Remove float support files

This commit is contained in:
Peter Dimov
2021-10-17 08:14:35 +03:00
parent dff8843bb2
commit f05e8840d2
2 changed files with 0 additions and 608 deletions

View File

@@ -1,336 +0,0 @@
// Copyright 2005-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_FUNCTIONAL_HASH_DETAIL_FLOAT_FUNCTIONS_HPP)
#define BOOST_FUNCTIONAL_HASH_DETAIL_FLOAT_FUNCTIONS_HPP
#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/config/no_tr1/cmath.hpp>
// Set BOOST_HASH_CONFORMANT_FLOATS to 1 for libraries known to have
// sufficiently good floating point support to not require any
// workarounds.
//
// When set to 0, the library tries to automatically
// use the best available implementation. This normally works well, but
// breaks when ambiguities are created by odd namespacing of the functions.
//
// Note that if this is set to 0, the library should still take full
// advantage of the platform's floating point support.
#if defined(__SGI_STL_PORT) || defined(_STLPORT_VERSION)
# define BOOST_HASH_CONFORMANT_FLOATS 0
#elif defined(__LIBCOMO__)
# define BOOST_HASH_CONFORMANT_FLOATS 0
#elif defined(__STD_RWCOMPILER_H__) || defined(_RWSTD_VER)
// Rogue Wave library:
# define BOOST_HASH_CONFORMANT_FLOATS 0
#elif defined(_LIBCPP_VERSION)
// libc++
# define BOOST_HASH_CONFORMANT_FLOATS 1
#elif defined(__GLIBCPP__) || defined(__GLIBCXX__)
// GNU libstdc++ 3
# if defined(__GNUC__) && __GNUC__ >= 4
# define BOOST_HASH_CONFORMANT_FLOATS 1
# else
# define BOOST_HASH_CONFORMANT_FLOATS 0
# endif
#elif defined(__STL_CONFIG_H)
// generic SGI STL
# define BOOST_HASH_CONFORMANT_FLOATS 0
#elif defined(__MSL_CPP__)
// MSL standard lib:
# define BOOST_HASH_CONFORMANT_FLOATS 0
#elif defined(__IBMCPP__)
// VACPP std lib (probably conformant for much earlier version).
# if __IBMCPP__ >= 1210
# define BOOST_HASH_CONFORMANT_FLOATS 1
# else
# define BOOST_HASH_CONFORMANT_FLOATS 0
# endif
#elif defined(MSIPL_COMPILE_H)
// Modena C++ standard library
# define BOOST_HASH_CONFORMANT_FLOATS 0
#elif (defined(_YVALS) && !defined(__IBMCPP__)) || defined(_CPPLIB_VER)
// Dinkumware Library (this has to appear after any possible replacement libraries):
# if _CPPLIB_VER >= 405
# define BOOST_HASH_CONFORMANT_FLOATS 1
# else
# define BOOST_HASH_CONFORMANT_FLOATS 0
# endif
#else
# define BOOST_HASH_CONFORMANT_FLOATS 0
#endif
#if BOOST_HASH_CONFORMANT_FLOATS
// The standard library is known to be compliant, so don't use the
// configuration mechanism.
namespace boost {
namespace hash_detail {
template <typename Float>
struct call_ldexp {
typedef Float float_type;
inline Float operator()(Float x, int y) const {
return std::ldexp(x, y);
}
};
template <typename Float>
struct call_frexp {
typedef Float float_type;
inline Float operator()(Float x, int* y) const {
return std::frexp(x, y);
}
};
template <typename Float>
struct select_hash_type
{
typedef Float type;
};
}
}
#else // BOOST_HASH_CONFORMANT_FLOATS == 0
// The C++ standard requires that the C float functions are overloarded
// for float, double and long double in the std namespace, but some of the older
// library implementations don't support this. On some that don't, the C99
// float functions (frexpf, frexpl, etc.) are available.
//
// The following tries to automatically detect which are available.
namespace boost {
namespace hash_detail {
// Returned by dummy versions of the float functions.
struct not_found {
// Implicitly convertible to float and long double in order to avoid
// a compile error when the dummy float functions are used.
inline operator float() const { return 0; }
inline operator long double() const { return 0; }
};
// A type for detecting the return type of functions.
template <typename T> struct is;
template <> struct is<float> { char x[10]; };
template <> struct is<double> { char x[20]; };
template <> struct is<long double> { char x[30]; };
template <> struct is<boost::hash_detail::not_found> { char x[40]; };
// Used to convert the return type of a function to a type for sizeof.
template <typename T> is<T> float_type(T);
// call_ldexp
//
// This will get specialized for float and long double
template <typename Float> struct call_ldexp
{
typedef double float_type;
inline double operator()(double a, int b) const
{
using namespace std;
return ldexp(a, b);
}
};
// call_frexp
//
// This will get specialized for float and long double
template <typename Float> struct call_frexp
{
typedef double float_type;
inline double operator()(double a, int* b) const
{
using namespace std;
return frexp(a, b);
}
};
}
}
// A namespace for dummy functions to detect when the actual function we want
// isn't available. ldexpl, ldexpf etc. might be added tby the macros below.
//
// AFAICT these have to be outside of the boost namespace, as if they're in
// the boost namespace they'll always be preferable to any other function
// (since the arguments are built in types, ADL can't be used).
namespace boost_hash_detect_float_functions {
template <class Float> boost::hash_detail::not_found ldexp(Float, int);
template <class Float> boost::hash_detail::not_found frexp(Float, int*);
}
// Macros for generating specializations of call_ldexp and call_frexp.
//
// check_cpp and check_c99 check if the C++ or C99 functions are available.
//
// Then the call_* functions select an appropriate implementation.
//
// I used c99_func in a few places just to get a unique name.
//
// Important: when using 'using namespace' at namespace level, include as
// little as possible in that namespace, as Visual C++ has an odd bug which
// can cause the namespace to be imported at the global level. This seems to
// happen mainly when there's a template in the same namesapce.
#define BOOST_HASH_CALL_FLOAT_FUNC(cpp_func, c99_func, type1, type2) \
namespace boost_hash_detect_float_functions { \
template <class Float> \
boost::hash_detail::not_found c99_func(Float, type2); \
} \
\
namespace boost { \
namespace hash_detail { \
namespace c99_func##_detect { \
using namespace std; \
using namespace boost_hash_detect_float_functions; \
\
struct check { \
static type1 x; \
static type2 y; \
BOOST_STATIC_CONSTANT(bool, cpp = \
sizeof(float_type(cpp_func(x,y))) \
== sizeof(is<type1>)); \
BOOST_STATIC_CONSTANT(bool, c99 = \
sizeof(float_type(c99_func(x,y))) \
== sizeof(is<type1>)); \
}; \
} \
\
template <bool x> \
struct call_c99_##c99_func : \
boost::hash_detail::call_##cpp_func<double> {}; \
\
template <> \
struct call_c99_##c99_func<true> { \
typedef type1 float_type; \
\
template <typename T> \
inline type1 operator()(type1 a, T b) const \
{ \
using namespace std; \
return c99_func(a, b); \
} \
}; \
\
template <bool x> \
struct call_cpp_##c99_func : \
call_c99_##c99_func< \
::boost::hash_detail::c99_func##_detect::check::c99 \
> {}; \
\
template <> \
struct call_cpp_##c99_func<true> { \
typedef type1 float_type; \
\
template <typename T> \
inline type1 operator()(type1 a, T b) const \
{ \
using namespace std; \
return cpp_func(a, b); \
} \
}; \
\
template <> \
struct call_##cpp_func<type1> : \
call_cpp_##c99_func< \
::boost::hash_detail::c99_func##_detect::check::cpp \
> {}; \
} \
}
#define BOOST_HASH_CALL_FLOAT_MACRO(cpp_func, c99_func, type1, type2) \
namespace boost { \
namespace hash_detail { \
\
template <> \
struct call_##cpp_func<type1> { \
typedef type1 float_type; \
inline type1 operator()(type1 x, type2 y) const { \
return c99_func(x, y); \
} \
}; \
} \
}
#if defined(ldexpf)
BOOST_HASH_CALL_FLOAT_MACRO(ldexp, ldexpf, float, int)
#else
BOOST_HASH_CALL_FLOAT_FUNC(ldexp, ldexpf, float, int)
#endif
#if defined(ldexpl)
BOOST_HASH_CALL_FLOAT_MACRO(ldexp, ldexpl, long double, int)
#else
BOOST_HASH_CALL_FLOAT_FUNC(ldexp, ldexpl, long double, int)
#endif
#if defined(frexpf)
BOOST_HASH_CALL_FLOAT_MACRO(frexp, frexpf, float, int*)
#else
BOOST_HASH_CALL_FLOAT_FUNC(frexp, frexpf, float, int*)
#endif
#if defined(frexpl)
BOOST_HASH_CALL_FLOAT_MACRO(frexp, frexpl, long double, int*)
#else
BOOST_HASH_CALL_FLOAT_FUNC(frexp, frexpl, long double, int*)
#endif
#undef BOOST_HASH_CALL_FLOAT_MACRO
#undef BOOST_HASH_CALL_FLOAT_FUNC
namespace boost
{
namespace hash_detail
{
template <typename Float1, typename Float2>
struct select_hash_type_impl {
typedef double type;
};
template <>
struct select_hash_type_impl<float, float> {
typedef float type;
};
template <>
struct select_hash_type_impl<long double, long double> {
typedef long double type;
};
// select_hash_type
//
// If there is support for a particular floating point type, use that
// otherwise use double (there's always support for double).
template <typename Float>
struct select_hash_type : select_hash_type_impl<
BOOST_DEDUCED_TYPENAME call_ldexp<Float>::float_type,
BOOST_DEDUCED_TYPENAME call_frexp<Float>::float_type
> {};
}
}
#endif // BOOST_HASH_CONFORMANT_FLOATS
#endif

View File

@@ -1,272 +0,0 @@
// Copyright 2005-2012 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_FUNCTIONAL_HASH_DETAIL_HASH_FLOAT_HEADER)
#define BOOST_FUNCTIONAL_HASH_DETAIL_HASH_FLOAT_HEADER
#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/container_hash/detail/float_functions.hpp>
#include <boost/container_hash/detail/limits.hpp>
#include <boost/type_traits/enable_if.hpp>
#include <boost/integer/static_log2.hpp>
#include <boost/cstdint.hpp>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <functional> // std::equal_to
#include <cstring>
#if defined(BOOST_MSVC)
#pragma warning(push)
#if BOOST_MSVC >= 1400
#pragma warning(disable:6294) // Ill-defined for-loop: initial condition does
// not satisfy test. Loop body not executed
#endif
#endif
// Can we use fpclassify?
// STLport
#if defined(__SGI_STL_PORT) || defined(_STLPORT_VERSION)
#define BOOST_HASH_USE_FPCLASSIFY 0
// GNU libstdc++ 3
#elif defined(__GLIBCPP__) || defined(__GLIBCXX__)
# if (defined(__USE_ISOC99) || defined(_GLIBCXX_USE_C99_MATH)) && \
!(defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__))
# define BOOST_HASH_USE_FPCLASSIFY 1
# else
# define BOOST_HASH_USE_FPCLASSIFY 0
# endif
// Everything else
#else
# define BOOST_HASH_USE_FPCLASSIFY 0
#endif
namespace boost
{
namespace hash_detail
{
inline void hash_float_combine(std::size_t& seed, std::size_t value)
{
seed ^= value + (seed<<6) + (seed>>2);
}
////////////////////////////////////////////////////////////////////////
// Binary hash function
//
// Only used for floats with known iec559 floats, and certain values in
// numeric_limits
inline std::size_t hash_binary(char* ptr, std::size_t length)
{
std::size_t seed = 0;
if (length >= sizeof(std::size_t)) {
std::memcpy(&seed, ptr, sizeof(std::size_t));
length -= sizeof(std::size_t);
ptr += sizeof(std::size_t);
while(length >= sizeof(std::size_t)) {
std::size_t buffer = 0;
std::memcpy(&buffer, ptr, sizeof(std::size_t));
hash_float_combine(seed, buffer);
length -= sizeof(std::size_t);
ptr += sizeof(std::size_t);
}
}
if (length > 0) {
std::size_t buffer = 0;
std::memcpy(&buffer, ptr, length);
hash_float_combine(seed, buffer);
}
return seed;
}
template <typename Float, unsigned digits, unsigned max_exponent>
struct enable_binary_hash
{
BOOST_STATIC_CONSTANT(bool, value =
std::numeric_limits<Float>::is_iec559 &&
std::numeric_limits<Float>::digits == digits &&
std::numeric_limits<Float>::radix == 2 &&
std::numeric_limits<Float>::max_exponent == max_exponent);
};
template <typename Float>
inline std::size_t float_hash_impl(Float v,
BOOST_DEDUCED_TYPENAME boost::enable_if_<
enable_binary_hash<Float, 24, 128>::value,
std::size_t>::type)
{
return hash_binary((char*) &v, 4);
}
template <typename Float>
inline std::size_t float_hash_impl(Float v,
BOOST_DEDUCED_TYPENAME boost::enable_if_<
enable_binary_hash<Float, 53, 1024>::value,
std::size_t>::type)
{
return hash_binary((char*) &v, 8);
}
template <typename Float>
inline std::size_t float_hash_impl(Float v,
BOOST_DEDUCED_TYPENAME boost::enable_if_<
enable_binary_hash<Float, 64, 16384>::value,
std::size_t>::type)
{
return hash_binary((char*) &v, 10);
}
template <typename Float>
inline std::size_t float_hash_impl(Float v,
BOOST_DEDUCED_TYPENAME boost::enable_if_<
enable_binary_hash<Float, 113, 16384>::value,
std::size_t>::type)
{
return hash_binary((char*) &v, 16);
}
////////////////////////////////////////////////////////////////////////
// Portable hash function
//
// Used as a fallback when the binary hash function isn't supported.
template <class T>
inline std::size_t float_hash_impl2(T v)
{
boost::hash_detail::call_frexp<T> frexp;
boost::hash_detail::call_ldexp<T> ldexp;
int exp = 0;
v = frexp(v, &exp);
// A postive value is easier to hash, so combine the
// sign with the exponent and use the absolute value.
if(v < 0) {
v = -v;
exp += limits<T>::max_exponent -
limits<T>::min_exponent;
}
v = ldexp(v, limits<std::size_t>::digits);
std::size_t seed = static_cast<std::size_t>(v);
v -= static_cast<T>(seed);
// ceiling(digits(T) * log2(radix(T))/ digits(size_t)) - 1;
std::size_t const length
= (limits<T>::digits *
boost::static_log2<limits<T>::radix>::value
+ limits<std::size_t>::digits - 1)
/ limits<std::size_t>::digits;
for(std::size_t i = 0; i != length; ++i)
{
v = ldexp(v, limits<std::size_t>::digits);
std::size_t part = static_cast<std::size_t>(v);
v -= static_cast<T>(part);
hash_float_combine(seed, part);
}
hash_float_combine(seed, static_cast<std::size_t>(exp));
return seed;
}
#if !defined(BOOST_HASH_DETAIL_TEST_WITHOUT_GENERIC)
template <class T>
inline std::size_t float_hash_impl(T v, ...)
{
typedef BOOST_DEDUCED_TYPENAME select_hash_type<T>::type type;
return float_hash_impl2(static_cast<type>(v));
}
#endif
}
}
#if BOOST_HASH_USE_FPCLASSIFY
#include <boost/config/no_tr1/cmath.hpp>
namespace boost
{
namespace hash_detail
{
template <class T>
inline std::size_t float_hash_value(T v)
{
#if defined(fpclassify)
switch (fpclassify(v))
#elif BOOST_HASH_CONFORMANT_FLOATS
switch (std::fpclassify(v))
#else
using namespace std;
switch (fpclassify(v))
#endif
{
case FP_ZERO:
return 0;
case FP_INFINITE:
return (std::size_t)(v > 0 ? -1 : -2);
case FP_NAN:
return (std::size_t)(-3);
case FP_NORMAL:
case FP_SUBNORMAL:
return float_hash_impl(v, 0);
default:
BOOST_ASSERT(0);
return 0;
}
}
}
}
#else // !BOOST_HASH_USE_FPCLASSIFY
namespace boost
{
namespace hash_detail
{
template <class T>
inline bool is_zero(T v)
{
#if !defined(__GNUC__) && !defined(__clang__)
return v == 0;
#else
// GCC's '-Wfloat-equal' will complain about comparing
// v to 0, but because it disables warnings for system
// headers it won't complain if you use std::equal_to to
// compare with 0. Resulting in this silliness:
return std::equal_to<T>()(v, 0);
#endif
}
template <class T>
inline std::size_t float_hash_value(T v)
{
return boost::hash_detail::is_zero(v) ? 0 : float_hash_impl(v, 0);
}
}
}
#endif // BOOST_HASH_USE_FPCLASSIFY
#undef BOOST_HASH_USE_FPCLASSIFY
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif