forked from boostorg/integer
[ci skip] Fix docs to use less verbose names for modular multiplicative inverse (mod_inverse)
This commit is contained in:
@ -3,13 +3,13 @@
|
||||
[section Introduction]
|
||||
|
||||
The discrete log is the inverse of modular exponentiation.
|
||||
To wit, if /a/[sup /x/] = /b/ mod /p/, then we write /x/ = log[sub a](/b/).
|
||||
To wit, if /a/[super /x/] = /b/ mod /p/, then we write /x/ = log[sub a](/b/).
|
||||
Fast algorithms for modular exponentiation exists, but currently there are no polynomial time algorithms known for the discrete logarithm,
|
||||
a fact which is the basis for the security of Diffie-Hellman key exchange.
|
||||
|
||||
Despite having exponential complexity in the number of bits, the algorithms for discrete logarithm provided by Boost are still useful,
|
||||
for there are many uses of the discrete logarithm outside of cryptography which do not require massive inputs.
|
||||
The algorithms provided by Boost should be acceptable up to roughly 64 bits.
|
||||
The algorithms provided by Boost should be acceptable up to roughly 32 bits.
|
||||
|
||||
[endsect]
|
||||
|
||||
@ -24,10 +24,10 @@ The algorithms provided by Boost should be acceptable up to roughly 64 bits.
|
||||
|
||||
|
||||
template<class Z>
|
||||
class baby_step_giant_step_discrete_log
|
||||
class bsgs_discrete_log
|
||||
{
|
||||
public:
|
||||
baby_step_giant_step_discrete_log(Z base, Z p);
|
||||
bsgs_discrete_log(Z base, Z p);
|
||||
|
||||
Z operator()(Z arg) const;
|
||||
|
||||
@ -39,7 +39,7 @@ The algorithms provided by Boost should be acceptable up to roughly 64 bits.
|
||||
[section Usage]
|
||||
|
||||
|
||||
Boost provides two algorithms for the discrete log: Trial multiplication and the "baby-step giant step" algorithm.
|
||||
Boost provides two algorithms for the discrete log: Trial multiplication and the "baby-step giant-step" algorithm.
|
||||
Basic usage is shown below:
|
||||
|
||||
auto logarithm = trial_multiplication_discrete_log(2, 3, 5);
|
||||
@ -48,15 +48,16 @@ Basic usage is shown below:
|
||||
std::cout << "log_2(3) mod 5 = " << l.value() << std::endl;
|
||||
}
|
||||
|
||||
auto bsgs = baby_step_giant_step_discrete_log(2, 5);
|
||||
int log = bsgs(3);
|
||||
auto log_2 = bsgs_discrete_log(2, 5);
|
||||
int log = log_2(3);
|
||||
std::cout << "log_2(3) mod 5 = " << log << std::endl;
|
||||
|
||||
|
||||
Of these, trial multiplication is more general, requires O(/p/) time and O(1) storage.
|
||||
The baby-step giant step algorithm requires O([radic] p) time and O([radic] p) storage, and is slightly less general as the generator must be coprime to the the modulus.
|
||||
Of these, trial multiplication is more general, requires [bigo](/p/) time and [bigo](1) storage.
|
||||
The baby-step giant step algorithm requires [bigo]([radic] p) time and [bigo]([radic] p) storage,
|
||||
and is slightly less general as the base must be coprime to the the modulus.
|
||||
Let's illustrate this with a few examples: Suppose we wish to compute log[sub 2](3) mod 4.
|
||||
Since 2[sup x] = 3 mod 4 has no solution, the result is undefined.
|
||||
Since 2[super /x/] = 3 mod 4 has no solution, the result is undefined.
|
||||
|
||||
boost::optional<int> l = trial_multiplication_discrete_log(2, 3, 4);
|
||||
if (!l)
|
||||
@ -68,7 +69,7 @@ The baby-step giant-step algorithm is less polite when the base and the modulus
|
||||
|
||||
try
|
||||
{
|
||||
auto bsgs = baby_step_giant_step_discrete_log(2, 4);
|
||||
auto log_2 = bsgs_discrete_log(2, 4);
|
||||
}
|
||||
catch(std::exception const & e)
|
||||
{
|
||||
@ -77,10 +78,11 @@ The baby-step giant-step algorithm is less polite when the base and the modulus
|
||||
}
|
||||
|
||||
|
||||
The baby-step giant-step discrete log will *never* compute a logarithm when the generator and modulus are not coprime, because it relies on the existence of modular multiplicative inverses.
|
||||
The baby-step giant-step discrete log will *never* compute a logarithm when the generator and modulus are not coprime,
|
||||
because it relies on the existence of modular multiplicative inverses.
|
||||
However, discrete logarithms can exist even when the generator and modulus share a common divisor greater than 1.
|
||||
For example, since 2[sup 1] = 2 mod 4, log[sub 2](2) = 1.
|
||||
Trial multiplication successfully recovers this value, and `baby_step_giant_step_discrete_log` blows up.
|
||||
Trial multiplication successfully recovers this value, and `bsgs_discrete_log` blows up.
|
||||
|
||||
|
||||
[endsect]
|
||||
|
@ -1,20 +1,20 @@
|
||||
[section:modular_multiplicative_inverse Modular Multiplicative Inverse]
|
||||
[section:mod_inverse Modular Multiplicative Inverse]
|
||||
|
||||
[section Introduction]
|
||||
|
||||
The modular multiplicative inverse of a number /a/ is that number /x/ which satisfied /ax/ = 1 mod /p/.
|
||||
The modular multiplicative inverse of a number /a/ is that number /x/ which satisfies /ax/ = 1 mod /p/.
|
||||
A fast algorithm for computing modular multiplicative inverses based on the extended Euclidean algorithm exists and is provided by Boost.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section Synopsis]
|
||||
|
||||
#include <boost/integer/modular_multiplicative_inverse.hpp>
|
||||
#include <boost/integer/mod_inverse.hpp>
|
||||
|
||||
namespace boost { namespace integer {
|
||||
|
||||
template<class Z>
|
||||
boost::optional<Z> modular_multiplicative_inverse(Z a, Z p);
|
||||
boost::optional<Z> mod_inverse(Z a, Z p);
|
||||
|
||||
}}
|
||||
|
||||
@ -25,12 +25,12 @@ A fast algorithm for computing modular multiplicative inverses based on the exte
|
||||
Multiplicative modular inverses exist if and only if /a/ and /p/ are coprime.
|
||||
So for example
|
||||
|
||||
auto x = modular_multiplicative_inverse(2, 5);
|
||||
auto x = mod_inverse(2, 5);
|
||||
if (x)
|
||||
{
|
||||
int should_be_three = x.value();
|
||||
}
|
||||
auto y = modular_multiplicative_inverse(2, 4);
|
||||
auto y = mod_inverse(2, 4);
|
||||
if (!y)
|
||||
{
|
||||
std::cout << "There is no inverse of 2 mod 4\n";
|
@ -21,7 +21,7 @@ namespace boost { namespace integer {
|
||||
|
||||
// base^^x = a mod p <-> x = log_base(a) mod p
|
||||
template<class Z>
|
||||
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z p)
|
||||
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z modulus)
|
||||
{
|
||||
using std::numeric_limits;
|
||||
static_assert(numeric_limits<Z>::is_integer,
|
||||
@ -29,26 +29,29 @@ boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z p)
|
||||
|
||||
if (base <= 1)
|
||||
{
|
||||
throw std::domain_error("The base must be > 1.\n");
|
||||
auto e = boost::format("The base b is %1%, but must be > 1.\n") % base;
|
||||
throw std::domain_error(e.str());
|
||||
}
|
||||
if (p < 3)
|
||||
if (modulus < 3)
|
||||
{
|
||||
throw std::domain_error("The modulus must be > 2.\n");
|
||||
auto e = boost::format("The modulus must be > 2, but is %1%") % modulus;
|
||||
throw std::domain_error(e.str());
|
||||
}
|
||||
if (arg < 1)
|
||||
{
|
||||
throw std::domain_error("The argument must be > 0.\n");
|
||||
auto e = boost::format("The argument must be > 0, but is %1%") % arg;
|
||||
throw std::domain_error(arg);
|
||||
}
|
||||
if (base >= p || arg >= p)
|
||||
if (base >= modulus || arg >= modulus)
|
||||
{
|
||||
if (base >= p)
|
||||
if (base >= modulus)
|
||||
{
|
||||
auto e = boost::format("Error computing the discrete log: The base %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % base % p;
|
||||
auto e = boost::format("Error computing the discrete log: The base %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % base % modulus;
|
||||
throw std::domain_error(e.str());
|
||||
}
|
||||
if (arg >= p)
|
||||
{
|
||||
auto e = boost::format("Error computing the discrete log: The argument %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % arg % p;
|
||||
auto e = boost::format("Error computing the discrete log: The argument %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % arg % modulus;
|
||||
throw std::domain_error(e.str());
|
||||
}
|
||||
}
|
||||
@ -58,13 +61,13 @@ boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z p)
|
||||
return 0;
|
||||
}
|
||||
Z s = 1;
|
||||
for (Z i = 1; i < p; ++i)
|
||||
for (Z i = 1; i < modulus; ++i)
|
||||
{
|
||||
s = (s * base) % p;
|
||||
s = (s * base) % modulus;
|
||||
if (s == arg)
|
||||
{
|
||||
// Maybe a bit trivial assertion. But still a negligible fraction of the total compute time.
|
||||
BOOST_ASSERT(arg == boost::multiprecision::powm(base, i, p));
|
||||
BOOST_ASSERT(arg == boost::multiprecision::powm(base, i, modulus));
|
||||
return i;
|
||||
}
|
||||
}
|
||||
@ -75,7 +78,7 @@ template<class Z>
|
||||
class bsgs_discrete_log
|
||||
{
|
||||
public:
|
||||
bsgs_discrete_log(Z base, Z p) : m_p{p}, m_base{base}
|
||||
bsgs_discrete_log(Z base, Z modulus) : m_p{modulus}, m_base{base}
|
||||
{
|
||||
using std::numeric_limits;
|
||||
static_assert(numeric_limits<Z>::is_integer,
|
||||
@ -85,28 +88,28 @@ public:
|
||||
{
|
||||
throw std::logic_error("The base must be > 1.\n");
|
||||
}
|
||||
if (p < 3)
|
||||
if (modulus < 3)
|
||||
{
|
||||
throw std::logic_error("The modulus must be > 2.\n");
|
||||
}
|
||||
if (base >= p)
|
||||
if (base >= modulus)
|
||||
{
|
||||
throw std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n");
|
||||
}
|
||||
m_root_p = boost::multiprecision::sqrt(p);
|
||||
if (m_root_p*m_root_p != p)
|
||||
m_root_p = boost::multiprecision::sqrt(modulus);
|
||||
if (m_root_p*m_root_p != modulus)
|
||||
{
|
||||
m_root_p += 1;
|
||||
}
|
||||
|
||||
auto x = mod_inverse(base, p);
|
||||
auto x = mod_inverse(base, modulus);
|
||||
if (!x)
|
||||
{
|
||||
auto d = boost::integer::gcd(base, p);
|
||||
auto e = boost::format("The gcd of the base %1% and the modulus %2% is %3% != 1, hence the discrete log is not guaranteed to exist, which breaks the baby-step giant step algorithm. If you don't require existence proof for all inputs, use trial multiplication.\n") % base % p % d;
|
||||
auto d = boost::integer::gcd(base, modulus);
|
||||
auto e = boost::format("The gcd of the base %1% and the modulus %2% is %3% != 1, hence the discrete log is not guaranteed to exist, which breaks the baby-step giant step algorithm. If you don't require existence proof for all inputs, use trial multiplication.\n") % base % modulus % d;
|
||||
throw std::logic_error(e.str());
|
||||
}
|
||||
m_inv_base_pow_m = boost::multiprecision::powm(x.value(), m_root_p, p);
|
||||
m_inv_base_pow_m = boost::multiprecision::powm(x.value(), m_root_p, modulus);
|
||||
|
||||
m_lookup_table.reserve(m_root_p);
|
||||
// Now the expensive part:
|
||||
@ -114,7 +117,7 @@ public:
|
||||
for (Z j = 0; j < m_root_p; ++j)
|
||||
{
|
||||
m_lookup_table.emplace(k, j);
|
||||
k = k*base % p;
|
||||
k = k*base % modulus;
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -4,8 +4,8 @@
|
||||
* Boost Software License, Version 1.0. (See accompanying file
|
||||
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
*/
|
||||
#ifndef BOOST_INTEGER_MODULAR_MULTIPLICATIVE_INVERSE_HPP
|
||||
#define BOOST_INTEGER_MODULAR_MULTIPLICATIVE_INVERSE_HPP
|
||||
#ifndef BOOST_INTEGER_MOD_INVERSE_HPP
|
||||
#define BOOST_INTEGER_MOD_INVERSE_HPP
|
||||
#include <limits>
|
||||
#include <boost/optional.hpp>
|
||||
#include <boost/integer/extended_euclidean.hpp>
|
||||
|
Reference in New Issue
Block a user