1
0
forked from boostorg/bind

Documentation fixes, helper headers added.

[SVN r12804]
This commit is contained in:
Peter Dimov
2002-02-14 14:41:56 +00:00
parent b482c43928
commit 1dbea266a1
6 changed files with 1641 additions and 1390 deletions

1632
bind.html

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,75 @@
#ifndef BOOST_BIND_APPLY_HPP_INCLUDED
#define BOOST_BIND_APPLY_HPP_INCLUDED
//
// apply.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
namespace boost
{
template<class R> struct apply
{
typedef R result_type;
template<class F> result_type operator()(F f) const
{
return f();
}
template<class F, class A1> result_type operator()(F f, A1 & a1) const
{
return f(a1);
}
template<class F, class A1, class A2> result_type operator()(F f, A1 & a1, A2 & a2) const
{
return f(a1, a2);
}
template<class F, class A1, class A2, class A3> result_type operator()(F f, A1 & a1, A2 & a2, A3 & a3) const
{
return f(a1, a2, a3);
}
template<class F, class A1, class A2, class A3, class A4> result_type operator()(F f, A1 & a1, A2 & a2, A3 & a3, A4 & a4) const
{
return f(a1, a2, a3, a4);
}
template<class F, class A1, class A2, class A3, class A4, class A5> result_type operator()(F f, A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5) const
{
return f(a1, a2, a3, a4, a5);
}
template<class F, class A1, class A2, class A3, class A4, class A5, class A6> result_type operator()(F f, A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6) const
{
return f(a1, a2, a3, a4, a5, a6);
}
template<class F, class A1, class A2, class A3, class A4, class A5, class A6, class A7> result_type operator()(F f, A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7) const
{
return f(a1, a2, a3, a4, a5, a6, a7);
}
template<class F, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8> result_type operator()(F f, A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7, A8 & a8) const
{
return f(a1, a2, a3, a4, a5, a6, a7, a8);
}
template<class F, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9> result_type operator()(F f, A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7, A8 & a8, A9 & a9) const
{
return f(a1, a2, a3, a4, a5, a6, a7, a8, a9);
}
};
} // namespace boost
#endif // #ifndef BOOST_BIND_APPLY_HPP_INCLUDED

View File

@@ -0,0 +1,172 @@
#ifndef BOOST_BIND_MAKE_ADAPTABLE_HPP_INCLUDED
#define BOOST_BIND_MAKE_ADAPTABLE_HPP_INCLUDED
//
// make_adaptable.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
namespace boost
{
namespace _bi
{
template<class F> void instantiate(F)
{
}
template<class R, class F> class af0
{
public:
typedef R result_type;
explicit af0(F f): f_(f)
{
}
result_type operator()()
{
return f_();
}
private:
F f_;
};
template<class R, class A1, class F> class af1
{
public:
typedef R result_type;
typedef A1 argument_type;
typedef A1 arg1_type;
explicit af1(F f): f_(f)
{
}
result_type operator()(A1 a1)
{
return f_(a1);
}
private:
F f_;
};
template<class R, class A1, class A2, class F> class af2
{
public:
typedef R result_type;
typedef A1 first_argument_type;
typedef A2 second_argument_type;
typedef A1 arg1_type;
typedef A2 arg2_type;
explicit af2(F f): f_(f)
{
}
result_type operator()(A1 a1, A2 a2)
{
return f_(a1, a2);
}
private:
F f_;
};
template<class R, class A1, class A2, class A3, class F> class af3
{
public:
typedef R result_type;
typedef A1 arg1_type;
typedef A2 arg2_type;
typedef A3 arg3_type;
explicit af3(F f): f_(f)
{
}
result_type operator()(A1 a1, A2 a2, A3 a3)
{
return f_(a1, a2, a3);
}
private:
F f_;
};
template<class R, class A1, class A2, class A3, class A4, class F> class af4
{
public:
typedef R result_type;
typedef A1 arg1_type;
typedef A2 arg2_type;
typedef A3 arg3_type;
typedef A4 arg4_type;
explicit af4(F f): f_(f)
{
}
result_type operator()(A1 a1, A2 a2, A3 a3, A4 a4)
{
return f_(a1, a2, a3, a4);
}
private:
F f_;
};
} // namespace _bi
template<class R, class F> _bi::af0<R, F> make_adaptable(F f)
{
_bi::instantiate( &_bi::af0<R, F>::operator() ); // for early error detection
return _bi::af0<R, F>(f);
}
template<class R, class A1, class F> _bi::af1<R, A1, F> make_adaptable(F f)
{
instantiate( &_bi::af1<R, A1, F>::operator() );
return _bi::af1<R, A1, F>(f);
}
template<class R, class A1, class A2, class F> _bi::af2<R, A1, A2, F> make_adaptable(F f)
{
instantiate( &_bi::af2<R, A1, A2, F>::operator() );
return _bi::af2<R, A1, A2, F>(f);
}
template<class R, class A1, class A2, class A3, class F> _bi::af3<R, A1, A2, A3, F> make_adaptable(F f)
{
instantiate( &_bi::af3<R, A1, A2, A3, F>::operator() );
return _bi::af3<R, A1, A2, A3, F>(f);
}
template<class R, class A1, class A2, class A3, class A4, class F> _bi::af4<R, A1, A2, A3, A4, F> make_adaptable(F f)
{
instantiate( &_bi::af4<R, A1, A2, A3, A4, F>::operator() );
return _bi::af4<R, A1, A2, A3, A4, F>(f);
}
} // namespace boost
#endif // #ifndef BOOST_BIND_MAKE_ADAPTABLE_HPP_INCLUDED

View File

@@ -0,0 +1,145 @@
#ifndef BOOST_BIND_PROTECT_HPP_INCLUDED
#define BOOST_BIND_PROTECT_HPP_INCLUDED
//
// protect.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
namespace boost
{
namespace _bi
{
template<class F> class protected_bind_t
{
public:
typedef typename F::result_type result_type;
explicit protected_bind_t(F f): f_(f)
{
}
result_type operator()()
{
return f_();
}
result_type operator()() const
{
return f_();
}
template<class A1> result_type operator()(A1 & a1)
{
return f_(a1);
}
template<class A1> result_type operator()(A1 & a1) const
{
return f_(a1);
}
template<class A1, class A2> result_type operator()(A1 & a1, A2 & a2)
{
return f_(a1, a2);
}
template<class A1, class A2> result_type operator()(A1 & a1, A2 & a2) const
{
return f_(a1, a2);
}
template<class A1, class A2, class A3> result_type operator()(A1 & a1, A2 & a2, A3 & a3)
{
return f_(a1, a2, a3);
}
template<class A1, class A2, class A3> result_type operator()(A1 & a1, A2 & a2, A3 & a3) const
{
return f_(a1, a2, a3);
}
template<class A1, class A2, class A3, class A4> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4)
{
return f_(a1, a2, a3, a4);
}
template<class A1, class A2, class A3, class A4> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4) const
{
return f_(a1, a2, a3, a4);
}
template<class A1, class A2, class A3, class A4, class A5> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5)
{
return f_(a1, a2, a3, a4, a5);
}
template<class A1, class A2, class A3, class A4, class A5> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5) const
{
return f_(a1, a2, a3, a4, a5);
}
template<class A1, class A2, class A3, class A4, class A5, class A6> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6)
{
return f_(a1, a2, a3, a4, a5, a6);
}
template<class A1, class A2, class A3, class A4, class A5, class A6> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6) const
{
return f_(a1, a2, a3, a4, a5, a6);
}
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7)
{
return f_(a1, a2, a3, a4, a5, a6, a7);
}
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7) const
{
return f_(a1, a2, a3, a4, a5, a6, a7);
}
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7, A8 & a8)
{
return f_(a1, a2, a3, a4, a5, a6, a7, a8);
}
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7, A8 & a8) const
{
return f_(a1, a2, a3, a4, a5, a6, a7, a8);
}
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7, A8 & a8, A9 & a9)
{
return f_(a1, a2, a3, a4, a5, a6, a7, a8, a9);
}
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9> result_type operator()(A1 & a1, A2 & a2, A3 & a3, A4 & a4, A5 & a5, A6 & a6, A7 & a7, A8 & a8, A9 & a9) const
{
return f_(a1, a2, a3, a4, a5, a6, a7, a8, a9);
}
private:
F f_;
};
} // namespace _bi
template<class F> _bi::protected_bind_t<F> protect(F f)
{
return _bi::protected_bind_t<F>(f);
}
} // namespace boost
#endif // #ifndef BOOST_BIND_PROTECT_HPP_INCLUDED

View File

@@ -1,116 +1,95 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Boost: mem_fn.hpp documentation</title>
</head>
<body bgcolor="White" style="margin-left: 5%; margin-right: 5%;">
<table border="0" width="100%">
<tr>
<td width="277">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86">
</td>
<td align="center">
<h1>mem_fn.hpp</h1>
</td>
</tr>
<tr>
<td colspan="2" height="64">&nbsp;</td>
</tr>
</table>
<h2>Contents</h2>
<h3 style="margin-left: 20pt;"><a href="#Purpose">Purpose</a></h3>
<h3 style="margin-left: 20pt;"><a href="#FAQ">Frequently Asked Questions</a></h3>
<h4 style="margin-left: 40pt;"><a href="#Q1">Can <b>mem_fn</b> be used instead of the standard
<b>std::mem_fun[_ref]</b> adaptors?</a></h4>
<h4 style="margin-left: 40pt;"><a href="#Q2">Should I replace every occurence of <b>std::mem_fun[_ref]</b>
with <b>mem_fn</b> in my existing code?</a></h4>
<h4 style="margin-left: 40pt;"><a href="#Q3">Does <b>mem_fn</b> work with COM methods?</a></h4>
<h4 style="margin-left: 40pt;"><a href="#Q4">Why isn't BOOST_MEM_FN_ENABLE_STDCALL defined automatically?</a></h4>
<h3 style="margin-left: 20pt;"><a href="#Interface">Interface</a></h3>
<h4 style="margin-left: 40pt;"><a href="#Synopsis">Synopsis</a></h4>
<h4 style="margin-left: 40pt;"><a href="#CommonRequirements">Common requirements</a></h4>
<h4 style="margin-left: 40pt;"><a href="#get_pointer">get_pointer</a></h4>
<h4 style="margin-left: 40pt;"><a href="#mem_fn">mem_fn</a></h4>
<h3 style="margin-left: 20pt;"><a href="#Implementation">Implementation</a></h3>
<h4 style="margin-left: 40pt;"><a href="#Files">Files</a></h4>
<h4 style="margin-left: 40pt;"><a href="#Dependencies">Dependencies</a></h4>
<h4 style="margin-left: 40pt;"><a href="#NumberOfArguments">Number of Arguments</a></h4>
<h4 style="margin-left: 40pt;"><a href="#stdcall">&quot;__stdcall&quot; Support</a></h4>
<h3 style="margin-left: 20pt;"><a href="#Acknowledgements">Acknowledgements</a></h3>
<h2><a name="Purpose">Purpose</a></h2>
<p>
<b>boost::mem_fn</b> is a generalization of the standard functions
<b>std::mem_fun</b> and <b>std::mem_fun_ref</b>. It supports member
function pointers with more than one argument, and the returned function
object can take a pointer, a reference, or a smart pointer to an object
instance as its first argument.
</p>
<p>
The purpose of <b>mem_fn</b> is twofold. First, it allows users to invoke a
member function on a container with the familiar
</p>
<pre>
<head>
<title>Boost: mem_fn.hpp documentation</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="white" style="MARGIN-LEFT: 5%; MARGIN-RIGHT: 5%">
<table border="0" width="100%">
<tr>
<td width="277">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86">
</td>
<td align="middle">
<h1>mem_fn.hpp</h1>
</td>
</tr>
<tr>
<td colspan="2" height="64">&nbsp;</td>
</tr>
</table>
<h2>Contents</h2>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Purpose">Purpose</a></h3>
<h3 style="MARGIN-LEFT: 20pt"><a href="#FAQ">Frequently Asked Questions</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q1">Can <b>mem_fn</b> be used instead of the
standard <b>std::mem_fun[_ref]</b> adaptors?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q2">Should I replace every occurence of <b>std::mem_fun[_ref]</b>
with <b>mem_fn</b> in my existing code?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q3">Does <b>mem_fn</b> work with COM methods?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q4">Why isn't BOOST_MEM_FN_ENABLE_STDCALL
defined automatically?</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Interface">Interface</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Synopsis">Synopsis</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#CommonRequirements">Common requirements</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#get_pointer">get_pointer</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#mem_fn">mem_fn</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Implementation">Implementation</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Files">Files</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Dependencies">Dependencies</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#NumberOfArguments">Number of Arguments</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#stdcall">"__stdcall" Support</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Acknowledgements">Acknowledgements</a></h3>
<h2><a name="Purpose">Purpose</a></h2>
<p>
<b>boost::mem_fn</b> is a generalization of the standard functions <b>std::mem_fun</b>
and <b>std::mem_fun_ref</b>. It supports member function pointers with more
than one argument, and the returned function object can take a pointer, a
reference, or a smart pointer to an object instance as its first argument.
</p>
<p>
The purpose of <b>mem_fn</b> is twofold. First, it allows users to invoke a
member function on a container with the familiar
</p>
<pre>
std::for_each(v.begin(), v.end(), boost::mem_fn(&amp;Shape::draw));
</pre>
<p>
syntax, even when the container stores smart pointers.
</p>
<p>
Second, it can be used as a building block by library developers that want
to treat a pointer to member function as a function object. A library might
define an enhanced <b>for_each</b> algorithm with an overload of the form:
</p>
<pre>
<p>
syntax, even when the container stores smart pointers.
</p>
<p>
Second, it can be used as a building block by library developers that want to
treat a pointer to member function as a function object. A library might define
an enhanced <b>for_each</b> algorithm with an overload of the form:
</p>
<pre>
template&lt;class It, class R, class T&gt; void for_each(It first, It last, R (T::*pmf) ())
{
std::for_each(first, last, boost::mem_fn(pmf));
}
</pre>
<p>
that will allow the convenient syntax:
</p>
<pre>
<p>
that will allow the convenient syntax:
</p>
<pre>
for_each(v.begin(), v.end(), &amp;Shape::draw);
</pre>
<p>
When documenting the feature, the library author will simply state:
</p>
<h4 style="margin-left: 20pt;">template&lt;class It, class R, class T&gt; void for_each(It first, It last, R (T::*pmf) ());</h4>
<p style="margin-left: 20pt;">
<b>Effects:</b> equivalent to std::for_each(first, last, boost::mem_fn(pmf));
</p>
<p>
where <b>boost::mem_fn</b> can be a link to this page. See
<a href="bind.html">the documentation of <b>bind</b></a> for an example.
</p>
<p>
<b>mem_fn</b> takes one argument, a pointer to a member function, and
returns a function object suitable for use with standard or user-defined
algorithms:
</p>
<pre>
<p>
When documenting the feature, the library author will simply state:
</p>
<h4 style="MARGIN-LEFT: 20pt">template&lt;class It, class R, class T&gt; void
for_each(It first, It last, R (T::*pmf) ());</h4>
<p style="MARGIN-LEFT: 20pt">
<b>Effects:</b> equivalent to std::for_each(first, last, boost::mem_fn(pmf));
</p>
<p>
where <b>boost::mem_fn</b> can be a link to this page. See <a href="bind.html">the
documentation of <b>bind</b></a> for an example.
</p>
<p>
<b>mem_fn</b> takes one argument, a pointer to a member function, and returns a
function object suitable for use with standard or user-defined algorithms:
</p>
<pre>
struct X
{
void f();
@@ -131,97 +110,72 @@ void k(std::vector&lt;boost::shared_ptr&lt;X&gt; &gt; const &amp; v)
std::for_each(v.begin(), v.end(), boost::mem_fn(&amp;X::f));
};
</pre>
<p>
The returned function object takes the same arguments as the input member
function plus a "flexible" first argument that represents the object instance.
</p>
<p>
When the function object is invoked with a first argument <b>x</b> that is
neither a pointer nor a reference to the appropriate class (<b>X</b> in the
example above), it uses <tt>get_pointer(x)</tt> to obtain a pointer from
<b>x</b>. Library authors can "register" their smart pointer classes by
supplying an appropriate <b>get_pointer</b> overload, allowing <b>mem_fn</b>
to recognize and support them.
</p>
<p>
A <b>get_pointer</b> overload for <b>boost::shared_ptr</b> is supplied.
</p>
<p>
[Note: <b>get_pointer</b> is not restricted to return a pointer. Any object
that can be used in a member function call expression <tt>(x->*pmf)(...)</tt>
will work.]
</p>
<p>
[Note: the library uses an unqualified call to <b>get_pointer</b>. Therefore,
it will find, through argument-dependent lookup, <b>get_pointer</b> overloads
that are defined in the same namespace as the corresponding smart pointer
class, in addition to any <b>boost::get_pointer</b> overloads.]
</p>
<p>
All function objects returned by <b>mem_fn</b> expose a <b>result_type</b>
typedef that represents the return type of the member function.
</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<h3><a name="Q1">Can <b>mem_fn</b> be used instead of the standard
<b>std::mem_fun[_ref]</b> adaptors?</a></h3>
<p>
Yes. For simple uses, <b>mem_fn</b> provides additional functionality that
the standard adaptors do not. Complicated expressions that use <b>std::bind1st</b>,
<b>std::bind2nd</b> or <a href="../compose/index.htm"><b>Boost.Compose</b></a>
along with the standard adaptors can be rewritten using
<a href="bind.html"><b>boost::bind</b></a> that automatically takes advantage of
<b>mem_fn</b>.
</p>
<h3><a name="Q2">Should I replace every occurence of <b>std::mem_fun[_ref]</b>
with <b>mem_fn</b> in my existing code?</a></h3>
<p>
No, unless you have good reasons to do so. <b>mem_fn</b> is not 100% compatible
with the standard adaptors, although it comes pretty close. In particular,
<b>mem_fn</b> does not return objects of type
<b>std::[const_]mem_fun[1][_ref]_t</b>, as the standard adaptors do, and it is
not possible to fully describe the type of the first argument using the standard
<b>argument_type</b> and <b>first_argument_type</b> nested typedefs. Libraries
that need adaptable function objects in order to function might not like
<b>mem_fn</b>.
</p>
<h3><a name="Q3">Does <b>mem_fn</b> work with COM methods?</a></h3>
<p>
Yes, if you <a href="#stdcall">#define BOOST_MEM_FN_ENABLE_STDCALL</a>.
</p>
<h3><a name="Q4">Why isn't BOOST_MEM_FN_ENABLE_STDCALL defined automatically?</a></h3>
<p>
Non-portable extensions, in general, should default to off to prevent vendor
lock-in. Had BOOST_MEM_FN_ENABLE_STDCALL been defined automatically, you could
have accidentally taken advantage of it without realizing that your code is,
perhaps, no longer portable.
</p>
<h2><a name="Interface">Interface</a></h2>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>
<p>
The returned function object takes the same arguments as the input member
function plus a "flexible" first argument that represents the object instance.
</p>
<p>
When the function object is invoked with a first argument <b>x</b> that is
neither a pointer nor a reference to the appropriate class (<b>X</b> in the
example above), it uses <tt>get_pointer(x)</tt> to obtain a pointer from <b>x</b>.
Library authors can "register" their smart pointer classes by supplying an
appropriate <b>get_pointer</b> overload, allowing <b>mem_fn</b> to recognize
and support them.
</p>
<p>
[Note: <b>get_pointer</b> is not restricted to return a pointer. Any object
that can be used in a member function call expression <tt>(x-&gt;*pmf)(...)</tt>
will work.]
</p>
<p>
[Note: the library uses an unqualified call to <b>get_pointer</b>. Therefore,
it will find, through argument-dependent lookup, <b>get_pointer</b> overloads
that are defined in the same namespace as the corresponding smart pointer
class, in addition to any <b>boost::get_pointer</b> overloads.]
</p>
<p>
All function objects returned by <b>mem_fn</b> expose a <b>result_type</b> typedef
that represents the return type of the member function.
</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<h3><a name="Q1">Can <b>mem_fn</b> be used instead of the standard <b>std::mem_fun[_ref]</b>
adaptors?</a></h3>
<p>
Yes. For simple uses, <b>mem_fn</b> provides additional functionality that the
standard adaptors do not. Complicated expressions that use <b>std::bind1st</b>, <b>std::bind2nd</b>
or <a href="../compose/index.htm"><b>Boost.Compose</b></a> along with the
standard adaptors can be rewritten using <a href="bind.html"><b>boost::bind</b></a>
that automatically takes advantage of <b>mem_fn</b>.
</p>
<h3><a name="Q2">Should I replace every occurence of <b>std::mem_fun[_ref]</b> with <b>mem_fn</b>
in my existing code?</a></h3>
<p>
No, unless you have good reasons to do so. <b>mem_fn</b> is not 100% compatible
with the standard adaptors, although it comes pretty close. In particular, <b>mem_fn</b>
does not return objects of type <b>std::[const_]mem_fun[1][_ref]_t</b>, as the
standard adaptors do, and it is not possible to fully describe the type of the
first argument using the standard <b>argument_type</b> and <b>first_argument_type</b>
nested typedefs. Libraries that need adaptable function objects in order to
function might not like <b>mem_fn</b>.
</p>
<h3><a name="Q3">Does <b>mem_fn</b> work with COM methods?</a></h3>
<p>
Yes, if you <a href="#stdcall">#define BOOST_MEM_FN_ENABLE_STDCALL</a>.
</p>
<h3><a name="Q4">Why isn't BOOST_MEM_FN_ENABLE_STDCALL defined automatically?</a></h3>
<p>
Non-portable extensions, in general, should default to off to prevent vendor
lock-in. Had BOOST_MEM_FN_ENABLE_STDCALL been defined automatically, you could
have accidentally taken advantage of it without realizing that your code is,
perhaps, no longer portable.
</p>
<h2><a name="Interface">Interface</a></h2>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>
namespace boost
{
template&lt;class T&gt; T * <a href="#get_pointer_1">get_pointer</a>(T * p);
template&lt;class T&gt; T * <a href="#get_pointer_2">get_pointer</a>(shared_ptr&lt;T&gt; const &amp; p);
template&lt;class T&gt; T * <a href="#get_pointer_1">get_pointer</a> (T * p);
template&lt;class R, class T&gt; <i>implementation-defined-1</i> <a href="#mem_fn_1">mem_fn</a>(R (T::*pmf) ());
@@ -239,189 +193,179 @@ template&lt;class R, class T, class A1, class A2&gt; <i>implementation-defined-6
}
</pre>
<h3><a name="CommonRequirements">Common requirements</a></h3>
<p>
All <tt><i>implementation-defined-N</i></tt> types mentioned in the Synopsis are
<b>CopyConstructible</b> and <b>Assignable</b>.
Their copy constructors and assignment operators do not throw exceptions.
<tt><i>implementation-defined-N</i>::result_type</tt> is defined as
the return type of the member function pointer passed as an argument to <b>mem_fn</b>
(<b>R</b> in the Synopsis.)
</p>
<h3><a name="get_pointer">get_pointer</a></h3>
<h4><a name="get_pointer_1">template&lt;class T&gt; T * get_pointer(T * p)</a></h4>
<p>
<b>Returns:</b> <tt>p</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
<h4><a name="get_pointer_2">template&lt;class T&gt; T * get_pointer(shared_ptr&lt;T&gt; const &amp; p)</a></h4>
<p>
<b>Returns:</b> <tt>p.get()</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
<h3><a name="mem_fn">mem_fn</a></h3>
<h4><a name="mem_fn_1">template&lt;class R, class T&gt; <i>implementation-defined-1</i> mem_fn(R (T::*pmf) ())</a></h4>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression
<tt><i>f(t)</i></tt> is equivalent to <tt>(t.*pmf)()</tt> when <i>t</i>
is an l-value of type <b>T</b>, <tt>(get_pointer(t)->*pmf)()</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
<h4><a name="mem_fn_2">template&lt;class R, class T&gt; <i>implementation-defined-2</i> mem_fn(R (T::*pmf) () const)</a></h4>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression
<tt><i>f(t)</i></tt> is equivalent to <tt>(t.*pmf)()</tt> when <i>t</i>
is of type <b>T <i>[</i>const<i>]</i></b>, <tt>(get_pointer(t)->*pmf)()</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
<h4><a name="mem_fn_3">template&lt;class R, class T, class A1&gt; <i>implementation-defined-3</i> mem_fn(R (T::*pmf) (A1))</a></h4>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression
<tt><i>f(t, a1)</i></tt> is equivalent to <tt>(t.*pmf)(a1)</tt> when <i>t</i>
is an l-value of type <b>T</b>, <tt>(get_pointer(t)->*pmf)(a1)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
<h4><a name="mem_fn_4">template&lt;class R, class T, class A1&gt; <i>implementation-defined-4</i> mem_fn(R (T::*pmf) (A1) const)</a></h4>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression
<tt><i>f(t, a1)</i></tt> is equivalent to <tt>(t.*pmf)(a1)</tt> when <i>t</i>
is of type <b>T <i>[</i>const<i>]</i></b>, <tt>(get_pointer(t)->*pmf)(a1)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
<h4><a name="mem_fn_5">template&lt;class R, class T, class A1, class A2&gt; <i>implementation-defined-5</i> mem_fn(R (T::*pmf) (A1, A2))</a></h4>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression
<tt><i>f(t, a1, a2)</i></tt> is equivalent to <tt>(t.*pmf)(a1, a2)</tt> when <i>t</i>
is an l-value of type <b>T</b>, <tt>(get_pointer(t)->*pmf)(a1, a2)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
<h4><a name="mem_fn_6">template&lt;class R, class T, class A1, class A2&gt; <i>implementation-defined-6</i> mem_fn(R (T::*pmf) (A1, A2) const)</a></h4>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression
<tt><i>f(t, a1, a2)</i></tt> is equivalent to <tt>(t.*pmf)(a1, a2)</tt> when <i>t</i>
is of type <b>T <i>[</i>const<i>]</i></b>, <tt>(get_pointer(t)->*pmf)(a1, a2)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
<h2><a name="Implementation">Implementation</a></h2>
<h3><a name="Files">Files</a></h3>
<ul>
<li><a href="../../boost/mem_fn.hpp">boost/mem_fn.hpp</a> (main header)
<li><a href="../../boost/bind/mem_fn_cc.hpp">boost/bind/mem_fn_cc.hpp</a> (used by mem_fn.hpp, do not include directly)
<li><a href="../../boost/bind/mem_fn_vw.hpp">boost/bind/mem_fn_vw.hpp</a> (used by mem_fn.hpp, do not include directly)
<li><a href="../../boost/bind/mem_fn_template.hpp">boost/bind/mem_fn_template.hpp</a> (used by mem_fn.hpp, do not include directly)
<li><a href="mem_fn_test.cpp">libs/bind/mem_fn_test.cpp</a> (test)
<li><a href="mem_fn_stdcall_test.cpp">libs/bind/mem_fn_stdcall_test.cpp</a> (test for __stdcall)
<li><a href="mem_fn_void_test.cpp">libs/bind/mem_fn_void_test.cpp</a> (test for void returns)
</ul>
<h3><a name="Dependencies">Dependencies</a></h3>
<ul>
<li><a href="../config/config.htm">Boost.Config</a>
</ul>
<h3><a name="NumberOfArguments">Number of Arguments</a></h3>
<p>
This implementation supports member functions with up to eight arguments.
This is not an inherent limitation of the design, but an implementation
detail.
</p>
<h3><a name="stdcall">&quot;__stdcall&quot; Support</a></h3>
<p>
Some platforms allow several types of member functions that differ by their
<b>calling convention</b> (the rules by which the function is invoked: how
are arguments passed, how is the return value handled, and who cleans up the
stack - if any.)
</p>
<p>
For example, Windows API functions and COM interface member functions use a
calling convention known as <b>__stdcall</b>.
</p>
<p>
To use <b>mem_fn</b> with <b>__stdcall</b> member functions, <b>#define</b>
the macro <b>BOOST_MEM_FN_ENABLE_STDCALL</b> before including, directly or
indirectly, <b>&lt;boost/mem_fn.hpp&gt;</b>.
</p>
<p>
[Note: this is a non-portable extension. It is not part of the interface.]
</p>
<p>
[Note: Some compilers provide only minimal support for the <b>__stdcall</b> keyword.]
</p>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>
Rene Jager's initial suggestion of using traits classes to make
<b>mem_fn</b> adapt to user-defined smart pointers inspired the
<b>get_pointer</b>-based design.
</p>
<p>
Numerous improvements were suggested during the formal review period by
Richard Crossley, Jens Maurer, Ed Brey, and others. Review manager
was Darin Adler.
</p>
<p>
Steve Anichini pointed out that COM interfaces use <b>__stdcall</b>.
</p>
<p>
Dave Abrahams modified <b>bind</b> and <b>mem_fn</b> to support void returns
on deficient compilers.
</p>
<p><br><br><br><small>Copyright &copy; 2001 by Peter Dimov and Multi Media
Ltd. Permission to copy, use, modify, sell and distribute this document is
granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</small></p>
</body>
<h3><a name="CommonRequirements">Common requirements</a></h3>
<p>
All <tt><i>implementation-defined-N</i></tt> types mentioned in the Synopsis
are <b>CopyConstructible</b> and <b>Assignable</b>. Their copy constructors and
assignment operators do not throw exceptions. <tt><i>implementation-defined-N</i>::result_type</tt>
is defined as the return type of the member function pointer passed as an
argument to <b>mem_fn</b> (<b>R</b> in the Synopsis.)
</p>
<h3><a name="get_pointer">get_pointer</a></h3>
<h4><a name="get_pointer_1">template&lt;class T&gt; T * get_pointer(T * p)</a></h4>
<blockquote>
<p>
<b>Returns:</b> <tt>p</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="mem_fn">mem_fn</a></h3>
<h4><a name="mem_fn_1">template&lt;class R, class T&gt; <i>implementation-defined-1</i>
mem_fn(R (T::*pmf) ())</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t)</i></tt>
is equivalent to <tt>(t.*pmf)()</tt> when <i>t</i> is an l-value of type <STRONG>T </STRONG>
or derived, <tt>(get_pointer(t)-&gt;*pmf)()</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_2">template&lt;class R, class T&gt; <i>implementation-defined-2</i>
mem_fn(R (T::*pmf) () const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t)</i></tt>
is equivalent to <tt>(t.*pmf)()</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]<STRONG> </STRONG></EM>or derived, <tt>(get_pointer(t)-&gt;*pmf)()</tt>
otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_3">template&lt;class R, class T, class A1&gt; <i>implementation-defined-3</i>
mem_fn(R (T::*pmf) (A1))</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1)</i></tt>
is equivalent to <tt>(t.*pmf)(a1)</tt> when <i>t</i> is an l-value of type <STRONG>T
</STRONG>or derived, <tt>(get_pointer(t)-&gt;*pmf)(a1)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_4">template&lt;class R, class T, class A1&gt; <i>implementation-defined-4</i>
mem_fn(R (T::*pmf) (A1) const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1)</i></tt>
is equivalent to <tt>(t.*pmf)(a1)</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]<STRONG> </STRONG></EM>or derived, <tt>(get_pointer(t)-&gt;*pmf)(a1)</tt>
otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_5">template&lt;class R, class T, class A1, class A2&gt; <i>implementation-defined-5</i>
mem_fn(R (T::*pmf) (A1, A2))</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1, a2)</i></tt>
is equivalent to <tt>(t.*pmf)(a1, a2)</tt> when <i>t</i> is an l-value of type <STRONG>
T</STRONG> or derived, <tt>(get_pointer(t)-&gt;*pmf)(a1, a2)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_6">template&lt;class R, class T, class A1, class A2&gt; <i>implementation-defined-6</i>
mem_fn(R (T::*pmf) (A1, A2) const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1, a2)</i></tt>
is equivalent to <tt>(t.*pmf)(a1, a2)</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]</EM> or derived, <tt>(get_pointer(t)-&gt;*pmf)(a1, a2)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h2><a name="Implementation">Implementation</a></h2>
<h3><a name="Files">Files</a></h3>
<ul>
<li>
<a href="../../boost/mem_fn.hpp">boost/mem_fn.hpp</a>
(main header)
<li>
<a href="../../boost/bind/mem_fn_cc.hpp">boost/bind/mem_fn_cc.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="../../boost/bind/mem_fn_vw.hpp">boost/bind/mem_fn_vw.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="../../boost/bind/mem_fn_template.hpp">boost/bind/mem_fn_template.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="mem_fn_test.cpp">libs/bind/mem_fn_test.cpp</a>
(test)
<li>
<a href="mem_fn_stdcall_test.cpp">libs/bind/mem_fn_stdcall_test.cpp</a>
(test for __stdcall)
<li>
<a href="mem_fn_void_test.cpp">libs/bind/mem_fn_void_test.cpp</a> (test for
void returns)</li>
</ul>
<h3><a name="Dependencies">Dependencies</a></h3>
<ul>
<li>
<a href="../config/config.htm">Boost.Config</a></li>
</ul>
<h3><a name="NumberOfArguments">Number of Arguments</a></h3>
<p>
This implementation supports member functions with up to eight arguments. This
is not an inherent limitation of the design, but an implementation detail.
</p>
<h3><a name="stdcall">"__stdcall" Support</a></h3>
<p>
Some platforms allow several types of member functions that differ by their <b>calling
convention</b> (the rules by which the function is invoked: how are
arguments passed, how is the return value handled, and who cleans up the stack
- if any.)
</p>
<p>
For example, Windows API functions and COM interface member functions use a
calling convention known as <b>__stdcall</b>.
</p>
<p>
To use <b>mem_fn</b> with <b>__stdcall</b> member functions, <b>#define</b> the
macro <b>BOOST_MEM_FN_ENABLE_STDCALL</b> before including, directly or
indirectly, <b>&lt;boost/mem_fn.hpp&gt;</b>.
</p>
<p>
[Note: this is a non-portable extension. It is not part of the interface.]
</p>
<p>
[Note: Some compilers provide only minimal support for the <b>__stdcall</b> keyword.]
</p>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>
Rene Jager's initial suggestion of using traits classes to make <b>mem_fn</b> adapt
to user-defined smart pointers inspired the <b>get_pointer</b>-based design.
</p>
<p>
Numerous improvements were suggested during the formal review period by Richard
Crossley, Jens Maurer, Ed Brey, and others. Review manager was Darin Adler.
</p>
<p>
Steve Anichini pointed out that COM interfaces use <b>__stdcall</b>.
</p>
<p>
Dave Abrahams modified <b>bind</b> and <b>mem_fn</b> to support void returns on
deficient compilers.
</p>
<p><br>
<br>
<br>
<small>Copyright <20> 2001, 2002&nbsp;by Peter Dimov and Multi Media Ltd. Permission
to copy, use, modify, sell and distribute this document is granted provided
this copyright notice appears in all copies. This document is provided "as is"
without express or implied warranty, and with no claim as to its suitability
for any purpose.</small></p>
</body>
</html>

313
ref.html
View File

@@ -1,81 +1,75 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Boost: ref.hpp documentation</title>
</head>
<body bgcolor="White">
<table border="0" width="100%">
<tr>
<td width="277">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86">
</td>
<td align="center">
<table border="0">
<tr><td nowrap><h1>ref.hpp</h1></td></tr>
<tr><td align="right" nowrap><small>&nbsp;1.00.0004 (2002-01-27)</small></td></tr>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Boost: ref.hpp documentation</title>
</head>
<body bgcolor="White">
<table border="0" width="100%">
<tr>
<td width="277">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86">
</td>
<td align="center">
<table border="0">
<tr>
<td nowrap><h1>ref.hpp</h1>
</td>
</tr>
<tr>
<td align="right" nowrap><small>&nbsp;1.00.0004 (2002-01-27)</small></td>
</tr>
</table>
</td>
</tr>
<tr>
<td colspan="2" height="64">&nbsp;</td>
</tr>
</table>
</td>
</tr>
<tr>
<td colspan="2" height="64">&nbsp;</td>
</tr>
</table>
<h2>Files</h2>
<ul>
<li><a href="../../boost/ref.hpp">ref.hpp</a>
</ul>
<h2>Purpose</h2>
<p>
The header <a href="../../boost/ref.hpp">boost/ref.hpp</a> defines the class template
<b>boost::reference_wrapper&lt;T&gt;</b>, the two functions <b>boost::ref</b> and
<b>boost::cref</b> that return instances of
<b>boost::reference_wrapper&lt;T&gt;</b>, and the two traits classes <b>boost::is_reference_wrapper&lt;T&gt;</b> and <b>boost::unwrap_reference&lt;T&gt;</b>.
</p>
<p>
The purpose of <b>boost::reference_wrapper&lt;T&gt;</b> is to contain a reference to
an object of type <b>T</b>. It is primarily used to "feed" references to
function templates (algorithms) that take their parameter by value.
</p>
<p>
To support this usage, <b>boost::reference_wrapper&lt;T&gt;</b> provides an implicit
conversion to <b>T &amp;</b>. This usually allows the function templates to
work on references unmodified.
</p>
<p>
<b>boost::reference_wrapper&lt;T&gt;</b> is both <b>CopyConstructible</b> and
<b>Assignable</b> (ordinary references are not <b>Assignable</b>).
</p>
<p>
The expression <b>boost::ref(x)</b> returns a <b>boost::reference_wrapper&lt;X&gt;(x)</b>
where <b>X</b> is the type of <b>x</b>. Similarly, <b>boost::cref(x)</b>
returns a <b>boost::reference_wrapper&lt;X const&gt;(x)</b>.
</p>
<p>The expression <b>boost::is_reference_wrapper&lt;T&gt;::value</b> is
<b>true</b> if <b>T</b> is a
<b>reference_wrapper</b>, and <b>false</b> otherwise.
<p>The type-expression <b>boost::unwrap_reference&lt;T&gt;::type</b>
is <b>T::type</b> if <b>T</b> is a
<b>reference_wrapper</b>, <b>T</b> otherwise.
<h2>Interface</h2>
<h3>Synopsis</h3>
<pre>
<h2>Files</h2>
<ul>
<li>
<a href="../../boost/ref.hpp">ref.hpp</a>
</ul>
<h2>Purpose</h2>
<p>
The header <a href="../../boost/ref.hpp">boost/ref.hpp</a> defines the class
template <b>boost::reference_wrapper&lt;T&gt;</b>, the two functions <b>boost::ref</b>
and <b>boost::cref</b> that return instances of <b>boost::reference_wrapper&lt;T&gt;</b>,
and the two traits classes <b>boost::is_reference_wrapper&lt;T&gt;</b> and <b>boost::unwrap_reference&lt;T&gt;</b>.
</p>
<p>
The purpose of <b>boost::reference_wrapper&lt;T&gt;</b> is to contain a
reference to an object of type <b>T</b>. It is primarily used to "feed"
references to function templates (algorithms) that take their parameter by
value.
</p>
<p>
To support this usage, <b>boost::reference_wrapper&lt;T&gt;</b> provides an
implicit conversion to <b>T &amp;</b>. This usually allows the function
templates to work on references unmodified.
</p>
<p>
<b>boost::reference_wrapper&lt;T&gt;</b> is both <b>CopyConstructible</b> and <b>Assignable</b>
(ordinary references are not <b>Assignable</b>).
</p>
<p>
The expression <b>boost::ref(x)</b> returns a <b>boost::reference_wrapper&lt;X&gt;(x)</b>
where <b>X</b> is the type of <b>x</b>. Similarly, <b>boost::cref(x)</b> returns
a <b>boost::reference_wrapper&lt;X const&gt;(x)</b>.
</p>
<p>
The expression <b>boost::is_reference_wrapper&lt;T&gt;::value</b> is <b>true</b>
if <b>T</b> is a <b>reference_wrapper</b>, and <b>false</b>
otherwise.
</p>
<p>
The type-expression <b>boost::unwrap_reference&lt;T&gt;::type</b> is <b>T::type</b>
if <b>T</b> is a <b>reference_wrapper</b>, <b>T</b> otherwise.
</p>
<h2>Interface</h2>
<h3>Synopsis</h3>
<pre>
namespace boost
{
template&lt;class T&gt; class <a href="#reference_wrapper">reference_wrapper</a>;
@@ -85,10 +79,8 @@ namespace boost
template&lt;class T&gt; class unwrap_reference&lt;T const&gt;;
}
</pre>
<h3><a name="reference_wrapper">reference_wrapper</a></h3>
<pre>
<h3><a name="reference_wrapper">reference_wrapper</a></h3>
<pre>
template&lt;class T&gt; class reference_wrapper
{
public:
@@ -101,110 +93,93 @@ public:
T &amp; <a href="#rt_get">get</a>() const;
};
</pre>
<h4><a name="rt_construct">explicit reference_wrapper(T &amp; t)</a></h4>
<blockquote>
<p>
<b>Effects:</b> Constructs a <b>reference_wrapper</b> object that stores a reference to <b>t</b>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="rt_operator">operator T &amp; () const</a></h4>
<blockquote>
<p>
<b>Returns:</b> the stored reference.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="rt_get">T &amp; get() const</a></h4>
<blockquote>
<p>
<b>Returns:</b> the stored reference.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="ref">ref</a></h3>
<pre>
<h4><a name="rt_construct">explicit reference_wrapper(T &amp; t)</a></h4>
<blockquote>
<p>
<b>Effects:</b> Constructs a <b>reference_wrapper</b> object that stores a
reference to <b>t</b>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="rt_operator">operator T &amp; () const</a></h4>
<blockquote>
<p>
<b>Returns:</b> the stored reference.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="rt_get">T &amp; get() const</a></h4>
<blockquote>
<p>
<b>Returns:</b> the stored reference.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="ref">ref</a></h3>
<pre>
template&lt;class T&gt; reference_wrapper&lt;T&gt; ref(T &amp; t);
</pre>
<blockquote>
<p>
<b>Returns:</b> <tt>reference_wrapper&lt;T&gt;(t)</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="cref">cref</a></h3>
<pre>
<blockquote>
<p>
<b>Returns:</b> <tt>reference_wrapper&lt;T&gt;(t)</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="cref">cref</a></h3>
<pre>
template&lt;class T&gt; reference_wrapper&lt;T const&gt; cref(T const &amp; t);
</pre>
<blockquote>
<p>
<b>Returns:</b> <tt>reference_wrapper&lt;T const&gt;(t)</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="is_reference_wrapper">is_reference_wrapper</a></h3>
<pre>
<blockquote>
<p>
<b>Returns:</b> <tt>reference_wrapper&lt;T const&gt;(t)</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="is_reference_wrapper">is_reference_wrapper</a></h3>
<pre>
template&lt;class T&gt; class is_reference_wrapper&lt;T const&gt;
{
public:
static bool value = <i>unspecified</i>;
};
</pre>
Value is <b>true</b> iff <tt>T</tt> is a specialization of <tt>reference_wrapper</tt>.
<h3><a name="unwrap_reference">unwrap_reference</a></h3>
<pre>
Value is <b>true</b> iff <tt>T</tt> is a specialization of <tt>reference_wrapper</tt>.
<h3><a name="unwrap_reference">unwrap_reference</a></h3>
<pre>
template&lt;class T&gt; class unwrap_reference&lt;T const&gt;
{
public:
typedef <i>unspecified</i> type;
};
</pre>
<tt>type</tt> is equivalent to <tt>T::type</tt> if <tt>T</tt> is a specialization of <tt>reference_wrapper</tt>. Otherwise <tt>type</tt> is equivalent to <tt>T</tt>.
<h2>Acknowledgements</h2>
<p>
<b>ref</b> and <b>cref</b> were originally part of the Boost.Tuple
library by <a href="../../people/jaakko_jarvi.htm"> Jaakko
J&auml;rvi</a>. They were "promoted to <b>boost::</b> status" by <a
href="../../people/peter_dimov.htm">Peter Dimov</a> because they are
generally useful. <a href="../../people/doug_gregor.html">Douglas
Gregor</a> and <a href="../../people/dave_abrahams.htm">Dave
Abrahams</a> contributed <tt>is_reference_wrapper</tt> and
<tt>unwrap_reference</tt>.
</p>
<p><br><br><br><small>Copyright &copy; 2001 by Peter Dimov and Multi Media
Ltd. Permission to copy, use, modify, sell and distribute this document is
granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</small></p>
</body>
<tt>type</tt> is equivalent to <tt>T::type</tt> if <tt>T</tt> is a
specialization of <tt>reference_wrapper</tt>. Otherwise <tt>type</tt> is
equivalent to <tt>T</tt>.
<h2>Acknowledgements</h2>
<p>
<b>ref</b> and <b>cref</b> were originally part of the Boost.Tuple library by <a href="../../people/jaakko_jarvi.htm">
Jaakko J&auml;rvi</a>. They were "promoted to <b>boost::</b> status" by <a href="../../people/peter_dimov.htm">
Peter Dimov</a> because they are generally useful. <a href="../../people/doug_gregor.html">
Douglas Gregor</a> and <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>
contributed <tt>is_reference_wrapper</tt> and <tt>unwrap_reference</tt>.
</p>
<p><br>
<br>
<br>
<small>Copyright &copy; 2001 by Peter Dimov and Multi Media Ltd. Permission to
copy, use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided &quot;as
is&quot; without express or implied warranty, and with no claim as to its
suitability for any purpose.</small></p>
</body>
</html>