Files
boost_intrusive/include/boost/intrusive/rbtree.hpp

1137 lines
41 KiB
C++
Raw Normal View History

2007-05-04 21:22:02 +00:00
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2006-2007
2007-05-04 21:22:02 +00:00
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_RBTREE_HPP
#define BOOST_INTRUSIVE_RBTREE_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <functional>
#include <iterator>
#include <utility>
2007-06-23 13:01:38 +00:00
#include <boost/intrusive/detail/assert.hpp>
2007-05-04 21:22:02 +00:00
#include <boost/static_assert.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/detail/pointer_to_other.hpp>
#include <boost/intrusive/set_hook.hpp>
#include <boost/intrusive/detail/rbtree_node.hpp>
2007-06-23 13:01:38 +00:00
#include <boost/intrusive/detail/ebo_functor_holder.hpp>
2007-05-04 21:22:02 +00:00
#include <boost/intrusive/rbtree_algorithms.hpp>
#include <boost/intrusive/linking_policy.hpp>
#include <cstddef>
#include <iterator>
namespace boost {
namespace intrusive {
//! The class template rbtree is an intrusive red-black tree container, that
//! is used to construct intrusive set and tree containers. The no-throw
//! guarantee holds only, if the Compare object
//! doesn't throw.
template < class ValueTraits
, class Compare //= std::less<typename ValueTraits::value_type>
, bool ConstantTimeSize //= true
, class SizeType //= std::size_t
>
class rbtree
: private detail::size_holder<ConstantTimeSize, SizeType>
{
/// @cond
private:
2007-07-22 14:08:34 +00:00
typename ValueTraits::node_traits::node root_;
2007-05-04 21:22:02 +00:00
typedef rbtree<ValueTraits, Compare
,ConstantTimeSize, SizeType> this_type;
typedef typename ValueTraits::node_traits node_traits;
2007-07-22 14:08:34 +00:00
typedef detail::size_holder<ConstantTimeSize, SizeType> size_traits;
2007-05-04 21:22:02 +00:00
//noncopyable
rbtree (const rbtree&);
rbtree operator =(const rbtree&);
/// @endcond
public:
typedef ValueTraits value_traits;
typedef typename ValueTraits::value_type value_type;
typedef typename ValueTraits::pointer pointer;
typedef typename ValueTraits::const_pointer const_pointer;
typedef typename std::iterator_traits<pointer>::reference reference;
typedef typename std::iterator_traits<const_pointer>::reference const_reference;
typedef typename std::iterator_traits<pointer>::difference_type difference_type;
typedef SizeType size_type;
typedef value_type key_type;
typedef Compare value_compare;
typedef detail::rbtree_iterator<value_type, ValueTraits> iterator;
typedef detail::rbtree_iterator<const value_type, ValueTraits> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
/// @cond
private:
typedef typename node_traits::node node;
typedef typename boost::pointer_to_other
<pointer, node>::type node_ptr;
typedef typename boost::pointer_to_other
<node_ptr, const node>::type const_node_ptr;
typedef rbtree_algorithms<node_traits> node_algorithms;
enum { safemode_or_autounlink =
(int)ValueTraits::linking_policy == (int)auto_unlink ||
(int)ValueTraits::linking_policy == (int)safe_link };
//Constant-time size is incompatible with auto-unlink hooks!
BOOST_STATIC_ASSERT(!(ConstantTimeSize && ((int)ValueTraits::linking_policy == (int)auto_unlink)));
//Use EBO if possible
typedef detail::node_plus_pred<node, Compare> members_t;
members_t members_;
const Compare &priv_comp() const
{ return members_.second(); }
Compare &priv_comp()
{ return members_.second(); }
const node &priv_header() const
{ return members_.first(); }
node &priv_header()
{ return members_.first(); }
static node_ptr uncast(const_node_ptr ptr)
{
return node_ptr(const_cast<node*>(detail::get_pointer(ptr)));
2007-05-04 21:22:02 +00:00
}
/// @endcond
public:
typedef typename node_algorithms::insert_commit_data insert_commit_data;
//! <b>Effects</b>: Constructs an empty tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing unless the copy constructor of the Compare object throws.
rbtree(Compare cmp = Compare())
: members_(cmp)
{
node_algorithms::init_header(&priv_header());
size_traits::set_size(size_type(0));
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type.
//! cmp must be a comparison function that induces a strict weak ordering.
//!
//! <b>Effects</b>: Constructs an empty tree and inserts elements from
//! [b, e).
//!
//! <b>Complexity</b>: Linear in N if [b, e) is already sorted using
//! comp and otherwise N * log N, where N is last <20> first.
//!
//! <b>Throws</b>: Nothing unless the copy constructor of the Compare object throws.
template<class Iterator>
rbtree(bool unique, Iterator b, Iterator e, Compare cmp = Compare())
: members_(cmp)
{
node_algorithms::init_header(&priv_header());
size_traits::set_size(size_type(0));
if(unique)
this->insert_unique(b, e);
else
this->insert_equal(b, e);
}
//! <b>Effects</b>: Detaches all elements from this. The objects in the set
//! are not deleted (i.e. no destructors are called), but the nodes according to
//! the ValueTraits template parameter are reinitialized and thus can be reused.
//!
//! <b>Complexity</b>: Linear to elements contained in *this.
//!
//! <b>Throws</b>: Nothing.
~rbtree()
{ this->clear(); }
//! <b>Effects</b>: Returns an iterator pointing to the beginning of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator begin()
{ return iterator (node_traits::get_left(node_ptr(&priv_header()))); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator begin() const
{ return cbegin(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cbegin() const
{ return const_iterator (node_traits::get_left(const_node_ptr(&priv_header()))); }
//! <b>Effects</b>: Returns an iterator pointing to the end of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator end()
{ return iterator (node_ptr(&priv_header())); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator end() const
{ return cend(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cend() const
{ return const_iterator (uncast(const_node_ptr(&priv_header()))); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning of the
//! reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(end()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
reverse_iterator rend()
{ return reverse_iterator(begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator crend() const
{ return const_reverse_iterator(begin()); }
//! <b>Precondition</b>: end_iterator must be a valid end iterator
//! of rbtree.
//!
//! <b>Effects</b>: Returns a const reference to the rbtree associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static rbtree &container_from_end_iterator(iterator end_iterator)
{
return *detail::parent_from_member<rbtree, members_t>
( members_t::this_from_node(detail::get_pointer(end_iterator.pointed_node()))
2007-05-04 21:22:02 +00:00
, &rbtree::members_);
}
//! <b>Precondition</b>: end_iterator must be a valid end const_iterator
//! of rbtree.
//!
//! <b>Effects</b>: Returns a const reference to the rbtree associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static const rbtree &container_from_end_iterator(const_iterator end_iterator)
{
return *detail::parent_from_member<rbtree, members_t>
( members_t::this_from_node(detail::get_pointer(end_iterator.pointed_node()))
2007-05-04 21:22:02 +00:00
, &rbtree::members_);
}
//! <b>Effects</b>: Returns the value_compare object used by the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_compare copy-constructor throws.
value_compare value_comp() const
{ return priv_comp(); }
//! <b>Effects</b>: Returns true is the container is empty.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
bool empty() const
{ return node_algorithms::unique(const_node_ptr(&priv_header())); }
//! <b>Effects</b>: Returns the number of elements stored in the tree.
//!
//! <b>Complexity</b>: Linear to elements contained in *this.
//!
//! <b>Throws</b>: Nothing.
size_type size() const
{
if(ConstantTimeSize)
return size_traits::get_size();
else
return empty() ? 0 : node_algorithms::count(node_traits::get_parent(const_node_ptr(&priv_header())));
}
//! <b>Effects</b>: Swaps the contents of two multisets.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the comparison functor's unspecified swap call throws.
void swap(rbtree& other)
{
//This can throw
using std::swap;
swap(priv_comp(), priv_comp());
//These can't throw
node_algorithms::swap_tree(node_ptr(&priv_header()), node_ptr(&other.priv_header()));
if(ConstantTimeSize){
size_type backup = size_traits::get_size();
size_traits::set_size(other.get_size());
other.set_size(backup);
}
}
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Inserts value into the tree before the upper bound.
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert_equal_upper_bound(reference value)
{
detail::key_node_ptr_compare<value_compare, ValueTraits> key_node_comp(priv_comp());
node_ptr to_insert(ValueTraits::to_node_ptr(value));
if(safemode_or_autounlink)
2007-07-22 14:08:34 +00:00
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert));
2007-05-04 21:22:02 +00:00
size_traits::increment();
return iterator(node_algorithms::insert_equal_upper_bound
(node_ptr(&priv_header()), to_insert, key_node_comp));
}
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Inserts value into the tree before the lower bound.
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert_equal_lower_bound(reference value)
{
detail::key_node_ptr_compare<value_compare, ValueTraits> key_node_comp(priv_comp());
node_ptr to_insert(ValueTraits::to_node_ptr(value));
if(safemode_or_autounlink)
2007-07-22 14:08:34 +00:00
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert));
2007-05-04 21:22:02 +00:00
size_traits::increment();
return iterator(node_algorithms::insert_equal_lower_bound
(node_ptr(&priv_header()), to_insert, key_node_comp));
}
//! <b>Requires</b>: value must be an lvalue, and "hint" must be
//! a valid iterator.
//!
//! <b>Effects</b>: Inserts x into the tree, using "hint" as a hint to
//! where it will be inserted. If "hint" is the upper_bound
//! the insertion takes constant time (two comparisons in the worst case)
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time if t is inserted immediately before hint.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert_equal(const_iterator hint, reference value)
{
detail::key_node_ptr_compare<value_compare, ValueTraits> key_node_comp(priv_comp());
node_ptr to_insert(ValueTraits::to_node_ptr(value));
if(safemode_or_autounlink)
2007-07-22 14:08:34 +00:00
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert));
2007-05-04 21:22:02 +00:00
size_traits::increment();
return iterator(node_algorithms::insert_equal
(node_ptr(&priv_header()), hint.pointed_node(), to_insert, key_node_comp));
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Inserts a each element of a range into the tree
//! before the upper bound of the key of each element.
//!
//! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the
//! size of the range. However, it is linear in N if the range is already sorted
//! by value_comp().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert_equal(Iterator b, Iterator e)
{
if(this->empty()){
iterator end(this->end());
for (; b != e; ++b)
this->insert_equal(end, *b);
}
else{
for (; b != e; ++b)
this->insert_equal_upper_bound(*b);
}
}
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Inserts value into the tree if the value
//! is not already present.
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
std::pair<iterator, bool> insert_unique(reference value)
{
insert_commit_data commit_data;
std::pair<iterator, bool> ret = insert_unique_check(value, commit_data);
if(!ret.second)
return ret;
return std::pair<iterator, bool> (insert_unique_commit(value, commit_data), true);
}
//! <b>Requires</b>: value must be an lvalue, and "hint" must be
//! a valid iterator
//!
//! <b>Effects</b>: Tries to insert x into the tree, using "hint" as a hint
//! to where it will be inserted.
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time (two comparisons in the worst case)
//! if t is inserted immediately before hint.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert_unique(const_iterator hint, reference value)
{
insert_commit_data commit_data;
std::pair<iterator, bool> ret = insert_unique_check(hint, value, commit_data);
if(!ret.second)
return ret.first;
return insert_unique_commit(value, commit_data);
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Tries to insert each element of a range into the tree.
//!
//! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the
//! size of the range. However, it is linear in N if the range is already sorted
//! by value_comp().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert_unique(Iterator b, Iterator e)
{
if(this->empty()){
iterator end(this->end());
for (; b != e; ++b)
this->insert_unique(end, *b);
}
else{
for (; b != e; ++b)
this->insert_unique(*b);
}
}
std::pair<iterator, bool> insert_unique_check
(const_reference value, insert_commit_data &commit_data)
{ return insert_unique_check(value, priv_comp(), commit_data); }
template<class KeyType, class KeyValueCompare>
std::pair<iterator, bool> insert_unique_check
(const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data)
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> comp(key_value_comp);
std::pair<node_ptr, bool> ret =
(node_algorithms::insert_unique_check
(node_ptr(&priv_header()), key, comp, commit_data));
return std::pair<iterator, bool>(iterator(ret.first), ret.second);
}
std::pair<iterator, bool> insert_unique_check
(const_iterator hint, const_reference value, insert_commit_data &commit_data)
{ return insert_unique_check(hint, value, priv_comp(), commit_data); }
template<class KeyType, class KeyValueCompare>
std::pair<iterator, bool> insert_unique_check
(const_iterator hint, const KeyType &key
,KeyValueCompare key_value_comp, insert_commit_data &commit_data)
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> comp(key_value_comp);
std::pair<node_ptr, bool> ret =
(node_algorithms::insert_unique_check
(node_ptr(&priv_header()), hint.pointed_node(), key, comp, commit_data));
return std::pair<iterator, bool>(iterator(ret.first), ret.second);
}
iterator insert_unique_commit(reference value, const insert_commit_data &commit_data)
{
node_ptr to_insert(ValueTraits::to_node_ptr(value));
if(safemode_or_autounlink)
2007-07-22 14:08:34 +00:00
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert));
2007-05-04 21:22:02 +00:00
size_traits::increment();
node_algorithms::insert_unique_commit
(node_ptr(&priv_header()), to_insert, commit_data);
return iterator(to_insert);
}
//! <b>Effects</b>: Erases the element pointed to by pos.
//!
//! <b>Complexity</b>: Average complexity for erase element is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
iterator erase(iterator i)
{
iterator ret(i);
++ret;
node_ptr to_erase(i.pointed_node());
if(safemode_or_autounlink)
2007-07-22 14:08:34 +00:00
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!node_algorithms::unique(to_erase));
2007-05-04 21:22:02 +00:00
node_algorithms::erase(&priv_header(), to_erase);
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
return ret;
}
//! <b>Effects</b>: Erases the range pointed to by b end e.
//!
//! <b>Complexity</b>: Average complexity for erase range is at most
//! O(log(size() + N)), where N is the number of elements in the range.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
iterator erase(iterator b, iterator e)
{ size_type n; return private_erase(b, e, n); }
//! <b>Effects</b>: Erases all the elements with the given value.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + N).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
size_type erase(const_reference value)
{ return this->erase(value, priv_comp()); }
//! <b>Effects</b>: Erases all the elements with the given key.
//! according to the comparison functor "comp".
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + N).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class KeyType, class KeyValueCompare>
size_type erase(const KeyType& key, KeyValueCompare comp)
{
std::pair<iterator,iterator> p = this->equal_range(key, comp);
size_type n;
private_erase(p.first, p.second, n);
return n;
}
2007-06-23 13:01:38 +00:00
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
2007-05-04 21:22:02 +00:00
//!
//! <b>Effects</b>: Erases the element pointed to by pos.
2007-06-23 13:01:38 +00:00
//! Disposer::operator()(pointer) is called for the removed element.
2007-05-04 21:22:02 +00:00
//!
//! <b>Complexity</b>: Average complexity for erase element is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
2007-06-23 13:01:38 +00:00
template<class Disposer>
iterator erase_and_dispose(iterator i, Disposer disposer)
2007-05-04 21:22:02 +00:00
{
node_ptr to_erase(i.pointed_node());
iterator ret(this->erase(i));
2007-06-23 13:01:38 +00:00
disposer(ValueTraits::to_value_ptr(to_erase));
2007-05-04 21:22:02 +00:00
return ret;
}
2007-06-23 13:01:38 +00:00
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
2007-05-04 21:22:02 +00:00
//!
//! <b>Effects</b>: Erases the range pointed to by b end e.
2007-06-23 13:01:38 +00:00
//! Disposer::operator()(pointer) is called for the removed elements.
2007-05-04 21:22:02 +00:00
//!
//! <b>Complexity</b>: Average complexity for erase range is at most
//! O(log(size() + N)), where N is the number of elements in the range.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
2007-06-23 13:01:38 +00:00
template<class Disposer>
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer)
{ size_type n; return private_erase(b, e, n, disposer); }
2007-05-04 21:22:02 +00:00
2007-06-23 13:01:38 +00:00
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
2007-05-04 21:22:02 +00:00
//!
//! <b>Effects</b>: Erases all the elements with the given value.
2007-06-23 13:01:38 +00:00
//! Disposer::operator()(pointer) is called for the removed elements.
2007-05-04 21:22:02 +00:00
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + N).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
2007-06-23 13:01:38 +00:00
template<class Disposer>
size_type erase_and_dispose(const_reference value, Disposer disposer)
2007-05-04 21:22:02 +00:00
{
std::pair<iterator,iterator> p = this->equal_range(value);
size_type n;
2007-06-23 13:01:38 +00:00
private_erase(p.first, p.second, n, disposer);
2007-05-04 21:22:02 +00:00
return n;
}
2007-06-23 13:01:38 +00:00
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
2007-05-04 21:22:02 +00:00
//!
//! <b>Effects</b>: Erases all the elements with the given key.
//! according to the comparison functor "comp".
2007-06-23 13:01:38 +00:00
//! Disposer::operator()(pointer) is called for the removed elements.
2007-05-04 21:22:02 +00:00
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + N).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
2007-06-23 13:01:38 +00:00
template<class KeyType, class KeyValueCompare, class Disposer>
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer)
2007-05-04 21:22:02 +00:00
{
std::pair<iterator,iterator> p = this->equal_range(key, comp);
size_type n;
2007-06-23 13:01:38 +00:00
private_erase(p.first, p.second, n, disposer);
2007-05-04 21:22:02 +00:00
return n;
}
//! <b>Effects</b>: Erases all of the elements.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
void clear()
{
if(safemode_or_autounlink){
while(1){
node_ptr leftmost
(node_algorithms::unlink_leftmost_without_rebalance
(node_ptr(&priv_header())));
if(!leftmost)
break;
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(leftmost);
}
}
else{
node_algorithms::init_header(&priv_header());
size_traits::set_size(0);
}
}
2007-06-23 13:01:38 +00:00
//! <b>Effects</b>: Erases all of the elements calling disposer(p) for
2007-05-04 21:22:02 +00:00
//! each node to be erased.
//! <b>Complexity</b>: Average complexity for is at most O(log(size() + N)),
//! where N is the number of elements in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
2007-06-23 13:01:38 +00:00
//! to the erased elements. Calls N times to disposer functor.
template<class Disposer>
void clear_and_dispose(Disposer disposer)
2007-05-04 21:22:02 +00:00
{
while(1){
node_ptr leftmost
(node_algorithms::unlink_leftmost_without_rebalance
(node_ptr(&priv_header())));
if(!leftmost)
break;
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(leftmost);
2007-06-23 13:01:38 +00:00
disposer(ValueTraits::to_value_ptr(leftmost));
2007-05-04 21:22:02 +00:00
}
}
//! <b>Effects</b>: Returns the number of contained elements with the given value
//!
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal
//! to number of objects with the given value.
//!
//! <b>Throws</b>: Nothing.
size_type count(const_reference value) const
{ return this->count(value, priv_comp()); }
//! <b>Effects</b>: Returns the number of contained elements with the given key
//!
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal
//! to number of objects with the given key.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
size_type count(const KeyType &key, KeyValueCompare comp) const
{
std::pair<const_iterator, const_iterator> ret = this->equal_range(key, comp);
return std::distance(ret.first, ret.second);
}
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
iterator lower_bound(const_reference value)
{ return this->lower_bound(value, priv_comp()); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
const_iterator lower_bound(const_reference value) const
{ return this->lower_bound(value, priv_comp()); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
iterator lower_bound(const KeyType &key, KeyValueCompare comp)
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> key_node_comp(comp);
return iterator(node_algorithms::lower_bound
(const_node_ptr(&priv_header()), key, key_node_comp));
}
//! <b>Effects</b>: Returns a const iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
const_iterator lower_bound(const KeyType &key, KeyValueCompare comp) const
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> key_node_comp(comp);
return const_iterator(node_algorithms::lower_bound
(const_node_ptr(&priv_header()), key, key_node_comp));
}
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
iterator upper_bound(const_reference value)
{ return this->upper_bound(value, priv_comp()); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k according to comp or end() if that element
//! does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
iterator upper_bound(const KeyType &key, KeyValueCompare comp)
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> key_node_comp(comp);
return iterator(node_algorithms::upper_bound
(const_node_ptr(&priv_header()), key, key_node_comp));
}
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
const_iterator upper_bound(const_reference value) const
{ return this->upper_bound(value, priv_comp()); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k according to comp or end() if that element
//! does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
const_iterator upper_bound(const KeyType &key, KeyValueCompare comp) const
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> key_node_comp(comp);
return const_iterator(node_algorithms::upper_bound
(const_node_ptr(&priv_header()), key, key_node_comp));
}
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
iterator find(const_reference value)
{ return this->find(value, priv_comp()); }
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
iterator find(const KeyType &key, KeyValueCompare comp)
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> key_node_comp(comp);
return iterator
(node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp));
}
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is
//! k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
const_iterator find(const_reference value) const
{ return this->find(value, priv_comp()); }
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is
//! k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
const_iterator find(const KeyType &key, KeyValueCompare comp) const
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> key_node_comp(comp);
return const_iterator
(node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp));
}
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
std::pair<iterator,iterator> equal_range(const_reference value)
{ return this->equal_range(value, priv_comp()); }
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
std::pair<iterator,iterator> equal_range(const KeyType &key, KeyValueCompare comp)
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> key_node_comp(comp);
std::pair<node_ptr, node_ptr> ret
(node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp));
return std::pair<iterator, iterator>(iterator(ret.first), iterator(ret.second));
}
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
std::pair<const_iterator, const_iterator>
equal_range(const_reference value) const
{ return this->equal_range(value, priv_comp()); }
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
std::pair<const_iterator, const_iterator>
equal_range(const KeyType &key, KeyValueCompare comp) const
{
detail::key_node_ptr_compare<KeyValueCompare, ValueTraits> key_node_comp(comp);
std::pair<node_ptr, node_ptr> ret
(node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp));
return std::pair<const_iterator, const_iterator>(const_iterator(ret.first), const_iterator(ret.second));
}
2007-06-23 13:01:38 +00:00
template <class Cloner, class Disposer>
void clone_from(const rbtree &src, Cloner cloner, Disposer disposer)
2007-05-04 21:22:02 +00:00
{
2007-06-23 13:01:38 +00:00
this->clear_and_dispose(disposer);
2007-05-04 21:22:02 +00:00
if(!src.empty()){
node_algorithms::clone_tree
(const_node_ptr(&src.priv_header())
,node_ptr(&this->priv_header())
,detail::value_to_node_cloner<Cloner, ValueTraits>(cloner)
2007-06-23 13:01:38 +00:00
,detail::value_to_node_disposer<Disposer, ValueTraits>(disposer));
2007-05-04 21:22:02 +00:00
size_traits::set_size(src.get_size());
}
}
pointer unlink_leftmost_without_rebalance()
{
2007-06-23 13:01:38 +00:00
node_ptr to_be_disposed(node_algorithms::unlink_leftmost_without_rebalance
2007-05-04 21:22:02 +00:00
(node_ptr(&priv_header())));
2007-06-23 13:01:38 +00:00
if(!to_be_disposed)
2007-05-04 21:22:02 +00:00
return 0;
size_traits::decrement();
if(safemode_or_autounlink)
2007-06-23 13:01:38 +00:00
node_algorithms::init(to_be_disposed);
return ValueTraits::to_value_ptr(to_be_disposed);
2007-05-04 21:22:02 +00:00
}
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static iterator iterator_to(reference value)
{ return iterator (ValueTraits::to_node_ptr(value)); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the
//! set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static const_iterator iterator_to(const_reference value)
{ return const_iterator (ValueTraits::to_node_ptr(const_cast<reference> (value))); }
/*
//! <b>Requires</b>: value shall not be in a tree of the appropriate type.
//!
//! <b>Effects</b>: init_node post-constructs the node data in x used by multisets of
//! the appropriate type. For the accessors multiset_derived_node and multiset_member_node
//! init_node has no effect, since the constructors of multiset_node_d and multiset_node_m
//! have already initialized the node data.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: This function is meant to be used mainly with the member value_traits,
//! where no implicit node initialization during construction occurs.
static void init_node(reference value)
{ node_algorithms::init(node_ptr(&*ValueTraits::to_node_ptr(value))); }
//! <b>Effects</b>: removes x from a tree of the appropriate type. It has no effect,
//! if x is not in such a tree.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: This static function is only usable with the "safe mode"
//! hook and non-constant time size lists. Otherwise, the user must use
//! the non-static "erase(reference )" member. If the user calls
//! this function with a non "safe mode" or constant time size list
//! a compilation error will be issued.
template<class T>
static void remove_node(T& value)
{
//This function is only usable for safe mode hooks and non-constant
//time lists.
//BOOST_STATIC_ASSERT((!(safemode_or_autounlink && ConstantTimeSize)));
BOOST_STATIC_ASSERT((!ConstantTimeSize));
BOOST_STATIC_ASSERT((boost::is_convertible<T, value_type>::value));
node_ptr to_remove(ValueTraits::to_node_ptr(value));
node_algorithms::unlink_and_rebalance(to_remove);
if(safemode_or_autounlink)
node_algorithms::init(to_remove);
}
*/
/// @cond
private:
2007-06-23 13:01:38 +00:00
template<class Disposer>
iterator private_erase(iterator b, iterator e, size_type &n, Disposer disposer)
2007-05-04 21:22:02 +00:00
{
for(n = 0; b != e; ++n)
2007-06-23 13:01:38 +00:00
this->erase_and_dispose(b++, disposer);
2007-05-04 21:22:02 +00:00
return b;
}
iterator private_erase(iterator b, iterator e, size_type &n)
{
for(n = 0; b != e; ++n)
this->erase(b++);
return b;
}
/// @endcond
};
template <class V, class P, bool C, class S>
inline bool operator==(const rbtree<V, P, C, S>& x, const rbtree<V, P, C, S>& y)
{
if(C && x.size() != y.size()){
return false;
}
typedef typename rbtree<V, P, C, S>::const_iterator const_iterator;
const_iterator end1 = x.end();
const_iterator i1 = x.begin();
const_iterator i2 = y.begin();
if(C){
while (i1 != end1 && *i1 == *i2) {
++i1;
++i2;
}
return i1 == end1;
}
else{
const_iterator end2 = y.end();
while (i1 != end1 && i2 != end2 && *i1 == *i2) {
++i1;
++i2;
}
return i1 == end1 && i2 == end2;
}
}
template <class V, class P, bool C, class S>
inline bool operator<(const rbtree<V, P, C, S>& x,
const rbtree<V, P, C, S>& y)
{ return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
template <class V, class P, bool C, class S>
inline bool operator!=(const rbtree<V, P, C, S>& x, const rbtree<V, P, C, S>& y)
{ return !(x == y); }
template <class V, class P, bool C, class S>
inline bool operator>(const rbtree<V, P, C, S>& x, const rbtree<V, P, C, S>& y)
{ return y < x; }
template <class V, class P, bool C, class S>
inline bool operator<=(const rbtree<V, P, C, S>& x, const rbtree<V, P, C, S>& y)
{ return !(y < x); }
template <class V, class P, bool C, class S>
inline bool operator>=(const rbtree<V, P, C, S>& x, const rbtree<V, P, C, S>& y)
{ return !(x < y); }
template <class V, class P, bool C, class S>
inline void swap(rbtree<V, P, C, S>& x, rbtree<V, P, C, S>& y)
{ x.swap(y); }
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_RBTREE_HPP