Compare commits

...

24 Commits

Author SHA1 Message Date
5d5d09d6f0 Merge with the offending files removed.
[SVN r39995]
2007-10-13 23:18:35 +00:00
76e648c017 Merge from trunk.
[SVN r39287]
2007-09-14 22:24:22 +00:00
48652522a5 Create a development branch for the hash library.
[SVN r38869]
2007-08-23 19:28:19 +00:00
80a3f47099 Committed patch to eliminate warnings with GCC's -Wundef. Fixes #1197
[SVN r38827]
2007-08-21 15:35:19 +00:00
2a85edbd31 Remove V1 Jamfiles
[SVN r38516]
2007-08-08 19:02:26 +00:00
5c514ebe35 Try to work around EC++4 bug
[SVN r37471]
2007-04-18 12:13:53 +00:00
6a3f0df553 Add copyright, license
[SVN r35905]
2006-11-07 19:11:57 +00:00
64c8d10fa8 Eliminate MSVC 8.0 warning
[SVN r35588]
2006-10-13 14:29:56 +00:00
a2a810d2c1 Put back #include <functional> in case functionN.hpp is used directly
[SVN r34519]
2006-07-12 22:12:01 +00:00
d84481361f TR1 cyclic dependency fixes.
[SVN r34499]
2006-07-10 13:17:41 +00:00
872f12efee TR1 conformance: derive from unary_function/binary_function
[SVN r34481]
2006-07-08 18:07:33 +00:00
69ee6e2375 Fixed an 'unused parameter' warning.
[SVN r33204]
2006-03-02 21:24:57 +00:00
fdd91dbf91 Stop using assert() in tests
[SVN r33181]
2006-02-28 22:56:33 +00:00
87ad11583c Use ~Functor instead of ~function_type always, since it makes Borland
and vc6 and who knows what else happy.


[SVN r32832]
2006-02-11 19:08:25 +00:00
9fe1351ab7 Workaround for Borland compilers, from Alistair
[SVN r32394]
2006-01-24 13:57:25 +00:00
58b61efb5f trivial adjustments to enable warning-free compilation with gcc -Wall -W -Werror
[SVN r32364]
2006-01-20 16:53:30 +00:00
f195b6c10a Fixes for GCC 2.95.3
[SVN r32319]
2006-01-13 19:32:58 +00:00
2b4f81ca67 Workaround for GCC 2.95.3
[SVN r32302]
2006-01-13 02:45:33 +00:00
1f51812589 EDG 238 compatibility (and potentially other compilers)
[SVN r32294]
2006-01-12 15:31:46 +00:00
78f6b385d5 Small buffer optimization for Boost.Function
[SVN r32282]
2006-01-10 23:52:35 +00:00
93c691fbdf function_base.hpp, function_template.hpp:
- Use a vtable instead of separate manager/invoker pointers, to shrink the
    size of a boost::function object to 8 bytes
  - Fix a problem with NULL member pointers


[SVN r32186]
2005-12-30 02:31:51 +00:00
c5e64fab99 BOOST_CRITICAL_ERROR is no longer usable
[SVN r32185]
2005-12-30 02:27:13 +00:00
6023ff5608 Workaround for a problem in Wave.
[SVN r32094]
2005-12-18 21:06:32 +00:00
944c2ea72a Merged from Version_1_33_1
[SVN r31949]
2005-12-08 03:23:02 +00:00
13 changed files with 714 additions and 451 deletions

View File

@ -5,6 +5,13 @@
<title>History &amp; Compatibility Notes</title>
<itemizedlist spacing="compact">
<listitem><para><bold>Version 1.34.0</bold>: </para>
<itemizedlist spacing="compact">
<listitem><para>Boost.Function now implements a small buffer optimization, which can drastically improve the performance when copying or construction Boost.Function objects storing small function objects. For instance, <code>bind(&amp;X:foo, &amp;x, _1, _2)</code> requires no heap allocation when placed into a Boost.Function object. Note that some exception-safety guarantees have changed: assignment provides the basic exception guarantee and <code>swap()</code> may throw.</para></listitem>
</itemizedlist>
</listitem>
<listitem><para><bold>Version 1.30.0</bold>: </para>
<itemizedlist spacing="compact">
<listitem><para>All features deprecated in version 1.29.0 have

View File

@ -118,6 +118,12 @@
<returns><simpara><code>true</code> if <code>this-&gt;<methodname>target</methodname>&lt;Functor&gt;()</code> is non-NULL and <code><functionname>function_equal</functionname>(*(this-&gt;target&lt;Functor&gt;()), f)</code></simpara></returns>
</method>
<method name="target_type" cv="const">
<type>const std::type_info&amp;</type>
<returns><simpara><code>typeid</code> of the target function object, or <code>typeid(void)</code> if <code>this-&gt;<methodname>empty</methodname>()</code>.</simpara></returns>
<throws><simpara>Will not throw.</simpara></throws>
</method>
</method-group>
</class>
@ -182,7 +188,7 @@
</struct>
<constructor>
<postconditions><simpara><code>this-><methodname>empty</methodname>()</code></simpara></postconditions>
<postconditions><simpara><code>this-&gt;<methodname>empty</methodname>()</code></simpara></postconditions>
<throws><simpara>Will not throw.</simpara></throws>
</constructor>
@ -201,11 +207,10 @@
<parameter name="f"><paramtype>F</paramtype></parameter>
<requires><simpara>F is a function object Callable from <code>this</code>.</simpara></requires>
<postconditions><simpara><code>*this</code> targets a copy of <code>f</code> if <code>f</code> is nonempty, or <code>this-&gt;<methodname>empty</methodname>()</code> if <code>f</code> is empty.</simpara></postconditions>
<throws><simpara>Will not throw when <code>f</code> is a stateless function object.</simpara></throws>
</constructor>
<destructor>
<effects><simpara>If <code>!this-><methodname>empty</methodname>()</code>, destroys the target of this.</simpara></effects>
<effects><simpara>If <code>!this-&gt;<methodname>empty</methodname>()</code>, destroys the target of this.</simpara></effects>
</destructor>
@ -213,8 +218,7 @@
<parameter name="f">
<paramtype>const <classname>functionN</classname>&amp;</paramtype>
</parameter>
<postconditions><simpara><code>*this</code> targets a copy of <code>f</code>'s target, if it has one, or is empty if <code>f.<methodname>empty</methodname>()</code>.</simpara></postconditions>
<throws><simpara>Will not throw when the target of <code>f</code> is a stateless function object or a reference to the function object.</simpara></throws>
<postconditions><simpara>If copy construction does not throw, <code>*this</code> targets a copy of <code>f</code>'s target, if it has one, or is empty if <code>f.<methodname>empty</methodname>()</code>. If copy construction does throw, <code>this-&gt;<methodname>empty</methodname>()</code>.</simpara></postconditions>
</copy-assignment>
<method-group name="modifiers">
@ -222,13 +226,11 @@
<type>void</type>
<parameter name="f"><paramtype>const <classname>functionN</classname>&amp;</paramtype></parameter>
<effects><simpara>Interchanges the targets of <code>*this</code> and <code>f</code>.</simpara></effects>
<throws><simpara>Will not throw.</simpara></throws>
</method>
<method name="clear">
<type>void</type>
<postconditions><simpara>this-&gt;<methodname>empty</methodname>()</simpara></postconditions>
<throws><simpara>Will not throw.</simpara></throws>
</method>
</method-group>
@ -286,6 +288,13 @@
<returns><simpara><code>true</code> if <code>this-&gt;<methodname>target</methodname>&lt;Functor&gt;()</code> is non-NULL and <code><functionname>function_equal</functionname>(*(this-&gt;target&lt;Functor&gt;()), f)</code></simpara></returns>
</method>
<method name="target_type" cv="const">
<type>const std::type_info&amp;</type>
<returns><simpara><code>typeid</code> of the target function object, or <code>typeid(void)</code> if <code>this-&gt;<methodname>empty</methodname>()</code>.</simpara></returns>
<throws><simpara>Will not throw.</simpara></throws>
</method>
</method-group>
<method-group name="invocation">
@ -297,7 +306,7 @@
<parameter name="aN"><paramtype>argN_type</paramtype></parameter>
<effects><simpara><code>f(a1, a2, ..., aN)</code>, where <code>f</code> is the target of <code>*this</code>.</simpara></effects>
<returns><simpara>if <code>R</code> is <code>void</code>, nothing is returned; otherwise, the return value of the call to <code>f</code> is returned.</simpara></returns>
<throws><simpara><code><classname>bad_function_call</classname></code> if <code>!this-&gt;<methodname>empty</methodname>()</code>. Otherwise, may through any exception thrown by the target function <code>f</code>.</simpara></throws>
<throws><simpara><code><classname>bad_function_call</classname></code> if <code>this-&gt;<methodname>empty</methodname>()</code>. Otherwise, may through any exception thrown by the target function <code>f</code>.</simpara></throws>
</method>
</method-group>
@ -314,7 +323,6 @@
<parameter name="f1"><paramtype><classname>functionN</classname>&lt;T1, T2, ..., TN, Allocator&gt;&amp;</paramtype></parameter>
<parameter name="f2"><paramtype><classname>functionN</classname>&lt;T1, T2, ..., TN, Allocator&gt;&amp;</paramtype></parameter>
<effects><simpara><code>f1.<methodname>swap</methodname>(f2)</code></simpara></effects>
<throws><simpara>Will not throw.</simpara></throws>
</function>
</free-function-group>
@ -589,7 +597,7 @@
</struct>
<constructor>
<postconditions><simpara><code>this-><methodname>empty</methodname>()</code></simpara></postconditions>
<postconditions><simpara><code>this-&gt;<methodname>empty</methodname>()</code></simpara></postconditions>
<throws><simpara>Will not throw.</simpara></throws>
</constructor>
@ -616,28 +624,26 @@
<parameter name="f"><paramtype>F</paramtype></parameter>
<requires><simpara>F is a function object Callable from <code>this</code>.</simpara></requires>
<postconditions><simpara><code>*this</code> targets a copy of <code>f</code> if <code>f</code> is nonempty, or <code>this-&gt;<methodname>empty</methodname>()</code> if <code>f</code> is empty.</simpara></postconditions>
<throws><simpara>Will not throw when <code>f</code> is a stateless function object.</simpara></throws>
</constructor>
<destructor>
<effects><simpara>If <code>!this-><methodname>empty</methodname>()</code>, destroys the target of <code>this</code>.</simpara></effects>
<effects><simpara>If <code>!this-&gt;<methodname>empty</methodname>()</code>, destroys the target of <code>this</code>.</simpara></effects>
</destructor>
<copy-assignment>
<parameter name="f">
<paramtype>const <classname>functionN</classname>&amp;</paramtype>
<paramtype>const <classname>function</classname>&amp;</paramtype>
</parameter>
<postconditions><simpara><code>*this</code> targets a copy of <code>f</code>'s target, if it has one, or is empty if <code>f.<methodname>empty</methodname>()</code></simpara></postconditions>
<throws><simpara>Will not throw when the target of <code>f</code> is a stateless function object or a reference to the function object.</simpara></throws>
<postconditions><simpara>If copy construction does not throw, <code>*this</code> targets a copy of <code>f</code>'s target, if it has one, or is empty if <code>f.<methodname>empty</methodname>()</code>. If copy construction does throw, <code>this-&gt;<methodname>empty</methodname>()</code>.</simpara></postconditions>
</copy-assignment>
<copy-assignment>
<parameter name="f">
<paramtype>const <classname>function</classname>&amp;</paramtype>
</parameter>
<postconditions><simpara><code>*this</code> targets a copy of <code>f</code>'s target, if it has one, or is empty if <code>f.<methodname>empty</methodname>()</code></simpara></postconditions>
<throws><simpara>Will not throw when the target of <code>f</code> is a stateless function object or a reference to the function object.</simpara></throws>
<postconditions><simpara>If copy construction of the target of <code>f</code> does not throw, <code>*this</code> targets a copy of <code>f</code>'s target, if it has one, or is empty if <code>f.<methodname>empty</methodname>()</code>. </simpara></postconditions>
<throws><simpara>Will not throw when the target of <code>f</code> is a stateless function object or a reference to the function object. If copy construction does throw, <code>this-&gt;<methodname>empty</methodname>()</code>.</simpara></throws>
</copy-assignment>
<method-group name="modifiers">
@ -645,7 +651,6 @@
<type>void</type>
<parameter name="f"><paramtype>const <classname>function</classname>&amp;</paramtype></parameter>
<effects><simpara>Interchanges the targets of <code>*this</code> and <code>f</code>.</simpara></effects>
<throws><simpara>Will not throw.</simpara></throws>
</method>
<method name="clear">
@ -708,6 +713,12 @@
<returns><simpara><code>true</code> if <code>this-&gt;<methodname>target</methodname>&lt;Functor&gt;()</code> is non-NULL and <code><functionname>function_equal</functionname>(*(this-&gt;target&lt;Functor&gt;()), f)</code></simpara></returns>
</method>
<method name="target_type" cv="const">
<type>const std::type_info&amp;</type>
<returns><simpara><code>typeid</code> of the target function object, or <code>typeid(void)</code> if <code>this-&gt;<methodname>empty</methodname>()</code>.</simpara></returns>
<throws><simpara>Will not throw.</simpara></throws>
</method>
</method-group>
<method-group name="invocation">
@ -719,7 +730,7 @@
<parameter name="aN"><paramtype>argN_type</paramtype></parameter>
<effects><simpara><code>f(a1, a2, ..., aN)</code>, where <code>f</code> is the target of <code>*this</code>.</simpara></effects>
<returns><simpara>if <code>R</code> is <code>void</code>, nothing is returned; otherwise, the return value of the call to <code>f</code> is returned.</simpara></returns>
<throws><simpara><code><classname>bad_function_call</classname></code> if <code>!this-&gt;<methodname>empty</methodname>()</code>. Otherwise, may through any exception thrown by the target function <code>f</code>.</simpara></throws>
<throws><simpara><code><classname>bad_function_call</classname></code> if <code>this-&gt;<methodname>empty</methodname>()</code>. Otherwise, may through any exception thrown by the target function <code>f</code>.</simpara></throws>
</method>
</method-group>
@ -733,7 +744,6 @@
<parameter name="f1"><paramtype><classname>function</classname>&lt;Signature, Allocator&gt;&amp;</paramtype></parameter>
<parameter name="f2"><paramtype><classname>function</classname>&lt;Signature, Allocator&gt;&amp;</paramtype></parameter>
<effects><simpara><code>f1.<methodname>swap</methodname>(f2)</code></simpara></effects>
<throws><simpara>Will not throw.</simpara></throws>
</function>
</free-function-group>

View File

@ -10,6 +10,8 @@
// William Kempf, Jesse Jones and Karl Nelson were all very helpful in the
// design of this library.
#include <functional> // unary_function, binary_function
#include <boost/preprocessor/iterate.hpp>
#include <boost/detail/workaround.hpp>

View File

@ -11,6 +11,7 @@
#define BOOST_FUNCTION_PROLOGUE_HPP
# include <cassert>
# include <algorithm>
# include <functional> // unary_function, binary_function
# include <boost/throw_exception.hpp>
# include <boost/config.hpp>
# include <boost/function/function_base.hpp>

View File

@ -1,6 +1,6 @@
// Boost.Function library
// Copyright Douglas Gregor 2001-2004. Use, modification and
// Copyright Douglas Gregor 2001-2006. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@ -19,10 +19,10 @@
#include <boost/assert.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/composite_traits.hpp>
#include <boost/type_traits/is_stateless.hpp>
#include <boost/ref.hpp>
#include <boost/pending/ct_if.hpp>
#include <boost/mpl/if.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/type_traits/alignment_of.hpp>
#ifndef BOOST_NO_SFINAE
# include "boost/utility/enable_if.hpp"
#else
@ -30,6 +30,19 @@
#endif
#include <boost/function_equal.hpp>
#if defined(BOOST_MSVC)
# pragma warning( push )
# pragma warning( disable : 4793 ) // complaint about native code generation
#endif
// Define BOOST_FUNCTION_STD_NS to the namespace that contains type_info.
#ifdef BOOST_NO_EXCEPTION_STD_NAMESPACE
// Embedded VC++ does not have type_info in namespace std
# define BOOST_FUNCTION_STD_NS
#else
# define BOOST_FUNCTION_STD_NS std
#endif
// Borrowed from Boost.Python library: determines the cases where we
// need to use std::type_info::name to compare instead of operator==.
# if (defined(__GNUC__) && __GNUC__ >= 3) \
@ -59,7 +72,7 @@ namespace boost { namespace python { namespace objects {
#if defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) \
|| defined(BOOST_BCB_PARTIAL_SPECIALIZATION_BUG) \
|| !(BOOST_STRICT_CONFIG || !defined(__SUNPRO_CC) || __SUNPRO_CC > 0x540)
|| !(defined(BOOST_STRICT_CONFIG) || !defined(__SUNPRO_CC) || __SUNPRO_CC > 0x540)
# define BOOST_FUNCTION_NO_FUNCTION_TYPE_SYNTAX
#endif
@ -105,42 +118,36 @@ inline void swap(function<Signature, Allocator>& f1,
namespace boost {
namespace detail {
namespace function {
class X;
/**
* A union of a function pointer and a void pointer. This is necessary
* because 5.2.10/6 allows reinterpret_cast<> to safely cast between
* function pointer types and 5.2.9/10 allows static_cast<> to safely
* cast between a void pointer and an object pointer. But it is not legal
* to cast between a function pointer and a void* (in either direction),
* so function requires a union of the two. */
union any_pointer
* A buffer used to store small function objects in
* boost::function. It is a union containing function pointers,
* object pointers, and a structure that resembles a bound
* member function pointer.
*/
union function_buffer
{
// For pointers to function objects
void* obj_ptr;
// For pointers to std::type_info objects
// (get_functor_type_tag, check_functor_type_tag).
const void* const_obj_ptr;
void (*func_ptr)();
char data[1];
// For function pointers of all kinds
mutable void (*func_ptr)();
// For bound member pointers
struct bound_memfunc_ptr_t {
void (X::*memfunc_ptr)(int);
void* obj_ptr;
} bound_memfunc_ptr;
// To relax aliasing constraints
mutable char data;
};
inline any_pointer make_any_pointer(void* o)
{
any_pointer p;
p.obj_ptr = o;
return p;
}
inline any_pointer make_any_pointer(const void* o)
{
any_pointer p;
p.const_obj_ptr = o;
return p;
}
inline any_pointer make_any_pointer(void (*f)())
{
any_pointer p;
p.func_ptr = f;
return p;
}
/**
* The unusable class is a placeholder for unused function arguments
* It is also completely unusable except that it constructable from
@ -169,7 +176,8 @@ namespace boost {
enum functor_manager_operation_type {
clone_functor_tag,
destroy_functor_tag,
check_functor_type_tag
check_functor_type_tag,
get_functor_type_tag
};
// Tags used to decide between different types of functions
@ -177,57 +185,79 @@ namespace boost {
struct function_obj_tag {};
struct member_ptr_tag {};
struct function_obj_ref_tag {};
struct stateless_function_obj_tag {};
template<typename F>
class get_function_tag
{
typedef typename ct_if<(is_pointer<F>::value),
function_ptr_tag,
function_obj_tag>::type ptr_or_obj_tag;
typedef typename mpl::if_c<(is_pointer<F>::value),
function_ptr_tag,
function_obj_tag>::type ptr_or_obj_tag;
typedef typename ct_if<(is_member_pointer<F>::value),
member_ptr_tag,
ptr_or_obj_tag>::type ptr_or_obj_or_mem_tag;
typedef typename mpl::if_c<(is_member_pointer<F>::value),
member_ptr_tag,
ptr_or_obj_tag>::type ptr_or_obj_or_mem_tag;
typedef typename ct_if<(is_reference_wrapper<F>::value),
function_obj_ref_tag,
ptr_or_obj_or_mem_tag>::type or_ref_tag;
typedef typename mpl::if_c<(is_reference_wrapper<F>::value),
function_obj_ref_tag,
ptr_or_obj_or_mem_tag>::type or_ref_tag;
public:
typedef typename ct_if<(is_stateless<F>::value),
stateless_function_obj_tag,
or_ref_tag>::type type;
typedef or_ref_tag type;
};
// The trivial manager does nothing but return the same pointer (if we
// are cloning) or return the null pointer (if we are deleting).
template<typename F>
struct trivial_manager
struct reference_manager
{
static inline any_pointer
get(any_pointer f, functor_manager_operation_type op)
static inline void
manage(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op)
{
switch (op) {
case clone_functor_tag: return f;
case clone_functor_tag:
out_buffer.obj_ptr = in_buffer.obj_ptr;
return;
case destroy_functor_tag:
return make_any_pointer(reinterpret_cast<void*>(0));
out_buffer.obj_ptr = 0;
return;
case check_functor_type_tag:
{
std::type_info* t = static_cast<std::type_info*>(f.obj_ptr);
return BOOST_FUNCTION_COMPARE_TYPE_ID(typeid(F), *t)?
f
: make_any_pointer(reinterpret_cast<void*>(0));
// DPG TBD: Since we're only storing a pointer, it's
// possible that the user could ask for a base class or
// derived class. Is that okay?
const BOOST_FUNCTION_STD_NS::type_info& check_type =
*static_cast<const BOOST_FUNCTION_STD_NS::type_info*>(out_buffer.const_obj_ptr);
if (BOOST_FUNCTION_COMPARE_TYPE_ID(check_type, typeid(F)))
out_buffer.obj_ptr = in_buffer.obj_ptr;
else
out_buffer.obj_ptr = 0;
}
}
return;
// Clears up a warning with GCC 3.2.3
return make_any_pointer(reinterpret_cast<void*>(0));
case get_functor_type_tag:
out_buffer.const_obj_ptr = &typeid(F);
return;
}
}
};
/**
* Determine if boost::function can use the small-object
* optimization with the function object type F.
*/
template<typename F>
struct function_allows_small_object_optimization
{
BOOST_STATIC_CONSTANT
(bool,
value = ((sizeof(F) <= sizeof(function_buffer) &&
(alignment_of<function_buffer>::value
% alignment_of<F>::value == 0))));
};
/**
* The functor_manager class contains a static function "manage" which
* can clone or destroy the given function/function object pointer.
@ -239,30 +269,57 @@ namespace boost {
typedef Functor functor_type;
// For function pointers, the manager is trivial
static inline any_pointer
manager(any_pointer function_ptr,
functor_manager_operation_type op,
function_ptr_tag)
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, function_ptr_tag)
{
if (op == clone_functor_tag)
return function_ptr;
else
return make_any_pointer(static_cast<void (*)()>(0));
out_buffer.func_ptr = in_buffer.func_ptr;
else if (op == destroy_functor_tag)
out_buffer.func_ptr = 0;
else /* op == check_functor_type_tag */ {
const BOOST_FUNCTION_STD_NS::type_info& check_type =
*static_cast<const BOOST_FUNCTION_STD_NS::type_info*>(out_buffer.const_obj_ptr);
if (BOOST_FUNCTION_COMPARE_TYPE_ID(check_type, typeid(Functor)))
out_buffer.obj_ptr = &in_buffer.func_ptr;
else
out_buffer.obj_ptr = 0;
}
}
// For function object pointers, we clone the pointer to each
// function has its own version.
static inline any_pointer
manager(any_pointer function_obj_ptr,
functor_manager_operation_type op,
function_obj_tag)
// Function objects that fit in the small-object buffer.
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, mpl::true_)
{
if (op == clone_functor_tag) {
const functor_type* in_functor =
reinterpret_cast<const functor_type*>(&in_buffer.data);
new ((void*)&out_buffer.data) functor_type(*in_functor);
} else if (op == destroy_functor_tag) {
// Some compilers (Borland, vc6, ...) are unhappy with ~functor_type.
reinterpret_cast<functor_type*>(&out_buffer.data)->~Functor();
} else /* op == check_functor_type_tag */ {
const BOOST_FUNCTION_STD_NS::type_info& check_type =
*static_cast<const BOOST_FUNCTION_STD_NS::type_info*>(out_buffer.const_obj_ptr);
if (BOOST_FUNCTION_COMPARE_TYPE_ID(check_type, typeid(Functor)))
out_buffer.obj_ptr = &in_buffer.data;
else
out_buffer.obj_ptr = 0;
}
}
// Function objects that require heap allocation
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, mpl::false_)
{
#ifndef BOOST_NO_STD_ALLOCATOR
typedef typename Allocator::template rebind<functor_type>::other
allocator_type;
typedef typename allocator_type::pointer pointer_type;
typedef typename Allocator::template rebind<functor_type>::other
allocator_type;
typedef typename allocator_type::pointer pointer_type;
#else
typedef functor_type* pointer_type;
typedef functor_type* pointer_type;
#endif // BOOST_NO_STD_ALLOCATOR
# ifndef BOOST_NO_STD_ALLOCATOR
@ -270,8 +327,10 @@ namespace boost {
# endif // BOOST_NO_STD_ALLOCATOR
if (op == clone_functor_tag) {
functor_type* f =
static_cast<functor_type*>(function_obj_ptr.obj_ptr);
// GCC 2.95.3 gets the CV qualifiers wrong here, so we
// can't do the static_cast that we should do.
const functor_type* f =
(const functor_type*)(in_buffer.obj_ptr);
// Clone the functor
# ifndef BOOST_NO_STD_ALLOCATOR
@ -283,12 +342,11 @@ namespace boost {
# else
functor_type* new_f = new functor_type(*f);
# endif // BOOST_NO_STD_ALLOCATOR
return make_any_pointer(static_cast<void*>(new_f));
}
else {
out_buffer.obj_ptr = new_f;
} else if (op == destroy_functor_tag) {
/* Cast from the void pointer to the functor pointer type */
functor_type* f =
reinterpret_cast<functor_type*>(function_obj_ptr.obj_ptr);
static_cast<functor_type*>(out_buffer.obj_ptr);
# ifndef BOOST_NO_STD_ALLOCATOR
/* Cast from the functor pointer type to the allocator's pointer
@ -301,26 +359,53 @@ namespace boost {
# else
delete f;
# endif // BOOST_NO_STD_ALLOCATOR
return make_any_pointer(static_cast<void*>(0));
out_buffer.obj_ptr = 0;
} else /* op == check_functor_type_tag */ {
const BOOST_FUNCTION_STD_NS::type_info& check_type =
*static_cast<const BOOST_FUNCTION_STD_NS::type_info*>(out_buffer.const_obj_ptr);
if (BOOST_FUNCTION_COMPARE_TYPE_ID(check_type, typeid(Functor)))
out_buffer.obj_ptr = in_buffer.obj_ptr;
else
out_buffer.obj_ptr = 0;
}
}
// For function objects, we determine whether the function
// object can use the small-object optimization buffer or
// whether we need to allocate it on the heap.
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, function_obj_tag)
{
manager(in_buffer, out_buffer, op,
mpl::bool_<(function_allows_small_object_optimization<functor_type>::value)>());
}
// For member pointers, we treat them as function objects with
// the small-object optimization always enabled.
static inline void
manager(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op, member_ptr_tag)
{
manager(in_buffer, out_buffer, op, mpl::true_());
}
public:
/* Dispatch to an appropriate manager based on whether we have a
function pointer or a function object pointer. */
static any_pointer
manage(any_pointer functor_ptr, functor_manager_operation_type op)
static inline void
manage(const function_buffer& in_buffer, function_buffer& out_buffer,
functor_manager_operation_type op)
{
if (op == check_functor_type_tag) {
std::type_info* type =
static_cast<std::type_info*>(functor_ptr.obj_ptr);
return (BOOST_FUNCTION_COMPARE_TYPE_ID(typeid(Functor), *type)?
functor_ptr
: make_any_pointer(reinterpret_cast<void*>(0)));
}
else {
typedef typename get_function_tag<functor_type>::type tag_type;
return manager(functor_ptr, op, tag_type());
typedef typename get_function_tag<functor_type>::type tag_type;
switch (op) {
case get_functor_type_tag:
out_buffer.const_obj_ptr = &typeid(functor_type);
return;
default:
manager(in_buffer, out_buffer, op, tag_type());
return;
}
}
};
@ -386,6 +471,17 @@ namespace boost {
else return true;
}
#endif // BOOST_NO_SFINAE
/**
* Stores the "manager" portion of the vtable for a
* boost::function object.
*/
struct vtable_base
{
void (*manager)(const function_buffer& in_buffer,
function_buffer& out_buffer,
functor_manager_operation_type op);
};
} // end namespace function
} // end namespace detail
@ -398,62 +494,61 @@ namespace boost {
class function_base
{
public:
function_base() : manager(0)
{
functor.obj_ptr = 0;
}
function_base() : vtable(0) { }
// Is this function empty?
bool empty() const { return !manager; }
/** Determine if the function is empty (i.e., has no target). */
bool empty() const { return !vtable; }
/** Retrieve the type of the stored function object, or typeid(void)
if this is empty. */
const BOOST_FUNCTION_STD_NS::type_info& target_type() const
{
if (!vtable) return typeid(void);
detail::function::function_buffer type;
vtable->manager(functor, type, detail::function::get_functor_type_tag);
return *static_cast<const BOOST_FUNCTION_STD_NS::type_info*>(type.const_obj_ptr);
}
template<typename Functor>
Functor* target()
{
if (!manager) return 0;
if (!vtable) return 0;
detail::function::any_pointer result =
manager(detail::function::make_any_pointer(&typeid(Functor)),
detail::function::check_functor_type_tag);
if (!result.obj_ptr) return 0;
else {
typedef typename detail::function::get_function_tag<Functor>::type tag;
return get_functor_pointer<Functor>(tag(), 0);
}
detail::function::function_buffer type_result;
type_result.const_obj_ptr = &typeid(Functor);
vtable->manager(functor, type_result,
detail::function::check_functor_type_tag);
return static_cast<Functor*>(type_result.obj_ptr);
}
template<typename Functor>
#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
const Functor* target( Functor * = 0 ) const
#else
const Functor* target() const
#endif
{
if (!manager) return 0;
if (!vtable) return 0;
detail::function::any_pointer result =
manager(detail::function::make_any_pointer(&typeid(Functor)),
detail::function::check_functor_type_tag);
if (!result.obj_ptr) return 0;
else {
typedef typename detail::function::get_function_tag<Functor>::type tag;
#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
return get_functor_pointer(tag(), 0, (Functor*)0);
#else
return get_functor_pointer<Functor>(tag(), 0);
#endif
}
detail::function::function_buffer type_result;
type_result.const_obj_ptr = &typeid(Functor);
vtable->manager(functor, type_result,
detail::function::check_functor_type_tag);
// GCC 2.95.3 gets the CV qualifiers wrong here, so we
// can't do the static_cast that we should do.
return (const Functor*)(type_result.obj_ptr);
}
template<typename F>
bool contains(const F& f) const
{
#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
if (const F* fp = this->target( (F*)0 )) {
if (const F* fp = this->target( (F*)0 ))
#else
if (const F* fp = this->template target<F>()) {
if (const F* fp = this->template target<F>())
#endif
{
return function_equal(*fp, f);
} else {
return false;
@ -484,44 +579,8 @@ public:
#endif
public: // should be protected, but GCC 2.95.3 will fail to allow access
detail::function::any_pointer (*manager)(
detail::function::any_pointer,
detail::function::functor_manager_operation_type);
detail::function::any_pointer functor;
private:
template<typename Functor>
#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
Functor* get_functor_pointer(detail::function::function_ptr_tag, int, Functor * = 0)
#else
Functor* get_functor_pointer(detail::function::function_ptr_tag, int)
#endif
{ return reinterpret_cast<Functor*>(&functor.func_ptr); }
template<typename Functor, typename Tag>
#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
Functor* get_functor_pointer(Tag, long, Functor * = 0)
#else
Functor* get_functor_pointer(Tag, long)
#endif
{ return static_cast<Functor*>(functor.obj_ptr); }
template<typename Functor>
const Functor*
#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
get_functor_pointer(detail::function::function_ptr_tag, int, Functor * = 0) const
#else
get_functor_pointer(detail::function::function_ptr_tag, int) const
#endif
{ return reinterpret_cast<const Functor*>(&functor.func_ptr); }
template<typename Functor, typename Tag>
#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
const Functor* get_functor_pointer(Tag, long, Functor * = 0) const
#else
const Functor* get_functor_pointer(Tag, long) const
#endif
{ return static_cast<const Functor*>(functor.const_obj_ptr); }
const detail::function::vtable_base* vtable;
mutable detail::function::function_buffer functor;
};
/**
@ -695,4 +754,8 @@ namespace detail {
#undef BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL
#undef BOOST_FUNCTION_COMPARE_TYPE_ID
#if defined(BOOST_MSVC)
# pragma warning( pop )
#endif
#endif // BOOST_FUNCTION_BASE_HEADER

View File

@ -1,6 +1,6 @@
// Boost.Function library
// Copyright Douglas Gregor 2001-2003. Use, modification and
// Copyright Douglas Gregor 2001-2006. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@ -22,7 +22,7 @@
#define BOOST_FUNCTION_ARGS BOOST_PP_ENUM_PARAMS(BOOST_FUNCTION_NUM_ARGS, a)
#define BOOST_FUNCTION_ARG_TYPE(J,I,D) \
typedef BOOST_PP_CAT(T,I) BOOST_PP_CAT(arg, BOOST_PP_CAT(BOOST_PP_INC(I),_type));
typedef BOOST_PP_CAT(T,I) BOOST_PP_CAT(BOOST_PP_CAT(arg, BOOST_PP_INC(I)),_type);
#define BOOST_FUNCTION_ARG_TYPES BOOST_PP_REPEAT(BOOST_FUNCTION_NUM_ARGS,BOOST_FUNCTION_ARG_TYPE,BOOST_PP_EMPTY)
@ -50,16 +50,25 @@
BOOST_JOIN(function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_VOID_FUNCTION_OBJ_INVOKER \
BOOST_JOIN(void_function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_STATELESS_FUNCTION_OBJ_INVOKER \
BOOST_JOIN(stateless_function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_STATELESS_VOID_FUNCTION_OBJ_INVOKER \
BOOST_JOIN(stateless_void_function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_FUNCTION_REF_INVOKER \
BOOST_JOIN(function_ref_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_VOID_FUNCTION_REF_INVOKER \
BOOST_JOIN(void_function_ref_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_MEMBER_INVOKER \
BOOST_JOIN(member_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_VOID_MEMBER_INVOKER \
BOOST_JOIN(void_member_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_FUNCTION_INVOKER \
BOOST_JOIN(get_function_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER \
BOOST_JOIN(get_function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_STATELESS_FUNCTION_OBJ_INVOKER \
BOOST_JOIN(get_stateless_function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_FUNCTION_REF_INVOKER \
BOOST_JOIN(get_function_ref_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_MEMBER_INVOKER \
BOOST_JOIN(get_member_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_INVOKER \
BOOST_JOIN(get_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_VTABLE BOOST_JOIN(basic_vtable,BOOST_FUNCTION_NUM_ARGS)
#ifndef BOOST_NO_VOID_RETURNS
# define BOOST_FUNCTION_VOID_RETURN_TYPE void
@ -79,7 +88,7 @@ namespace boost {
>
struct BOOST_FUNCTION_FUNCTION_INVOKER
{
static R invoke(any_pointer function_ptr BOOST_FUNCTION_COMMA
static R invoke(function_buffer& function_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.func_ptr);
@ -95,7 +104,7 @@ namespace boost {
struct BOOST_FUNCTION_VOID_FUNCTION_INVOKER
{
static BOOST_FUNCTION_VOID_RETURN_TYPE
invoke(any_pointer function_ptr BOOST_FUNCTION_COMMA
invoke(function_buffer& function_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
@ -111,11 +120,15 @@ namespace boost {
>
struct BOOST_FUNCTION_FUNCTION_OBJ_INVOKER
{
static R invoke(any_pointer function_obj_ptr BOOST_FUNCTION_COMMA
static R invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionObj* f = (FunctionObj*)(function_obj_ptr.obj_ptr);
FunctionObj* f;
if (function_allows_small_object_optimization<FunctionObj>::value)
f = reinterpret_cast<FunctionObj*>(&function_obj_ptr.data);
else
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
return (*f)(BOOST_FUNCTION_ARGS);
}
};
@ -128,11 +141,15 @@ namespace boost {
struct BOOST_FUNCTION_VOID_FUNCTION_OBJ_INVOKER
{
static BOOST_FUNCTION_VOID_RETURN_TYPE
invoke(any_pointer function_obj_ptr BOOST_FUNCTION_COMMA
invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionObj* f = (FunctionObj*)(function_obj_ptr.obj_ptr);
FunctionObj* f;
if (function_allows_small_object_optimization<FunctionObj>::value)
f = reinterpret_cast<FunctionObj*>(&function_obj_ptr.data);
else
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
BOOST_FUNCTION_RETURN((*f)(BOOST_FUNCTION_ARGS));
}
};
@ -142,12 +159,15 @@ namespace boost {
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_STATELESS_FUNCTION_OBJ_INVOKER
struct BOOST_FUNCTION_FUNCTION_REF_INVOKER
{
static R invoke(any_pointer BOOST_FUNCTION_COMMA BOOST_FUNCTION_PARMS)
static R invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionObj f = FunctionObj();
return f(BOOST_FUNCTION_ARGS);
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
return (*f)(BOOST_FUNCTION_ARGS);
}
};
@ -156,17 +176,57 @@ namespace boost {
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_STATELESS_VOID_FUNCTION_OBJ_INVOKER
struct BOOST_FUNCTION_VOID_FUNCTION_REF_INVOKER
{
static BOOST_FUNCTION_VOID_RETURN_TYPE
invoke(any_pointer BOOST_FUNCTION_COMMA BOOST_FUNCTION_PARMS)
invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionObj f = FunctionObj();
BOOST_FUNCTION_RETURN(f(BOOST_FUNCTION_ARGS));
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
BOOST_FUNCTION_RETURN((*f)(BOOST_FUNCTION_ARGS));
}
};
#if BOOST_FUNCTION_NUM_ARGS > 0
/* Handle invocation of member pointers. */
template<
typename MemberPtr,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_MEMBER_INVOKER
{
static R invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
MemberPtr* f =
reinterpret_cast<MemberPtr*>(&function_obj_ptr.data);
return boost::mem_fn(*f)(BOOST_FUNCTION_ARGS);
}
};
template<
typename MemberPtr,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_VOID_MEMBER_INVOKER
{
static BOOST_FUNCTION_VOID_RETURN_TYPE
invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
MemberPtr* f =
reinterpret_cast<MemberPtr*>(&function_obj_ptr.data);
BOOST_FUNCTION_RETURN(boost::mem_fn(*f)(BOOST_FUNCTION_ARGS));
}
};
#endif
template<
typename FunctionPtr,
typename R BOOST_FUNCTION_COMMA
@ -174,7 +234,7 @@ namespace boost {
>
struct BOOST_FUNCTION_GET_FUNCTION_INVOKER
{
typedef typename ct_if<(is_void<R>::value),
typedef typename mpl::if_c<(is_void<R>::value),
BOOST_FUNCTION_VOID_FUNCTION_INVOKER<
FunctionPtr,
R BOOST_FUNCTION_COMMA
@ -195,7 +255,7 @@ namespace boost {
>
struct BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER
{
typedef typename ct_if<(is_void<R>::value),
typedef typename mpl::if_c<(is_void<R>::value),
BOOST_FUNCTION_VOID_FUNCTION_OBJ_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
@ -214,15 +274,15 @@ namespace boost {
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_GET_STATELESS_FUNCTION_OBJ_INVOKER
struct BOOST_FUNCTION_GET_FUNCTION_REF_INVOKER
{
typedef typename ct_if<(is_void<R>::value),
BOOST_FUNCTION_STATELESS_VOID_FUNCTION_OBJ_INVOKER<
typedef typename mpl::if_c<(is_void<R>::value),
BOOST_FUNCTION_VOID_FUNCTION_REF_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>,
BOOST_FUNCTION_STATELESS_FUNCTION_OBJ_INVOKER<
BOOST_FUNCTION_FUNCTION_REF_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
@ -230,6 +290,258 @@ namespace boost {
>::type type;
};
#if BOOST_FUNCTION_NUM_ARGS > 0
/* Retrieve the appropriate invoker for a member pointer. */
template<
typename MemberPtr,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_GET_MEMBER_INVOKER
{
typedef typename mpl::if_c<(is_void<R>::value),
BOOST_FUNCTION_VOID_MEMBER_INVOKER<
MemberPtr,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>,
BOOST_FUNCTION_MEMBER_INVOKER<
MemberPtr,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>
>::type type;
};
#endif
/* Given the tag returned by get_function_tag, retrieve the
actual invoker that will be used for the given function
object.
Each specialization contains an "apply" nested class template
that accepts the function object, return type, function
argument types, and allocator. The resulting "apply" class
contains two typedefs, "invoker_type" and "manager_type",
which correspond to the invoker and manager types. */
template<typename Tag>
struct BOOST_FUNCTION_GET_INVOKER { };
/* Retrieve the invoker for a function pointer. */
template<>
struct BOOST_FUNCTION_GET_INVOKER<function_ptr_tag>
{
template<typename FunctionPtr,
typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
struct apply
{
typedef typename BOOST_FUNCTION_GET_FUNCTION_INVOKER<
FunctionPtr,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
invoker_type;
typedef functor_manager<FunctionPtr, Allocator> manager_type;
};
};
#if BOOST_FUNCTION_NUM_ARGS > 0
/* Retrieve the invoker for a member pointer. */
template<>
struct BOOST_FUNCTION_GET_INVOKER<member_ptr_tag>
{
template<typename MemberPtr,
typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
struct apply
{
typedef typename BOOST_FUNCTION_GET_MEMBER_INVOKER<
MemberPtr,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
invoker_type;
typedef functor_manager<MemberPtr, Allocator> manager_type;
};
};
#endif
/* Retrieve the invoker for a function object. */
template<>
struct BOOST_FUNCTION_GET_INVOKER<function_obj_tag>
{
template<typename FunctionObj,
typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
struct apply
{
typedef typename BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
invoker_type;
typedef functor_manager<FunctionObj, Allocator> manager_type;
};
};
/* Retrieve the invoker for a reference to a function object. */
template<>
struct BOOST_FUNCTION_GET_INVOKER<function_obj_ref_tag>
{
template<typename RefWrapper,
typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
struct apply
{
typedef typename BOOST_FUNCTION_GET_FUNCTION_REF_INVOKER<
typename RefWrapper::type,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
invoker_type;
typedef reference_manager<typename RefWrapper::type> manager_type;
};
};
/**
* vtable for a specific boost::function instance.
*/
template<typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
struct BOOST_FUNCTION_VTABLE
{
#ifndef BOOST_NO_VOID_RETURNS
typedef R result_type;
#else
typedef typename function_return_type<R>::type result_type;
#endif // BOOST_NO_VOID_RETURNS
typedef result_type (*invoker_type)(function_buffer&
BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS);
template<typename F>
bool assign_to(const F& f, function_buffer& functor) const
{
typedef typename get_function_tag<F>::type tag;
return assign_to(f, functor, tag());
}
void clear(function_buffer& functor) const
{
if (base.manager)
base.manager(functor, functor, destroy_functor_tag);
}
#ifndef BOOST_NO_PRIVATE_IN_AGGREGATE
private:
#endif
// Function pointers
template<typename FunctionPtr>
bool
assign_to(FunctionPtr f, function_buffer& functor,
function_ptr_tag) const
{
this->clear(functor);
if (f) {
// should be a reinterpret cast, but some compilers insist
// on giving cv-qualifiers to free functions
functor.func_ptr = (void (*)())(f);
return true;
} else {
return false;
}
}
// Member pointers
#if BOOST_FUNCTION_NUM_ARGS > 0
template<typename MemberPtr>
bool
assign_to(MemberPtr f, function_buffer& functor, member_ptr_tag) const
{
if (f) {
// Always use the small-object optimization for member
// pointers.
assign_functor(f, functor, mpl::true_());
return true;
} else {
return false;
}
}
#endif // BOOST_FUNCTION_NUM_ARGS > 0
// Function objects
// Assign to a function object using the small object optimization
template<typename FunctionObj>
void
assign_functor(const FunctionObj& f, function_buffer& functor,
mpl::true_) const
{
new ((void*)&functor.data) FunctionObj(f);
}
// Assign to a function object allocated on the heap.
template<typename FunctionObj>
void
assign_functor(const FunctionObj& f, function_buffer& functor,
mpl::false_) const
{
#ifndef BOOST_NO_STD_ALLOCATOR
typedef typename Allocator::template rebind<FunctionObj>::other
allocator_type;
typedef typename allocator_type::pointer pointer_type;
allocator_type allocator;
pointer_type copy = allocator.allocate(1);
allocator.construct(copy, f);
// Get back to the original pointer type
functor.obj_ptr = static_cast<FunctionObj*>(copy);
# else
functor.obj_ptr = new FunctionObj(f);
# endif // BOOST_NO_STD_ALLOCATOR
}
template<typename FunctionObj>
bool
assign_to(const FunctionObj& f, function_buffer& functor,
function_obj_tag) const
{
if (!boost::detail::function::has_empty_target(boost::addressof(f))) {
assign_functor(f, functor,
mpl::bool_<(function_allows_small_object_optimization<FunctionObj>::value)>());
return true;
} else {
return false;
}
}
// Reference to a function object
template<typename FunctionObj>
bool
assign_to(const reference_wrapper<FunctionObj>& f,
function_buffer& functor, function_obj_ref_tag) const
{
if (!boost::detail::function::has_empty_target(f.get_pointer())) {
// DPG TBD: We might need to detect constness of
// FunctionObj to assign into obj_ptr or const_obj_ptr to
// be truly legit, but no platform in existence makes
// const void* different from void*.
functor.const_obj_ptr = f.get_pointer();
return true;
} else {
return false;
}
}
public:
vtable_base base;
invoker_type invoker;
};
} // end namespace function
} // end namespace detail
@ -239,6 +551,17 @@ namespace boost {
typename Allocator = BOOST_FUNCTION_DEFAULT_ALLOCATOR
>
class BOOST_FUNCTION_FUNCTION : public function_base
#if BOOST_FUNCTION_NUM_ARGS == 1
, public std::unary_function<T0,R>
#elif BOOST_FUNCTION_NUM_ARGS == 2
, public std::binary_function<T0,T1,R>
#endif
{
public:
#ifndef BOOST_NO_VOID_RETURNS
@ -249,6 +572,10 @@ namespace boost {
#endif // BOOST_NO_VOID_RETURNS
private:
typedef boost::detail::function::BOOST_FUNCTION_VTABLE<
R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_ARGS, Allocator>
vtable_type;
struct clear_type {};
public:
@ -274,8 +601,7 @@ namespace boost {
typedef Allocator allocator_type;
typedef BOOST_FUNCTION_FUNCTION self_type;
BOOST_FUNCTION_FUNCTION() : function_base()
, invoker(0) {}
BOOST_FUNCTION_FUNCTION() : function_base() { }
// MSVC chokes if the following two constructors are collapsed into
// one with a default parameter.
@ -288,24 +614,21 @@ namespace boost {
int>::type = 0
#endif // BOOST_NO_SFINAE
) :
function_base(),
invoker(0)
function_base()
{
this->assign_to(f);
}
#ifndef BOOST_NO_SFINAE
BOOST_FUNCTION_FUNCTION(clear_type*) : function_base(), invoker(0) {}
BOOST_FUNCTION_FUNCTION(clear_type*) : function_base() { }
#else
BOOST_FUNCTION_FUNCTION(int zero) : function_base(), invoker(0)
BOOST_FUNCTION_FUNCTION(int zero) : function_base()
{
BOOST_ASSERT(zero == 0);
}
#endif
BOOST_FUNCTION_FUNCTION(const BOOST_FUNCTION_FUNCTION& f) :
function_base(),
invoker(0)
BOOST_FUNCTION_FUNCTION(const BOOST_FUNCTION_FUNCTION& f) : function_base()
{
this->assign_to_own(f);
}
@ -320,7 +643,8 @@ namespace boost {
if (this->empty())
boost::throw_exception(bad_function_call());
return invoker(this->functor BOOST_FUNCTION_COMMA BOOST_FUNCTION_ARGS);
return reinterpret_cast<const vtable_type*>(vtable)->invoker
(this->functor BOOST_FUNCTION_COMMA BOOST_FUNCTION_ARGS);
}
#else
result_type operator()(BOOST_FUNCTION_PARMS) const;
@ -342,7 +666,17 @@ namespace boost {
#endif
operator=(Functor BOOST_FUNCTION_TARGET_FIX(const &) f)
{
self_type(f).swap(*this);
this->clear();
#ifndef BOOST_NO_EXCEPTIONS
try {
this->assign_to(f);
} catch (...) {
vtable = 0;
throw;
}
#else
this->assign_to(f);
#endif
return *this;
}
@ -367,7 +701,17 @@ namespace boost {
if (&f == this)
return *this;
self_type(f).swap(*this);
this->clear();
#ifndef BOOST_NO_EXCEPTIONS
try {
this->assign_to_own(f);
} catch (...) {
vtable = 0;
throw;
}
#else
this->assign_to_own(f);
#endif
return *this;
}
@ -376,22 +720,18 @@ namespace boost {
if (&other == this)
return;
std::swap(this->manager, other.manager);
std::swap(this->functor, other.functor);
std::swap(invoker, other.invoker);
BOOST_FUNCTION_FUNCTION tmp = *this;
*this = other;
other = tmp;
}
// Clear out a target, if there is one
void clear()
{
if (this->manager) {
function_base::functor =
this->manager(this->functor,
boost::detail::function::destroy_functor_tag);
if (vtable) {
reinterpret_cast<const vtable_type*>(vtable)->clear(this->functor);
vtable = 0;
}
this->manager = 0;
invoker = 0;
}
#if (defined __SUNPRO_CC) && (__SUNPRO_CC <= 0x530) && !(defined BOOST_NO_COMPILER_CONFIG)
@ -417,131 +757,33 @@ namespace boost {
void assign_to_own(const BOOST_FUNCTION_FUNCTION& f)
{
if (!f.empty()) {
invoker = f.invoker;
this->manager = f.manager;
this->functor =
f.manager(f.functor, boost::detail::function::clone_functor_tag);
}
}
template<typename Functor>
void assign_to(Functor f)
{
typedef typename boost::detail::function::get_function_tag<Functor>::type tag;
this->assign_to(f, tag());
}
template<typename FunctionPtr>
void assign_to(FunctionPtr f, boost::detail::function::function_ptr_tag)
{
clear();
if (f) {
typedef typename boost::detail::function::BOOST_FUNCTION_GET_FUNCTION_INVOKER<
FunctionPtr,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
actual_invoker_type;
invoker = &actual_invoker_type::invoke;
this->manager =
&boost::detail::function::functor_manager<FunctionPtr, Allocator>::manage;
this->functor =
this->manager(boost::detail::function::make_any_pointer(
// should be a reinterpret cast, but some compilers
// insist on giving cv-qualifiers to free functions
(void (*)())(f)
),
this->vtable = f.vtable;
f.vtable->manager(f.functor, this->functor,
boost::detail::function::clone_functor_tag);
}
}
#if BOOST_FUNCTION_NUM_ARGS > 0
template<typename MemberPtr>
void assign_to(MemberPtr f, boost::detail::function::member_ptr_tag)
template<typename Functor>
void assign_to(const Functor& f)
{
this->assign_to(mem_fn(f));
using detail::function::vtable_base;
typedef typename detail::function::get_function_tag<Functor>::type tag;
typedef detail::function::BOOST_FUNCTION_GET_INVOKER<tag> get_invoker;
typedef typename get_invoker::
template apply<Functor, R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS, Allocator>
handler_type;
typedef typename handler_type::invoker_type invoker_type;
typedef typename handler_type::manager_type manager_type;
static const vtable_type stored_vtable =
{ { &manager_type::manage }, &invoker_type::invoke };
if (stored_vtable.assign_to(f, functor)) vtable = &stored_vtable.base;
else vtable = 0;
}
#endif // BOOST_FUNCTION_NUM_ARGS > 0
template<typename FunctionObj>
void assign_to(FunctionObj f, boost::detail::function::function_obj_tag)
{
if (!boost::detail::function::has_empty_target(boost::addressof(f))) {
typedef
typename boost::detail::function::BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
actual_invoker_type;
invoker = &actual_invoker_type::invoke;
this->manager = &boost::detail::function::functor_manager<
FunctionObj, Allocator>::manage;
#ifndef BOOST_NO_STD_ALLOCATOR
typedef typename Allocator::template rebind<FunctionObj>::other
rebound_allocator_type;
typedef typename rebound_allocator_type::pointer pointer_type;
rebound_allocator_type allocator;
pointer_type copy = allocator.allocate(1);
allocator.construct(copy, f);
// Get back to the original pointer type
FunctionObj* new_f = static_cast<FunctionObj*>(copy);
#else
FunctionObj* new_f = new FunctionObj(f);
#endif // BOOST_NO_STD_ALLOCATOR
this->functor =
boost::detail::function::make_any_pointer(static_cast<void*>(new_f));
}
}
template<typename FunctionObj>
void assign_to(const reference_wrapper<FunctionObj>& f,
boost::detail::function::function_obj_ref_tag)
{
if (!boost::detail::function::has_empty_target(f.get_pointer())) {
typedef
typename boost::detail::function::BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
actual_invoker_type;
invoker = &actual_invoker_type::invoke;
this->manager = &boost::detail::function::trivial_manager<FunctionObj>::get;
this->functor =
this->manager(
boost::detail::function::make_any_pointer(
const_cast<FunctionObj*>(f.get_pointer())),
boost::detail::function::clone_functor_tag);
}
}
template<typename FunctionObj>
void assign_to(FunctionObj, boost::detail::function::stateless_function_obj_tag)
{
typedef
typename boost::detail::function::
BOOST_FUNCTION_GET_STATELESS_FUNCTION_OBJ_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
actual_invoker_type;
invoker = &actual_invoker_type::invoke;
this->manager = &boost::detail::function::trivial_manager<FunctionObj>::get;
this->functor = boost::detail::function::make_any_pointer(this);
}
typedef result_type (*invoker_type)(boost::detail::function::any_pointer
BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS);
invoker_type invoker;
};
template<typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS ,
@ -564,7 +806,7 @@ namespace boost {
template<typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
typename BOOST_FUNCTION_FUNCTION<
R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_ARGS,
R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_ARGS,
Allocator>::result_type
BOOST_FUNCTION_FUNCTION<R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_ARGS,
@ -573,8 +815,9 @@ namespace boost {
{
if (this->empty())
boost::throw_exception(bad_function_call());
return invoker(this->functor BOOST_FUNCTION_COMMA BOOST_FUNCTION_ARGS);
return reinterpret_cast<const vtable_type*>(vtable)->invoker
(this->functor BOOST_FUNCTION_COMMA BOOST_FUNCTION_ARGS);
}
#endif
@ -689,6 +932,8 @@ public:
} // end namespace boost
// Cleanup after ourselves...
#undef BOOST_FUNCTION_VTABLE
#undef BOOST_FUNCTION_GET_INVOKER
#undef BOOST_FUNCTION_DEFAULT_ALLOCATOR
#undef BOOST_FUNCTION_COMMA
#undef BOOST_FUNCTION_FUNCTION
@ -696,12 +941,14 @@ public:
#undef BOOST_FUNCTION_VOID_FUNCTION_INVOKER
#undef BOOST_FUNCTION_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_VOID_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_STATELESS_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_STATELESS_VOID_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_FUNCTION_REF_INVOKER
#undef BOOST_FUNCTION_VOID_FUNCTION_REF_INVOKER
#undef BOOST_FUNCTION_MEMBER_INVOKER
#undef BOOST_FUNCTION_VOID_MEMBER_INVOKER
#undef BOOST_FUNCTION_GET_FUNCTION_INVOKER
#undef BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_GET_STATELESS_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_GET_MEM_FUNCTION_INVOKER
#undef BOOST_FUNCTION_GET_FUNCTION_REF_INVOKER
#undef BOOST_FUNCTION_GET_MEMBER_INVOKER
#undef BOOST_FUNCTION_TEMPLATE_PARMS
#undef BOOST_FUNCTION_TEMPLATE_ARGS
#undef BOOST_FUNCTION_PARMS

View File

@ -4,6 +4,10 @@
</head>
<body>
Automatic redirection failed, please go to
<a href="../../doc/html/function.html">../../doc/html/function.html</a>
<a href="../../doc/html/function.html">../../doc/html/function.html</a> &nbsp;<hr>
<p><EFBFBD> Copyright Beman Dawes, 2001</p>
<p>Distributed under the Boost Software License, Version 1.0. (See accompanying
file <a href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or copy
at <a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/LICENSE_1_0.txt</a>)</p>
</body>
</html>
</html>

View File

@ -1,68 +0,0 @@
# Function library
# Copyright (C) 2001-2003 Douglas Gregor
# Use, modification and distribution is subject to the Boost Software License,
# Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
# For more information, see http://www.boost.org/
# Testing Jamfile autogenerated from XML source
subproject libs/function/test ;
# bring in rules for testing
SEARCH on testing.jam = $(BOOST_BUILD_PATH) ;
include testing.jam ;
# Make tests run by default.
DEPENDS all : test ;
{
# look in BOOST_ROOT for sources first, just in this Jamfile
local SEARCH_SOURCE = $(BOOST_ROOT) $(SEARCH_SOURCE) ;
test-suite function
:
[ run libs/function/test/function_test.cpp : : : : lib_function_test ]
[ run libs/function/test/function_n_test.cpp : : : : ]
[ run libs/function/test/allocator_test.cpp : : : : ]
[ run libs/function/test/stateless_test.cpp : : : : ]
[ run libs/function/test/lambda_test.cpp : : : : ]
[ compile-fail libs/function/test/function_test_fail1.cpp : : : : ]
[ compile-fail libs/function/test/function_test_fail2.cpp : : : : ]
[ compile libs/function/test/function_30.cpp : : : : ]
[ run libs/function/test/function_arith_cxx98.cpp : : : : ]
[ run libs/function/test/function_arith_portable.cpp : : : : ]
[ run libs/function/test/sum_avg_cxx98.cpp : : : : ]
[ run libs/function/test/sum_avg_portable.cpp : : : : ]
[ run libs/function/test/mem_fun_cxx98.cpp : : : : ]
[ run libs/function/test/mem_fun_portable.cpp : : : : ]
[ run libs/function/test/std_bind_cxx98.cpp : : : : ]
[ run libs/function/test/std_bind_portable.cpp : : : : ]
[ run libs/function/test/function_ref_cxx98.cpp : : : : ]
[ run libs/function/test/function_ref_portable.cpp : : : : ]
[ run libs/function/test/contains_test.cpp : : : : ]
[ run libs/function/test/contains2_test.cpp : : : : ]
;
}

View File

@ -45,7 +45,7 @@ struct plus_int
{
int operator()(int x, int y) const { return x + y; }
int unused_state_data;
int unused_state_data[32];
};
static int do_minus(int x, int y) { return x-y; }
@ -54,7 +54,7 @@ struct DoNothing
{
void operator()() const {}
int unused_state_data;
int unused_state_data[32];
};
static void do_nothing() {}

View File

@ -10,7 +10,6 @@
#include <boost/test/minimal.hpp>
#include <boost/function.hpp>
#include <functional>
#include <cassert>
#include <string>
#include <utility>
@ -653,12 +652,12 @@ static void test_implicit()
static void test_call_obj(boost::function<int (int, int)> f)
{
assert(!f.empty());
BOOST_CHECK(!f.empty());
}
static void test_call_cref(const boost::function<int (int, int)>& f)
{
assert(!f.empty());
BOOST_CHECK(!f.empty());
}
static void test_call()

View File

@ -1,6 +1,6 @@
// Boost.Function library
// Copyright Douglas Gregor 2001-2003. Use, modification and
// Copyright (C) Douglas Gregor 2001-2005. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@ -22,7 +22,7 @@ test_main(int, char*[])
if (f1 == f2) {
}
BOOST_CRITICAL_ERROR("This should not have compiled.");
BOOST_ERROR("This should not have compiled.");
return 0;
}

View File

@ -1,6 +1,6 @@
// Boost.Function library
// Copyright Douglas Gregor 2001-2003. Use, modification and
// Copyright (C) Douglas Gregor 2001-2005. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@ -21,7 +21,7 @@ test_main(int, char*[])
function0<int> f1;
f1 = bad_fn;
BOOST_CRITICAL_ERROR("This should not have compiled.");
BOOST_ERROR("This should not have compiled.");
return 0;
}

View File

@ -14,23 +14,21 @@
struct stateless_integer_add {
int operator()(int x, int y) const { return x+y; }
void* operator new(std::size_t, stateless_integer_add*)
void* operator new(std::size_t)
{
throw std::runtime_error("Cannot allocate a stateless_integer_add");
}
void operator delete(void*, stateless_integer_add*) throw()
void* operator new(std::size_t, void* p)
{
return p;
}
void operator delete(void*) throw()
{
}
};
namespace boost {
template<>
struct is_stateless<stateless_integer_add> {
BOOST_STATIC_CONSTANT(bool, value = true);
};
}
int test_main(int, char*[])
{
boost::function2<int, int, int> f;