Changed implementation to avoid calculating the size of the raw data buffer manually. Trim trailing spaces.

This commit is contained in:
Andrey Semashev
2016-04-02 17:31:22 +03:00
parent bde64bf9eb
commit 54988e8e91
2 changed files with 142 additions and 144 deletions

View File

@ -65,7 +65,7 @@ namespace boost {
* object pointers, and a structure that resembles a bound
* member function pointer.
*/
union function_buffer
union function_buffer_members
{
// For pointers to function objects
typedef void* obj_ptr_t;
@ -99,17 +99,15 @@ namespace boost {
bool is_const_qualified;
bool is_volatile_qualified;
} obj_ref;
};
enum {
size1 = sizeof(obj_ptr_t) > sizeof(type_t) ? sizeof(obj_ptr_t) : sizeof(type_t),
size2 = size1 > sizeof(func_ptr_t) ? size1 : sizeof(func_ptr_t),
size3 = size2 > sizeof(bound_memfunc_ptr_t) ? size2 : sizeof(bound_memfunc_ptr_t),
size4 = size3 > sizeof(obj_ref_t) ? size3 : sizeof(obj_ref_t),
data_size = size4
};
union function_buffer
{
// Type-specific union members
mutable function_buffer_members members;
// To relax aliasing constraints
mutable char data[data_size];
mutable char data[sizeof(function_buffer_members)];
};
/**
@ -176,42 +174,42 @@ namespace boost {
struct reference_manager
{
static inline void
manage(const function_buffer& in_buffer, function_buffer& out_buffer,
manage(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op)
{
switch (op) {
case clone_functor_tag:
out_buffer.obj_ref = in_buffer.obj_ref;
case clone_functor_tag:
out_buffer.members.obj_ref = in_buffer.members.obj_ref;
return;
case move_functor_tag:
out_buffer.obj_ref = in_buffer.obj_ref;
in_buffer.obj_ref.obj_ptr = 0;
out_buffer.members.obj_ref = in_buffer.members.obj_ref;
in_buffer.members.obj_ref.obj_ptr = 0;
return;
case destroy_functor_tag:
out_buffer.obj_ref.obj_ptr = 0;
out_buffer.members.obj_ref.obj_ptr = 0;
return;
case check_functor_type_tag:
{
// Check whether we have the same type. We can add
// cv-qualifiers, but we can't take them away.
if (*out_buffer.type.type == boost::typeindex::type_id<F>()
&& (!in_buffer.obj_ref.is_const_qualified
|| out_buffer.type.const_qualified)
&& (!in_buffer.obj_ref.is_volatile_qualified
|| out_buffer.type.volatile_qualified))
out_buffer.obj_ptr = in_buffer.obj_ref.obj_ptr;
if (*out_buffer.members.type.type == boost::typeindex::type_id<F>()
&& (!in_buffer.members.obj_ref.is_const_qualified
|| out_buffer.members.type.const_qualified)
&& (!in_buffer.members.obj_ref.is_volatile_qualified
|| out_buffer.members.type.volatile_qualified))
out_buffer.members.obj_ptr = in_buffer.members.obj_ref.obj_ptr;
else
out_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = 0;
}
return;
case get_functor_type_tag:
out_buffer.type.type = &boost::typeindex::type_id<F>().type_info();
out_buffer.type.const_qualified = in_buffer.obj_ref.is_const_qualified;
out_buffer.type.volatile_qualified = in_buffer.obj_ref.is_volatile_qualified;
out_buffer.members.type.type = &boost::typeindex::type_id<F>().type_info();
out_buffer.members.type.const_qualified = in_buffer.members.obj_ref.is_const_qualified;
out_buffer.members.type.volatile_qualified = in_buffer.members.obj_ref.is_volatile_qualified;
return;
}
}
@ -225,9 +223,9 @@ namespace boost {
struct function_allows_small_object_optimization
{
BOOST_STATIC_CONSTANT
(bool,
(bool,
value = ((sizeof(F) <= sizeof(function_buffer) &&
(alignment_of<function_buffer>::value
(alignment_of<function_buffer>::value
% alignment_of<F>::value == 0))));
};
@ -239,7 +237,7 @@ namespace boost {
A(a)
{
}
functor_wrapper(const functor_wrapper& f) :
F(static_cast<const F&>(f)),
A(static_cast<const A&>(f))
@ -258,35 +256,35 @@ namespace boost {
// Function pointers
static inline void
manage_ptr(const function_buffer& in_buffer, function_buffer& out_buffer,
manage_ptr(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op)
{
if (op == clone_functor_tag)
out_buffer.func_ptr = in_buffer.func_ptr;
out_buffer.members.func_ptr = in_buffer.members.func_ptr;
else if (op == move_functor_tag) {
out_buffer.func_ptr = in_buffer.func_ptr;
in_buffer.func_ptr = 0;
out_buffer.members.func_ptr = in_buffer.members.func_ptr;
in_buffer.members.func_ptr = 0;
} else if (op == destroy_functor_tag)
out_buffer.func_ptr = 0;
out_buffer.members.func_ptr = 0;
else if (op == check_functor_type_tag) {
if (*out_buffer.type.type == boost::typeindex::type_id<Functor>())
out_buffer.obj_ptr = &in_buffer.func_ptr;
if (*out_buffer.members.type.type == boost::typeindex::type_id<Functor>())
out_buffer.members.obj_ptr = &in_buffer.members.func_ptr;
else
out_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = 0;
} else /* op == get_functor_type_tag */ {
out_buffer.type.type = &boost::typeindex::type_id<Functor>().type_info();
out_buffer.type.const_qualified = false;
out_buffer.type.volatile_qualified = false;
out_buffer.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
out_buffer.members.type.const_qualified = false;
out_buffer.members.type.volatile_qualified = false;
}
}
// Function objects that fit in the small-object buffer.
static inline void
manage_small(const function_buffer& in_buffer, function_buffer& out_buffer,
manage_small(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op)
{
if (op == clone_functor_tag || op == move_functor_tag) {
const functor_type* in_functor =
const functor_type* in_functor =
reinterpret_cast<const functor_type*>(in_buffer.data);
new (reinterpret_cast<void*>(out_buffer.data)) functor_type(*in_functor);
@ -301,14 +299,14 @@ namespace boost {
(void)f; // suppress warning about the value of f not being used (MSVC)
f->~Functor();
} else if (op == check_functor_type_tag) {
if (*out_buffer.type.type == boost::typeindex::type_id<Functor>())
out_buffer.obj_ptr = in_buffer.data;
if (*out_buffer.members.type.type == boost::typeindex::type_id<Functor>())
out_buffer.members.obj_ptr = in_buffer.data;
else
out_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = 0;
} else /* op == get_functor_type_tag */ {
out_buffer.type.type = &boost::typeindex::type_id<Functor>().type_info();
out_buffer.type.const_qualified = false;
out_buffer.type.volatile_qualified = false;
out_buffer.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
out_buffer.members.type.const_qualified = false;
out_buffer.members.type.volatile_qualified = false;
}
}
};
@ -321,7 +319,7 @@ namespace boost {
// Function pointers
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, function_ptr_tag)
{
functor_manager_common<Functor>::manage_ptr(in_buffer,out_buffer,op);
@ -329,15 +327,15 @@ namespace boost {
// Function objects that fit in the small-object buffer.
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, mpl::true_)
{
functor_manager_common<Functor>::manage_small(in_buffer,out_buffer,op);
}
// Function objects that require heap allocation
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, mpl::false_)
{
if (op == clone_functor_tag) {
@ -347,27 +345,27 @@ namespace boost {
// jewillco: Changing this to static_cast because GCC 2.95.3 is
// obsolete.
const functor_type* f =
static_cast<const functor_type*>(in_buffer.obj_ptr);
static_cast<const functor_type*>(in_buffer.members.obj_ptr);
functor_type* new_f = new functor_type(*f);
out_buffer.obj_ptr = new_f;
out_buffer.members.obj_ptr = new_f;
} else if (op == move_functor_tag) {
out_buffer.obj_ptr = in_buffer.obj_ptr;
in_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = in_buffer.members.obj_ptr;
in_buffer.members.obj_ptr = 0;
} else if (op == destroy_functor_tag) {
/* Cast from the void pointer to the functor pointer type */
functor_type* f =
static_cast<functor_type*>(out_buffer.obj_ptr);
static_cast<functor_type*>(out_buffer.members.obj_ptr);
delete f;
out_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = 0;
} else if (op == check_functor_type_tag) {
if (*out_buffer.type.type == boost::typeindex::type_id<Functor>())
out_buffer.obj_ptr = in_buffer.obj_ptr;
if (*out_buffer.members.type.type == boost::typeindex::type_id<Functor>())
out_buffer.members.obj_ptr = in_buffer.members.obj_ptr;
else
out_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = 0;
} else /* op == get_functor_type_tag */ {
out_buffer.type.type = &boost::typeindex::type_id<Functor>().type_info();
out_buffer.type.const_qualified = false;
out_buffer.type.volatile_qualified = false;
out_buffer.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
out_buffer.members.type.const_qualified = false;
out_buffer.members.type.volatile_qualified = false;
}
}
@ -375,7 +373,7 @@ namespace boost {
// object can use the small-object optimization buffer or
// whether we need to allocate it on the heap.
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, function_obj_tag)
{
manager(in_buffer, out_buffer, op,
@ -384,7 +382,7 @@ namespace boost {
// For member pointers, we use the small-object optimization buffer.
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, member_ptr_tag)
{
manager(in_buffer, out_buffer, op, mpl::true_());
@ -394,15 +392,15 @@ namespace boost {
/* Dispatch to an appropriate manager based on whether we have a
function pointer or a function object pointer. */
static inline void
manage(const function_buffer& in_buffer, function_buffer& out_buffer,
manage(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op)
{
typedef typename get_function_tag<functor_type>::type tag_type;
switch (op) {
case get_functor_type_tag:
out_buffer.type.type = &boost::typeindex::type_id<functor_type>().type_info();
out_buffer.type.const_qualified = false;
out_buffer.type.volatile_qualified = false;
out_buffer.members.type.type = &boost::typeindex::type_id<functor_type>().type_info();
out_buffer.members.type.const_qualified = false;
out_buffer.members.type.volatile_qualified = false;
return;
default:
@ -420,7 +418,7 @@ namespace boost {
// Function pointers
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, function_ptr_tag)
{
functor_manager_common<Functor>::manage_ptr(in_buffer,out_buffer,op);
@ -428,15 +426,15 @@ namespace boost {
// Function objects that fit in the small-object buffer.
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, mpl::true_)
{
functor_manager_common<Functor>::manage_small(in_buffer,out_buffer,op);
}
// Function objects that require heap allocation
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, mpl::false_)
{
typedef functor_wrapper<Functor,Allocator> functor_wrapper_type;
@ -449,34 +447,34 @@ namespace boost {
// GCC 2.95.3 gets the CV qualifiers wrong here, so we
// can't do the static_cast that we should do.
const functor_wrapper_type* f =
static_cast<const functor_wrapper_type*>(in_buffer.obj_ptr);
static_cast<const functor_wrapper_type*>(in_buffer.members.obj_ptr);
wrapper_allocator_type wrapper_allocator(static_cast<Allocator const &>(*f));
wrapper_allocator_pointer_type copy = wrapper_allocator.allocate(1);
wrapper_allocator.construct(copy, *f);
// Get back to the original pointer type
functor_wrapper_type* new_f = static_cast<functor_wrapper_type*>(copy);
out_buffer.obj_ptr = new_f;
out_buffer.members.obj_ptr = new_f;
} else if (op == move_functor_tag) {
out_buffer.obj_ptr = in_buffer.obj_ptr;
in_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = in_buffer.members.obj_ptr;
in_buffer.members.obj_ptr = 0;
} else if (op == destroy_functor_tag) {
/* Cast from the void pointer to the functor_wrapper_type */
functor_wrapper_type* victim =
static_cast<functor_wrapper_type*>(in_buffer.obj_ptr);
static_cast<functor_wrapper_type*>(in_buffer.members.obj_ptr);
wrapper_allocator_type wrapper_allocator(static_cast<Allocator const &>(*victim));
wrapper_allocator.destroy(victim);
wrapper_allocator.deallocate(victim,1);
out_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = 0;
} else if (op == check_functor_type_tag) {
if (*out_buffer.type.type == boost::typeindex::type_id<Functor>())
out_buffer.obj_ptr = in_buffer.obj_ptr;
if (*out_buffer.members.type.type == boost::typeindex::type_id<Functor>())
out_buffer.members.obj_ptr = in_buffer.members.obj_ptr;
else
out_buffer.obj_ptr = 0;
out_buffer.members.obj_ptr = 0;
} else /* op == get_functor_type_tag */ {
out_buffer.type.type = &boost::typeindex::type_id<Functor>().type_info();
out_buffer.type.const_qualified = false;
out_buffer.type.volatile_qualified = false;
out_buffer.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
out_buffer.members.type.const_qualified = false;
out_buffer.members.type.volatile_qualified = false;
}
}
@ -484,7 +482,7 @@ namespace boost {
// object can use the small-object optimization buffer or
// whether we need to allocate it on the heap.
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, function_obj_tag)
{
manager(in_buffer, out_buffer, op,
@ -495,15 +493,15 @@ namespace boost {
/* Dispatch to an appropriate manager based on whether we have a
function pointer or a function object pointer. */
static inline void
manage(const function_buffer& in_buffer, function_buffer& out_buffer,
manage(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op)
{
typedef typename get_function_tag<functor_type>::type tag_type;
switch (op) {
case get_functor_type_tag:
out_buffer.type.type = &boost::typeindex::type_id<functor_type>().type_info();
out_buffer.type.const_qualified = false;
out_buffer.type.volatile_qualified = false;
out_buffer.members.type.type = &boost::typeindex::type_id<functor_type>().type_info();
out_buffer.members.type.const_qualified = false;
out_buffer.members.type.volatile_qualified = false;
return;
default:
@ -581,8 +579,8 @@ namespace boost {
*/
struct vtable_base
{
void (*manager)(const function_buffer& in_buffer,
function_buffer& out_buffer,
void (*manager)(const function_buffer& in_buffer,
function_buffer& out_buffer,
functor_manager_operation_type op);
};
} // end namespace function
@ -610,7 +608,7 @@ public:
detail::function::function_buffer type;
get_vtable()->manager(functor, type, detail::function::get_functor_type_tag);
return *type.type.type;
return *type.members.type.type;
}
template<typename Functor>
@ -619,12 +617,12 @@ public:
if (!vtable) return 0;
detail::function::function_buffer type_result;
type_result.type.type = &boost::typeindex::type_id<Functor>().type_info();
type_result.type.const_qualified = is_const<Functor>::value;
type_result.type.volatile_qualified = is_volatile<Functor>::value;
get_vtable()->manager(functor, type_result,
type_result.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
type_result.members.type.const_qualified = is_const<Functor>::value;
type_result.members.type.volatile_qualified = is_volatile<Functor>::value;
get_vtable()->manager(functor, type_result,
detail::function::check_functor_type_tag);
return static_cast<Functor*>(type_result.obj_ptr);
return static_cast<Functor*>(type_result.members.obj_ptr);
}
template<typename Functor>
@ -633,14 +631,14 @@ public:
if (!vtable) return 0;
detail::function::function_buffer type_result;
type_result.type.type = &boost::typeindex::type_id<Functor>().type_info();
type_result.type.const_qualified = true;
type_result.type.volatile_qualified = is_volatile<Functor>::value;
get_vtable()->manager(functor, type_result,
type_result.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
type_result.members.type.const_qualified = true;
type_result.members.type.volatile_qualified = is_volatile<Functor>::value;
get_vtable()->manager(functor, type_result,
detail::function::check_functor_type_tag);
// GCC 2.95.3 gets the CV qualifiers wrong here, so we
// can't do the static_cast that we should do.
return static_cast<const Functor*>(type_result.obj_ptr);
return static_cast<const Functor*>(type_result.members.obj_ptr);
}
template<typename F>

View File

@ -97,7 +97,7 @@ namespace boost {
static R invoke(function_buffer& function_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.func_ptr);
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.members.func_ptr);
return f(BOOST_FUNCTION_ARGS);
}
};
@ -114,7 +114,7 @@ namespace boost {
BOOST_FUNCTION_PARMS)
{
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.func_ptr);
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.members.func_ptr);
BOOST_FUNCTION_RETURN(f(BOOST_FUNCTION_ARGS));
}
};
@ -134,7 +134,7 @@ namespace boost {
if (function_allows_small_object_optimization<FunctionObj>::value)
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.data);
else
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.members.obj_ptr);
return (*f)(BOOST_FUNCTION_ARGS);
}
};
@ -155,7 +155,7 @@ namespace boost {
if (function_allows_small_object_optimization<FunctionObj>::value)
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.data);
else
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.members.obj_ptr);
BOOST_FUNCTION_RETURN((*f)(BOOST_FUNCTION_ARGS));
}
};
@ -171,8 +171,8 @@ namespace boost {
BOOST_FUNCTION_PARMS)
{
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.members.obj_ptr);
return (*f)(BOOST_FUNCTION_ARGS);
}
};
@ -189,8 +189,8 @@ namespace boost {
BOOST_FUNCTION_PARMS)
{
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.members.obj_ptr);
BOOST_FUNCTION_RETURN((*f)(BOOST_FUNCTION_ARGS));
}
};
@ -208,7 +208,7 @@ namespace boost {
BOOST_FUNCTION_PARMS)
{
MemberPtr* f =
MemberPtr* f =
reinterpret_cast<MemberPtr*>(function_obj_ptr.data);
return boost::mem_fn(*f)(BOOST_FUNCTION_ARGS);
}
@ -226,7 +226,7 @@ namespace boost {
BOOST_FUNCTION_PARMS)
{
MemberPtr* f =
MemberPtr* f =
reinterpret_cast<MemberPtr*>(function_obj_ptr.data);
BOOST_FUNCTION_RETURN(boost::mem_fn(*f)(BOOST_FUNCTION_ARGS));
}
@ -322,7 +322,7 @@ namespace boost {
/* Given the tag returned by get_function_tag, retrieve the
actual invoker that will be used for the given function
object.
object.
Each specialization contains an "apply" nested class template
that accepts the function object, return type, function
@ -513,21 +513,21 @@ namespace boost {
private:
// Function pointers
template<typename FunctionPtr>
bool
bool
assign_to(FunctionPtr f, function_buffer& functor, function_ptr_tag) const
{
this->clear(functor);
if (f) {
// should be a reinterpret cast, but some compilers insist
// on giving cv-qualifiers to free functions
functor.func_ptr = reinterpret_cast<void (*)()>(f);
functor.members.func_ptr = reinterpret_cast<void (*)()>(f);
return true;
} else {
return false;
}
}
template<typename FunctionPtr,typename Allocator>
bool
bool
assign_to_a(FunctionPtr f, function_buffer& functor, Allocator, function_ptr_tag) const
{
return assign_to(f,functor,function_ptr_tag());
@ -566,13 +566,13 @@ namespace boost {
// Function objects
// Assign to a function object using the small object optimization
template<typename FunctionObj>
void
void
assign_functor(FunctionObj f, function_buffer& functor, mpl::true_) const
{
new (reinterpret_cast<void*>(functor.data)) FunctionObj(f);
}
template<typename FunctionObj,typename Allocator>
void
void
assign_functor_a(FunctionObj f, function_buffer& functor, Allocator, mpl::true_) const
{
assign_functor(f,functor,mpl::true_());
@ -580,13 +580,13 @@ namespace boost {
// Assign to a function object allocated on the heap.
template<typename FunctionObj>
void
void
assign_functor(FunctionObj f, function_buffer& functor, mpl::false_) const
{
functor.obj_ptr = new FunctionObj(f);
functor.members.obj_ptr = new FunctionObj(f);
}
template<typename FunctionObj,typename Allocator>
void
void
assign_functor_a(FunctionObj f, function_buffer& functor, Allocator a, mpl::false_) const
{
typedef functor_wrapper<FunctionObj,Allocator> functor_wrapper_type;
@ -597,15 +597,15 @@ namespace boost {
wrapper_allocator_pointer_type copy = wrapper_allocator.allocate(1);
wrapper_allocator.construct(copy, functor_wrapper_type(f,a));
functor_wrapper_type* new_f = static_cast<functor_wrapper_type*>(copy);
functor.obj_ptr = new_f;
functor.members.obj_ptr = new_f;
}
template<typename FunctionObj>
bool
bool
assign_to(FunctionObj f, function_buffer& functor, function_obj_tag) const
{
if (!boost::detail::function::has_empty_target(boost::addressof(f))) {
assign_functor(f, functor,
assign_functor(f, functor,
mpl::bool_<(function_allows_small_object_optimization<FunctionObj>::value)>());
return true;
} else {
@ -613,7 +613,7 @@ namespace boost {
}
}
template<typename FunctionObj,typename Allocator>
bool
bool
assign_to_a(FunctionObj f, function_buffer& functor, Allocator a, function_obj_tag) const
{
if (!boost::detail::function::has_empty_target(boost::addressof(f))) {
@ -627,18 +627,18 @@ namespace boost {
// Reference to a function object
template<typename FunctionObj>
bool
assign_to(const reference_wrapper<FunctionObj>& f,
bool
assign_to(const reference_wrapper<FunctionObj>& f,
function_buffer& functor, function_obj_ref_tag) const
{
functor.obj_ref.obj_ptr = (void *)(f.get_pointer());
functor.obj_ref.is_const_qualified = is_const<FunctionObj>::value;
functor.obj_ref.is_volatile_qualified = is_volatile<FunctionObj>::value;
functor.members.obj_ref.obj_ptr = (void *)(f.get_pointer());
functor.members.obj_ref.is_const_qualified = is_const<FunctionObj>::value;
functor.members.obj_ref.is_volatile_qualified = is_volatile<FunctionObj>::value;
return true;
}
template<typename FunctionObj,typename Allocator>
bool
assign_to_a(const reference_wrapper<FunctionObj>& f,
bool
assign_to_a(const reference_wrapper<FunctionObj>& f,
function_buffer& functor, Allocator, function_obj_ref_tag) const
{
return assign_to(f,functor,function_obj_ref_tag());
@ -921,7 +921,7 @@ namespace boost {
typedef typename boost::detail::function::get_function_tag<Functor>::type tag;
typedef boost::detail::function::BOOST_FUNCTION_GET_INVOKER<tag> get_invoker;
typedef typename get_invoker::
template apply<Functor, R BOOST_FUNCTION_COMMA
template apply<Functor, R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS>
handler_type;
@ -932,7 +932,7 @@ namespace boost {
// static initialization. Otherwise, we will have a race
// condition here in multi-threaded code. See
// http://thread.gmane.org/gmane.comp.lib.boost.devel/164902/.
static const vtable_type stored_vtable =
static const vtable_type stored_vtable =
{ { &manager_type::manage }, &invoker_type::invoke };
if (stored_vtable.assign_to(f, functor)) {
@ -943,7 +943,7 @@ namespace boost {
boost::detail::function::function_allows_small_object_optimization<Functor>::value)
value |= static_cast<std::size_t>(0x01);
vtable = reinterpret_cast<boost::detail::function::vtable_base *>(value);
} else
} else
vtable = 0;
}
@ -955,7 +955,7 @@ namespace boost {
typedef typename boost::detail::function::get_function_tag<Functor>::type tag;
typedef boost::detail::function::BOOST_FUNCTION_GET_INVOKER<tag> get_invoker;
typedef typename get_invoker::
template apply_a<Functor, R BOOST_FUNCTION_COMMA
template apply_a<Functor, R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS,
Allocator>
handler_type;
@ -970,7 +970,7 @@ namespace boost {
static const vtable_type stored_vtable =
{ { &manager_type::manage }, &invoker_type::invoke };
if (stored_vtable.assign_to_a(f, functor, a)) {
if (stored_vtable.assign_to_a(f, functor, a)) {
std::size_t value = reinterpret_cast<std::size_t>(&stored_vtable.base);
// coverity[pointless_expression]: suppress coverity warnings on apparant if(const).
if (boost::has_trivial_copy_constructor<Functor>::value &&
@ -978,14 +978,14 @@ namespace boost {
boost::detail::function::function_allows_small_object_optimization<Functor>::value)
value |= static_cast<std::size_t>(0x01);
vtable = reinterpret_cast<boost::detail::function::vtable_base *>(value);
} else
} else
vtable = 0;
}
// Moves the value from the specified argument to *this. If the argument
// has its function object allocated on the heap, move_assign will pass
// its buffer to *this, and set the argument's buffer pointer to NULL.
void move_assign(BOOST_FUNCTION_FUNCTION& f)
// Moves the value from the specified argument to *this. If the argument
// has its function object allocated on the heap, move_assign will pass
// its buffer to *this, and set the argument's buffer pointer to NULL.
void move_assign(BOOST_FUNCTION_FUNCTION& f)
{
if (&f == this)
return;
@ -1139,7 +1139,7 @@ public:
self_type(f).swap(*this);
return *this;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
self_type& operator=(base_type&& f)
{