forked from boostorg/integer
Merge pull request #17 from NAThompson/remove_optional
Return integer with zero signaling common factor rather than boost::optional
This commit is contained in:
@ -14,7 +14,7 @@ A fast algorithm for computing modular multiplicative inverses based on the exte
|
||||
namespace boost { namespace integer {
|
||||
|
||||
template<class Z>
|
||||
boost::optional<Z> mod_inverse(Z a, Z m);
|
||||
Z mod_inverse(Z a, Z m);
|
||||
|
||||
}}
|
||||
|
||||
@ -22,20 +22,19 @@ A fast algorithm for computing modular multiplicative inverses based on the exte
|
||||
|
||||
[section Usage]
|
||||
|
||||
Multiplicative modular inverses exist if and only if /a/ and /m/ are coprime.
|
||||
So for example
|
||||
int x = mod_inverse(2, 5);
|
||||
// prints x = 3:
|
||||
std::cout << "x = " << x << "\n";
|
||||
|
||||
auto x = mod_inverse(2, 5);
|
||||
if (x)
|
||||
{
|
||||
int should_be_three = x.value();
|
||||
}
|
||||
auto y = mod_inverse(2, 4);
|
||||
if (!y)
|
||||
int y = mod_inverse(2, 4);
|
||||
if (y == 0)
|
||||
{
|
||||
std::cout << "There is no inverse of 2 mod 4\n";
|
||||
}
|
||||
|
||||
Multiplicative modular inverses exist if and only if /a/ and /m/ are coprime.
|
||||
If /a/ and /m/ share a common factor, then `mod_inverse(a, m)` returns zero.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section References]
|
||||
|
@ -8,8 +8,6 @@
|
||||
#define BOOST_INTEGER_MOD_INVERSE_HPP
|
||||
#include <stdexcept>
|
||||
#include <boost/throw_exception.hpp>
|
||||
#include <boost/none.hpp>
|
||||
#include <boost/optional/optional.hpp>
|
||||
#include <boost/integer/extended_euclidean.hpp>
|
||||
|
||||
namespace boost { namespace integer {
|
||||
@ -22,26 +20,26 @@ namespace boost { namespace integer {
|
||||
// Would mod_inverse be sometimes mistaken as the modular *additive* inverse?
|
||||
// In any case, I think this is the best name we can get for this function without agonizing.
|
||||
template<class Z>
|
||||
boost::optional<Z> mod_inverse(Z a, Z modulus)
|
||||
Z mod_inverse(Z a, Z modulus)
|
||||
{
|
||||
if (modulus < 2)
|
||||
if (modulus < Z(2))
|
||||
{
|
||||
BOOST_THROW_EXCEPTION(std::domain_error("mod_inverse: modulus must be > 1"));
|
||||
}
|
||||
// make sure a < modulus:
|
||||
a = a % modulus;
|
||||
if (a == 0)
|
||||
if (a == Z(0))
|
||||
{
|
||||
// a doesn't have a modular multiplicative inverse:
|
||||
return boost::none;
|
||||
return Z(0);
|
||||
}
|
||||
boost::integer::euclidean_result_t<Z> u = boost::integer::extended_euclidean(a, modulus);
|
||||
if (u.gcd > 1)
|
||||
if (u.gcd > Z(1))
|
||||
{
|
||||
return boost::none;
|
||||
return Z(0);
|
||||
}
|
||||
// x might not be in the range 0 < x < m, let's fix that:
|
||||
while (u.x <= 0)
|
||||
while (u.x <= Z(0))
|
||||
{
|
||||
u.x += modulus;
|
||||
}
|
||||
|
@ -34,17 +34,17 @@ void test_mod_inverse()
|
||||
for (Z a = 1; a < modulus; ++a)
|
||||
{
|
||||
Z gcdam = gcd(a, modulus);
|
||||
boost::optional<Z> inv_a = mod_inverse(a, modulus);
|
||||
Z inv_a = mod_inverse(a, modulus);
|
||||
// Should fail if gcd(a, mod) != 1:
|
||||
if (gcdam > 1)
|
||||
{
|
||||
BOOST_TEST(!inv_a);
|
||||
BOOST_TEST(inv_a == 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
BOOST_TEST(inv_a.value() > 0);
|
||||
BOOST_TEST(inv_a > 0);
|
||||
// Cast to a bigger type so the multiplication won't overflow.
|
||||
int256_t a_inv = inv_a.value();
|
||||
int256_t a_inv = inv_a;
|
||||
int256_t big_a = a;
|
||||
int256_t m = modulus;
|
||||
int256_t outta_be_one = (a_inv*big_a) % m;
|
||||
|
Reference in New Issue
Block a user