[ci skip] Fix docs to use less verbose names for modular multiplicative inverse (mod_inverse)

This commit is contained in:
Nick Thompson
2018-02-10 16:07:17 -06:00
parent b3966428c4
commit 4f4f3eda37
4 changed files with 48 additions and 43 deletions

View File

@ -21,7 +21,7 @@ namespace boost { namespace integer {
// base^^x = a mod p <-> x = log_base(a) mod p
template<class Z>
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z p)
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z modulus)
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
@ -29,26 +29,29 @@ boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z p)
if (base <= 1)
{
throw std::domain_error("The base must be > 1.\n");
auto e = boost::format("The base b is %1%, but must be > 1.\n") % base;
throw std::domain_error(e.str());
}
if (p < 3)
if (modulus < 3)
{
throw std::domain_error("The modulus must be > 2.\n");
auto e = boost::format("The modulus must be > 2, but is %1%") % modulus;
throw std::domain_error(e.str());
}
if (arg < 1)
{
throw std::domain_error("The argument must be > 0.\n");
auto e = boost::format("The argument must be > 0, but is %1%") % arg;
throw std::domain_error(arg);
}
if (base >= p || arg >= p)
if (base >= modulus || arg >= modulus)
{
if (base >= p)
if (base >= modulus)
{
auto e = boost::format("Error computing the discrete log: The base %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % base % p;
auto e = boost::format("Error computing the discrete log: The base %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % base % modulus;
throw std::domain_error(e.str());
}
if (arg >= p)
{
auto e = boost::format("Error computing the discrete log: The argument %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % arg % p;
auto e = boost::format("Error computing the discrete log: The argument %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % arg % modulus;
throw std::domain_error(e.str());
}
}
@ -58,13 +61,13 @@ boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z p)
return 0;
}
Z s = 1;
for (Z i = 1; i < p; ++i)
for (Z i = 1; i < modulus; ++i)
{
s = (s * base) % p;
s = (s * base) % modulus;
if (s == arg)
{
// Maybe a bit trivial assertion. But still a negligible fraction of the total compute time.
BOOST_ASSERT(arg == boost::multiprecision::powm(base, i, p));
BOOST_ASSERT(arg == boost::multiprecision::powm(base, i, modulus));
return i;
}
}
@ -75,7 +78,7 @@ template<class Z>
class bsgs_discrete_log
{
public:
bsgs_discrete_log(Z base, Z p) : m_p{p}, m_base{base}
bsgs_discrete_log(Z base, Z modulus) : m_p{modulus}, m_base{base}
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
@ -85,28 +88,28 @@ public:
{
throw std::logic_error("The base must be > 1.\n");
}
if (p < 3)
if (modulus < 3)
{
throw std::logic_error("The modulus must be > 2.\n");
}
if (base >= p)
if (base >= modulus)
{
throw std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n");
}
m_root_p = boost::multiprecision::sqrt(p);
if (m_root_p*m_root_p != p)
m_root_p = boost::multiprecision::sqrt(modulus);
if (m_root_p*m_root_p != modulus)
{
m_root_p += 1;
}
auto x = mod_inverse(base, p);
auto x = mod_inverse(base, modulus);
if (!x)
{
auto d = boost::integer::gcd(base, p);
auto e = boost::format("The gcd of the base %1% and the modulus %2% is %3% != 1, hence the discrete log is not guaranteed to exist, which breaks the baby-step giant step algorithm. If you don't require existence proof for all inputs, use trial multiplication.\n") % base % p % d;
auto d = boost::integer::gcd(base, modulus);
auto e = boost::format("The gcd of the base %1% and the modulus %2% is %3% != 1, hence the discrete log is not guaranteed to exist, which breaks the baby-step giant step algorithm. If you don't require existence proof for all inputs, use trial multiplication.\n") % base % modulus % d;
throw std::logic_error(e.str());
}
m_inv_base_pow_m = boost::multiprecision::powm(x.value(), m_root_p, p);
m_inv_base_pow_m = boost::multiprecision::powm(x.value(), m_root_p, modulus);
m_lookup_table.reserve(m_root_p);
// Now the expensive part:
@ -114,7 +117,7 @@ public:
for (Z j = 0; j < m_root_p; ++j)
{
m_lookup_table.emplace(k, j);
k = k*base % p;
k = k*base % modulus;
}
}