_VH_PIN;
HAL_GPIO_Init(RIGHT_TIM_VH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_WH_PIN;
HAL_GPIO_Init(RIGHT_TIM_WH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_UL_PIN;
HAL_GPIO_Init(RIGHT_TIM_UL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_VL_PIN;
HAL_GPIO_Init(RIGHT_TIM_VL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_WL_PIN;
HAL_GPIO_Init(RIGHT_TIM_WL_PORT, &GPIO_InitStruct);
}
void MX_TIM_Init()
{
__HAL_RCC_TIM1_CLK_ENABLE();
__HAL_RCC_TIM8_CLK_ENABLE();
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;
TIM_SlaveConfigTypeDef sTimConfig;
htim_right.Instance = RIGHT_TIM;
htim_right.Init.Prescaler = 0;
htim_right.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1;
htim_right.Init.Period = 64000000 / 2 / PWM_FREQ;
htim_right.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim_right.Init.RepetitionCounter = 0;
htim_right.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_PWM_Init(&htim_right);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_ENABLE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim_right, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
#ifdef PETERS_PLATINE
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
#else
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
#endif
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
#ifdef PETERS_PLATINE
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
#else
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET;
#endif
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_1);
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_2);
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_3);
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = DEAD_TIME;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&htim_right, &sBreakDeadTimeConfig);
htim_left.Instance = LEFT_TIM;
htim_left.Init.Prescaler = 0;
htim_left.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1;
htim_left.Init.Period = 64000000 / 2 / PWM_FREQ;
htim_left.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim_left.Init.RepetitionCounter = 0;
htim_left.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_PWM_Init(&htim_left);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim_left, &sMasterConfig);
sTimConfig.InputTrigger = TIM_TS_ITR0;
sTimConfig.SlaveMode = TIM_SLAVEMODE_GATED;
HAL_TIM_SlaveConfigSynchro(&htim_left, &sTimConfig);
// Start counting >0 to effectively offset timers by the time it takes for one ADC conversion to complete.
// This method allows that the Phase currents ADC measurements are properly aligned with LOW-FET ON region for both motors
LEFT_TIM->CNT = ADC_TOTAL_CONV_TIME;
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
#ifdef PETERS_PLATINE
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
#else
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
#endif
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
#ifdef PETERS_PLATINE
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
#else
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET;
#endif
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_1);
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_2);
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_3);
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = DEAD_TIME;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&htim_left, &sBreakDeadTimeConfig);
LEFT_TIM->BDTR &= ~TIM_BDTR_MOE;
RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE;
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_3);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_2);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_3);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_2);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_3);
htim_left.Instance->RCR = 1;
__HAL_TIM_ENABLE(&htim_right);
}
void MX_ADC1_Init()
{
ADC_MultiModeTypeDef multimode;
ADC_ChannelConfTypeDef sConfig;
__HAL_RCC_ADC1_CLK_ENABLE();
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T8_TRGO;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 5;
HAL_ADC_Init(&hadc1);
/**Enable or disable the remapping of ADC1_ETRGREG:
* ADC1 External Event regular conversion is connected to TIM8 TRG0
*/
__HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE();
/**Configure the ADC multi-mode
*/
multimode.Mode = ADC_DUALMODE_REGSIMULT;
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.Channel = ADC_CHANNEL_11; // pc1 left cur -> right
sConfig.Rank = 1;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
// sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5;
sConfig.Channel = ADC_CHANNEL_0; // pa0 right a -> left
sConfig.Rank = 2;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = ADC_CHANNEL_14; // pc4 left b -> right
sConfig.Rank = 3;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = ADC_CHANNEL_12; // pc2 vbat
sConfig.Rank = 4;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
//temperature requires at least 17.1uS sampling time
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; // internal temp
sConfig.Rank = 5;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
hadc1.Instance->CR2 |= ADC_CR2_DMA | ADC_CR2_TSVREFE;
__HAL_ADC_ENABLE(&hadc1);
__HAL_RCC_DMA1_CLK_ENABLE();
DMA1_Channel1->CCR = 0;
DMA1_Channel1->CNDTR = 5;
DMA1_Channel1->CPAR = uint64_t(&(ADC1->DR));
DMA1_Channel1->CMAR = uint64_t(&adc_buffer);
DMA1_Channel1->CCR = DMA_CCR_MSIZE_1 | DMA_CCR_PSIZE_1 | DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_TCIE;
DMA1_Channel1->CCR |= DMA_CCR_EN;
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/* ADC2 init function */
void MX_ADC2_Init()
{
ADC_ChannelConfTypeDef sConfig;
__HAL_RCC_ADC2_CLK_ENABLE();
// HAL_ADC_DeInit(&hadc2);
// hadc2.Instance->CR2 = 0;
/**Common config
*/
hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc2.Init.ContinuousConvMode = DISABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = 5;
HAL_ADC_Init(&hadc2);
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.Channel = ADC_CHANNEL_10; // pc0 right cur -> left
sConfig.Rank = 1;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
// sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5;
sConfig.Channel = ADC_CHANNEL_13; // pc3 right b -> left
sConfig.Rank = 2;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = ADC_CHANNEL_15; // pc5 left c -> right
sConfig.Rank = 3;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = ADC_CHANNEL_2; // pa2 uart-l-tx
sConfig.Rank = 4;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.Channel = ADC_CHANNEL_3; // pa3 uart-l-rx
sConfig.Rank = 5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
hadc2.Instance->CR2 |= ADC_CR2_DMA;
__HAL_ADC_ENABLE(&hadc2);
}
#ifdef FEATURE_BUTTON
void poweroff()
{
// if (abs(speed) < 20) { // wait for the speed to drop, then shut down -> this is commented out for SAFETY reasons
buzzer.pattern = 0;
left.enable = false;
right.enable = 0;
for (int i = 0; i < 8; i++) {
buzzer.freq = (uint8_t)i;
HAL_Delay(50);
}
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_RESET);
for (int i = 0; i < 5; i++)
HAL_Delay(1000);
// }
}
#endif
void communicationTimeout()
{
applyDefaultSettings();
buzzer.freq = 24;
buzzer.pattern = 1;
HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_RESET);
}
#ifdef MOTOR_TEST
void doMotorTest()
{
timeout = 0; // proove, that the controlling code is still running
left.enable = true;
left.rtU.r_inpTgt = pwm;
left.rtP.z_ctrlTypSel = uint8_t(ControlType::FieldOrientedControl);
left.rtU.z_ctrlModReq = uint8_t(ControlMode::Speed);
left.rtP.i_max = (2 * A2BIT_CONV) << 4;
left.iDcMax = 4;
left.rtP.n_max = 1000 << 4;
left.rtP.id_fieldWeakMax = (0 * A2BIT_CONV) << 4;
left.rtP.a_phaAdvMax = 40 << 4;
right.enable = true;
right.rtU.r_inpTgt = pwm;
right.rtP.z_ctrlTypSel = uint8_t(ControlType::FieldOrientedControl);
right.rtU.z_ctrlModReq = uint8_t(ControlMode::Speed);
right.rtP.i_max = (2 * A2BIT_CONV) << 4;
right.iDcMax = 4;
right.rtP.n_max = 1000 << 4;
right.rtP.id_fieldWeakMax = (0 * A2BIT_CONV) << 4;
right.rtP.a_phaAdvMax = 40 << 4;
constexpr auto pwmMax = 400;
pwm += dir;
if (pwm > pwmMax) {
pwm = pwmMax;
dir = -1;
} else if (pwm < -pwmMax) {
pwm = -pwmMax;
dir = 1;
}
}
#endif
#ifdef FEATURE_SERIAL_CONTROL
void parseCommand()
{
timeout = 0; // proove, that the controlling code is still running
for (int i = 0; i < 1; i++)
{
if (command.start != Command::VALID_HEADER)
continue;
uint16_t checksum = calculateChecksum(command);
if (command.checksum != checksum)
continue;
left.iDcMax = command.left.iDcMax;
left.rtP.z_ctrlTypSel = uint8_t(command.left.ctrlTyp);
left.rtP.i_max = (command.left.iMotMax * A2BIT_CONV) << 4;
left.rtP.n_max = command.left.nMotMax << 4;
left.rtP.id_fieldWeakMax = (command.left.fieldWeakMax * A2BIT_CONV) << 4;
left.rtP.a_phaAdvMax = command.left.phaseAdvMax << 4;
left.rtU.z_ctrlModReq = uint8_t(command.left.ctrlMod);
left.rtU.r_inpTgt = command.left.pwm;
right.iDcMax = command.right.iDcMax;
right.rtP.z_ctrlTypSel = uint8_t(command.right.ctrlTyp);
right.rtP.i_max = (command.right.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
right.rtP.n_max = command.right.nMotMax << 4; // fixdt(1,16,4)
right.rtP.id_fieldWeakMax = (command.right.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
right.rtP.a_phaAdvMax = command.right.phaseAdvMax << 4; // fixdt(1,16,4)
right.rtU.z_ctrlModReq = uint8_t(command.right.ctrlMod);
right.rtU.r_inpTgt = command.right.pwm;
buzzer.freq = command.buzzer.freq;
buzzer.pattern = command.buzzer.pattern;
#ifdef FEATURE_BUTTON
if (command.poweroff)
poweroff();
#endif
HAL_GPIO_WritePin(LED_PORT, LED_PIN, command.led ? GPIO_PIN_RESET : GPIO_PIN_SET);
command.start = Command::INVALID_HEADER; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
return;
}
if (timeoutCntSerial++ >= 100) // Timeout qualification
{
timeoutCntSerial = 100; // Limit timout counter value
communicationTimeout();
// Check periodically the received Start Frame. Try to re-sync by reseting the DMA
if (main_loop_counter % 25 == 0)
{
#ifdef HUARN2
HAL_UART_DMAStop(&huart2);
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command));
#endif
#ifdef HUARN3
HAL_UART_DMAStop(&huart3);
HAL_UART_Receive_DMA(&huart3, (uint8_t *)&command, sizeof(command));
#endif
}
}
}
#endif
#ifdef FEATURE_SERIAL_FEEDBACK
void sendFeedback()
{
#ifdef HUARN2
#define UART_DMA_CHANNEL DMA1_Channel7
#endif
#ifdef HUARN3
#define UART_DMA_CHANNEL DMA1_Channel2
#endif
if (UART_DMA_CHANNEL->CNDTR != 0)
return;
feedback.start = Feedback::VALID_HEADER;
feedback.left.angle = left.rtY.a_elecAngle;
feedback.right.angle = right.rtY.a_elecAngle;
feedback.left.speed = left.rtY.n_mot;
feedback.right.speed = right.rtY.n_mot;
feedback.left.error = left.rtY.z_errCode;
feedback.right.error = right.rtY.z_errCode;
feedback.left.current = left.rtU.i_DCLink;
feedback.right.current = right.rtU.i_DCLink;
feedback.left.chops = left.chops.exchange(0);
feedback.right.chops = right.chops.exchange(0);
feedback.left.hallA = left.rtU.b_hallA;
feedback.left.hallB = left.rtU.b_hallB;
feedback.left.hallC = left.rtU.b_hallC;
feedback.right.hallA = right.rtU.b_hallA;
feedback.right.hallB = right.rtU.b_hallB;
feedback.right.hallC = right.rtU.b_hallC;
feedback.batVoltage = batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC;
feedback.boardTemp = board_temp_deg_c;
feedback.timeoutCntSerial = timeoutCntSerial;
feedback.checksum = calculateChecksum(feedback);
UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN;
UART_DMA_CHANNEL->CNDTR = sizeof(feedback);
UART_DMA_CHANNEL->CMAR = uint64_t(&feedback);
UART_DMA_CHANNEL->CCR |= DMA_CCR_EN;
}
#endif
#ifdef FEATURE_CAN
void parseCanCommand()
{
timeout = 0; // proove, that the controlling code is still running
const auto l = ++timeoutCntLeft;
const auto r = ++timeoutCntRight;
if (l >= 99 || r >= 99)
{
if (l > 100)
timeoutCntLeft = 100;
if (r > 100)
timeoutCntRight = 100;
communicationTimeout();
}
}
void applyIncomingCanMessage()
{
CAN_RxHeaderTypeDef header;
uint8_t buf[8];
if (const auto result = HAL_CAN_GetRxMessage(&CanHandle, CAN_RX_FIFO0, &header, buf); result != HAL_OK)
{
myPrintf("HAL_CAN_GetRxMessage() failed with %i", result);
//while (true);
return;
}
switch (header.StdId)
{
using namespace bobbycar::can;
case MotorController<isBackBoard, false>::Command::Enable: left .enable = *((bool *)buf); break;
case MotorController<isBackBoard, true> ::Command::Enable: right.enable = *((bool *)buf); break;
case MotorController<isBackBoard, false>::Command::InpTgt: left. rtU.r_inpTgt = *((int16_t*)buf); timeoutCntLeft = 0; break;
case MotorController<isBackBoard, true> ::Command::InpTgt: right.rtU.r_inpTgt = *((int16_t*)buf); timeoutCntRight = 0; break;
case MotorController<isBackBoard, false>::Command::CtrlTyp: left .rtP.z_ctrlTypSel = *((uint8_t*)buf); break;
case MotorController<isBackBoard, true> ::Command::CtrlTyp: right.rtP.z_ctrlTypSel = *((uint8_t*)buf); break;
case MotorController<isBackBoard, false>::Command::CtrlMod: left .rtU.z_ctrlModReq = *((uint8_t*)buf); break;
case MotorController<isBackBoard, true> ::Command::CtrlMod: right.rtU.z_ctrlModReq = *((uint8_t*)buf); break;
case MotorController<isBackBoard, false>::Command::IMotMax: left .rtP.i_max = (*((uint8_t*)buf) * A2BIT_CONV) << 4; break;
case MotorController<isBackBoard, true> ::Command::IMotMax: right.rtP.i_max = (*((uint8_t*)buf) * A2BIT_CONV) << 4; break;
case MotorController<isBackBoard, false>::Command::IDcMax: left .iDcMax = *((uint8_t*)buf); break;
case MotorController<isBackBoard, true> ::Command::IDcMax: right.iDcMax = *((uint8_t*)buf); break;
case MotorController<isBackBoard, false>::Command::NMotMax: left .rtP.n_max = *((uint16_t*)buf) << 4; break;
case MotorController<isBackBoard, true> ::Command::NMotMax: right.rtP.n_max = *((uint16_t*)buf) << 4; break;
case MotorController<isBackBoard, false>::Command::FieldWeakMax: left .rtP.id_fieldWeakMax = (*((uint8_t*)buf) * A2BIT_CONV) << 4; break;
case MotorController<isBackBoard, true> ::Command::FieldWeakMax: right.rtP.id_fieldWeakMax = (*((uint8_t*)buf) * A2BIT_CONV) << 4; break;
case MotorController<isBackBoard, false>::Command::PhaseAdvMax: left .rtP.a_phaAdvMax = *((uint16_t*)buf) << 4; break;
case MotorController<isBackBoard, true> ::Command::PhaseAdvMax: right.rtP.a_phaAdvMax = *((uint16_t*)buf) << 4; break;
case MotorController<isBackBoard, false>::Command::CruiseCtrlEna: left .rtP.b_cruiseCtrlEna = *((bool*)buf); break;
case MotorController<isBackBoard, true> ::Command::CruiseCtrlEna: right.rtP.b_cruiseCtrlEna = *((bool*)buf); break;
case MotorController<isBackBoard, false>::Command::CruiseMotTgt: left .rtP.n_cruiseMotTgt = *((int16_T*)buf); break;
case MotorController<isBackBoard, true> ::Command::CruiseMotTgt: right.rtP.n_cruiseMotTgt = *((int16_T*)buf); break;
case MotorController<isBackBoard, false>::Command::BuzzerFreq:
case MotorController<isBackBoard, true> ::Command::BuzzerFreq: buzzer.freq = *((uint8_t*)buf); break;
case MotorController<isBackBoard, false>::Command::BuzzerPattern:
case MotorController<isBackBoard, true> ::Command::BuzzerPattern: buzzer.pattern = *((uint8_t*)buf); break;
case MotorController<isBackBoard, false>::Command::Led:
case MotorController<isBackBoard, true> ::Command::Led:
HAL_GPIO_WritePin(LED_PORT, LED_PIN, *((bool*)buf) ? GPIO_PIN_SET : GPIO_PIN_RESET);
break;
case MotorController<isBackBoard, false>::Command::Poweroff:
case MotorController<isBackBoard, true>::Command::Poweroff:
#ifdef FEATURE_BUTTON
if (*((bool*)buf))
poweroff();
#endif
break;
default:
#ifndef CAN_LOG_UNKNOWN_ADDR
if constexpr (false)
#endif
myPrintf("UNKNOWN %c%c %c%c %c%c%c%c%c %c%c %s",
header.StdId&1024?'1':'0',
header.StdId&512?'1':'0',
header.StdId&256?'1':'0',
header.StdId&128?'1':'0',
header.StdId&64?'1':'0',
header.StdId&32?'1':'0',
header.StdId&16?'1':'0',
header.StdId&8?'1':'0',
header.StdId&4?'1':'0',
header.StdId&2?'1':'0',
header.StdId&1?'1':'0',
bobbycarCanIdDesc(header.StdId)
);
if constexpr (false)
myPrintf("UNKNOWN StdId=%x %u ExtId=%x %u IDE=%x %u RTR=%x %u DLC=%x %u Timestamp=%x %u FilterMatchIndex=%x %u",
header.StdId, header.StdId,
header.ExtId, header.ExtId,
header.IDE, header.IDE,
header.RTR, header.RTR,
header.DLC, header.DLC,
header.Timestamp, header.Timestamp,
header.FilterMatchIndex, header.FilterMatchIndex
);
}
}
void sendCanFeedback()
{
const auto free = HAL_CAN_GetTxMailboxesFreeLevel(&CanHandle);
if (!free)
return;
constexpr auto send = [](uint32_t addr, auto value){
CAN_TxHeaderTypeDef header;
header.StdId = addr;
header.ExtId = 0x01;
header.RTR = CAN_RTR_DATA;
header.IDE = CAN_ID_STD;
header.DLC = sizeof(value);
header.TransmitGlobalTime = DISABLE;
uint8_t buf[8] {0};
std::memcpy(buf, &value, sizeof(value));
static uint32_t TxMailbox;
if (const auto result = HAL_CAN_AddTxMessage(&CanHandle, &header, buf, &TxMailbox); result != HAL_OK)
{
myPrintf("HAL_CAN_AddTxMessage() failed with %i", result);
//while (true);
}
};
static uint8_t whichToSend{};
switch (whichToSend++)
{
using namespace bobbycar::can;
case 0: send(MotorController<isBackBoard, false>::Feedback::DcLink, left. rtU.i_DCLink); break;
case 1: send(MotorController<isBackBoard, true>:: Feedback::DcLink, right.rtU.i_DCLink); break;
case 2: send(MotorController<isBackBoard, false>::Feedback::Speed, left. rtY.n_mot); break;
case 3: send(MotorController<isBackBoard, true>:: Feedback::Speed, right.rtY.n_mot); break;
case 4: send(MotorController<isBackBoard, false>::Feedback::Error, left. rtY.z_errCode); break;
case 5: send(MotorController<isBackBoard, true>:: Feedback::Error, right.rtY.z_errCode); break;
case 6: send(MotorController<isBackBoard, false>::Feedback::Angle, left. rtY.a_elecAngle); break;
case 7: send(MotorController<isBackBoard, true>:: Feedback::Angle, right.rtY.a_elecAngle); break;
case 8: send(MotorController<isBackBoard, false>::Feedback::DcPhaA, left. rtY.DC_phaA); break;
case 9: send(MotorController<isBackBoard, true>:: Feedback::DcPhaA, right.rtY.DC_phaA); break;
case 10: send(MotorController<isBackBoard, false>::Feedback::DcPhaB, left. rtY.DC_phaB); break;
case 11: send(MotorController<isBackBoard, true>:: Feedback::DcPhaB, right.rtY.DC_phaB); break;
case 12: send(MotorController<isBackBoard, false>::Feedback::DcPhaC, left. rtY.DC_phaC); break;
case 13: send(MotorController<isBackBoard, true>:: Feedback::DcPhaC, right.rtY.DC_phaC); break;
case 14: send(MotorController<isBackBoard, false>::Feedback::Chops, left. chops.exchange(0)); break;
case 15: send(MotorController<isBackBoard, true>:: Feedback::Chops, right.chops.exchange(0)); break;
case 16: send(MotorController<isBackBoard, false>::Feedback::Hall, left.hallBits()); break;
case 17: send(MotorController<isBackBoard, true>:: Feedback::Hall, right.hallBits()); break;
case 18: send(MotorController<isBackBoard, false>::Feedback::Voltage, batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC); break;
case 19: send(MotorController<isBackBoard, true>:: Feedback::Voltage, batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC); break;
case 20: send(MotorController<isBackBoard, false>::Feedback::Temp, board_temp_deg_c); break;
case 21: send(MotorController<isBackBoard, true>:: Feedback::Temp, board_temp_deg_c); whichToSend = 0; break;
default: myPrintf("unreachable");
}
}
#endif
#ifdef FEATURE_BUTTON
void handleButton()
{
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN))
{
left.enable = false;
right.enable = false;
while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released
if(__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST)) { // do not power off after software reset (from a programmer/debugger)
__HAL_RCC_CLEAR_RESET_FLAGS(); // clear reset flags
} else {
poweroff(); // release power-latch
}
}
}
#endif
void updateSensors()
{
/* Low pass filter fixed-point 32 bits: fixdt(1,32,20)
* Max: 2047.9375
* Min: -2048
* Res: 0.0625
*
* Inputs: u = int16
* Outputs: y = fixdt(1,32,20)
* Parameters: coef = fixdt(0,16,16) = [0,65535U]
*
* Example:
* If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point)
* filtLowPass16(u, 52429, &y);
* yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits
*/
constexpr auto filtLowPass32 = [](int16_t u, uint16_t coef, int32_t &y)
{
int tmp = (int16_t)(u << 4) - (y >> 16);
tmp = std::clamp(tmp, -32768, 32767); // Overflow protection
y = coef * tmp + y;
};
// Fixed-point filter output initialized with current ADC converted to fixed-point
static int32_t board_temp_adcFixdt{} /*= adc_buffer.temp << 20*/;
filtLowPass32(adc_buffer.temp, TEMP_FILT_COEF, board_temp_adcFixdt);
int16_t board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 20); // convert fixed-point to integer
board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C;
// Fixed-point filter output initialized at 400 V*100/cell = 4 V/cell converted to fixed-point
static int32_t batVoltageFixdt = (400 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE << 20;
filtLowPass32(adc_buffer.batt1, BAT_FILT_COEF, batVoltageFixdt);
batVoltage = (int16_t)(batVoltageFixdt >> 20); // convert fixed-point to integer
}
void applyDefaultSettings()
{
constexpr auto doIt = [](auto &motor){
motor.enable = true;
motor.rtU.r_inpTgt = 0;
motor.rtP.z_ctrlTypSel = uint8_t(ControlType::FieldOrientedControl);
motor.rtU.z_ctrlModReq = uint8_t(ControlMode::OpenMode);
motor.rtP.i_max = (5 * A2BIT_CONV) << 4;
motor.iDcMax = 7;
motor.rtP.n_max = 1000 << 4;
motor.rtP.id_fieldWeakMax = (1 * A2BIT_CONV) << 4;
motor.rtP.a_phaAdvMax = 40 << 4;
motor.rtP.b_cruiseCtrlEna = false;
motor.rtP.n_cruiseMotTgt = 0;
};
doIt(left);
doIt(right);
}
} // anonymous namespace
/******************************************************************************/
/* Cortex-M3 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
extern "C" void NMI_Handler()
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
extern "C" void HardFault_Handler()
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (true);
/* USER CODE BEGIN HardFault_IRQn 1 */
/* USER CODE END HardFault_IRQn 1 */
}
/**
* @brief This function handles Memory management fault.
*/
extern "C" void MemManage_Handler()
{
/* USER CODE BEGIN MemoryManagement_IRQn 0 */
/* USER CODE END MemoryManagement_IRQn 0 */
while (true);
/* USER CODE BEGIN MemoryManagement_IRQn 1 */
/* USER CODE END MemoryManagement_IRQn 1 */
}
/**
* @brief This function handles Prefetch fault, memory access fault.
*/
extern "C" void BusFault_Handler()
{
/* USER CODE BEGIN BusFault_IRQn 0 */
/* USER CODE END BusFault_IRQn 0 */
while (true);
/* USER CODE BEGIN BusFault_IRQn 1 */
/* USER CODE END BusFault_IRQn 1 */
}
/**
* @brief This function handles Undefined instruction or illegal state.
*/
extern "C" void UsageFault_Handler()
{
/* USER CODE BEGIN UsageFault_IRQn 0 */
/* USER CODE END UsageFault_IRQn 0 */
while (true);
/* USER CODE BEGIN UsageFault_IRQn 1 */
/* USER CODE END UsageFault_IRQn 1 */
}
/**
* @brief This function handles System service call via SWI instruction.
*/
extern "C" void SVC_Handler()
{
/* USER CODE BEGIN SVCall_IRQn 0 */
/* USER CODE END SVCall_IRQn 0 */
/* USER CODE BEGIN SVCall_IRQn 1 */
/* USER CODE END SVCall_IRQn 1 */
}
/**
* @brief This function handles Debug monitor.
*/
extern "C" void DebugMon_Handler()
{
/* USER CODE BEGIN DebugMonitor_IRQn 0 */
/* USER CODE END DebugMonitor_IRQn 0 */
/* USER CODE BEGIN DebugMonitor_IRQn 1 */
/* USER CODE END DebugMonitor_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
extern "C" void PendSV_Handler()
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
extern "C" void SysTick_Handler()
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
HAL_SYSTICK_IRQHandler();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
// =================================
// DMA interrupt frequency =~ 16 kHz
// =================================
extern "C" void DMA1_Channel1_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel1_IRQn 0 */
/* USER CODE END DMA1_Channel1_IRQn 0 */
updateMotors();
updateBuzzer();
/* USER CODE BEGIN DMA1_Channel1_IRQn 1 */
/* USER CODE END DMA1_Channel1_IRQn 1 */
}
#ifdef HUARN2
extern "C" void DMA1_Channel6_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel4_IRQn 0 */
/* USER CODE END DMA1_Channel4_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart2_rx);
/* USER CODE BEGIN DMA1_Channel4_IRQn 1 */
/* USER CODE END DMA1_Channel4_IRQn 1 */
}
/**
* @brief This function handles DMA1 channel5 global interrupt.
*/
extern "C" void DMA1_Channel7_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel5_IRQn 0 */
/* USER CODE END DMA1_Channel5_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart2_tx);
/* USER CODE BEGIN DMA1_Channel5_IRQn 1 */
/* USER CODE END DMA1_Channel5_IRQn 1 */
}
#endif
#ifdef HUARN3
/**
* @brief This function handles DMA1 channel2 global interrupt.
*/
extern "C" void DMA1_Channel2_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel2_IRQn 0 */
/* USER CODE END DMA1_Channel2_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart3_tx);
/* USER CODE BEGIN DMA1_Channel2_IRQn 1 */
/* USER CODE END DMA1_Channel2_IRQn 1 */
}
/**
* @brief This function handles DMA1 channel3 global interrupt.
*/
extern "C" void DMA1_Channel3_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel3_IRQn 0 */
/* USER CODE END DMA1_Channel3_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart3_rx);
/* USER CODE BEGIN DMA1_Channel3_IRQn 1 */
/* USER CODE END DMA1_Channel3_IRQn 1 */
}
#endif
#ifdef FEATURE_CAN
extern "C" void CANx_RX_IRQHandler(void)
{
HAL_CAN_IRQHandler(&CanHandle);
}
extern "C" void CANx_TX_IRQHandler(void)
{
HAL_CAN_IRQHandler(&CanHandle);
}
#endif