Delete original .html files

This commit is contained in:
Peter Dimov
2019-03-25 15:45:34 +02:00
parent a6aaec46f5
commit cdfe2eb3cb
14 changed files with 0 additions and 3427 deletions

View File

@ -1,639 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Endian Arithmetic Types</title>
<link href="styles.css" rel="stylesheet">
</style>
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td>
<a href="../../../index.html">
<img src="../../../boost.png" alt="Boost logo" align="middle" border="0" width="277" height="86"></a></td>
<td align="middle">
<b>
<font size="6">Endian Arithmetic Types</font> </b>
</td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b>
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="arithmetic.html">Arithmetic Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="buffers.html">Buffer Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="choosing_approach.html">Choosing Approach</a></b></td>
</tr>
</table>
<p></p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Introduction">Introduction</a><br>
<a href="#Example">Example</a><br>
<a href="#Limitations">Limitations</a><br>
<a href="#Feature-set">Feature set</a><br>
<a href="#Types">Enums and typedefs</a><br>
<a href="#Class_template_endian">Class template <code>endian</code></a><br>
&nbsp;&nbsp;&nbsp;
<a href="#Synopsis">Synopsis</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Members">Members</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Stream-inserter">Stream inserter</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Stream-extractor">Stream extractor</a><br>
<a href="#FAQ">FAQ</a><br>
<a href="#Design">Design</a><br>
<a href="#Experience">Experience</a><br>
<a href="#Motivating-use-cases">Motivating use cases</a><br>
<a href="#C++0x">C++11</a><br>
<a href="#Compilation">Compilation</a><br>
<a href="#Acknowledgements">Acknowledgements</a>
</td>
</tr>
</table>
<h2><a name="Introduction">Introduction</a></h2>
<p>Header <a href="arithmetic.html">boost/endian/arithmetic.hpp</a>
provides integer binary types with control over
byte order, value type, size, and alignment. Typedefs provide easy-to-use names
for common configurations.</p>
<p>These types provide portable byte-holders for integer data, independent of
particular computer architectures. Use cases almost always involve I/O, either via files or
network connections. Although data portability is the primary motivation, these
integer byte-holders may
also be used to reduce memory use, file size, or network activity since they
provide binary integer sizes not otherwise available.</p>
<p>Such integer byte-holder types are traditionally called <b><i>
endian</i></b> types. See the
<a href="http://en.wikipedia.org/wiki/Endian" name="endianness">Wikipedia</a> for
a full
exploration of <b><i>endianness</i></b>, including definitions of <i><b>big
endian</b></i> and <i><b>little endian</b></i>.</p>
<p>Boost endian integers provide the same full set of C++ assignment,
arithmetic, and relational operators&nbsp;as C++ standard integral types, with
the standard semantics.</p>
<p>Unary arithmetic operators are <b> <code><font face="Courier New">+</font></code></b>,
<b> <code>-</code></b>, <b> <code>~</code></b>, <b>
<code>!</code></b>, plus both prefix and postfix <b> <code>--</code></b> and <b> <code>++</code></b>. Binary
arithmetic operators are <b> <code>+</code></b>, <b> <code>+=</code></b>, <b> <code>-</code></b>,
<b> <code>
-=</code></b>, <b> <code>*</code></b>, <b> <code>*=</code></b>, <b> <code>/</code></b>,
<b> <code>/=</code></b>, <b> <code>&amp;</code></b>, <b> <code>&amp;=</code></b>,
<b> <code>|</code></b>, <b> <code>|=</code></b>, <b>
<code>^</code></b>, <b> <code>^=</code></b>, <b> <code>&lt;&lt;</code></b>, <b> <code>&lt;&lt;=</code></b>, <code>
<b>&gt;&gt;</b></code>, and <b>
<code>&gt;&gt;=</code></b>. Binary relational operators are <b> <code>==</code></b>,
<b> <code>!=</code></b>, <b>
<code>&lt;</code></b>, <b> <code>&lt;=</code></b>, <b> <code>&gt;</code></b>,
and <b> <code>&gt;=</code></b>.</p>
<p>Implicit conversion to the underlying value type is provided. An implicit
constructor converting from the underlying value type is provided. </p>
<h2><a name="Example">Example</a></h2>
<p>The <a href="../example/endian_example.cpp">endian_example.cpp</a> program writes a
binary file containing four-byte, big-endian and little-endian integers:</p>
<blockquote>
<pre>#include &lt;iostream&gt;
#include &lt;cstdio&gt;
#include &lt;boost/endian/arithmetic.hpp&gt;
#include &lt;boost/static_assert.hpp&gt;
using namespace boost::endian;
namespace
{
// This is an extract from a very widely used GIS file format.
// Why the designer decided to mix big and little endians in
// the same file is not known. But this is a real-world format
// and users wishing to write low level code manipulating these
// files have to deal with the mixed endianness.
struct header
{
big_int32_t file_code;
big_int32_t file_length;
little_int32_t version;
little_int32_t shape_type;
};
const char* filename = &quot;test.dat&quot;;
}
int main(int, char* [])
{
header h;
BOOST_STATIC_ASSERT(sizeof(h) == 16U); // reality check
h.file_code = 0x01020304;
h.file_length = sizeof(header);
h.version = 1;
h.shape_type = 0x01020304;
// Low-level I/O such as POSIX read/write or &lt;cstdio&gt;
// fread/fwrite is sometimes used for binary file operations
// when ultimate efficiency is important. Such I/O is often
// performed in some C++ wrapper class, but to drive home the
// point that endian integers are often used in fairly
// low-level code that does bulk I/O operations, &lt;cstdio&gt;
// fopen/fwrite is used for I/O in this example.
std::FILE* fi = std::fopen(filename, &quot;wb&quot;); // MUST BE BINARY
if (!fi)
{
std::cout &lt;&lt; &quot;could not open &quot; &lt;&lt; filename &lt;&lt; '\n';
return 1;
}
if (std::fwrite(&amp;h, sizeof(header), 1, fi)!= 1)
{
std::cout &lt;&lt; &quot;write failure for &quot; &lt;&lt; filename &lt;&lt; '\n';
return 1;
}
std::fclose(fi);
std::cout &lt;&lt; &quot;created file &quot; &lt;&lt; filename &lt;&lt; '\n';
return 0;
}
</pre>
</blockquote>
<p>After compiling and executing <a href="../example/endian_example.cpp">endian_example.cpp</a>,
a hex dump of <code>test.dat</code> shows:</p>
<blockquote>
<pre>01020304 00000010 01000000 04030201</pre>
</blockquote>
<p>Notice that the first two 32-bit integers are big endian while the second two
are little endian, even though the machine this was compiled and run on was
little endian.</p>
<h2><a name="Limitations">Limitations</a></h2>
<p>Requires <code>&lt;climits&gt;</code> <code>CHAR_BIT == 8</code>. If <code>CHAR_BIT</code>
is some other value, compilation will result in an <code>#error</code>. This
restriction is in place because the design, implementation, testing, and
documentation has only considered issues related to 8-bit bytes, and there have
been no real-world use cases presented for other sizes.</p>
<p>In C++03, <code>endian_arithmetic</code> does not meet the requirements for POD types
because it has constructors, private data members, and a base class. This means
that common use cases are relying on unspecified behavior in that the C++
Standard does not guarantee memory layout for non-POD types. This has not been a
problem in practice since all known C++ compilers lay out memory as if <code>
endian</code> were a POD type. In C++11, it is possible to specify the
default constructor as trivial, and private data members and base classes no longer disqualify a type from being a POD
type. Thus under C++11, <code>endian_arithmetic</code>
will no longer be relying on unspecified behavior.</p>
<h2><a name="Feature-set">Feature set</a></h2>
<ul>
<li>Big endian| little endian | native endian byte ordering.</li>
<li>Signed | unsigned</li>
<li>Unaligned | aligned</li>
<li>1-8 byte (unaligned) | 1, 2, 4, 8 byte (aligned)</li>
<li>Choice of value type</li>
</ul>
<h2>Enums and t<a name="Types">ypedefs</a></h2>
<p>Two scoped enums are provided:</p>
<blockquote>
<pre>enum class order {big, little, native};
enum class align {no, yes}; </pre>
</blockquote>
<p>One class template is provided:</p>
<blockquote>
<pre>template &lt;order Order, typename T, std::size_t n_bits,
align Align = align::no&gt;
class endian_arithmetic;
</pre>
</blockquote>
<p>Typedefs, such as <code>big_int32_t</code>, provide convenient naming
conventions for common use cases:</p>
<blockquote>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="49%">
<tr>
<td width="18%" align="center"><b><i>Name</i></b></td>
<td width="49%" align="center"><b><i>Alignment</i></b></td>
<td width="10%" align="center"><b><i>Endianness</i></b></td>
<td width="10%" align="center"><b><i>Sign</i></b></td>
<td width="15%" align="center"><b><i>Sizes in bits (n)</i></b></td>
</tr>
<tr>
<td width="18%"><code>big_int</code><b><i>n</i></b><code>_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>big_uint</code><i><b>n</b></i><code>_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>little_int</code><i><b>n</b></i><code>_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>little_uint</code><i><b>n</b></i><code>_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>native_int</code><i><b>n</b></i><code>_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>native</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>native_uint</code><i><b>n</b></i><code>_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>native</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>big_int</code><i><b>n</b></i><code>_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,32,64</td>
</tr>
<tr>
<td width="18%"><code>big_uint</code><i><b>n</b></i><code>_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,32,64</td>
</tr>
<tr>
<td width="18%" dir="ltr"><code>little_int</code><i><b>n</b></i><code>_at</code></td>
<td width="49%" align="center" dir="ltr"><code>yes</code></td>
<td width="10%" align="center" dir="ltr"><code>little</code></td>
<td width="10%" align="center" dir="ltr">signed</td>
<td width="15%" dir="ltr">8,16,32,64</td>
</tr>
<tr>
<td width="18%" dir="ltr"><code>little_uint</code><i><b>n</b></i><code>_at</code></td>
<td width="49%" align="center" dir="ltr"><code>yes</code></td>
<td width="10%" align="center" dir="ltr"><code>little</code></td>
<td width="10%" align="center" dir="ltr">unsigned</td>
<td width="15%" dir="ltr">8,16,32,64</td>
</tr>
</table>
</blockquote>
<p>The unaligned types do not cause compilers to insert padding bytes in classes
and structs. This is an important characteristic that can be exploited to minimize wasted space in
memory, files, and network transmissions. </p>
<p><font color="#FF0000"><b><i><span style="background-color: #FFFFFF">Warning:</span></i></b></font><span style="background-color: #FFFFFF">
Code that uses a</span>ligned types is possibly non-portable because alignment
requirements vary between hardware architectures and because alignment may be
affected by compiler switches or pragmas. For example, alignment of an 64-bit
integer may be to a 32-bit boundary on a 32-bit machine. Furthermore, aligned types
are only available on architectures with 8, 16, 32, and 64-bit integer types.</p>
<p><i><b>Recommendation:</b></i> Prefer unaligned arithmetic types.</p>
<p><i><b>Recommendation:</b></i> Protect yourself against alignment ills. For
example:</p>
<blockquote>
<pre>static_assert(sizeof(containing_struct) == 12, &quot;sizeof(containing_struct) is wrong&quot;); </pre>
</blockquote>
<p><b><i>Note:</i></b> <b><i>Note:</i></b> One-byte arithmetic types
have identical layout on all platforms, so they never actually reverse endianness. They are provided to enable generic code, and
to improve code readability and searchability.</p>
<h2><a name="Class_template_endian">Class template <code>endian</code></a><code>_arithmetic</code></h2>
<p>An <code>endian_integer</code> is an integer byte-holder with user-specified <a href="#endianness">
endianness</a>, value type, size, and <a href="#alignment">alignment</a>. The
usual operations on arithmetic types are supplied.</p>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>#include &lt;boost/endian/conversion.hpp&gt;
#include &lt;boost/endian/buffers.hpp&gt;
namespace boost
{
namespace endian
{
// C++11 features emulated if not available
enum class <a name="alignment">align</a> {no, yes};
template &lt;order Order, class T, std::size_t n_bits,
align Align = align::no&gt;
class endian_arithmetic
: public endian_buffer&lt;Order, T, n_bits, Align&gt;
{
public:
typedef T value_type;
// if BOOST_ENDIAN_FORCE_PODNESS is defined &amp;&amp; C++11 PODs are not
// available then these two constructors will not be present
<a href="#endian">endian_arithmetic</a>() noexcept = default;
<a href="#explicit-endian">endian_arithmetic</a>(T v) noexcept;
endian_arithmetic&amp; <a href="#operator-eq">operator=</a>(T v) noexcept;
<a href="#operator-T">operator value_type</a>() const noexcept;
value_type value() const noexcept; // for exposition; see endian_buffer
const char* <a href="#data">data</a>() const noexcept; // for exposition; see endian_buffer
// arithmetic operations
// note that additional operations are provided by the value_type
value_type operator+(const endian&amp; x) noexcept;
endian&amp; operator+=(endian&amp; x, value_type y) noexcept;
endian&amp; operator-=(endian&amp; x, value_type y) noexcept;
endian&amp; operator*=(endian&amp; x, value_type y) noexcept;
endian&amp; operator/=(endian&amp; x, value_type y) noexcept;
endian&amp; operator%=(endian&amp; x, value_type y) noexcept;
endian&amp; operator&amp;=(endian&amp; x, value_type y) noexcept;
endian&amp; operator|=(endian&amp; x, value_type y) noexcept;
endian&amp; operator^=(endian&amp; x, value_type y) noexcept;
endian&amp; operator&lt;&lt;=(endian&amp; x, value_type y) noexcept;
endian&amp; operator&gt;&gt;=(endian&amp; x, value_type y noexcept;
value_type operator&lt;&lt;(const endian&amp; x, value_type y) noexcept;
value_type operator&gt;&gt;(const endian&amp; x, value_type y) noexcept;
endian&amp; operator++(endian&amp; x) noexcept;
endian&amp; operator--(endian&amp; x) noexcept;
endian operator++(endian&amp; x, int) noexcept;
endian operator--(endian&amp; x, int) noexcept;
// Stream inserter
template &lt;class charT, class traits&gt;
friend std::basic_ostream&lt;charT, traits&gt;&amp;
operator&lt;&lt;(std::basic_ostream&lt;charT, traits&gt;&amp; os, const T&amp; x);
// Stream extractor
template &lt;class charT, class traits&gt;
friend std::basic_istream&lt;charT, traits&gt;&amp;
operator&gt;&gt;(std::basic_istream&lt;charT, traits&gt;&amp; is, T&amp; x);
};
// typedefs
// unaligned big endian signed integer types
typedef endian&lt;order::big, int_least8_t, 8&gt; big_int8_t;
typedef endian&lt;order::big, int_least16_t, 16&gt; big_int16_t;
typedef endian&lt;order::big, int_least32_t, 24&gt; big_int24_t;
typedef endian&lt;order::big, int_least32_t, 32&gt; big_int32_t;
typedef endian&lt;order::big, int_least64_t, 40&gt; big_int40_t;
typedef endian&lt;order::big, int_least64_t, 48&gt; big_int48_t;
typedef endian&lt;order::big, int_least64_t, 56&gt; big_int56_t;
typedef endian&lt;order::big, int_least64_t, 64&gt; big_int64_t;
// unaligned big endian unsigned integer types
typedef endian&lt;order::big, uint_least8_t, 8&gt; big_uint8_t;
typedef endian&lt;order::big, uint_least16_t, 16&gt; big_uint16_t;
typedef endian&lt;order::big, uint_least32_t, 24&gt; big_uint24_t;
typedef endian&lt;order::big, uint_least32_t, 32&gt; big_uint32_t;
typedef endian&lt;order::big, uint_least64_t, 40&gt; big_uint40_t;
typedef endian&lt;order::big, uint_least64_t, 48&gt; big_uint48_t;
typedef endian&lt;order::big, uint_least64_t, 56&gt; big_uint56_t;
typedef endian&lt;order::big, uint_least64_t, 64&gt; big_uint64_t;
// unaligned little endian signed integer types
typedef endian&lt;order::little, int_least8_t, 8&gt; little_int8_t;
typedef endian&lt;order::little, int_least16_t, 16&gt; little_int16_t;
typedef endian&lt;order::little, int_least32_t, 24&gt; little_int24_t;
typedef endian&lt;order::little, int_least32_t, 32&gt; little_int32_t;
typedef endian&lt;order::little, int_least64_t, 40&gt; little_int40_t;
typedef endian&lt;order::little, int_least64_t, 48&gt; little_int48_t;
typedef endian&lt;order::little, int_least64_t, 56&gt; little_int56_t;
typedef endian&lt;order::little, int_least64_t, 64&gt; little_int64_t;
// unaligned little endian unsigned integer types
typedef endian&lt;order::little, uint_least8_t, 8&gt; little_uint8_t;
typedef endian&lt;order::little, uint_least16_t, 16&gt; little_uint16_t;
typedef endian&lt;order::little, uint_least32_t, 24&gt; little_uint24_t;
typedef endian&lt;order::little, uint_least32_t, 32&gt; little_uint32_t;
typedef endian&lt;order::little, uint_least64_t, 40&gt; little_uint40_t;
typedef endian&lt;order::little, uint_least64_t, 48&gt; little_uint48_t;
typedef endian&lt;order::little, uint_least64_t, 56&gt; little_uint56_t;
typedef endian&lt;order::little, uint_least64_t, 64&gt; little_uint64_t;
// unaligned native endian signed integer types
typedef <b><i>implementation-defined</i></b>_int8_t native_int8_t;
typedef <b><i>implementation-defined</i></b>_int16_t native_int16_t;
typedef <b><i>implementation-defined</i></b>_int24_t native_int24_t;
typedef <b><i>implementation-defined</i></b>_int32_t native_int32_t;
typedef <b><i>implementation-defined</i></b>_int40_t native_int40_t;
typedef <b><i>implementation-defined</i></b>_int48_t native_int48_t;
typedef <b><i>implementation-defined</i></b>_int56_t native_int56_t;
typedef <b><i>implementation-defined</i></b>_int64_t native_int64_t;
// unaligned native endian unsigned integer types
typedef <b><i>implementation-defined</i></b>_uint8_t native_uint8_t;
typedef <b><i>implementation-defined</i></b>_uint16_t native_uint16_t;
typedef <b><i>implementation-defined</i></b>_uint24_t native_uint24_t;
typedef <b><i>implementation-defined</i></b>_uint32_t native_uint32_t;
typedef <b><i>implementation-defined</i></b>_uint40_t native_uint40_t;
typedef <b><i>implementation-defined</i></b>_uint48_t native_uint48_t;
typedef <b><i>implementation-defined</i></b>_uint56_t native_uint56_t;
typedef <b><i>implementation-defined</i></b>_uint64_t native_uint64_t;
// aligned big endian signed integer types
typedef endian&lt;order::big, int8_t, 8, align::yes&gt; big_int8_at;
typedef endian&lt;order::big, int16_t, 16, align::yes&gt; big_int16_at;
typedef endian&lt;order::big, int32_t, 32, align::yes&gt; big_int32_at;
typedef endian&lt;order::big, int64_t, 64, align::yes&gt; big_int64_at;
// aligned big endian unsigned integer types
typedef endian&lt;order::big, uint8_t, 8, align::yes&gt; big_uint8_at;
typedef endian&lt;order::big, uint16_t, 16, align::yes&gt; big_uint16_at;
typedef endian&lt;order::big, uint32_t, 32, align::yes&gt; big_uint32_at;
typedef endian&lt;order::big, uint64_t, 64, align::yes&gt; big_uint64_at;
// aligned little endian signed integer types
typedef endian&lt;order::little, int8_t, 8, align::yes&gt; little_int8_at;
typedef endian&lt;order::little, int16_t, 16, align::yes&gt; little_int16_at;
typedef endian&lt;order::little, int32_t, 32, align::yes&gt; little_int32_at;
typedef endian&lt;order::little, int64_t, 64, align::yes&gt; little_int64_at;
// aligned little endian unsigned integer types
typedef endian&lt;order::little, uint8_t, 8, align::yes&gt; little_uint8_at;
typedef endian&lt;order::little, uint16_t, 16, align::yes&gt; little_uint16_at;
typedef endian&lt;order::little, uint32_t, 32, align::yes&gt; little_uint32_at;
typedef endian&lt;order::little, uint64_t, 64, align::yes&gt; little_uint64_at;
// aligned native endian typedefs are not provided because
// &lt;cstdint&gt; types are superior for that use case
} // namespace endian
} // namespace boost</pre>
<p>The <i><b><code>implementation-defined</code></b></i> text above is either
<code>big</code> or <code>little</code> according to the endianness of the
platform.</p>
<h3><a name="Members">Members</a></h3>
<div dir="ltr">
<pre><code><a name="endian">endian</a>() = default; // C++03: endian(){}</code></pre>
</div>
<blockquote>
<p><i>Effects:</i> Constructs an uninitialized object of type <code>endian_arithmetic&lt;E, T, n_bits, A&gt;</code>.</p>
</blockquote>
<pre><code><a name="explicit-endian">endian</a>(T v);</code></pre>
<blockquote>
<p><i>Effects:</i> Constructs an object of type <code>endian_arithmetic&lt;E, T, n_bits, A&gt;</code>.</p>
<p><i>Postcondition:</i> <code>x == v,</code> where <code>x</code> is the
constructed object.</p>
</blockquote>
<pre><code>endian&amp; <a name="operator-eq">operator=</a>(T v);</code></pre>
<blockquote>
<p><i>Postcondition:</i> <code>x == v,</code> where <code>x</code> is the
constructed object.</p>
<p><i>Returns:</i> <code>*this</code>.</p>
</blockquote>
<pre><code><a name="operator-T">operator T</a>() const;</code></pre>
<blockquote>
<p><i>Returns:</i> The current value stored in <code>*this</code>, converted to
<code>value_type</code>.</p>
</blockquote>
<pre><code>const char* <a name="data">data</a>() const;</code></pre>
<blockquote>
<p><i>Returns:</i> A pointer to the first byte of the endian binary value stored
in <code>*this</code>.</p>
</blockquote>
<h3>Other operators</h3>
<p>Other operators on endian objects are forwarded to the equivalent
operator on <code>value_type</code>.</p>
<h3><a name="Stream-inserter">Stream inserter</a></h3>
<pre>template &lt;class charT, class traits&gt;
friend std::basic_ostream&lt;charT, traits&gt;&amp;
operator&lt;&lt;(std::basic_ostream&lt;charT, traits&gt;&amp; os, const T&amp; x);
</pre>
<blockquote>
<p><i>Returns:</i> <code>os &lt;&lt; +x</code>.</p>
</blockquote>
<h3><a name="Stream-extractor">Stream extractor</a></h3>
<pre>template &lt;class charT, class traits&gt;
friend std::basic_istream&lt;charT, traits&gt;&amp;
operator&gt;&gt;(std::basic_istream&lt;charT, traits&gt;&amp; is, T&amp; x);
</pre>
<blockquote>
<p><i>Effects: </i>As if:</p>
<blockquote>
<pre>T i;
if (is &gt;&gt; i)
x = i;
</pre>
</blockquote>
<p><i>Returns: </i><code>is</code><i>.</i></p>
</blockquote>
<h2><a name="FAQ">FAQ</a></h2>
<p>See the <a href="index.html#FAQ">Endian home page</a> FAQ for a library-wide
FAQ.</p>
<p><b>Why not just use Boost.Serialization?</b> Serialization involves a
conversion for every object involved in I/O. Endian integers require no
conversion or copying. They are already in the desired format for binary I/O.
Thus they can be read or written in bulk.</p>
<p><b>Are endian types PODs?</b> Yes for C++11. No for C++03, although several
<a href="#Compilation">macros</a> are available to force PODness in all cases.</p>
<p><b>What are the implications of endian integer types not being PODs with C++03
compilers?</b> They
can't be used in unions. Also, compilers aren't required to align or lay
out storage in portable ways, although this potential problem hasn't prevented
use of Boost.Endian with
real compilers.</p>
<p><b>What good is <i>native </i>endianness?</b> It provides alignment and
size guarantees not available from the built-in types. It eases generic
programming.</p>
<p><b>Why bother with the aligned endian types?</b> Aligned integer operations
may be faster (as much as 10 to 20 times faster) if the endianness and alignment of
the type matches the endianness and alignment requirements of the machine. The code,
however, will be somewhat less portable than with the unaligned types.</p>
<p><b>Why provide the arithmetic operations?</b> Providing a full set of operations reduces program
clutter and makes code both easier to write and to read. Consider
incrementing a variable in a record. It is very convenient to write:</p>
<pre wrap> ++record.foo;</pre>
<p wrap>Rather than:</p>
<pre wrap> int temp(record.foo);
++temp;
record.foo = temp;</pre>
<h2><a name="Design">Design</a> considerations for Boost.Endian types</h2>
<ul>
<li>Must be suitable for I/O - in other words, must be memcpyable.</li>
<li>Must provide exactly the size and internal byte ordering specified.</li>
<li>Must work correctly when the internal integer representation has more bits
that the sum of the bits in the external byte representation. Sign extension
must work correctly when the internal integer representation type has more
bits than the sum of the bits in the external bytes. For example, using
a 64-bit integer internally to represent 40-bit (5 byte) numbers must work for
both positive and negative values.</li>
<li>Must work correctly (including using the same defined external
representation) regardless of whether a compiler treats char as signed or
unsigned.</li>
<li>Unaligned types must not cause compilers to insert padding bytes.</li>
<li>The implementation should supply optimizations with great care. Experience has shown that optimizations of endian
integers often become pessimizations when changing
machines or compilers. Pessimizations can also happen when changing compiler switches,
compiler versions, or CPU models of the same architecture.</li>
</ul>
<h2><a name="Experience">Experience</a></h2>
<p>Classes with similar functionality have been independently developed by
several Boost programmers and used very successful in high-value, high-use
applications for many years. These independently developed endian libraries
often evolved from C libraries that were also widely used. Endian types have proven widely useful across a wide
range of computer architectures and applications.</p>
<h2><a name="Motivating-use-cases">Motivating use cases</a></h2>
<p>Neil Mayhew writes: &quot;I can also provide a meaningful use-case for this
library: reading TrueType font files from disk and processing the contents. The
data format has fixed endianness (big) and has unaligned values in various
places. Using Boost.Endian simplifies and cleans the code wonderfully.&quot;</p>
<h2><a name="C++0x">C++11</a></h2>
<p>The availability of the C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a> feature is detected automatically, and will be used if
present to ensure that objects of <code>class endian_arithmetic</code> are trivial, and
thus PODs.</p>
<h2><a name="Compilation">Compilation</a></h2>
<p>Boost.Endian is implemented entirely within headers, with no need to link to
any Boost object libraries.</p>
<p>Several macros allow user control over features:</p>
<ul>
<li>BOOST_ENDIAN_NO_CTORS causes <code>class endian_arithmetic</code> to have no
constructors. The intended use is for compiling user code that must be
portable between compilers regardless of C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a> support. Use of constructors will always fail, <br>
&nbsp;</li>
<li>BOOST_ENDIAN_FORCE_PODNESS causes BOOST_ENDIAN_NO_CTORS to be defined if
the compiler does not support C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a>. This is ensures that objects of <code>class endian_arithmetic</code>
are PODs, and so can be used in C++03 unions.
In C++11, <code>class endian_arithmetic</code> objects are PODs, even though they have
constructors, so can always be used in unions.</li>
</ul>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>Original design developed by Darin Adler based on classes developed by Mark
Borgerding. Four original class templates combined into a single <code>endian_arithmetic</code>
class template by Beman Dawes, who put the library together, provided
documentation, added the typedefs, and also added the <code>unrolled_byte_loops</code>
sign partial specialization to correctly extend the sign when cover integer size
differs from endian representation size.</p>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->14 October, 2015<!--webbot bot="Timestamp" endspan i-checksum="38874" --></p>
<p>© Copyright Beman Dawes, 2006-2009, 2013</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
</body>
</html>

View File

@ -1,79 +0,0 @@
Conversion function naming bikeshed
return-by-value modify-argument
------------------ ---------------
reverse_endianness reverse_endianness_in_place
" reverse_endianness_arg
endian_reverse endian_reverse_in_place
" endian_reverse_inplace
" endian_reverse_replace
" endian_reverse_in_situ
" endian_reverse_here
" endian_reverse_this
" endian_reverse_self
" endian_reverse_arg
" endian_reverse_in
reverse reverse_in_place
reverse_endian reverse_endian_in_place
swap_endianness swap_endianness_in_place
swap_endian swap_endian_in_place
endian_swap endian_swap_this
flip_endianness flip_endianness_in_place
flip_endian flip_endian_in_place
endian_flip endian_flip_in_place
reverse_order reverse_order_in_place
Key points:
* The above names are defined in a user namespace as customization points to be found by
ADL, and so cannot depend on the enclosing namespace name to signal readers that they
are related to endianness.
* The above functions are rarely called directly by user code, which is more likely to use
the various conditional functions instead. So explicitness is more important than
brevity.
Conditional names
big_to_native native_to_big little_to_native native_to_little
big_to_host host_to_big
be_to_ne ne_to_be
from_big, to_big
big_to_native big_to_native
native_to_big native_to_big
conditional_reverse runtime_conditional_reverse
conditional_reverse conditional_reverse <------
merriam-webster.com/dictionary
reverse [1] (adjective): opposite or contrary to a previous or normal condition <reverse order>
reverse [2] (verb) : to change (something) to an opposite state or condition
swap (verb) : to give something to someone and receive something in return : to trade or exchange (things)
flip (verb)
: to turn (something) over by throwing it up in the air with a quick movement
: to cause (something) to turn or turn over quickly
: to move (something) with a quick light movement
--------------------------------------------------
Copyright Beman Dawes, 2014
Distributed under the Boost Software License, Version 1.0.
See www.boost.org/LICENSE_1_0.txt

View File

@ -1,600 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Endian Buffer Types</title>
<link href="styles.css" rel="stylesheet">
</style>
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td>
<a href="../../../index.html">
<img src="../../../boost.png" alt="Boost logo" align="middle" border="0" width="277" height="86"></a></td>
<td align="middle">
<b>
<font size="6">Endian Buffer Types</font> </b>
</td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b>
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="arithmetic.html">Arithmetic Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="buffers.html">Buffer Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="choosing_approach.html">Choosing Approach</a></b></td>
</tr>
</table>
<p></p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Introduction">Introduction</a><br>
<a href="#Example">Example</a><br>
<a href="#Limitations">Limitations</a><br>
<a href="#Feature-set">Feature set</a><br>
<a href="#Types">Enums and typedefs</a><br>
<a href="#Class_template_endian">Class template <code>endian_buffer</code></a><br>
&nbsp;&nbsp;&nbsp;
<a href="#Synopsis">Synopsis</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Members">Members</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Non-member-functions">Non-Members</a><br>
<a href="#FAQ">FAQ</a><br>
<a href="#Design">Design</a><br>
<a href="#C++0x">C++11</a><br>
<a href="#Compilation">Compilation</a></td>
</tr>
</table>
<h2><a name="Introduction">Introduction</a></h2>
<p>The internal byte order of arithmetic types is traditionally called <b><i>endianness</i></b>. See
the
<a href="http://en.wikipedia.org/wiki/Endian" name="endianness">Wikipedia</a> for
a full
exploration of <b><i>endianness</i></b>, including definitions of <i><b>big
endian</b></i> and <i><b>little endian</b></i>.</p>
<p>Header <b><code>boost/endian/buffers.hpp</code></b>
provides <code>endian_buffer</code>, a portable endian integer binary buffer
class template with control over
byte order, value type, size, and alignment independent of the platform&#39;s native
endianness. Typedefs provide easy-to-use names
for common configurations.</p>
<p>Use cases primarily involve data portability, either via files or network
connections, but these byte-holders may
also be used to reduce memory use, file size, or network activity since they
provide binary numeric sizes not otherwise available.</p>
<p dir="ltr">Class <code>endian_buffer</code> is aimed at users who wish
explicit control over when endianness conversions occur. It also serves as the
base class for the <code><a href="arithmetic.html">endian_arithmetic</a></code>
class template, which is aimed at users who wish fully automatic endianness
conversion and direct support for all normal arithmetic operations.</p>
<h2><a name="Example">Example</a></h2>
<p>The <b><code>example/endian_example.cpp</code></b> program writes a
binary file containing four-byte, big-endian and little-endian integers:</p>
<blockquote>
<pre>#include &lt;iostream&gt;
#include &lt;cstdio&gt;
#include &lt;boost/endian/buffers.hpp&gt; // see <a href="#Synopsis">Synopsis</a> below
#include &lt;boost/static_assert.hpp&gt;
using namespace boost::endian;
namespace
{
// This is an extract from a very widely used GIS file format.
// Why the designer decided to mix big and little endians in
// the same file is not known. But this is a real-world format
// and users wishing to write low level code manipulating these
// files have to deal with the mixed endianness.
struct header
{
big_int32_<code>buf_</code>t file_code;
big_int32_<code>buf_</code>t file_length;
little_int32_<code>buf_</code>t version;
little_int32_<code>buf_</code>t shape_type;
};
const char* filename = &quot;test.dat&quot;;
}
int main(int, char* [])
{
header h;
BOOST_STATIC_ASSERT(sizeof(h) == 16U); // reality check
h.file_code = 0x01020304;
h.file_length = sizeof(header);
h.version = 1;
h.shape_type = 0x01020304;
// Low-level I/O such as POSIX read/write or &lt;cstdio&gt;
// fread/fwrite is sometimes used for binary file operations
// when ultimate efficiency is important. Such I/O is often
// performed in some C++ wrapper class, but to drive home the
// point that endian integers are often used in fairly
// low-level code that does bulk I/O operations, &lt;cstdio&gt;
// fopen/fwrite is used for I/O in this example.
std::FILE* fi = std::fopen(filename, &quot;wb&quot;); // MUST BE BINARY
if (!fi)
{
std::cout &lt;&lt; &quot;could not open &quot; &lt;&lt; filename &lt;&lt; '\n';
return 1;
}
if (std::fwrite(&amp;h, sizeof(header), 1, fi)!= 1)
{
std::cout &lt;&lt; &quot;write failure for &quot; &lt;&lt; filename &lt;&lt; '\n';
return 1;
}
std::fclose(fi);
std::cout &lt;&lt; &quot;created file &quot; &lt;&lt; filename &lt;&lt; '\n';
return 0;
}
</pre>
</blockquote>
<p>After compiling and executing <b><code>example/endian_example.cpp</code></b>,
a hex dump of <code>test.dat</code> shows:</p>
<blockquote>
<pre>01020304 00000010 01000000 04030201</pre>
</blockquote>
<p>Notice that the first two 32-bit integers are big endian while the second two
are little endian, even though the machine this was compiled and run on was
little endian.</p>
<h2><a name="Limitations">Limitations</a></h2>
<p>Requires <code>&lt;climits&gt;</code> <code>CHAR_BIT == 8</code>. If <code>CHAR_BIT</code>
is some other value, compilation will result in an <code>#error</code>. This
restriction is in place because the design, implementation, testing, and
documentation has only considered issues related to 8-bit bytes, and there have
been no real-world use cases presented for other sizes.</p>
<p>In C++03, <code>endian_buffer</code> does not meet the requirements for POD types
because it has constructors, private data members, and a base class. This means
that common use cases are relying on unspecified behavior in that the C++
Standard does not guarantee memory layout for non-POD types. This has not been a
problem in practice since all known C++ compilers lay out memory as if <code>
endian</code> were a POD type. In C++11, it is possible to specify the
default constructor as trivial, and private data members and base classes no longer disqualify a type from being a POD
type. Thus under C++11, <code>endian_buffer</code>
will no longer be relying on unspecified behavior.</p>
<h2><a name="Feature-set">Feature set</a></h2>
<ul>
<li>Big endian| little endian | native endian byte ordering.</li>
<li>Signed | unsigned</li>
<li>Unaligned | aligned</li>
<li>1-8 byte (unaligned) | 1, 2, 4, 8 byte (aligned)</li>
<li>Choice of value type</li>
</ul>
<h2>Enums and t<a name="Types">ypedefs</a></h2>
<p>Two scoped enums are provided:</p>
<blockquote>
<pre>enum class order {big, little, native};
enum class align {no, yes}; </pre>
</blockquote>
<p>One class template is provided:</p>
<blockquote>
<pre>template &lt;order Order, typename T, std::size_t Nbits,
align Align = align::no&gt;
class endian_buffer;
</pre>
</blockquote>
<p>Typedefs, such as <code>big_int32_buf_t</code>, provide convenient naming
conventions for common use cases:</p>
<blockquote>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="49%">
<tr>
<td width="18%" align="center"><b><i>Name</i></b></td>
<td width="49%" align="center"><b><i>Alignment</i></b></td>
<td width="10%" align="center"><b><i>Endianness</i></b></td>
<td width="10%" align="center"><b><i>Sign</i></b></td>
<td width="15%" align="center"><b><i>Sizes in bits (n)</i></b></td>
</tr>
<tr>
<td width="18%" dir="ltr"><code>big_int</code><b><i>n</i></b><code>_buf_t</code></td>
<td width="49%" align="center" dir="ltr"><code>no</code></td>
<td width="10%" align="center" dir="ltr"><code>big</code></td>
<td width="10%" align="center" dir="ltr">signed</td>
<td width="15%" dir="ltr">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%" dir="ltr"><code>big_uint</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center" dir="ltr"><code>no</code></td>
<td width="10%" align="center" dir="ltr"><code>big</code></td>
<td width="10%" align="center" dir="ltr">unsigned</td>
<td width="15%" dir="ltr">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>little_int</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>little_uint</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>native_int</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>native</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>native_uint</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>native</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>big_int</code><i><b>n</b></i><code>_buf_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,32,64</td>
</tr>
<tr>
<td width="18%"><code>big_uint</code><i><b>n</b></i><code>_</code><code>buf_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,32,64</td>
</tr>
<tr>
<td width="18%"><code>little_int</code><i><b>n</b></i><code>_</code><code>buf_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,32,64</td>
</tr>
<tr>
<td width="18%"><code>little_uint</code><i><b>n</b></i><code>_</code><code>buf_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,32,64</td>
</tr>
</table>
</blockquote>
<p>The unaligned types do not cause compilers to insert padding bytes in classes
and structs. This is an important characteristic that can be exploited to minimize wasted space in
memory, files, and network transmissions. </p>
<p><font color="#FF0000"><b><i><span style="background-color: #FFFFFF">Warning:</span></i></b></font><span style="background-color: #FFFFFF">
Code that uses a</span>ligned types is possibly non-portable because alignment
requirements vary between hardware architectures and because alignment may be
affected by compiler switches or pragmas. For example, alignment of an 64-bit
integer may be to a 32-bit boundary on a 32-bit machine and to a 64-bit boundary
on a 64-bit machine. Furthermore, aligned types
are only available on architectures with 8, 16, 32, and 64-bit integer types. </p>
<p><i><b>Recommendation:</b></i> Prefer unaligned buffer types.</p>
<p><i><b>Recommendation:</b></i> Protect yourself against alignment ills. For
example:</p>
<blockquote>
<pre>static_assert(sizeof(containing_struct) == 12, &quot;sizeof(containing_struct) is wrong&quot;); </pre>
</blockquote>
<p><b><i>Note:</i></b> One-byte big and little buffer types
have identical layout on all platforms, so they never actually reverse endianness. They are provided to enable generic code, and
to improve code readability and searchability.</p>
<h2><a name="Class_template_endian">Class template <code>endian</code></a><code>_buffer</code></h2>
<p>An <code>endian_buffer</code> is a byte-holder for arithmetic types with user-specified <a href="#endianness">
endianness</a>, value type, size, and <a href="#alignment">alignment</a>.</p>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>#include &lt;boost/endian/conversion.hpp
namespace boost
{
namespace endian
{
// C++11 features emulated if not available
enum class <a name="alignment">align</a> {no, yes};
template &lt;order Order, class T, std::size_t Nbits,
align Align = align::no&gt;
class endian_buffer
{
public:
typedef T value_type;
<a href="#endian">endian_buffer</a>() noexcept = default;
explicit <a href="#explicit-endian">endian_buffer</a>(T v) noexcept;
endian_buffer&amp; <a href="#operator-eq">operator=</a>(T v) noexcept;
value_type <a href="#value">value</a>() const noexcept;
const char* <a href="#data">data</a>() const noexcept;
protected:
<b><i>implementaton-defined</i></b> endian_value; // for exposition only
};
// stream inserter
template &lt;class charT, class traits, order Order, class T,
std::size_t n_bits, align Align&gt;
std::basic_ostream&lt;charT, traits&gt;&amp;
<a href="#inserter">operator&lt;&lt;</a>(std::basic_ostream&lt;charT, traits&gt;&amp; os,
const endian_buffer&lt;Order, T, n_bits, Align&gt;&amp; x);
// stream extractor
template &lt;class charT, class traits, order Order, class T,
std::size_t n_bits, align A&gt;
std::basic_istream&lt;charT, traits&gt;&amp;
<a href="#extractor">operator&gt;&gt;</a>(std::basic_istream&lt;charT, traits&gt;&amp; is,
endian_buffer&lt;Order, T, n_bits, Align&gt;&amp; x);
// typedefs
// unaligned big endian signed integer buffers
typedef endian_buffer&lt;order::big, int_least8_t, 8&gt; big_int8_buf_t;
typedef endian_buffer&lt;order::big, int_least16_t, 16&gt; big_int16_buf_t;
typedef endian_buffer&lt;order::big, int_least32_t, 24&gt; big_int24_buf_t;
typedef endian_buffer&lt;order::big, int_least32_t, 32&gt; big_int32_buf_t;
typedef endian_buffer&lt;order::big, int_least64_t, 40&gt; big_int40_buf_t;
typedef endian_buffer&lt;order::big, int_least64_t, 48&gt; big_int48_buf_t;
typedef endian_buffer&lt;order::big, int_least64_t, 56&gt; big_int56_buf_t;
typedef endian_buffer&lt;order::big, int_least64_t, 64&gt; big_int64_buf_t;
// unaligned big endian unsigned integer buffers
typedef endian_buffer&lt;order::big, uint_least8_t, 8&gt; big_uint8_buf_t;
typedef endian_buffer&lt;order::big, uint_least16_t, 16&gt; big_uint16_buf_t;
typedef endian_buffer&lt;order::big, uint_least32_t, 24&gt; big_uint24_buf_t;
typedef endian_buffer&lt;order::big, uint_least32_t, 32&gt; big_uint32_buf_t;
typedef endian_buffer&lt;order::big, uint_least64_t, 40&gt; big_uint40_buf_t;
typedef endian_buffer&lt;order::big, uint_least64_t, 48&gt; big_uint48_buf_t;
typedef endian_buffer&lt;order::big, uint_least64_t, 56&gt; big_uint56_buf_t;
typedef endian_buffer&lt;order::big, uint_least64_t, 64&gt; big_uint64_buf_t;
// unaligned little endian signed integer buffers
typedef endian_buffer&lt;order::little, int_least8_t, 8&gt; little_int8_buf_t;
typedef endian_buffer&lt;order::little, int_least16_t, 16&gt; little_int16_buf_t;
typedef endian_buffer&lt;order::little, int_least32_t, 24&gt; little_int24_buf_t;
typedef endian_buffer&lt;order::little, int_least32_t, 32&gt; little_int32_buf_t;
typedef endian_buffer&lt;order::little, int_least64_t, 40&gt; little_int40_buf_t;
typedef endian_buffer&lt;order::little, int_least64_t, 48&gt; little_int48_buf_t;
typedef endian_buffer&lt;order::little, int_least64_t, 56&gt; little_int56_buf_t;
typedef endian_buffer&lt;order::little, int_least64_t, 64&gt; little_int64_buf_t;
// unaligned little endian unsigned integer buffers
typedef endian_buffer&lt;order::little, uint_least8_t, 8&gt; little_uint8_buf_t;
typedef endian_buffer&lt;order::little, uint_least16_t, 16&gt; little_uint16_buf_t;
typedef endian_buffer&lt;order::little, uint_least32_t, 24&gt; little_uint24_buf_t;
typedef endian_buffer&lt;order::little, uint_least32_t, 32&gt; little_uint32_buf_t;
typedef endian_buffer&lt;order::little, uint_least64_t, 40&gt; little_uint40_buf_t;
typedef endian_buffer&lt;order::little, uint_least64_t, 48&gt; little_uint48_buf_t;
typedef endian_buffer&lt;order::little, uint_least64_t, 56&gt; little_uint56_buf_t;
typedef endian_buffer&lt;order::little, uint_least64_t, 64&gt; little_uint64_buf_t;
// unaligned native endian signed integer types
typedef <b><i>implementation-defined</i></b>_int8_buf_t native_int8_buf_t;
typedef <b><i>implementation-defined</i></b>_int16_buf_t native_int16_buf_t;
typedef <b><i>implementation-defined</i></b>_int24_buf_t native_int24_buf_t;
typedef <b><i>implementation-defined</i></b>_int32_buf_t native_int32_buf_t;
typedef <b><i>implementation-defined</i></b>_int40_buf_t native_int40_buf_t;
typedef <b><i>implementation-defined</i></b>_int48_buf_t native_int48_buf_t;
typedef <b><i>implementation-defined</i></b>_int56_buf_t native_int56_buf_t;
typedef <b><i>implementation-defined</i></b>_int64_buf_t native_int64_buf_t;
// unaligned native endian unsigned integer types
typedef <b><i>implementation-defined</i></b>_uint8_buf_t native_uint8_buf_t;
typedef <b><i>implementation-defined</i></b>_uint16_buf_t native_uint16_buf_t;
typedef <b><i>implementation-defined</i></b>_uint24_buf_t native_uint24_buf_t;
typedef <b><i>implementation-defined</i></b>_uint32_buf_t native_uint32_buf_t;
typedef <b><i>implementation-defined</i></b>_uint40_buf_t native_uint40_buf_t;
typedef <b><i>implementation-defined</i></b>_uint48_buf_t native_uint48_buf_t;
typedef <b><i>implementation-defined</i></b>_uint56_buf_t native_uint56_buf_t;
typedef <b><i>implementation-defined</i></b>_uint64_buf_t native_uint64_buf_t;
// aligned big endian signed integer buffers
typedef endian_buffer&lt;order::big, int8_t, 8, align::yes&gt; big_int8_buf_at;
typedef endian_buffer&lt;order::big, int16_t, 16, align::yes&gt; big_int16_buf_at;
typedef endian_buffer&lt;order::big, int32_t, 32, align::yes&gt; big_int32_buf_at;
typedef endian_buffer&lt;order::big, int64_t, 64, align::yes&gt; big_int64_buf_at;
// aligned big endian unsigned integer buffers
typedef endian_buffer&lt;order::big, uint8_t, 8, align::yes&gt; big_uint8_buf_at;
typedef endian_buffer&lt;order::big, uint16_t, 16, align::yes&gt; big_uint16_buf_at;
typedef endian_buffer&lt;order::big, uint32_t, 32, align::yes&gt; big_uint32_buf_at;
typedef endian_buffer&lt;order::big, uint64_t, 64, align::yes&gt; big_uint64_buf_at;
// aligned little endian signed integer buffers
typedef endian_buffer&lt;order::little, int8_t, 8, align::yes&gt; little_int8_buf_at;
typedef endian_buffer&lt;order::little, int16_t, 16, align::yes&gt; little_int16_buf_at;
typedef endian_buffer&lt;order::little, int32_t, 32, align::yes&gt; little_int32_buf_at;
typedef endian_buffer&lt;order::little, int64_t, 64, align::yes&gt; little_int64_buf_at;
// aligned little endian unsigned integer buffers
typedef endian_buffer&lt;order::little, uint8_t, 8, align::yes&gt; little_uint8_buf_at;
typedef endian_buffer&lt;order::little, uint16_t, 16, align::yes&gt; little_uint16_buf_at;
typedef endian_buffer&lt;order::little, uint32_t, 32, align::yes&gt; little_uint32_buf_at;
typedef endian_buffer&lt;order::little, uint64_t, 64, align::yes&gt; little_uint64_buf_at;
// aligned native endian typedefs are not provided because
// &lt;cstdint&gt; types are superior for this use case
} // namespace endian
} // namespace boost</pre>
<p>The <i><b><code>implementation-defined</code></b></i> text in typedefs above is either
<code>big</code> or <code>little</code> according to the native endianness of the
platform.</p>
<p>The expository data member <code>endian_value</code> stores the current value
of an <code>endian_value</code> object as a sequence of bytes ordered as
specified by the <code>Order</code> template parameter.&nbsp; The <i><b><code>
implementation-defined</code></b></i> type of <code>endian_value</code> is a
type such as <code><span style="font-size: 85%">char[Nbits/CHAR_BIT]</span></code>
or <code><span style="font-size: 85%">T</span></code> that meets the
requirements imposed by the <code>Nbits</code> and <code>Align</code> template
parameters.&nbsp; The <code><span style="font-size: 85%">CHAR_BIT</span></code>
macro is defined in <code><span style="font-size: 85%">&lt;climits&gt;</span></code>.
The only value of <code><span style="font-size: 85%">CHAR_BIT</span></code> that
is required to be supported is 8.</p>
<p>Template parameter <code><span style="font-size: 85%">T</span></code> is
required to be a standard integer type (C++std, 3.9.1) and <code>
<span style="font-size: 85%">sizeof(T)*CHAR_BIT</span></code> is required to be
greater or equal to <span style="font-size: 85%"> <code>Nbits</code>.</span></p>
<h3><a name="Members">Members</a></h3>
<pre><code><a name="endian">endian</a>_buffer() noexcept = default;</code></pre>
<blockquote>
<p><i>Effects:</i> Constructs an uninitialized object of type <code>endian_buffer&lt;Order, T,
Nbits, Align&gt;</code>.</p>
</blockquote>
<pre><code>explicit <a name="explicit-endian">endian</a>_buffer(T v) noexcept;</code></pre>
<blockquote>
<p><i>Effects:</i> Constructs an object of type <code>endian_buffer&lt;Order, T,
Nbits, Align&gt;</code>.</p>
<p><i>Postcondition:</i> <code>value() == v &amp; mask</code>, where <code>mask</code>
is a constant of type <code>value_type</code> with <code>Nbits</code> low-order
bits set to one.</p>
<p><i>Remarks:</i> If <code>Align</code> is <code>align::yes</code> then
endianness conversion, if required, is performed by <code>
boost::endian::endian_reverse</code>.</p>
</blockquote>
<pre><code>endian_buffer&amp; <a name="operator-eq">operator=</a>(T v) noexcept;</code></pre>
<blockquote>
<p><i>Postcondition:</i> <code>value() == v &amp; mask</code>, where <code>mask</code>
is a constant of type <code>value_type</code> with <code>Nbits</code>
low-order bits set to one.</p>
<p><i>Returns:</i> <code>*this</code>.</p>
<p><i>Remarks:</i> If <code>Align</code> is <code>align::yes</code> then
endianness conversion, if required, is performed by <code>
boost::endian::endian_reverse</code>.</p>
</blockquote>
<pre>value_type <a name="value">value</a>()<code> const noexcept;</code></pre>
<blockquote>
<p><i>Returns:</i> <code>endian_value</code>, converted to <code>value_type</code>,
if required, and having the endianness of the native platform.</p>
<p><i>Remarks:</i> If <code>Align</code> is <code>align::yes</code> then
endianness conversion, if required, is performed by <code>
boost::endian::endian_reverse</code>.</p>
</blockquote>
<pre><code>const char* <a name="data">data</a>() const noexcept;</code></pre>
<blockquote>
<p><i>Returns:</i> A pointer to the first byte of <code>endian_value</code>.</p>
</blockquote>
<h3><a name="Non-member-functions">Non-member functions</a></h3>
<pre>template &lt;class charT, class traits, order Order, class T,
std::size_t n_bits, align Align&gt;
std::basic_ostream&lt;charT, traits&gt;&amp; <a name="inserter">operator&lt;&lt;</a>(std::basic_ostream&lt;charT, traits&gt;&amp; os,
const endian_buffer&lt;Order, T, n_bits, Align&gt;&amp; x);
</pre>
<blockquote>
<p><i>Returns:</i> <code>os &lt;&lt; x.value()</code>.</p>
</blockquote>
<pre>template &lt;class charT, class traits, order Order, class T,
std::size_t n_bits, align A&gt;
std::basic_istream&lt;charT, traits&gt;&amp; <a name="extractor">operator&gt;&gt;</a>(std::basic_istream&lt;charT, traits&gt;&amp; is,
endian_buffer&lt;Order, T, n_bits, Align&gt;&amp; x);
</pre>
<blockquote>
<p><i>Effects: </i>As if:</p>
<blockquote>
<pre>T i;
if (is &gt;&gt; i)
x = i;
</pre>
</blockquote>
<p><i>Returns:</i> <code>is</code>.</p>
</blockquote>
<h2><a name="FAQ">FAQ</a></h2>
<p>See the <a href="index.html#FAQ">Endian home page</a> FAQ for a library-wide
FAQ.</p>
<p><b>Why not just use Boost.Serialization?</b> Serialization involves a
conversion for every object involved in I/O. Endian integers require no
conversion or copying. They are already in the desired format for binary I/O.
Thus they can be read or written in bulk.</p>
<p><b>Are endian types PODs?</b> Yes for C++11. No for C++03, although several
<a href="#Compilation">macros</a> are available to force PODness in all cases.</p>
<p><b>What are the implications of endian integer types not being PODs with C++03
compilers?</b> They
can't be used in unions. Also, compilers aren't required to align or lay
out storage in portable ways, although this potential problem hasn't prevented
use of Boost.Endian with
real compilers.</p>
<p><b>What good is <i>native </i>endianness?</b> It provides alignment and
size guarantees not available from the built-in types. It eases generic
programming.</p>
<p><b>Why bother with the aligned endian types?</b> Aligned integer operations
may be faster (as much as 10 to 20 times faster) if the endianness and alignment of
the type matches the endianness and alignment requirements of the machine. The code,
however, is
likely to be somewhat less portable than with the unaligned types.</p>
<h2><a name="Design">Design</a> considerations for Boost.Endian buffers</h2>
<ul>
<li>Must be suitable for I/O - in other words, must be memcpyable.</li>
<li>Must provide exactly the size and internal byte ordering specified.</li>
<li>Must work correctly when the internal integer representation has more bits
that the sum of the bits in the external byte representation. Sign extension
must work correctly when the internal integer representation type has more
bits than the sum of the bits in the external bytes. For example, using
a 64-bit integer internally to represent 40-bit (5 byte) numbers must work for
both positive and negative values.</li>
<li>Must work correctly (including using the same defined external
representation) regardless of whether a compiler treats char as signed or
unsigned.</li>
<li>Unaligned types must not cause compilers to insert padding bytes.</li>
<li>The implementation should supply optimizations with great care. Experience has shown that optimizations of endian
integers often become pessimizations when changing
machines or compilers. Pessimizations can also happen when changing compiler switches,
compiler versions, or CPU models of the same architecture.</li>
</ul>
<h2><a name="C++0x">C++11</a></h2>
<p>The availability of the C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a> feature is detected automatically, and will be used if
present to ensure that objects of <code>class endian_buffer</code> are trivial, and
thus PODs.</p>
<h2><a name="Compilation">Compilation</a></h2>
<p>Boost.Endian is implemented entirely within headers, with no need to link to
any Boost object libraries.</p>
<p>Several macros allow user control over features:</p>
<ul>
<li>BOOST_ENDIAN_NO_CTORS causes <code>class endian_buffer</code> to have no
constructors. The intended use is for compiling user code that must be
portable between compilers regardless of C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a> support. Use of constructors will always fail, <br>
&nbsp;</li>
<li>BOOST_ENDIAN_FORCE_PODNESS causes BOOST_ENDIAN_NO_CTORS to be defined if
the compiler does not support C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a>. This is ensures that objects of <code>class endian_buffer</code>
are PODs, and so can be used in C++03 unions.
In C++11, <code>class endian_buffer</code> objects are PODs, even though they have
constructors, so can always be used in unions.</li>
</ul>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->14 October, 2015<!--webbot bot="Timestamp" endspan i-checksum="38874" --></p>
<p>© Copyright Beman Dawes, 2006-2009, 2013</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
</body>
</html>

View File

@ -1,412 +0,0 @@
<html>
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Choosing Approach</title>
<link href="styles.css" rel="stylesheet">
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td width="339">
<a href="../../../index.html">
<img src="../../../boost.png" alt="Boost logo" align="middle" border="0" width="277" height="86"></a></td>
<td align="middle" width="1253">
<font size="6"><b>Choosing the Approach</b></font></td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b>
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="arithmetic.html">Arithmetic Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="buffers.html">Buffer Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="choosing_approach.html">Choosing Approach</a></b></td>
</tr>
</table>
<p></p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Introduction">Introduction</a><br>
<a href="#Choosing">Choosing between conversion functions,</a><br>
&nbsp; <a href="#Choosing">buffer types, and arithmetic types</a><br>
&nbsp;&nbsp;&nbsp;<a href="#Characteristics">Characteristics</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Endianness-invariants">Endianness invariants</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Conversion-explicitness">Conversion explicitness</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Arithmetic-operations">Arithmetic operations</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Sizes">Sizes</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Alignments">Alignments</a><br>
&nbsp;&nbsp;&nbsp;<a href="#Design-patterns">Design patterns</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#As-needed">Convert only as needed (i.e. lazy)</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Anticipating-need">Convert in anticipation of need</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Convert-generally-as-needed-locally-in-anticipation">Generally
as needed, locally in anticipation</a><br>
&nbsp;&nbsp;&nbsp;<a href="#Use-cases">Use case examples</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Porting-endian-unaware-codebase">Porting endian unaware codebase</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Porting-endian-aware-codebase">Porting endian aware codebase</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Reliability-arithmetic-speed">Reliability and arithmetic-speed</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Reliability-ease-of-use">Reliability and ease-of-use</a></td>
</tr>
</table>
<h2><a name="Introduction">Introduction</a></h2>
<p>Deciding which is the best endianness approach (conversion functions, buffer
types, or arithmetic types) for a particular application involves complex
engineering trade-offs. It is hard to assess those trade-offs without some
understanding of the different interfaces, so you might want to read the
<a href="conversion.html">conversion functions</a>, <a href="buffers.html">
buffer types</a>, and <a href="arithmetic.html">arithmetic types</a> pages
before diving into this page.</p>
<h2><a name="Choosing">Choosing</a> between conversion functions, buffer types,
and arithmetic types</h2>
<p>The best approach to endianness for a particular application depends on the interaction between
the application&#39;s needs and the characteristics of each of the three approaches.</p>
<p><b>Recommendation:</b> If you are new to endianness, uncertain, or don&#39;t want to invest
the time to
study
engineering trade-offs, use <a href="arithmetic.html">endian arithmetic types</a>. They are safe, easy
to use, and easy to maintain. Use the
<a href="#Anticipating-need"> <i>
anticipating need</i></a> design pattern locally around performance hot spots
like lengthy loops, if needed.</p>
<h3><a name="Background">Background</a> </h3>
<p>A dealing with endianness usually implies a program portability or a data
portability requirement, and often both. That means real programs dealing with
endianness are usually complex, so the examples shown here would really be
written as multiple functions spread across multiple translation units. They
would involve interfaces that can not be altered as they are supplied by
third-parties or the standard library. </p>
<h3><a name="Characteristics">Characteristics</a></h3>
<p>The characteristics that differentiate the three approaches to endianness are the endianness
invariants, conversion explicitness, arithmetic operations, sizes available, and
alignment requirements.</p>
<h4><a name="Endianness-invariants">Endianness invariants</a></h4>
<blockquote>
<p><b>Endian conversion functions</b> use objects of the ordinary C++ arithmetic
types like <code>int</code> or <code>unsigned short</code> to hold values. That
breaks the implicit invariant that the C++ language rules apply. The usual
language rules only apply if the endianness of the object is currently set to the native endianness for the platform. That can
make it very hard to reason about logic flow, and result in difficult to
find bugs.</p>
<p>For example:</p>
<blockquote>
<pre>struct data_t // big endian
{
int32_t v1; // description ...
int32_t v2; // description ...
... additional character data members (i.e. non-endian)
int32_t v3; // description ...
};
data_t data;
read(data);
big_to_native_inplace(data.v1);
big_to_native_inplace(data.v2);
...
++v1;
third_party::func(data.v2);
...
native_to_big_inplace(data.v1);
native_to_big_inplace(data.v2);
write(data);
</pre>
<p>The programmer didn&#39;t bother to convert <code>data.v3</code> to native
endianness because that member isn&#39;t used. A later maintainer needs to pass
<code>data.v3</code> to the third-party function, so adds <code>third_party::func(data.v3);</code>
somewhere deep in the code. This causes a silent failure because the usual
invariant that an object of type <code>int32_t</code> holds a value as
described by the C++ core language does not apply.</p>
</blockquote>
<p><b>Endian buffer and arithmetic types</b> hold values internally as arrays of
characters with an invariant that the endianness of the array never changes.
That makes these types easier to use and programs easier to maintain. </p>
<p>Here is the same example, using an endian arithmetic type:</p>
<blockquote>
<pre>struct data_t
{
big_int32_t v1; // description ...
big_int32_t v2; // description ...
... additional character data members (i.e. non-endian)
big_int32_t v3; // description ...
};
data_t data;
read(data);
...
++v1;
third_party::func(data.v2);
...
write(data);
</pre>
<p>A later maintainer can add <code>third_party::func(data.v3)</code>and it
will just-work.</p>
</blockquote>
</blockquote>
<h4><a name="Conversion-explicitness">Conversion explicitness</a></h4>
<blockquote>
<p><b>Endian conversion functions</b> and <b>buffer types</b> never perform
implicit conversions. This gives users explicit control of when conversion
occurs, and may help avoid unnecessary conversions.</p>
<p><b>Endian arithmetic types</b> perform conversion implicitly. That makes
these types very easy to use, but can result in unnecessary conversions. Failure
to hoist conversions out of inner loops can bring a performance penalty.</p>
</blockquote>
<h4><a name="Arithmetic-operations">Arithmetic operations</a></h4>
<blockquote>
<p><b>Endian conversion functions</b> do not supply arithmetic
operations, but this is not a concern since this approach uses ordinary C++
arithmetic types to hold values.</p>
<p><b>Endian buffer types</b> do not supply arithmetic operations. Although this
approach avoids unnecessary conversions, it can result in the introduction of
additional variables and confuse maintenance programmers.</p>
<p><b>Endian</b> <b>arithmetic types</b> do supply arithmetic operations. They
are very easy to use if lots of arithmetic is involved. </p>
</blockquote>
<h4><a name="Sizes">Sizes</a></h4>
<blockquote>
<p><b>Endianness conversion functions</b> only support 1, 2, 4, and 8 byte
integers. That&#39;s sufficient for many applications.</p>
<p><b>Endian buffer and arithmetic types</b> support 1, 2, 3, 4, 5, 6, 7, and 8
byte integers. For an application where memory use or I/O speed is the limiting
factor, using sizes tailored to application needs can be useful.</p>
</blockquote>
<h4><a name="Alignments">Alignments</a></h4>
<blockquote>
<p><b>Endianness conversion functions</b> only support aligned integer and
floating-point types. That&#39;s sufficient for most applications.</p>
<p><b>Endian buffer and arithmetic types</b> support both aligned and unaligned
integer and floating-point types. Unaligned types are rarely needed, but when
needed they are often very useful and workarounds are painful. For example,</p>
<blockquote>
<p>Non-portable code like this:<blockquote>
<pre>struct S {
uint16_t a;&nbsp; // big endian
uint32_t b;&nbsp; // big endian
} __attribute__ ((packed));</pre>
</blockquote>
<p>Can be replaced with portable code like this:</p>
<blockquote>
<pre>struct S {
big_uint16_ut a;
big_uint32_ut b;
};</pre>
</blockquote>
</blockquote>
</blockquote>
<h3><a name="Design-patterns">Design patterns</a></h3>
<p>Applications often traffic in endian data as records or packets containing
multiple endian data elements. For simplicity, we will just call them records.</p>
<p>If desired endianness differs from native endianness, a conversion has to be
performed. When should that conversion occur? Three design patterns have
evolved.</p>
<h4><a name="As-needed">Convert only as needed</a> (i.e. lazy)</h4>
<p>This pattern defers conversion to the point in the code where the data
element is actually used.</p>
<p>This pattern is appropriate when which endian element is actually used varies
greatly according to record content or other circumstances</p>
<h4><a name="Anticipating-need">Convert in anticipation of need</a></h4>
<p>This pattern performs conversion to native endianness in anticipation of use,
such as immediately after reading records. If needed, conversion to the output
endianness is performed after all possible needs have passed, such as just
before writing records.</p>
<p>One implementation of this pattern is to create a proxy record with
endianness converted to native in a read function, and expose only that proxy to
the rest of the implementation. If a write function, if needed, handles the
conversion from native to the desired output endianness.</p>
<p>This pattern is appropriate when all endian elements in a record are
typically used regardless of record content or other circumstances</p>
<h4><a name="Convert-generally-as-needed-locally-in-anticipation">Convert
only as needed, except locally in anticipation of need</a></h4>
<p>This pattern in general defers conversion but for specific local needs does
anticipatory conversion. Although particularly appropriate when coupled with the endian buffer
or arithmetic types, it also works well with the conversion functions.</p>
<p>Example:</p>
<blockquote>
<pre>struct data_t
{
big_int32_t v1;
big_int32_t v2;
big_int32_t v3;
};
data_t data;
read(data);
...
++v1;
...
int32_t v3_temp = data.v3; // hoist conversion out of loop
for (int32_t i = 0; i &lt; <i><b>large-number</b></i>; ++i)
{
... <i><b>lengthy computation that accesses </b></i>v3_temp<i><b> many times</b></i> ...
}
data.v3 = v3_temp;
write(data);
</pre>
</blockquote>
<p dir="ltr">In general the above pseudo-code leaves conversion up to the endian
arithmetic type <code>big_int32_t</code>. But to avoid conversion inside the
loop, a temporary is created before the loop is entered, and then used to set
the new value of <code>data.v3</code> after the loop is complete.</p>
<blockquote>
<p dir="ltr">Question: Won&#39;t the compiler&#39;s optimizer hoist the conversion out
of the loop anyhow?</p>
<p dir="ltr">Answer: VC++ 2015 Preview, and probably others, does not, even for
a toy test program. Although the savings is small (two register <code>
<span style="font-size: 85%">bswap</span></code> instructions), the cost might
be significant if the loop is repeated enough times. On the other hand, the
program may be so dominated by I/O time that even a lengthy loop will be
immaterial.</p>
</blockquote>
<h3><a name="Use-cases">Use case examples</a></h3>
<h4><a name="Porting-endian-unaware-codebase">Porting endian unaware codebase</a></h4>
<p>An existing codebase runs on big endian systems. It does not
currently deal with endianness. The codebase needs to be modified so it can run
on&nbsp; little endian systems under various operating systems. To ease
transition and protect value of existing files, external data will continue to
be maintained as big endian.</p>
<p dir="ltr">The <a href="arithmetic.html">endian
arithmetic approach</a> is recommended to meet these needs. A relatively small
number of header files dealing with binary I/O layouts need to change types. For
example,&nbsp;
<code>short</code> or <code>int16_t</code> would change to <code>big_int16_t</code>. No
changes are required for <code>.cpp</code> files.</p>
<h4><a name="Porting-endian-aware-codebase">Porting endian aware codebase</a></h4>
<p>An existing codebase runs on little-endian Linux systems. It already
deals with endianness via
<a href="http://man7.org/linux/man-pages/man3/endian.3.html">Linux provided
functions</a>. Because of a business merger, the codebase has to be quickly
modified for Windows and possibly other operating systems, while still
supporting Linux. The codebase is reliable and the programmers are all
well-aware of endian issues. </p>
<p dir="ltr">These factors all argue for an <a href="conversion.html">endian conversion
approach</a> that just mechanically changes the calls to <code>htobe32</code>,
etc. to <code>boost::endian::native_to_big</code>, etc. and replaces <code>&lt;endian.h&gt;</code>
with <code>&lt;boost/endian/conversion.hpp&gt;</code>.</p>
<h4><a name="Reliability-arithmetic-speed">Reliability and arithmetic-speed</a></h4>
<p>A new, complex, multi-threaded application is to be developed that must run
on little endian machines, but do big endian network I/O. The developers believe
computational speed for endian variable is critical but have seen numerous bugs
result from inability to reason about endian conversion state. They are also
worried that future maintenance changes could inadvertently introduce a lot of
slow conversions if full-blown endian arithmetic types are used.</p>
<p>The <a href="buffers.html">endian buffers</a> approach is made-to-order for
this use case.</p>
<h4><a name="Reliability-ease-of-use">Reliability and ease-of-use</a></h4>
<p>A new, complex, multi-threaded application is to be developed that must run
on little endian machines, but do big endian network I/O. The developers believe
computational speed for endian variables is <b>not critical</b> but have seen
numerous bugs result from inability to reason about endian conversion state.
They are also concerned about ease-of-use both during development and long-term
maintenance.</p>
<p>Removing concern about conversion speed and adding concern about ease-of-use
tips the balance strongly in favor the <a href="arithmetic.html">endian
arithmetic approach</a>.</p>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->19 January, 2015<!--webbot bot="Timestamp" endspan i-checksum="38903" --></p>
<p>© Copyright Beman Dawes, 2011, 2013, 2014</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
<p>&nbsp;</p>
</body>
</html>

View File

@ -1,405 +0,0 @@
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Endian Conversion Functions</title>
<link href="styles.css" rel="stylesheet">
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td>
<a href="../../../index.html">
<img src="../../../boost.png" alt="Boost logo" align="middle" border="0" width="277" height="86" ></a></td>
<td align="middle">
<b>
<font size="6">Endian Conversion Functions</font></b></td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b>
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="arithmetic.html">Arithmetic Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="buffers.html">Buffer Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="choosing_approach.html">Choosing Approach</a></b></td>
</tr>
</table>
<p></p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Introduction">Introduction</a><br>
<a href="#Reference">Reference</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Synopsis">Synopsis</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Requirements">Requirements</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <code><a href="#EndianReversible">EndianReversible</a></code><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <a href="#Customization-points">Customization for
UDTs</a><br>
<a href="#Functions">Functions</a><br>
<a href="#FAQ">FAQ</a><br>
<a href="#Acknowledgements">Acknowledgements</a></td>
</tr>
</table>
<h2><a name="Introduction">Introduction</a></h2>
<p>Header <a href="../include/boost/endian/conversion.hpp">boost/endian/conversion.hpp</a>
provides byte order reversal and conversion functions that convert objects of
the built-in
integer types
between native, big, or little endian byte
ordering. User defined types are also supported.</p>
<h2><a name="Reference">Reference</a></h2>
<p>Functions are implemented <code>inline</code> if appropriate.<code> </code>
For C++03 compilers, <code> noexcept</code> is
elided.
Boost scoped enum emulation is used so that the library still works for compilers that do not support scoped enums.</p>
<h3><a name="Definitions">Definitions</a></h3>
<p><b><i>Endianness</i></b> refers to the ordering of bytes within internal or
external integers and other arithmetic data. Most-significant byte first is
called <b><i>big endian</i></b> ordering. Least-significant byte first is called
<b><i>little endian</i></b> ordering. Other orderings are possible and some CPU
architectures support both big and little ordering.</p>
<blockquote>
<p>[<i>Note:</i> The names are derived from
<a href="http://en.wikipedia.org/wiki/Jonathan_Swift" title="Jonathan Swift">
Jonathan Swift</a>'s satirical novel <i>
<a href="http://en.wikipedia.org/wiki/Gulliver's_Travels" title="Gulliver's Travels">
Gullivers Travels</a></i>, where rival kingdoms opened their soft-boiled eggs
at different ends. Wikipedia has an extensive description of
<a href="https://en.wikipedia.org/wiki/Endianness">Endianness</a>. <i>—end note</i>]</p>
</blockquote>
<p>The standard integral types (C++std 3.9.1) except <code>bool</code>
are collectively called the <b> <i>endian types</i></b>.</p>
<h3>
Header <code>&lt;boost/endian/conversion.hpp&gt;</code>
<a name="Synopsis">Synopsis</a></h3>
<pre>#define BOOST_ENDIAN_INTRINSIC_MSG \
&quot;<b><font face="Arial"><i>message describing presence or absence of intrinsics</i></font></b>&quot;
namespace boost
{
namespace endian
{
enum class <a name="order">order</a>
{
native = <b><i>see below,
</i></b> big = <b><i>see below</i></b>,
little = <b><i>see below</i></b>,
<b><i> </i></b>};
int8_t <a href="#endian_reverse">endian_reverse</a>(int8_t x) noexcept;
int16_t <a href="#endian_reverse">endian_reverse</a>(int16_t x) noexcept;
int32_t <a href="#endian_reverse">endian_reverse</a>(int32_t x) noexcept;
int64_t <a href="#endian_reverse">endian_reverse</a>(int64_t x) noexcept;
uint8_t <a href="#endian_reverse">endian_reverse</a>(uint8_t x) noexcept;
uint16_t <a href="#endian_reverse">endian_reverse</a>(uint16_t x) noexcept;
uint32_t <a href="#endian_reverse">endian_reverse</a>(uint32_t x) noexcept;
uint64_t <a href="#endian_reverse">endian_reverse</a>(uint64_t x) noexcept;
template &lt;class EndianReversible&gt;
EndianReversible big_to_native(EndianReversible x) noexcept;
template &lt;class EndianReversible&gt;
EndianReversible native_to_big(EndianReversible x) noexcept;
template &lt;class EndianReversible&gt;
EndianReversible little_to_native(EndianReversible x) noexcept;
template &lt;class EndianReversible&gt;
EndianReversible native_to_little(EndianReversible x) noexcept;
template &lt;order O1, order O2, class EndianReversible&gt;
EndianReversible conditional_reverse(EndianReversible x) noexcept;
template &lt;class EndianReversible&gt;
EndianReversible conditional_reverse(EndianReversible x,
order order1, order order2) noexcept;
template &lt;class EndianReversible&gt;
void endian_reverse_inplace(EndianReversible&amp; x) noexcept;
template &lt;class EndianReversibleInplace&gt;
void big_to_native_inplace(EndianReversibleInplace&amp; x) noexcept;
template &lt;class EndianReversibleInplace&gt;
void native_to_big_inplace(EndianReversibleInplace&amp; x) noexcept;
template &lt;class EndianReversibleInplace&gt;
void little_to_native_inplace(EndianReversibleInplace&amp; x) noexcept;
template &lt;class EndianReversibleInplace&gt;
void native_to_little_inplace(EndianReversibleInplace&amp; x) noexcept;
template &lt;order O1, order O2, class EndianReversibleInplace&gt;
void conditional_reverse_inplace(EndianReversibleInplace&amp; x) noexcept;
template &lt;class EndianReversibleInplace&gt;
void conditional_reverse_inplace(EndianReversibleInplace&amp; x,
order order1, order order2) noexcept;
} // namespace endian
} // namespace boost</pre>
<p>The values of <code>order::little</code> and <code>order::big</code> shall
not be equal to one another. </p>
<p><a name="native-order-specification"></a>The value of <code>order::native</code>
shall be:</p>
<ul>
<li>equal to <code>order::big</code> if the execution environment is big
endian, otherwise</li>
<li>equal to <code>order::little</code> if the execution environment is little
endian, otherwise</li>
<li>unequal to both <code>order::little</code> and <code>order::big</code>.</li>
</ul>
<h3><a name="Requirements">Requirements</a></h3>
<h4><a name="Template-argument-requirements">Template argument requirements</a></h4>
<p>The template definitions in the <code>boost/endian/conversion.hpp</code>
header refer to various named requirements whose details are set out in the
tables in this subsection. In these tables, <code>T</code> is an object or
reference type to be supplied by a C++ program instantiating a template; <code>x</code>
is a value of type (possibly <code>const</code>) <code>T</code>; <code>mlx</code> is a
modifiable lvalue of type <code>T</code>.</p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td colspan="3" align="center"><b><code><a name="EndianReversible">EndianReversible</a></code></b>
requirements (in addition to <b><code>CopyConstructible</code></b>)</td>
</tr>
<tr>
<td><b>Expression</b></td>
<td><b>Return<br>
type</b></td>
<td><b>Requirements</b></td>
</tr>
<tr>
<td valign="top"><code>endian_reverse(x)</code></td>
<td align="center" valign="top"><code>T</code></td>
<td> <code>T</code> is an endian type or a class type.<p>If <code>T</code> is
an endian type, returns the value of <code>x</code> with the order of bytes
reversed.</p>
<p>If <code>T</code> is a class type, the function:</p>
<ul>
<li>Returns the value of <code>x</code>
with the order of bytes reversed for all data members of types or arrays of
types that meet the <code>EndianReversible</code> requirements, and;</li>
<li>Is a non-member function in the same namespace as <code>T</code> that
can be found by argument dependent lookup (ADL). </li>
</ul>
</td>
</tr>
</table>
<p>&nbsp;</p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td colspan="2" align="center"><b><code><a name="EndianReversibleInplace">EndianReversibleInplace</a></code></b>
requirements (in addition to <b><code>CopyConstructible</code></b>)</td>
</tr>
<tr>
<td><b>Expression</b></td>
<td><b>Requirements</b></td>
</tr>
<tr>
<td valign="top"><code>endian_reverse_inplace(mlx)</code></td>
<td> <code>T</code> is an endian type or a class type.<p>If <code>T</code> is
an endian type, reverses the order of bytes in <code>mlx</code>.</p>
<p>If <code>T</code> is a class type, the function:</p>
<ul>
<li>Reverses the order of bytes of all data members of <code>mlx</code>
that have types or arrays of
types that meet the <code>EndianReversible</code> or <code>EndianReversibleInplace</code>
requirements, and;</li>
<li>Is a non-member function in the same namespace as <code>T</code> that
can be found by argument dependent lookup (ADL).&nbsp; </li>
</ul>
</td>
</tr>
</table>
<p> [<i>Note:</i> Because there is a function template for <code>endian_reverse_inplace</code>
that calls <code>endian_reverse</code>, only <code>endian_reverse</code>
is required for a user-defined type to meet the <code>EndianReversibleInplace</code>
requirements. Although User-defined types are not required to supply an <code>endian_reverse_inplace</code>
function, doing so may improve efficiency. <i>&nbsp;&mdash;end note</i>]</p>
<h4> <a name="Customization-points">Customization points</a> for user-defined types (<a name="UDT">UDT</a>s)</h4>
<p> This subsection describes requirements on the Endian library&#39;s implementation.</p>
<p> The library&#39;s function templates requiring <code>
<a href="#EndianReversible">EndianReversible</a></code> are
required to perform reversal of endianness if needed by making an unqualified
call to <code>endian_reverse()</code>.</p>
<p> The library&#39;s function templates requiring <code>
<a href="#EndianReversibleInplace">EndianReversibleInplace</a></code> are required to perform reversal of endianness if needed by making an
unqualified call to <code>endian_reverse_inplace()</code>.</p>
<p> See <b><code>example/udt_conversion_example.cpp</code></b> for an example user-defined type.</p>
<h3><a name="Functions">Functions</a></h3>
<pre><a name="endian_reverse"></a>int8_t endian_reverse(int8_t x) noexcept;
int16_t endian_reverse(int16_t x) noexcept;
int32_t endian_reverse(int32_t x) noexcept;
int64_t endian_reverse(int64_t x) noexcept;
uint8_t endian_reverse(uint8_t x) noexcept;
uint16_t endian_reverse(uint16_t x) noexcept;
uint32_t endian_reverse(uint32_t x) noexcept;
uint64_t endian_reverse(uint64_t x) noexcept;</pre>
<blockquote>
<p><i>Returns:</i> <i><code>x</code></i>, with the order of its
constituent bytes reversed.</p>
<p><i>Remarks:</i> The type of <i><code>x</code></i> meets the <code>EndianReversible</code> requirements.</p>
<p>[<i>Note:</i> The Boost.Endian library does not provide overloads for the C++ standard library
supplied types. <i>&mdash;end note</i>]</p>
</blockquote>
<pre>template &lt;class EndianReversible&gt;
EndianReversible big_to_native(EndianReversible x) noexcept;</pre>
<blockquote>
<p>
<i>Returns:</i> <code>conditional_reverse&lt;order::big, order::native&gt;(x)</code>.</p>
</blockquote>
<pre>template &lt;class EndianReversible&gt;
EndianReversible native_to_big(EndianReversible x) noexcept; </pre>
<blockquote>
<p><i>Returns:</i> <code>conditional_reverse&lt;order::native, order::big&gt;(x)</code>.</p>
</blockquote>
<pre>template &lt;class EndianReversible&gt;
EndianReversible little_to_native(EndianReversible x) noexcept; </pre>
<blockquote>
<p><i>Returns:</i> <code>conditional_reverse&lt;order::little, order::native&gt;(x)</code>.</p>
</blockquote>
<pre>template &lt;class EndianReversible&gt;
EndianReversible native_to_little(EndianReversible x) noexcept; </pre>
<blockquote>
<p><i>Returns:</i> <code>conditional_reverse&lt;order::native, order::little&gt;(x)</code>.</p>
</blockquote>
<pre>template &lt;order O1, order O2, class EndianReversible&gt;
EndianReversible conditional_reverse(EndianReversible x) noexcept; </pre>
<blockquote>
<p><i>Returns:</i> <code>x</code> if <code>O1 == O2,</code> otherwise <code>endian_reverse(x)</code>.</p>
<p><i>Remarks: </i>Whether <code>x</code> or <code>endian_reverse(x)</code> is to be returned shall be determined at compile time.</p>
</blockquote>
<pre>template &lt;class EndianReversible&gt;
EndianReversible conditional_reverse(EndianReversible x,
order order1, order order2) noexcept; </pre>
<blockquote>
<p><i>Returns:</i> <code>order1 == order2 ? x : endian_reverse(x)</code>.</p>
</blockquote>
<pre>template &lt;class EndianReversible&gt;
void endian_reverse_inplace(EndianReversible&amp; x) noexcept; </pre>
<blockquote>
<p><i>Effects:</i> <code>x</code> <code>= endian_reverse(x)</code>.</p>
</blockquote>
<pre>template &lt;class EndianReversibleInplace&gt;
void big_to_native_inplace(EndianReversibleInplace&amp; x) noexcept; </pre>
<blockquote>
<p>
<i>Effects:</i> <code>conditional_reverse_inplace&lt;order::big, order::native&gt;(x)</code>.</p>
</blockquote>
<pre>template &lt;class EndianReversibleInplace&gt;
void native_to_big_inplace(EndianReversibleInplace&amp; x) noexcept; </pre>
<blockquote>
<p>
<i>Effects:</i> <code>conditional_reverse_inplace&lt;order::native, order::big&gt;(x)</code>.</p>
</blockquote>
<pre>template &lt;class EndianReversibleInplace&gt;
void little_to_native_inplace(EndianReversibleInplace&amp; x) noexcept; </pre>
<blockquote>
<p>
<i>Effects:</i> <code>conditional_reverse_inplace&lt;order::little, order::native&gt;(x)</code>.</p>
</blockquote>
<pre>template &lt;class EndianReversibleInplace&gt;
void native_to_little_inplace(EndianReversibleInplace&amp; x) noexcept; </pre>
<blockquote>
<p>
<i>Effects:</i> <code>conditional_reverse_inplace&lt;order::native, order::little&gt;(x)</code>.</p>
</blockquote>
<pre>template &lt;order O1, order O2, class EndianReversibleInplace&gt;
void conditional_reverse_inplace(EndianReversibleInplace&amp; x) noexcept; </pre>
<blockquote>
<p><i>Effects:</i> None if <code>O1 == O2,</code> otherwise <code>endian_reverse_inplace(x)</code>.</p>
<p><i>Remarks: </i>Which effect applies shall be determined at compile time.</p>
</blockquote>
<pre>template &lt;class EndianReversibleInplace&gt;
void conditional_reverse_inplace(EndianReversibleInplace&amp; x,
order order1, order order2) noexcept; </pre>
<blockquote>
<p><i>Effects: </i>If <code>order1 == order2</code> then <code>endian_reverse_inplace(x)</code>.</p>
</blockquote>
<h2> <a name="FAQ">FAQ</a></h2>
<p>See the <a href="index.html#FAQ">Endian home page</a> FAQ for a library-wide
FAQ.</p>
<p><b>Why are both value returning and modify-in-place functions provided?</b></p>
<blockquote>
<p>Returning the result by value is the standard C and C++ idiom for functions that compute a
value from an argument. Modify-in-place functions allow cleaner code in many real-world
endian use cases and are more efficient for user-defined types that have
members such as string data that do not need to be reversed. Thus both forms are
provided.</p>
</blockquote>
<p><b>Why are exact-length 8, 16, 32, and 64-bit integers supported rather than the built-in
char, short, int, long, long long, etc?</b></p>
<blockquote>
<p>The primary use case, portable file or network data, needs these de facto
standard sizes. Using types that vary with the platform would greatly limit
portability for both programs and data.</p>
</blockquote>
<p><b>Why not use the Linux names (htobe16, htole16, be16toh, le16toh, etc.) ?</b></p>
<blockquote>
<p>Those names are non-standard and vary even between POSIX-like operating
systems. A C++ library TS was going to use those names, but found they were
sometimes implemented as macros. Since macros do not respect scoping and
namespace rules, to use them would be very error prone.</p>
</blockquote>
<h2><a name="Acknowledgements">Acknowledgements</a></h2><p>Tomas Puverle was instrumental
in identifying and articulating the need to support endian conversion as separate from
endian integer types. Phil Endecott suggested the form of the value returning signatures.
Vicente Botet and other reviewers suggested supporting user defined types.
General reverse template implementation approach using std::reverse suggested by Mathias Gaunard.
Portable implementation approach for 16, 32, and 64-bit integers suggested by tymofey,
with avoidance of undefined behavior as suggested by Giovanni Piero Deretta,
and a further refinement suggested by Pyry Jahkola.
Intrinsic builtins implementation approach for 16, 32, and 64-bit integers suggested by
several reviewers, and by David Stone, who provided his Boost licensed macro implementation
that became the starting point for <b><code>boost/endian/detail/intrinsic.hpp</code></b>.
Pierre Talbot provided the <code>int8_t endian_reverse()</code> and templated
<code>endian_reverse_inplace()</code> implementations.</p>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->14 October, 2015<!--webbot bot="Timestamp" endspan i-checksum="38874" --></p>
<p>© Copyright Beman Dawes, 2011, 2013</p>
<p>Distributed under the Boost Software License, Version 1.0. See <a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
</body>
</html>

View File

@ -1,97 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Floating Point Concerns</title>
<link href="styles.css" rel="stylesheet">
</head>
<body>
<h1>Floating Point Concerns</h1>
<p>Consider this simple implementation of <code>endian_reverse</code>:</p>
<blockquote>
<pre>template &lt;class T&gt;
inline T endian_reverse(T x) BOOST_NOEXCEPT
{
std::reverse(reinterpret_cast&lt;unsigned char*&gt;(&amp;x),
reinterpret_cast&lt;unsigned char*&gt;(&amp;x) + sizeof(T));
return x;
}</pre>
</blockquote>
<p><b>Under what conditions with this code fail?</b></p>
<p dir="ltr">It will fail if an object of type <code>T</code> has one or more
bit patterns that cause a failure. Failures usually occur when&nbsp; an invalid
or otherwise special bit pattern is loaded into or saved from a hardware
register.</p>
<p dir="ltr">The problem could in theory occur with both integers and floating
point numbers, but the <a href="http://en.wikipedia.org/wiki/Two's_complement">
two's complement integers</a> ubiquitous in modern computer architectures do not
have any invalid or otherwise special bit patterns that cause failure when
byte-wise reversed.</p>
<p dir="ltr">But floating point numbers are a different story. Even if we limit
discussion to IEEE 754 (aka ISO/IEC/IEEE 60559) binary representations of 4 and
8 byte sizes, several problems are easy to demonstrate:</p>
<ul>
<li dir="ltr">
<p dir="ltr">...</li>
</ul>
<h2 dir="ltr">Safe interfaces and possible reference implementations</h2>
<h3 dir="ltr">In-place interface</h3>
<blockquote>
<pre dir="ltr">template &lt;class T&gt;
inline void endian_reverse_inplace(T&amp; x)
{
std::reverse(reinterpret_cast&lt;unsigned char*&gt;(&amp;x),
reinterpret_cast&lt;unsigned char*&gt;(&amp;x) + sizeof(T));
}</pre>
</blockquote>
<p dir="ltr">This is the same as the current (i.e integer) customization point
interface, so there is no need for any change.</p>
<p dir="ltr"><b>Warning:</b> Even thought <code>x</code> may have had a valid
value on the originating platform, after calling this function the value of
<code>x</code> may differ or be invalid on this platform.</p>
<h3 dir="ltr">Copy interface</h3>
<blockquote>
<pre dir="ltr">template &lt;class T&gt;
inline void endian_reverse_copy(const T&amp; from, T&amp; to)
{
std::reverse_copy(reinterpret_cast&lt;const unsigned char*&gt;(&amp;from),
reinterpret_cast&lt;const unsigned char*&gt;(&amp;from) + sizeof(T),
reinterpret_cast&lt;unsigned char*&gt;(&amp;to));
}</pre>
</blockquote>
<p><b>Warning:</b> Even thought <code>from</code> may have been a valid value on
the originating platform, after calling this function the value of <code>to</code>
may differ or be invalid on this platform.</p>
<h3>Return-by-value interface</h3>
<blockquote>
<pre>template &lt;class T&gt;
inline T endian_reverse_to_native(<span style="background-color: #FFFF00">const</span><span style="background-color: #FFFF00"> T&amp;</span> x) BOOST_NOEXCEPT
{
T tmp;
std::reverse_copy(reinterpret_cast&lt;const unsigned char*&gt;(&amp;x),
reinterpret_cast&lt;const unsigned char*&gt;(&amp;x) + sizeof(T),
reinterpret_cast&lt;unsigned char*&gt;(&amp;tmp));
return tmp;
}</pre>
</blockquote>
<p><b>Warning:</b> Even thought <code>x</code> may have had a valid value on the
originating platform, the value of returned by this function may differ or be
invalid on this platform.</p>
<h2>Acknowledgements</h2>
<hr>
<p>Last revised: <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->27 March, 2015<!--webbot bot="Timestamp" endspan i-checksum="28924" --></p>
<p><EFBFBD> Copyright Beman Dawes, 2015</p>
<p>Distributed under the Boost Software License, Version 1.0. See <a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
<p>&nbsp;</p>
</body>
</html>

View File

@ -1,606 +0,0 @@
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Endian Library</title>
<link href="styles.css" rel="stylesheet">
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td width="339">
<a href="../../../index.html">
<img src="../../../boost.png" alt="Boost logo" align="middle" border="0" width="277" height="86"></a></td>
<td align="middle" width="1253">
<b>
<font size="6">Endian Library</font></b></td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b>
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="arithmetic.html">Arithmetic Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="buffers.html">Buffer Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="choosing_approach.html">Choosing Approach</a></b></td>
</tr>
</table>
<p></p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Abstract">Abstract</a><br>
<a href="#Introduction-to-endianness">Introduction to endianness</a><br>
<a href="#Introduction">Introduction to the Boost.Endian library</a><br>
<a href="#Choosing">Choosing between conversion functions,</a><br>
&nbsp; <a href="#Choosing">buffer types, and arithmetic types</a><br>
<a href="#Intrinsic">Built-in support for Intrinsics</a><br>
<a href="#Performance">Performance</a><br>
&nbsp;&nbsp;&nbsp;<a href="#Timings">Timings</a><br>
<a href="#FAQ">Overall FAQ</a><br>
<a href="#Release-history">Release history</a><br>
&nbsp;&nbsp;&nbsp;<a href="#Changes-requested-by-formal-review">Changes
requested by formal review</a><br>
&nbsp;&nbsp; <a href="#Other-changes-since-formal-review">Other changes since
formal review</a><br>
<a href="#Compatibility">Compatibility with interim releases</a><br>
<a href="#C++03-support">C++03 support for C++11 features</a><br>
<a href="#Future-directions">Future directions</a><br>
<a href="#Acknowledgements">Acknowledgements</a><br>
</td>
</tr>
</table>
<h2><a name="Abstract">Abstract</a></h2>
<p>Boost.Endian provides facilities to manipulate the
<a href="#Introduction-to-endianness">endianness</a> of integers and user-defined types.</p>
<ul>
<li>Three approaches to endianness are supported. Each has a
long history of successful use, and each approach has use cases where it is
preferred over the other approaches.<br>
&nbsp;</li>
<li>Primary uses:<br>
&nbsp;<ul>
<li>Data portability. The Endian library supports binary data exchange, via either external media or network transmission,
regardless of platform endianness.<br>
&nbsp;</li>
<li>Program portability. POSIX-based and
Windows-based operating systems traditionally supply libraries with
non-portable functions to perform endian conversion. There are at least four
incompatible sets of functions in common use. The Endian library is
portable across all C++ platforms.<br>
&nbsp;</li>
</ul>
</li>
<li>Secondary use: Minimizing data size via sizes and/or alignments not supported by the
standard C++ integer types.</li>
</ul>
<h2><a name="Introduction-to-endianness">Introduction to endianness</a></h2>
<p>Consider the following code:</p>
<blockquote>
<pre>int16_t i = 0x0102;
FILE * file = fopen(&quot;test.bin&quot;, &quot;wb&quot;); // binary file!
fwrite(&amp;i, sizeof(int16_t), 1, file);
fclose(file);</pre>
</blockquote>
<p>On OS X, Linux, or Windows systems with an Intel CPU, a hex dump
of the &quot;test.bin&quot; output file produces:</p>
<blockquote>
<p><code>0201</code></p>
</blockquote>
<p>On OS X systems with a PowerPC CPU, or Solaris systems with a SPARC CPU, a hex dump of the &quot;test.bin&quot;
output file produces:</p>
<blockquote>
<p><code>0102</code></p>
</blockquote>
<p>What's happening here is that Intel CPUs order the bytes of an integer with
the least-significant byte first, while SPARC CPUs place the most-significant
byte first. Some CPUs, such as the PowerPC, allow the operating system to
choose which ordering applies.</p>
<p><a name="definition"></a>Most-significant-byte-first ordering is traditionally called &quot;big endian&quot;
ordering and least-significant-byte-first is traditionally called
&quot;little-endian&quot; ordering. The names are derived from
<a href="http://en.wikipedia.org/wiki/Jonathan_Swift" title="Jonathan Swift">
Jonathan Swift</a>'s satirical novel <i>
<a href="http://en.wikipedia.org/wiki/Gulliver's_Travels" title="Gulliver's Travels">
Gullivers Travels</a></i>, where rival kingdoms opened their soft-boiled eggs
at different ends.</p>
<p>See Wikipedia's
<a href="http://en.wikipedia.org/wiki/Endianness">Endianness</a> article for an
extensive discussion of endianness.</p>
<p>Programmers can usually ignore endianness, except when reading a core
dump on little-endian systems. But programmers have to deal with endianness when exchanging binary integers and binary floating point
values between computer systems with differing endianness, whether by physical file transfer or over a network.
And programmers may also want to use the library when minimizing either internal or
external data sizes is advantageous.</p>
<h2><a name="Introduction">Introduction</a> to the Boost.Endian library</h2>
<p>Boost.Endian provides three different approaches to dealing with
endianness. All three approaches support integers and user-define types (UDTs).</p>
<p>Each approach has a long history of successful use, and each approach has use
cases where it is preferred to the other approaches.</p>
<blockquote>
<p><b><a href="conversion.html">Endian conversion functions</a> -</b> The
application uses the built-in integer types to hold values, and calls the
provided conversion functions to convert byte ordering as needed. Both mutating
and non-mutating conversions are supplied, and each comes in unconditional and
conditional variants.</p>
<p><b><a href="buffers.html">Endian buffer types</a> -</b> The application uses the provided endian
buffer types
to hold values, and explicitly converts to and from the built-in integer types. Buffer sizes of 8, 16, 24, 32, 40, 48, 56, and 64 bits (i.e.
1, 2, 3, 4, 5, 6, 7, and 8 bytes) are provided. Unaligned integer buffer types
are provided for all sizes, and aligned buffer types are provided for 16, 32, and
64-bit sizes. The provided specific types are typedefs for a generic class
template that may be used directly for less common use cases.</p>
<p><b><a href="arithmetic.html">Endian arithmetic types</a> -</b> The
application uses the provided endian arithmetic types, which supply the same
operations as the built-in C++ arithmetic types. All conversions are implicit.
Arithmetic sizes of 8, 16, 24, 32, 40, 48, 56, and 64 bits (i.e. 1, 2, 3, 4, 5,
6, 7, and 8 bytes) are provided. Unaligned integer types are provided for all
sizes and aligned
arithmetic types are provided for 16, 32, and 64-bit sizes. The provided
specific types are typedefs for a generic class template that may be used
directly in generic code of for less common use cases.</p>
</blockquote>
<p>Boost Endian is a header-only library. C++11 features
affecting interfaces, such as <code>noexcept</code>, are used only if available.
See <a href="#C++03-support">C++03 support for C++11 features</a> for details.</p>
<h2><a name="Choosing">Choosing</a> between conversion functions, buffer types,
and arithmetic types</h2>
<p>This section has been moved to its own <a href="choosing_approach.html">
Choosing the Approach</a> page. </p>
<h2>Built-in support for <a name="Intrinsic">Intrinsic</a>s</h2>
<p>Most compilers, including GCC, Clang, and Visual C++, supply built-in support for byte swapping intrinsics.
The Endian library uses these intrinsics when available since they may result in smaller and faster generated code, particularly for
optimized
builds.</p>
<p>Defining the macro <code>BOOST_ENDIAN_NO_INTRINSICS</code> will suppress use
of the intrinsics. This is useful when a compiler has no intrinsic support or
fails to locate the appropriate header, perhaps because it
is an older release or has very limited supporting libraries.</p>
<p>The macro <code>BOOST_ENDIAN_INTRINSIC_MSG</code> is defined as
either <code>&quot;no byte swap intrinsics&quot;</code> or a string describing the
particular set of intrinsics being used. This is useful for eliminating missing
intrinsics as a source of performance issues.</p>
<h2><a name="Performance">Performance</a></h2>
<p>Consider this problem:</p>
<div align="center">
<center>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td colspan="2">
<p align="center"><i><b><a name="Example-1">Example 1</a></b></i></td>
</tr>
<tr>
<td colspan="2"><b><i>Add 100 to a big endian value in a file, then write the
result to a file</i> </b> </td>
</tr>
<tr>
<td><i><b>Endian arithmetic type approach</b></i></td>
<td><i><b>Endian conversion function approach</b></i></td>
</tr>
<tr>
<td valign="top">
<pre>big_int32_at x;
... read into x from a file ...
x += 100;
... write x to a file ...
</pre>
</td>
<td>
<pre>
int32_t x;
... read into x from a file ...
big_to_native_inplace(x);
x += 100;
native_to_big_inplace(x);
... write x to a file ...
</pre>
</td>
</tr>
</table>
</center>
</div>
<p><b>There will be no performance difference between the two approaches in
optimized builds,
regardless of the native endianness of the machine.</b> That&#39;s because optimizing compilers will generate exactly the same code for each. That conclusion was confirmed by
studying the generated assembly code for GCC and Visual C++. Furthermore, time
spent doing I/O will determine the speed of this application.</p>
<p>Now consider a slightly different problem:&nbsp; </p>
<div align="center">
<center>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td colspan="2">
<p align="center"><b><i><a name="Example-2">Example 2</a></i></b></td>
</tr>
<tr>
<td colspan="2"><i><b>Add a million values to a big endian value in a file, then write the
result to a file </b></i> </td>
</tr>
<tr>
<td><i><b>Endian arithmetic type approach</b></i></td>
<td><i><b>Endian conversion function approach</b></i></td>
</tr>
<tr>
<td valign="top">
<pre>big_int32_at x;
... read into x from a file ...
for (int32_t i = 0; i &lt; 1000000; ++i)
x += i;
... write x to a file ...
</pre>
</td>
<td>
<pre>int32_t x;
... read into x from a file ...
big_to_native_inplace(x);
for (int32_t i = 0; i &lt; 1000000; ++i)
x += i;
native_to_big_inplace(x);
... write x to a file ...
</pre>
</td>
</tr>
</table>
</center>
</div>
<p>With the Endian arithmetic approach, on little endian platforms an implicit conversion from and then back to
big endian is done inside the loop. With the Endian conversion function
approach, the user has ensured the conversions are done outside the loop, so the
code may run more quickly on little endian platforms.</p>
<h3><a name="Timings">Timings</a></h3>
<p>These tests were run against release builds on a circa 2012 4-core little endian X64 Intel Core i5-3570K
CPU @ 3.40GHz under Windows 7.</p>
<p><b>Caveat emptor: The Windows CPU timer has very high granularity. Repeated
runs of the same tests often yield considerably different results.</b></p>
<p>See <b>test/loop_time_test.cpp</b> for the actual code and <b>benchmark/Jamfile.v2</b> for the build
setup.</p>
<div align="center">
<center>
<table border="1" cellpadding="5" cellspacing="0"style="border-collapse: collapse" bordercolor="#111111">
<tr><td colspan="6" align="center"><b>GNU C++ version 4.8.2 on Linux virtual
machine</b></td></tr>
<tr><td colspan="6" align="center"><b> Iterations: 10'000'000'000, Intrinsics: __builtin_bswap16, etc.</b></td></tr>
<tr><td><b>Test Case</b></td>
<td align="center"><b>Endian<br>arithmetic<br>type</b></td>
<td align="center"><b>Endian<br>conversion<br>function</b></td>
</tr>
<tr><td>16-bit aligned big endian</td><td align="right">8.46 s</td><td align="right">5.28 s</td></tr>
<tr><td>16-bit aligned little endian</td><td align="right">5.28 s</td><td align="right">5.22 s</td></tr>
<tr><td>32-bit aligned big endian</td><td align="right">8.40 s</td><td align="right">2.11 s</td></tr>
<tr><td>32-bit aligned little endian</td><td align="right">2.11 s</td><td align="right">2.10 s</td></tr>
<tr><td>64-bit aligned big endian</td><td align="right">14.02 s</td><td align="right">3.10 s</td></tr>
<tr><td>64-bit aligned little endian</td><td align="right">3.00 s</td><td align="right">3.03 s</td></tr>
</table>
</center>
</div>
<p></p>
<div align="center"> <center>
<table border="1" cellpadding="5" cellspacing="0"style="border-collapse: collapse" bordercolor="#111111">
<tr><td colspan="6" align="center"><b>Microsoft Visual C++ version 14.0</b></td></tr>
<tr><td colspan="6" align="center"><b> Iterations: 10'000'000'000, Intrinsics: cstdlib _byteswap_ushort, etc.</b></td></tr>
<tr><td><b>Test Case</b></td>
<td align="center"><b>Endian<br>arithmetic<br>type</b></td>
<td align="center"><b>Endian<br>conversion<br>function</b></td>
</tr>
<tr><td>16-bit aligned big endian</td><td align="right">8.27 s</td><td align="right">5.26 s</td></tr>
<tr><td>16-bit aligned little endian</td><td align="right">5.29 s</td><td align="right">5.32 s</td></tr>
<tr><td>32-bit aligned big endian</td><td align="right">8.36 s</td><td align="right">5.24 s</td></tr>
<tr><td>32-bit aligned little endian</td><td align="right">5.24 s</td><td align="right">5.24 s</td></tr>
<tr><td>64-bit aligned big endian</td><td align="right">13.65 s</td><td align="right">3.34 s</td></tr>
<tr><td>64-bit aligned little endian</td><td align="right">3.35 s</td><td align="right">2.73 s</td></tr>
</table>
</center></div>
<h2>Overall <a name="FAQ">FAQ</a></h2>
<p><b>Is the implementation header only?</b></p>
<blockquote>
<p>Yes.</p>
</blockquote>
<p><b>Are C++03 compilers supported?</b></p>
<blockquote>
<p>Yes.</p>
</blockquote>
<p><b>Does the implementation use compiler intrinsic built-in byte swapping?</b></p>
<blockquote>
<p>Yes, if available. See <a href="#Intrinsic">Intrinsic built-in support</a>.</p>
</blockquote>
<p><b>Why bother with endianness?</b></p>
<blockquote>
<p>Binary data portability is the primary use case.</p>
</blockquote>
<p><b>Does endianness have any uses outside of portable binary file or network
I/O formats?</b> </p>
<blockquote>
<p>Using the unaligned integer types with a size tailored to the application&#39;s
needs is a minor secondary use that saves internal or external memory space. For
example, using <code>big_int40_buf_t</code> or <code>big_int40_t</code> in a
large array saves a lot of space compared to one of the 64-bit types.</p>
</blockquote>
<p><b>Why bother with binary I/O? Why not just use C++ Standard Library stream
inserters and extractors?</b></p>
<blockquote>
<p>Data interchange formats often specify binary integer data.</p>
<p>Binary integer data is smaller and therefore I/O is faster and file sizes
are smaller. Transfer between systems is less expensive.</p>
<p >Furthermore, binary integer data is of fixed size, and so fixed-size disk
records are possible without padding, easing sorting and allowing random access.</p>
<p >Disadvantages, such as the inability to use text utilities on the
resulting files, limit usefulness to applications where the binary I/O
advantages are paramount.</p>
</blockquote>
<p><b>Which is better, big-endian or little-endian?</b></p>
<blockquote>
<p>Big-endian tends to be preferred in a networking environment and is a bit
more of an industry standard, but little-endian may be preferred for
applications that run primarily on x86, x86-64, and other little-endian
CPU's. The <a href="http://en.wikipedia.org/wiki/Endian">Wikipedia</a> article
gives more pros and cons.</p>
</blockquote>
<p><b>Why are only big and little native endianness supported?</b></p>
<blockquote>
<p>These are the only endian schemes that have any practical value today. PDP-11
and the other middle endian approaches are interesting curiosities
but have no relevance for today&#39;s C++ developers. The same is true for
architectures that allow runtime endianness switching. The
<a href="conversion.html#native-order-specification">specification for native
ordering</a> has been carefully crafted to allow support for such orderings in
the future, should the need arise. Thanks to Howard Hinnant for suggesting this. </p>
</blockquote>
<p><b>Why do both the buffer and arithmetic types exist?</b></p>
<blockquote>
<p>Conversions in the buffer types are explicit. Conversions in the arithmetic
types are implicit. This fundamental difference is a deliberate design feature
that would be lost if the inheritance hierarchy were collapsed.</p>
<p>The original design provided only arithmetic types. Buffer types were
requested during formal review by those wishing total control over when
conversion occurs. They also felt that buffer types would be less likely to be
misused by maintenance programmers not familiar with the implications of
performing a lot of integer operations on the endian arithmetic integer types.</p>
</blockquote>
<p><b>What is gained by using the buffer types rather than always just using the
arithmetic types?</b></p>
<blockquote>
<p>Assurance that hidden conversions are not performed. This is of overriding
importance to users concerned about achieving the ultimate in terms of speed. </p>
<p>&quot;Always just using the arithmetic types&quot; is fine for other users. When the
ultimate in speed needs to be ensured, the arithmetic types can be used in the
same design patterns or idioms that would be used for buffer types, resulting in
the same code being generated for either types.</p>
</blockquote>
<p><b>What are the limitations of integer support?</b></p>
<blockquote>
<p>Tests have only been
performed on machines that use two's complement arithmetic. The Endian
conversion functions only support 16, 32, and 64-bit aligned integers. The
endian types only support 8, 16, 24, 32, 40, 48, 56, and 64-bit unaligned integers,
and 8, 16, 32, and 64-bit aligned integers.</p>
</blockquote>
<p><b>Why is there no floating point support?</b></p>
<blockquote>
<p>An attempt was made to support four-byte <code>float</code>s and eight-byte
<code>double</code>s, limited to
<a href="http://en.wikipedia.org/wiki/IEEE_floating_point">IEEE 754</a> (also
know as ISO/IEC/IEEE 60559) floating point and further limited to systems where
floating point endianness does not differ from integer
endianness.</p>
<p>Even with those limitations, support for floating point types was not
reliable and was removed. For example, simply reversing the endianness of a
floating point number can result in a signaling-NAN. For all practical purposes,
binary serialization and endianness for integers are one and the same problem.
That is not true for floating point numbers, so binary serialization interfaces
and formats for floating point does not fit well in an endian-based library.</p>
</blockquote>
<h2><a name="Release-history">Release history</a></h2>
<h3><a name="Changes-requested-by-formal-review">Changes requested by formal review</a></h3>
<p>The library was reworked from top to bottom to accommodate changes requested
during the formal review. See <a href="mini_review_topics.html">Mini-Review</a>
page for details.</p>
<h3><a name="Other-changes-since-formal-review">Other changes since formal
review</a></h3>
<ul>
<li>Header <code>boost/endian/endian.hpp</code> has been renamed to <code>
boost/endian/arithmetic.hpp</code>. Headers
<code>boost/endian/conversion.hpp</code> and <code>boost/endian/buffers.hpp</code> have been
added.
Infrastructure file names were changed accordingly.</li>
<li>The endian arithmetic type aliases have been renamed,
using a naming pattern that is consistent for both integer and floating point,
and a consistent set of aliases supplied for the endian buffer types.</li>
<li>The unaligned-type alias names still have the <code>_t</code> suffix, but
the aligned-type alias names now have an <code>_at</code> suffix..</li>
<li><code>endian_reverse()</code> overloads for <code>int8_t</code> and <code>
uint8_t</code> have been added for improved generality. (Pierre Talbot)</li>
<li>Overloads of <code>endian_reverse_inplace()</code> have been replaced with a single <code>
endian_reverse_inplace()</code> template. (Pierre Talbot)</li>
<li>For X86 and X64 architectures, which permit unaligned loads and stores,
unaligned little endian buffer and arithmetic types use regular loads and
stores when the size is exact. This makes unaligned little endian buffer and
arithmetic types significantly more efficient on these architectures. (Jeremy
Maitin-Shepard)</li>
<li>C++11 features affecting interfaces, such as <code>noexcept</code>, are now used.
C++03 compilers are still
supported.</li>
<li>Acknowledgements have been updated.</li>
</ul>
<h2><a name="Compatibility">Compatibility</a> with interim releases</h2>
<p>Prior to the official Boost release, class template <code>
endian_arithmetic</code> has been used for a decade or more with the same
functionality but under the name <code>endian</code>. Other names also changed
in the official release. If the macro <code>BOOST_ENDIAN_DEPRECATED_NAMES</code>
is defined, those old now deprecated names are still supported. However, the
class template <code>endian</code> name is only provided for compilers
supporting C++11 template aliases. For C++03 compilers, the name will have to be
changed to <code>endian_arithmetic</code>.</p>
<p>To support backward header compatibility, deprecated header <code>boost/endian/endian.hpp</code>
forwards to <code>boost/endian/arithmetic.hpp</code>. It requires <code>
BOOST_ENDIAN_DEPRECATED_NAMES</code> be defined. It should only be used while
transitioning to the official Boost release of the library as it will be removed
in some future release.</p>
<h2><a name="C++03-support">C++03 support</a> for C++11 features</h2>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td><b>C++11 Feature</b></td>
<td><b>Action with C++03 Compilers </b></td>
</tr>
<tr>
<td>Scoped enums </td>
<td>Uses header <code class="computeroutput">
<a href="http://www.boost.org/libs/core/doc/html/core/scoped_enum.html">
<span class="identifier">boost</span><span class="special">/</span><span class="identifier">core</span><span class="special">/</span><span class="identifier">scoped_enum</span><span class="special">.</span><span class="identifier">hpp</span></a></code><span class="identifier">
to emulate C++11 scoped enums.</span></td>
</tr>
<tr>
<td><code>noexcept</code></td>
<td><span class="identifier">Uses BOOST_NOEXCEPT macro, which is defined as
null for compilers not supporting this C++11 feature.</span></td>
</tr>
<tr>
<td>C++11 PODs (<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2342.htm">N2342</a>)</td>
<td><span class="identifier">Takes advantage of C++03 compilers that
relax C++03 POD rules, but see Limitations
<a href="buffers.html#Limitations">here</a> and
<a href="arithmetic.html#Limitations">here</a>. Also see macros for explicit
POD control <a href="buffers.html#Compilation">here</a> and
<a href="arithmetic.html#Compilation">here</a>.</span></td>
</tr>
</table>
<h2><a name="Future-directions">Future directions</a></h2>
<p><b>Standardization.</b> The plan is to submit Boost.Endian to the C++
standards committee for possible inclusion in a Technical Specification or the
C++ standard itself.</p>
<p><b>Specializations for <code>numeric_limits</code>.</b> Roger Leigh
requested that all <code>boost::endian</code> types provide <code>numeric_limits</code>
specializations. See <a href="https://github.com/boostorg/endian/issues/4">
GitHub issue 4</a>.</p>
<p><b>Character buffer support.</b> Peter Dimov pointed out during the
mini-review that getting and setting basic arithmetic types (or <code>&lt;cstdint&gt;</code>
equivalents) from/to an offset into an array of unsigned char is a common need.
See <a href="http://lists.boost.org/Archives/boost/2015/01/219574.php">
Boost.Endian mini-review posting</a>.</p>
<p><b>Out-of-range detection.</b> Peter Dimov pointed suggested during the
mini-review that throwing an exception on buffer values being out-of-range might
be desirable. See the end of
<a href="http://lists.boost.org/Archives/boost/2015/01/219659.php">this posting</a>
and subsequent replies.</p>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>Comments and suggestions were received from Adder, Benaka Moorthi,
Christopher Kohlhoff, Cliff Green, Daniel James, Dave Handley, Gennaro Proto, Giovanni Piero
Deretta, Gordon Woodhull, dizzy, Hartmut Kaiser, Howard Hinnant, Jason Newton, Jeff Flinn, Jeremy Maitin-Shepard, John Filo, John
Maddock, Kim Barrett, Marsh Ray, Martin Bonner, Mathias Gaunard, Matias
Capeletto, Neil Mayhew, Nevin Liber,
Olaf van der Spek, Paul Bristow, Peter Dimov, Pierre Talbot, Phil Endecott,
Philip Bennefall, Pyry Jahkola,
Rene Rivera, Robert Stewart, Roger Leigh, Roland Schwarz, Scott McMurray, Sebastian Redl, Tim
Blechmann, Tim Moore, tymofey, Tomas Puverle, Vincente Botet, Yuval Ronen and
Vitaly Budovsk. Apologies if anyone has been missed.</p>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->05 April, 2016<!--webbot bot="Timestamp" endspan i-checksum="29990" --></p>
<p>© Copyright Beman Dawes, 2011, 2013</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
</body>
</html>

View File

@ -1,150 +0,0 @@
<html>
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Endian Mini-Review</title>
</head>
<link href="styles.css" rel="stylesheet">
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td width="339">
<a href="../../../index.html">
<img src="../../../boost.png" alt="Boost logo" align="middle" border="0" width="277" height="86"></a></td>
<td align="middle" width="1253">
<b>
<font size="6">Endian </font></b><font size="6"><b>Mini-Review</b></font></td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b>
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="arithmetic.html">Arithmetic Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="buffers.html">Buffer Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="choosing_approach.html">Choosing Approach</a></b></td>
</tr>
</table>
<p></p>
<p>The results of the Boost.Endian formal review included a list of issues to be
resolved before a mini-review.</p>
<p>The issues are shown in <b>bold</b> below, with the resolution indicated.</p>
<p><b>1. Common use case scenarios should be developed.</b></p>
<blockquote>
<p>Done. The documentation have been refactored. A page is now devoted to
<a href="choosing_approach.html">Choosing the Approach</a> to endianness. See
<a href="choosing_approach.html#Use-cases">Use cases</a> for use case
scenarios.</p>
</blockquote>
<p><b>2. Example programs should be developed for the common use case scenarios.</b></p>
<blockquote>
<p>Done. See <a href="choosing_approach.html">Choosing the Approach</a>.
Example code has been added throughout.</p>
</blockquote>
<p><b>3. Documentation should illuminate the differences between endian
integer/float type and endian conversion approaches to the common use
case scenarios, and provide guidelines for choosing the most appropriate
approach in user's applications.</b></p>
<blockquote>
<p>Done. See <a href="choosing_approach.html">Choosing the Approach</a>.</p>
</blockquote>
<p><b>4 .Conversion functions supplying results via return should be provided.</b></p>
<blockquote>
<p>Done. See <a href="conversion.html">ConversionFunctions</a>.</p>
</blockquote>
<p><b>5. Platform specific performance enhancements such as use of compiler intrinsics or relaxed alignment requirements should be supported.</b></p>
<blockquote>
<p>Done. Compiler (Clang, GCC, VisualC++, etc.) intrinsics and built-in
functions are used in the implementation where appropriate, as requested. See
<a href="index.html#Intrinsic">Built-in support for Intrinsics</a>. See
<a href="index.html#Timings">Timings for Example 2</a> to gauge the impact of
intrinsics.</p>
</blockquote>
<p><b>6. Endian integer (and floating) types should be implemented via the
conversion functions. If that can't be done efficiently, consideration
should be given to expanding the conversion function signatures to
resolve the inefficiencies.</b></p>
<blockquote>
<p>Done. For the endian types, the implementation uses the endian conversion
functions, and thus the intrinsics, as requested.</p>
</blockquote>
<p><b>7. Benchmarks that measure performance should be provided. It should be
possible to compare platform specific performance enhancements against
portable base implementations, and to compare endian integer approaches
against endian conversion approaches for the common use case scenarios.</b></p>
<blockquote>
<p>Done. See <a href="index.html#Timings">Timings for Example 2</a>. The <code>endian/test</code> directory
also contains several additional benchmark and speed test programs.</p>
</blockquote>
<p><b>8. Float (32-bits) and double (64-bits) should be supported. IEEE 754 is
the primary use case.</b></p>
<blockquote>
<p>Done. The <a href="buffers.html">endian buffer types</a>,&nbsp;
<a href="arithmetic.html">endian arithmetic types</a> and
<a href="conversion.html">endian conversion functions</a> now support 32-bit (<code>float)</code>
and 64-bit <code>(double)</code> floating point, as requested.</p>
</blockquote>
<p><b>9. Support for user defined types (UDTs) is desirable, and should be
provided where there would be no conflict with the other concerns.</b></p>
<blockquote>
<p>Done. See <a href="conversion.html#Customization-points">Customization
points for user-defined types (UDTs)</a>.</p>
</blockquote>
<p><b>10. There is some concern that endian integer/float arithmetic operations
might used inadvertently or inappropriately. The impact of adding an endian_buffer
class without arithmetic operations should be investigated.</b></p>
<blockquote>
<p>Done. The endian types have been decomposed into class template <code>
<a href="buffers.html">endian_buffer</a></code> and class template <code>
<a href="arithmetic.html">endian_arithmetic</a></code>. Class
<code>endian_buffer</code> is a public base class for <code>endian_arithmetic</code>,
and can also be used by users as a stand-alone class.</p>
</blockquote>
<p><b>11. Stream insertion and extraction of the endian integer/float types should
be documented and included in the test coverage.</b></p>
<blockquote>
<p>Done. See <a href="buffers.html#Stream-inserter">Stream inserter</a> and
<a href="buffers.html#Stream-extractor">Stream extractor</a>.</p>
</blockquote>
<p><b>12. Binary I/O support that was investigated during development of the Endian
library should be put up for mini-review for inclusion in the Boost I/O
library.</b></p>
<blockquote>
<p>Not done yet. Will be handled as a separate min-review soon after the
Endian mini-review.</p>
</blockquote>
<p><b>13. Other requested changes.</b></p>
<blockquote>
<ul>
<li>In addition to the named-endianness conversion functions, functions that perform
compile-time (via template) and run-time (via function argument) dispatch
are now provided.</li>
<li><code>order::native</code> is now a synonym for <code>order::big</code>
or <code>order::little</code> according to the endianness of the platform. This reduces the number of template specializations required.</li>
<li>Headers have been reorganized to make them easier to read,
with a synopsis at the front and implementation following.</li>
</ul>
</blockquote>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->19 January, 2015<!--webbot bot="Timestamp" endspan i-checksum="38903" --></p>
<p>© Copyright Beman Dawes, 2014</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
</body>
</html>

View File

@ -1,31 +0,0 @@
Windows
-------
Prerequisites
Boost libraries available in boost-root\stage\lib. Example:
cd boost-root
.\bootstrap
.\b2 --with-system --with-chrono --with-timer link=shared stage
The provided Visual Studio solution (endian/test/msvc/endian.sln) has a property page
(endian/test/msvc/common.prop) with these Common Properties set (do not include the
double quotes):
VC++ Directores|Executable Directories: prefix default value with "..\..\..\..\..\stage\lib;"
(Click "Inherit from parent or project defaults" if not checked)
C/C++|General|Additional Include Directories: prefix default value with "..\..\..\..\..\stage\lib;"
Linker|General|Additional Library Directories: prefix default value with "..\..\..\..\..\stage\lib;"
C/C++|Preprocessor: prefix default value with "BOOST_ALL_DYN_LINK;"
IMPORTANT: If Preprocessor macros are supplied via a common property page,
<inherit from parent or project defaults> must be set for each project!
------------------------------------------------------------------------------------------
Copyright Beman Dawes, 2013
Distributed under the Boost Software License, Version 1.0.
See http://www.boost.org/LICENSE_1_0.txt

View File

@ -1,134 +0,0 @@
<html>
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<style>
body
{
font-family: arial, sans-serif;
max-width: 6.75in;
margin: 0px auto;
font-size: 85%;
}
ins {background-color: #CCFFCC; text-decoration: none;}
del {background-color: #FFCACA; text-decoration: none;}
pre {background-color: #D7EEFF; font-size: 95%; font-family: "courier new", courier, serif;}
code {font-family: "courier new", courier, serif;}
table {font-size: 90%;}
</style>
<title>Endian RFC</title>
</head>
<body>
<table>
<tr>
<td align="left">Doc. no.:</td>
<td align="left">P0803R0</td>
</tr>
<tr>
<td align="left">Date:</td>
<td align="left">
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%Y-%m-%d" startspan -->2017-10-15<!--webbot bot="Timestamp" endspan i-checksum="12057" --></td>
</tr>
<tr>
<td align="left">Reply to:</td>
<td align="left">Beman Dawes &lt;bdawes at acm dot org&gt;
</tr>
<tr>
<td align="left">Audience:</td>
<td align="left">Library Evolution</td>
</tr>
</table>
<h1 align="center">Endian Library Request for Comments (R0)</h1>
<h2>Abstract</h2>
<p>The Boost Endian library manipulates the
<a href="https://en.wikipedia.org/wiki/Endianness">endianness</a> of integers
and user-defined types. It provides three approaches to dealing with endianness:
conversion functions, buffer classes, and arithmetic classes. Each approach
has use cases where it is preferred over the other approaches. The purpose of
this RFC is to determine interest in adding all or any of these components to
the C++ standard library or a library TS.</p>
<h2>Introduction</h2>
<p>The Boost Endian documentation (<a href="https://www.boost.org/libs/endian/doc/index.html">www.boost.org/libs/endian/doc</a>)
provides an <a href="https://www.boost.org/libs/endian/doc/index.html">overview</a>
and detailed technical specifications for the
<a href="https://www.boost.org/libs/endian/doc/conversion.html">conversion
functions</a>, <a href="https://www.boost.org/libs/endian/doc/arithmetic.html">
arithmetic types</a>, and
<a href="https://www.boost.org/libs/endian/doc/buffers.html">buffer types</a>.
</p>
<p>A separate discussion covers
<a href="https://www.boost.org/libs/endian/doc/choosing_approach.html">choosing
between the three approaches</a> provided by the library.</p>
<p>For those not interested in plowing through the entire documentation, the
<a href="https://www.boost.org/libs/endian/doc/index.html#FAQ">Overall FAQ</a>,
<a href="https://www.boost.org/libs/endian/doc/conversion.html#FAQ">Conversion
FAQ</a>, <a href="https://www.boost.org/libs/endian/doc/arithmetic.html#FAQ">
Arithmetic FAQ</a>, and
<a href="https://www.boost.org/libs/endian/doc/buffers.html#FAQ">Buffers FAQ</a>
answer a lot of question likely to arise during standardization.</p>
<h2>Motivation for standardization</h2>
<ul>
<li>Lack of any one de facto standard endianness capability in either C or
C++. While most platforms provides some way to handle endianness in C, the
mechanism varies from platform to platform.</li>
<li>Commonly used endian handling functions are extremely error prone. While
the Boost Endian conversion functions have the same problems, the buffer and
arithmetic classes do not.</li>
<li>Surprisingly difficult to write and test yourself in a portable yet
efficient (i.e. using intrinsics) way. </li>
<li>Explicit requests for standardization from Boost Endian users.</li>
<li>The Boost library is existing practice with years of both implementation
and end-user experience.</li>
<li>The committee has already failed once to standardize endian conversion
functions; perhaps now is time to do it right.</li>
</ul>
<h2>Impact on the standard library</h2>
<p>All three proposed approaches to endianness would be a pure additions to the
standard library and would break no existing user code (modulo the usual
namespace caveats).</p>
<h2>Proposed wording</h2>
<p>The Boost Endian reference documentation for
<a href="https://www.boost.org/libs/endian/doc/conversion.html#Reference">
Conversion</a>,
<a href="https://www.boost.org/libs/endian/doc/arithmetic.html#endian">
Arithmetic</a>, and
<a href="https://www.boost.org/libs/endian/doc/buffers.html#endian">Buffer</a>
approaches follows the standard library&#39;s <i>Method of description</i>
[description], so provides a fairly close approximation of what proposed wording
would look like. Actual proposed wording will be provided in a proposal document
for any portions of the library of interest to the committee. Names will need
the usual bikeshedding.</p>
<h2>Questions for the Library Evolution Group</h2>
<ul>
<li>How would you likely vote on a fully-worded and reviewed proposal to add a
standardized version of the Boost Endian conversion functions to the standard
library or a library TS?<br>
&nbsp;</li>
<li>How would you likely vote on a fully-worded and reviewed proposal to add a
standardized version of the Boost Endian buffer classes to the standard
library or a library TS?<br>
&nbsp;</li>
<li>How would you likely vote on a fully-worded and reviewed proposal to add a
standardized version of the Boost Endian arithmetic classes to the standard
library or a library TS?</li>
</ul>
<h2>Acknowledgements</h2>
<p>The original design for the arithmetic classes was developed by Darin Adler
based on work by Mark Borgerding. The Boost documentation acknowledges
<a href="https://www.boost.org/libs/endian/doc/index.html#Acknowledgements">45+
other people</a>.</p>
<hr>
<p>&nbsp;</p>
</body>
</html>

View File

@ -1,8 +0,0 @@
copy /y c:\boost\develop\libs\endian\doc\* d:\boost\endian-gh-pages
pushd d:\boost\endian-gh-pages
git commit -a -m "copy from develop"
git push
popd
rem Copyright Beman Dawes, 2014
rem Distributed under the Boost Software License, Version 1.0.
rem See www.boost.org/LICENSE_1_0.txt

View File

@ -1,140 +0,0 @@
<html>
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<style>
body
{
font-family: arial, sans-serif;
max-width: 6.75in;
margin: 0px auto;
font-size: 85%;
}
ins {background-color: #CCFFCC; text-decoration: none;}
del {background-color: #FFCACA; text-decoration: none;}
pre {background-color: #D7EEFF; font-size: 95%; font-family: "courier new", courier, serif;}
code {font-family: "courier new", courier, serif;}
table {font-size: 90%;}
</style>
<title>Endian RFC</title>
</head>
<body>
<table>
<tr>
<td align="left">Doc. no.:</td>
<td align="left">D0803R1</td>
</tr>
<tr>
<td align="left">Date:</td>
<td align="left">
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%Y-%m-%d" startspan -->2017-11-10<!--webbot bot="Timestamp" endspan i-checksum="12111" --></td>
</tr>
<tr>
<td align="left">Reply to:</td>
<td align="left">Beman Dawes &lt;bdawes at acm dot org&gt;
</tr>
<tr>
<td align="left">Audience:</td>
<td align="left">Library Evolution</td>
</tr>
</table>
<h1 align="center">Endian Library Request for Comments (R1)</h1>
<h2>Abstract</h2>
<p>The Boost Endian library manipulates the
<a href="https://en.wikipedia.org/wiki/Endianness">endianness</a> of integers
and user-defined types. It provides three approaches to dealing with endianness:
conversion functions, buffer classes, and arithmetic classes. Each approach
has use cases where it is preferred by users over the other approaches, but
adding all three approaches to the standard library would likely be too much of
a good thing. The purpose of
this RFC is to determine interest in adding the Boost conversion functions alone to
the C++ standard library or a library TS.</p>
<h2>Introduction</h2>
<p>The Boost Endian documentation (<a href="https://www.boost.org/libs/endian/doc/index.html">www.boost.org/libs/endian/doc</a>)
provides an <a href="https://www.boost.org/libs/endian/doc/index.html">overview</a>
and detailed technical specifications for the
<a href="https://www.boost.org/libs/endian/doc/conversion.html">conversion
functions</a>, <a href="https://www.boost.org/libs/endian/doc/arithmetic.html">
arithmetic types</a>, and
<a href="https://www.boost.org/libs/endian/doc/buffers.html">buffer types</a>.
</p>
<p>A separate discussion covers
<a href="https://www.boost.org/libs/endian/doc/choosing_approach.html">choosing
between the three approaches</a> provided by the library.</p>
<p>For those not interested in plowing through the entire documentation, the
<a href="https://www.boost.org/libs/endian/doc/index.html#FAQ">Overall FAQ</a>,
<a href="https://www.boost.org/libs/endian/doc/conversion.html#FAQ">Conversion
FAQ</a>, <a href="https://www.boost.org/libs/endian/doc/arithmetic.html#FAQ">
Arithmetic FAQ</a>, and
<a href="https://www.boost.org/libs/endian/doc/buffers.html#FAQ">Buffers FAQ</a>
answer a lot of question likely to arise during standardization.</p>
<h2>Motivation for standardization</h2>
Lack of any one de facto standard endianness capability in either C or
C++. While most platforms provides some way to handle endianness in C, the
mechanism varies from platform to platform.<ul>
<li>Commonly used C endian handling functions are extremely error prone. While
the Boost Endian conversion functions have some of the same problems, the buffer and
arithmetic classes do not.</li>
<li>Surprisingly difficult to write and test yourself in a portable yet
efficient (i.e. using intrinsics) way. </li>
<li>Explicit requests for standardization from Boost Endian users.</li>
<li>The Boost library is existing practice with years of both implementation
and end-user experience.</li>
<li>The committee has already started to standardize endian conversion
functions once, but had to pull the proposal at the last minute because of
name clashes with widely used macros.</li>
</ul>
<h2>Motivation for standardizing only the conversion functions</h2>
<ul>
<li>KISS; Providing three different solutions to the same problem space
regularly confuses to Boost users and makes endianness solutions harder to
teach.</li>
<li>The conversion functions are what end users would need to build their own
higher level abstractions.</li>
<li>The safe use patterns for the conversion functions are already familiar to
users of platform specific C endian conversion functions.</li>
<li>The Boost buffer and arithmetic types are specified and implemented in
terms of the conversion functions, so are easy to add later if desired.</li>
</ul>
<h2>Impact on the standard library</h2>
<p>Endianness conversion functions would be pure additions to the
standard library and would break no existing user code (modulo the usual
namespace <code>std</code> caveats).</p>
<h2>Proposed wording</h2>
<p>The Boost Endian reference documentation for
<a href="https://www.boost.org/libs/endian/doc/conversion.html#Reference">
Conversion</a> follows the standard library&#39;s <i>Method of description</i>
[description], so provides a fairly close approximation of what proposed wording
would look like. Actual proposed wording will be provided in a proposal document
if the library is of interest to the committee. Names will need
the usual review.</p>
<h2>Revision history</h2>
<p>R1: Limits proposal to the conversion functions. KISS.</p>
<p>R0: Considers adding all three endianness approaches to the standard library.</p>
<h2>Question for the Library Evolution Group</h2>
Assuming a fully-worded and reviewed proposal to add a
standardized version of the Boost Endian conversion functions to the standard
library or a library TS, how would you likely vote for it?<h2>Target?</h2>
<p>It is premature to discuss whether to target a TS or the IS. We need to have
an acceptable proposal in hand and see where we are in the release cycle before
deciding on the target. </p>
<h2>Acknowledgements</h2>
<p>The original design for the arithmetic classes was developed by Darin Adler
based on work by Mark Borgerding. The Boost documentation acknowledges
<a href="https://www.boost.org/libs/endian/doc/index.html#Acknowledgements">45+
other people</a>.</p>
<hr>
<p>&nbsp;</p>
</body>
</html>

View File

@ -1,20 +0,0 @@
body
{
font-family: arial, sans-serif;
max-width: 6.5in;
margin: 0px auto;
font-size: 85%;
}
ins {background-color: #CCFFCC;}
del {background-color: #FFCACA;}
pre {background-color: #D7EEFF; font-size: 95%; font-family: "courier new", courier, serif;}
code {font-size: 110%; font-family: "courier new", courier, serif;}
table {font-size: 100%;}
/*
<20> Copyright Beman Dawes, 2014
Distributed under the Boost Software License, Version 1.0.
See www.boost.org/LICENSE_1_0.txt
*/

View File

@ -1,106 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Endian Library Do List</title>
</head>
<body>
<h1>Endian Library TODO List</h1>
<h2>To Do</h2>
<h2>Format Review Comments</h2>
<h3 dir="ltr">Interesting</h3>
<ul>
<li dir="ltr">
<p dir="ltr">John Filo - &quot;Absolutely. I'd like to see support for float and
double, but<br>
even without those additions, I still vote yes.&quot; &quot;For those who deal with
non-native endian data, this library is<br>
extremely useful. It automatically eliminates a whole class of common<br>
programming errors when dealing with such data.&quot;<br>
&nbsp;</li>
<li dir="ltr">
<p dir="ltr">Hartmut Kaiser - &quot;Even if this is not a full review, I would like
to vote YES to include this <br>
library into Boost.
<p>Boost.Spirit is using (and shipping) with an older version of this library
<br>
for several years now and we never had any problems with its usage in <br>
Spirit. It is used as the underlying framework for the binary parsers and <br>
generators and it is functioning as advertised.</p>
<p>As a quick test I replaced the internal (older) version of Boost.Endian in
<br>
Spirit with the reviewed version. All of Spirits regression tests still <br>
pass. &quot;<br>
&nbsp;</li>
</ul>
<h3>Executive summary</h3>
<ul>
<li>Common use case scenarios should be developed.</li>
<li>Example programs should be developed for the common use case scenarios.</li>
<li>Documentation should illuminate the differences between endian
integer/float type and endian conversion approaches to the common use case
scenarios, and provide guidelines for choosing the most appropriate approach
for user's applications.</li>
<li>Conversion functions supplying results via <code>return</code> should be
provided.</li>
<li>Platform specific performance enhancements such as use of compiler
intrinsics or relaxed alignment requirements should be supported.</li>
<li>Endian integer (and floating) types should be implemented via the
conversion functions. If that can't be done efficiently, consideration should
be given to expanding the conversion function signatures to resolve the
inefficiencies.</li>
<li>Benchmarks that measure performance should be provided. It should be
possible to compare platform specific performance enhancements against
portable base implementations, and to compare endian integer approaches
against endian conversion approaches for the common use case scenarios.</li>
<li>Float (32-bits) and double (64-bits) should be supported. IEEE 754 is the
primary use case.</li>
<li>Support for user defined types (UDTs) is desirable, and should be
supported where there would be no conflict with the other concerns.</li>
<li>There is some concern that endian integer/float arithmetic operations
might used
inadvertently or inappropriately. The impact of adding an endian_buffer class without arithmetic
operations should be investigated.</li>
<li>Stream insertion and extraction of the endian integer/float types should
be documented and included in the test coverage.</li>
<li>Binary I/O support that was investigated during development of the Endian
library should be put up for min-review for inclusion in the Boost I/O
library.</li>
</ul>
<h3>Docs</h3>
<ul>
<li>one other point ... the help file seems to directly link to the c++
headers.<br>
this should be changed:<br>
<br>
* some browsers (at least chromium) will not display the header when clicking<br>
&nbsp;the link, but will save them on disk.<br>
<br>
* providing a direct link to the source code from the docs implies that the<br>
&nbsp;user will get some information that are necessary to use the library by<br>
&nbsp;reading the sources. imo, this is not the case for using boost.endian.<br>
<br>
* if a user opens integer.hpp, the first 60 lines just contain copyright, some<br>
&nbsp;historical notes, compiler-specific stuff, includes and ifdefs. imo, this is<br>
&nbsp;the implementation part, which should not be exposed to a user.<br>
<br>
so i'd suggest to completely remove the links to the c++ headers.<br>
&nbsp;</li>
</ul>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->17 January, 2015<!--webbot bot="Timestamp" endspan i-checksum="38899" --></p>
<p>© Copyright Beman Dawes, 2012</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/LICENSE_1_0.txt</a></p>
<p>&nbsp;</p>
</body>
</html>