forked from boostorg/integer
Return integer with zero signaling common factor rather than boost::optional<Z>.
This commit is contained in:
@ -14,7 +14,7 @@ A fast algorithm for computing modular multiplicative inverses based on the exte
|
|||||||
namespace boost { namespace integer {
|
namespace boost { namespace integer {
|
||||||
|
|
||||||
template<class Z>
|
template<class Z>
|
||||||
boost::optional<Z> mod_inverse(Z a, Z m);
|
Z mod_inverse(Z a, Z m);
|
||||||
|
|
||||||
}}
|
}}
|
||||||
|
|
||||||
@ -22,20 +22,19 @@ A fast algorithm for computing modular multiplicative inverses based on the exte
|
|||||||
|
|
||||||
[section Usage]
|
[section Usage]
|
||||||
|
|
||||||
Multiplicative modular inverses exist if and only if /a/ and /m/ are coprime.
|
int x = mod_inverse(2, 5);
|
||||||
So for example
|
// prints x = 3:
|
||||||
|
std::cout << "x = " << x << "\n";
|
||||||
|
|
||||||
auto x = mod_inverse(2, 5);
|
int y = mod_inverse(2, 4);
|
||||||
if (x)
|
if (y == 0)
|
||||||
{
|
|
||||||
int should_be_three = x.value();
|
|
||||||
}
|
|
||||||
auto y = mod_inverse(2, 4);
|
|
||||||
if (!y)
|
|
||||||
{
|
{
|
||||||
std::cout << "There is no inverse of 2 mod 4\n";
|
std::cout << "There is no inverse of 2 mod 4\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Multiplicative modular inverses exist if and only if /a/ and /m/ are coprime.
|
||||||
|
If /a/ and /m/ share a common factor, then `mod_inverse(a, m)` returns zero.
|
||||||
|
|
||||||
[endsect]
|
[endsect]
|
||||||
|
|
||||||
[section References]
|
[section References]
|
||||||
|
@ -8,7 +8,6 @@
|
|||||||
#define BOOST_INTEGER_MOD_INVERSE_HPP
|
#define BOOST_INTEGER_MOD_INVERSE_HPP
|
||||||
#include <stdexcept>
|
#include <stdexcept>
|
||||||
#include <boost/throw_exception.hpp>
|
#include <boost/throw_exception.hpp>
|
||||||
#include <boost/optional.hpp>
|
|
||||||
#include <boost/integer/extended_euclidean.hpp>
|
#include <boost/integer/extended_euclidean.hpp>
|
||||||
|
|
||||||
namespace boost { namespace integer {
|
namespace boost { namespace integer {
|
||||||
@ -21,7 +20,7 @@ namespace boost { namespace integer {
|
|||||||
// Would mod_inverse be sometimes mistaken as the modular *additive* inverse?
|
// Would mod_inverse be sometimes mistaken as the modular *additive* inverse?
|
||||||
// In any case, I think this is the best name we can get for this function without agonizing.
|
// In any case, I think this is the best name we can get for this function without agonizing.
|
||||||
template<class Z>
|
template<class Z>
|
||||||
boost::optional<Z> mod_inverse(Z a, Z modulus)
|
Z mod_inverse(Z a, Z modulus)
|
||||||
{
|
{
|
||||||
if (modulus < 2)
|
if (modulus < 2)
|
||||||
{
|
{
|
||||||
@ -32,12 +31,12 @@ boost::optional<Z> mod_inverse(Z a, Z modulus)
|
|||||||
if (a == 0)
|
if (a == 0)
|
||||||
{
|
{
|
||||||
// a doesn't have a modular multiplicative inverse:
|
// a doesn't have a modular multiplicative inverse:
|
||||||
return boost::none;
|
return 0;
|
||||||
}
|
}
|
||||||
euclidean_result_t<Z> u = extended_euclidean(a, modulus);
|
euclidean_result_t<Z> u = extended_euclidean(a, modulus);
|
||||||
if (u.gcd > 1)
|
if (u.gcd > 1)
|
||||||
{
|
{
|
||||||
return boost::none;
|
return 0;
|
||||||
}
|
}
|
||||||
// x might not be in the range 0 < x < m, let's fix that:
|
// x might not be in the range 0 < x < m, let's fix that:
|
||||||
while (u.x <= 0)
|
while (u.x <= 0)
|
||||||
|
@ -36,17 +36,17 @@ void test_mod_inverse()
|
|||||||
for (Z a = 1; a < modulus; ++a)
|
for (Z a = 1; a < modulus; ++a)
|
||||||
{
|
{
|
||||||
Z gcdam = gcd(a, modulus);
|
Z gcdam = gcd(a, modulus);
|
||||||
boost::optional<Z> inv_a = mod_inverse(a, modulus);
|
Z inv_a = mod_inverse(a, modulus);
|
||||||
// Should fail if gcd(a, mod) != 1:
|
// Should fail if gcd(a, mod) != 1:
|
||||||
if (gcdam > 1)
|
if (gcdam > 1)
|
||||||
{
|
{
|
||||||
BOOST_TEST(!inv_a);
|
BOOST_TEST(inv_a == 0);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
BOOST_TEST(inv_a.value() > 0);
|
BOOST_TEST(inv_a > 0);
|
||||||
// Cast to a bigger type so the multiplication won't overflow.
|
// Cast to a bigger type so the multiplication won't overflow.
|
||||||
int256_t a_inv = inv_a.value();
|
int256_t a_inv = inv_a;
|
||||||
int256_t big_a = a;
|
int256_t big_a = a;
|
||||||
int256_t m = modulus;
|
int256_t m = modulus;
|
||||||
int256_t outta_be_one = (a_inv*big_a) % m;
|
int256_t outta_be_one = (a_inv*big_a) % m;
|
||||||
|
Reference in New Issue
Block a user