This commit was manufactured by cvs2svn to create branch 'RC_1_31_0'.

[SVN r21755]
This commit is contained in:
nobody
2004-01-15 15:33:36 +00:00
parent ace1b2c7e3
commit 4576a34820
10 changed files with 1085 additions and 0 deletions

View File

@ -0,0 +1,53 @@
.. |iterator-category| replace:: *iterator-category*
.. _iterator-category:
.. parsed-literal::
*iterator-category*\ (C,R,V) :=
if (C is convertible to std::input_iterator_tag
|| C is convertible to std::output_iterator_tag
)
return C
else if (C is not convertible to incrementable_traversal_tag)
*the program is ill-formed*
else return a type X satisfying the following two constraints:
1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:
if (R is a reference type
&& C is convertible to forward_traversal_tag)
{
if (C is convertible to random_access_traversal_tag)
X1 = random_access_iterator_tag
else if (C is convertible to bidirectional_traversal_tag)
X1 = bidirectional_iterator_tag
else
X1 = forward_iterator_tag
}
else
{
if (C is convertible to single_pass_traversal_tag
&& R is convertible to V)
X1 = input_iterator_tag
else
X1 = C
}
2. |category-to-traversal|_\ (X) is convertible to the most
derived traversal tag type to which X is also
convertible, and not to any more-derived traversal tag
type.
.. |category-to-traversal| replace:: *category-to-traversal*
.. _`category-to-traversal`: new-iter-concepts.html#category-to-traversal
[Note: the intention is to allow ``iterator_category`` to be one of
the five original category tags when convertibility to one of the
traversal tags would add no information]
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

29
doc/indirect_reference_ref.rst Executable file
View File

@ -0,0 +1,29 @@
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
::
template <class Dereferenceable>
struct indirect_reference
{
typedef /* see below */ type;
};
:Requires: For an object ``x`` of type ``Dereferenceable``, ``*x``
is well-formed. If ``++x`` is ill-formed it shall neither be
ambiguous nor shall it violate access control, and
``pointee<Dereferenceable>::type&`` shall be well-formed.
Otherwise ``iterator_traits<Dereferenceable>::reference`` shall
be well formed. [Note: These requirements need not apply to
explicit or partial specializations of ``indirect_reference``]
``type`` is determined according to the following algorithm, where
``x`` is an object of type ``Dereferenceable``::
if ( ++x is ill-formed )
return ``pointee<Dereferenceable>::type&``
else
std::iterator_traits<Dereferenceable>::reference

131
doc/iterator_adaptor_tutorial.rst Executable file
View File

@ -0,0 +1,131 @@
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
In this section we'll further refine the ``node_iter`` class
template we developed in the |fac_tut|_. If you haven't already
read that material, you should go back now and check it out because
we're going to pick up right where it left off.
.. |fac_tut| replace:: ``iterator_facade`` tutorial
.. _fac_tut: iterator_facade.html#tutorial-example
.. sidebar:: ``node_base*`` really *is* an iterator
It's not really a very interesting iterator, since ``node_base``
is an abstract class: a pointer to a ``node_base`` just points
at some base subobject of an instance of some other class, and
incrementing a ``node_base*`` moves it past this base subobject
to who-knows-where? The most we can do with that incremented
position is to compare another ``node_base*`` to it. In other
words, the original iterator traverses a one-element array.
You probably didn't think of it this way, but the ``node_base*``
object which underlies ``node_iterator`` is itself an iterator,
just like all other pointers. If we examine that pointer closely
from an iterator perspective, we can see that it has much in common
with the ``node_iterator`` we're building. First, they share most
of the same associated types (``value_type``, ``reference``,
``pointer``, and ``difference_type``). Second, even some of the
core functionality is the same: ``operator*`` and ``operator==`` on
the ``node_iterator`` return the result of invoking the same
operations on the underlying pointer, via the ``node_iterator``\ 's
|dereference_and_equal|_). However, the ``operator++`` for
``node_iterator`` behaves differently than for ``node_base*``
since it follows the ``m_next`` pointer.
.. |dereference_and_equal| replace:: ``dereference`` and ``equal`` member functions
.. _dereference_and_equal: iterator_facade.html#implementing-the-core-operations
It turns out that the pattern of building an iterator on another
iterator-like type (the ``Base`` [#base]_ type) while modifying
just a few aspects of the underlying type's behavior is an
extremely common one, and it's the pattern addressed by
``iterator_adaptor``. Using ``iterator_adaptor`` is very much like
using ``iterator_facade``, but because iterator_adaptor tries to
mimic as much of the ``Base`` type's behavior as possible, we
neither have to supply a ``Value`` argument, nor implement any core
behaviors other than ``increment``. The implementation of
``node_iter`` is thus reduced to::
template <class Value>
class node_iter
: public boost::iterator_adaptor<
node_iter<Value> // Derived
, Value* // Base
, boost::use_default // Value
, boost::forward_traversal_tag // CategoryOrTraversal
>
{
private:
struct enabler {}; // a private type avoids misuse
typedef boost::iterator_adaptor<
node_iter<Value>, Value*, boost::use_default, boost::forward_traversal_tag
> super_t;
public:
node_iter()
: super_t(0) {}
explicit node_iter(Value* p)
: super_t(p) {}
template <class OtherValue>
node_iter(
node_iter<OtherValue> const& other
, typename boost::enable_if<
boost::is_convertible<OtherValue*,Value*>
, enabler
>::type = enabler()
)
: super_t(other.base()) {}
private:
friend class boost::iterator_core_access;
void increment() { this->base_reference() = this->base()->next(); }
};
You can see an example program which exercises this version of the
node iterators `here`__.
__ ../example/node_iterator3.cpp
In the case of ``node_iter``, it's not very compelling to pass
``boost::use_default`` as ``iterator_adaptor``\ 's ``Value``
argument; we could have just passed ``node_iter``\ 's ``Value``
along to ``iterator_adaptor``, and that'd even be shorter! Most
iterator class templates built with ``iterator_adaptor`` are
parameterized on another iterator type, rather than on its
``value_type``. For example, ``boost::reverse_iterator`` takes an
iterator type argument and reverses its direction of traversal,
since the original iterator and the reversed one have all the same
associated types, ``iterator_adaptor``\ 's delegation of default
types to its ``Base`` saves the implementor of
``boost::reverse_iterator`` from writing
.. parsed-literal::
std::iterator_traits<Iterator>::*some-associated-type*
at least four times.
We urge you to review the documentation and implementations of
|reverse_iterator|_ and the other Boost `specialized iterator
adaptors`__ to get an idea of the sorts of things you can do with
``iterator_adaptor``. In particular, have a look at
|transform_iterator|_, which is perhaps the most straightforward
adaptor, and also |counting_iterator|_, which demonstrates that
``iterator_adaptor``\ 's ``Base`` type needn't be an iterator.
.. |reverse_iterator| replace:: ``reverse_iterator``
.. _reverse_iterator: reverse_iterator.html
.. |counting_iterator| replace:: ``counting_iterator``
.. _counting_iterator: counting_iterator.html
.. |transform_iterator| replace:: ``transform_iterator``
.. _transform_iterator: transform_iterator.html
__ index.html#specialized-adaptors

519
doc/iterator_facade_tutorial.rst Executable file
View File

@ -0,0 +1,519 @@
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
In this section we'll walk through the implementation of a few
iterators using ``iterator_facade``, based around the simple
example of a linked list of polymorphic objects. This example was
inspired by a `posting`__ by Keith Macdonald on the `Boost-Users`_
mailing list.
.. _`Boost-Users`: ../../../more/mailing_lists.htm#users
__ http://thread.gmane.org/gmane.comp.lib.boost.user/5100
The Problem
-----------
Say we've written a polymorphic linked list node base class::
# include <iostream>
struct node_base
{
node_base() : m_next(0) {}
// Each node manages all of its tail nodes
virtual ~node_base() { delete m_next; }
// Access the rest of the list
node_base* next() const { return m_next; }
// print to the stream
virtual void print(std::ostream& s) const = 0;
// double the value
virtual void double_me() = 0;
void append(node_base* p)
{
if (m_next)
m_next->append(p);
else
m_next = p;
}
private:
node_base* m_next;
};
Lists can hold objects of different types by linking together
specializations of the following template::
template <class T>
struct node : node_base
{
node(T x)
: m_value(x)
{}
void print(std::ostream& s) const { s << this->m_value; }
void double_me() { m_value += m_value; }
private:
T m_value;
};
And we can print any node using the following streaming operator::
inline std::ostream& operator<<(std::ostream& s, node_base const& n)
{
n.print(s);
return s;
}
Our first challenge is to build an appropriate iterator over these
lists.
A Basic Iterator Using ``iterator_facade``
------------------------------------------
We will construct a ``node_iterator`` class using inheritance from
``iterator_facade`` to implement most of the iterator's operations.
::
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<...>
{
...
};
Template Arguments for ``iterator_facade``
..........................................
``iterator_facade`` has several template parameters, so we must decide
what types to use for the arguments. The parameters are ``Derived``,
``Value``, ``CategoryOrTraversal``, ``Reference``, and ``Difference``.
``Derived``
'''''''''''
Because ``iterator_facade`` is meant to be used with the CRTP
[Cop95]_ the first parameter is the iterator class name itself,
``node_iterator``.
``Value``
'''''''''
The ``Value`` parameter determines the ``node_iterator``\ 's
``value_type``. In this case, we are iterating over ``node_base``
objects, so ``Value`` will be ``node_base``.
``CategoryOrTraversal``
'''''''''''''''''''''''
Now we have to determine which `iterator traversal concept`_ our
``node_iterator`` is going to model. Singly-linked lists only have
forward links, so our iterator can't can't be a `bidirectional
traversal iterator`_. Our iterator should be able to make multiple
passes over the same linked list (unlike, say, an
``istream_iterator`` which consumes the stream it traverses), so it
must be a `forward traversal iterator`_. Therefore, we'll pass
``boost::forward_traversal_tag`` in this position [#category]_.
.. [#category] ``iterator_facade`` also supports old-style category
tags, so we could have passed ``std::forward_iterator_tag`` here;
either way, the resulting iterator's ``iterator_category`` will
end up being ``std::forward_iterator_tag``.
``Reference``
'''''''''''''
The ``Reference`` argument becomes the type returned by
``node_iterator``\ 's dereference operation, and will also be the
same as ``std::iterator_traits<node_iterator>::reference``. The
library's default for this parameter is ``Value&``; since
``node_base&`` is a good choice for the iterator's ``reference``
type, we can omit this argument, or pass ``use_default``.
``Difference``
''''''''''''''
The ``Difference`` argument determines how the distance between
two ``node_iterator``\ s will be measured and will also be the
same as ``std::iterator_traits<node_iterator>::difference_type``.
The library's default for ``Difference`` is ``std::ptrdiff_t``, an
appropriate type for measuring the distance between any two
addresses in memory, and one that works for almost any iterator,
so we can omit this argument, too.
The declaration of ``node_iterator`` will therefore look something
like::
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
...
};
Constructors and Data Members
.............................
Next we need to decide how to represent the iterator's position.
This representation will take the form of data members, so we'll
also need to write constructors to initialize them. The
``node_iterator``\ 's position is quite naturally represented using
a pointer to a ``node_base``. We'll need a constructor to build an
iterator from a ``node_base*``, and a default constructor to
satisfy the `forward traversal iterator`_ requirements [#default]_.
Our ``node_iterator`` then becomes::
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
public:
node_iterator()
: m_node(0)
{}
explicit node_iterator(node_base* p)
: m_node(p)
{}
private:
...
node_base* m_node;
};
.. [#default] Technically, the C++ standard places almost no
requirements on a default-constructed iterator, so if we were
really concerned with efficiency, we could've written the
default constructor to leave ``m_node`` uninitialized.
Implementing the Core Operations
................................
The last step is to implement the `core operations`_ required by
the concepts we want our iterator to model. Referring to the
table__, we can see that the first three rows are applicable
because ``node_iterator`` needs to satisfy the requirements for
`readable iterator`_, `single pass iterator`_, and `incrementable
iterator`_.
__ `core operations`_
We therefore need to supply ``dereference``,
``equal``, and ``increment`` members. We don't want these members
to become part of ``node_iterator``\ 's public interface, so we can
make them private and grant friendship to
``boost::iterator_core_access``, a "back-door" that
``iterator_facade`` uses to get access to the core operations::
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
public:
node_iterator()
: m_node(0) {}
explicit node_iterator(node_base* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
void increment() { m_node = m_node->next(); }
bool equal(node_iterator const& other) const
{
return this->m_node == other.m_node;
}
node_base& dereference() const { return *m_node; }
node_base* m_node;
};
Voil<EFBFBD>; a complete and conforming readable, forward-traversal
iterator! For a working example of its use, see `this program`__.
__ ../example/node_iterator1.cpp
A constant ``node_iterator``
----------------------------
.. Sidebar:: Constant and Mutable iterators
The term **mutable iterator** means an iterator through which
the object it references (its "referent") can be modified. A
**constant iterator** is one which doesn't allow modification of
its referent.
The words *constant* and *mutable* don't refer to the ability to
modify the iterator itself. For example, an ``int const*`` is a
non-\ ``const`` *constant iterator*, which can be incremented
but doesn't allow modification of its referent, and ``int*
const`` is a ``const`` *mutable iterator*, which cannot be
modified but which allows modification of its referent.
Confusing? We agree, but those are the standard terms. It
probably doesn't help much that a container's constant iterator
is called ``const_iterator``.
Now, our ``node_iterator`` gives clients access to both ``node``\
's ``print(std::ostream&) const`` member function, but also its
mutating ``double_me()`` member. If we wanted to build a
*constant* ``node_iterator``, we'd only have to make three
changes:
.. parsed-literal::
class const_node_iterator
: public boost::iterator_facade<
node_iterator
, node_base **const**
, boost::forward_traversal_tag
>
{
public:
const_node_iterator()
: m_node(0) {}
explicit const_node_iterator(node_base* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
void increment() { m_node = m_node->next(); }
bool equal(const_node_iterator const& other) const
{
return this->m_node == other.m_node;
}
node_base **const**\ & dereference() const { return \*m_node; }
node_base **const**\ * m_node;
};
.. Sidebar:: ``const`` and an iterator's ``value_type``
The C++ standard requires an iterator's ``value_type`` *not* be
``const``\ -qualified, so ``iterator_facade`` strips the
``const`` from its ``Value`` parameter in order to produce the
iterator's ``value_type``. Making the ``Value`` argument
``const`` provides a useful hint to ``iterator_facade`` that the
iterator is a *constant iterator*, and the default ``Reference``
argument will be correct for all lvalue iterators.
As a matter of fact, ``node_iterator`` and ``const_node_iterator``
are so similar that it makes sense to factor the common code out
into a template as follows::
template <class Value>
class node_iter
: public boost::iterator_facade<
node_iter<Value>
, Value
, boost::forward_traversal_tag
>
{
public:
node_iter()
: m_node(0) {}
explicit node_iter(Value* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
bool equal(node_iter<Value> const& other) const
{
return this->m_node == other.m_node;
}
void increment()
{ m_node = m_node->next(); }
Value& dereference() const
{ return *m_node; }
Value* m_node;
};
typedef node_iter<node_base> node_iterator;
typedef node_iter<node_base const> node_const_iterator;
Interoperability
----------------
Our ``const_node_iterator`` works perfectly well on its own, but
taken together with ``node_iterator`` it doesn't quite meet
expectations. For example, we'd like to be able to pass a
``node_iterator`` where a ``node_const_iterator`` was expected,
just as you can with ``std::list<int>``\ 's ``iterator`` and
``const_iterator``. Furthermore, given a ``node_iterator`` and a
``node_const_iterator`` into the same list, we should be able to
compare them for equality.
This expected ability to use two different iterator types together
is known as |interoperability|_. Achieving interoperability in
our case is as simple as templatizing the ``equal`` function and
adding a templatized converting constructor [#broken]_ [#random]_::
template <class Value>
class node_iter
: public boost::iterator_facade<
node_iter<Value>
, Value
, boost::forward_traversal_tag
>
{
public:
node_iter()
: m_node(0) {}
explicit node_iter(Value* p)
: m_node(p) {}
template <class OtherValue>
node_iter(node_iter<OtherValue> const& other)
: m_node(other.m_node) {}
private:
friend class boost::iterator_core_access;
template <class> friend class node_iter;
template <class OtherValue>
bool equal(node_iter<OtherValue> const& other) const
{
return this->m_node == other.m_node;
}
void increment()
{ m_node = m_node->next(); }
Value& dereference() const
{ return *m_node; }
Value* m_node;
};
typedef impl::node_iterator<node_base> node_iterator;
typedef impl::node_iterator<node_base const> node_const_iterator;
.. |interoperability| replace:: **interoperability**
.. _interoperability: new-iter-concepts.html#interoperable-iterators-lib-interoperable-iterators
.. [#broken] If you're using an older compiler and it can't handle
this example, see the `example code`__ for workarounds.
.. [#random] If ``node_iterator`` had been a `random access
traversal iterator`_, we'd have had to templatize its
``distance_to`` function as well.
__ ../example/node_iterator2.hpp
You can see an example program which exercises our interoperable
iterators `here`__.
__ ../example/node_iterator2.cpp
Telling the Truth
-----------------
Now ``node_iterator`` and ``node_const_iterator`` behave exactly as
you'd expect... almost. We can compare them and we can convert in
one direction: from ``node_iterator`` to ``node_const_iterator``.
If we try to convert from ``node_const_iterator`` to
``node_iterator``, we'll get an error when the converting
constructor tries to initialize ``node_iterator``\ 's ``m_node``, a
``node*`` with a ``node const*``. So what's the problem?
The problem is that
``boost::``\ |is_convertible|_\ ``<node_const_iterator,node_iterator>::value``
will be ``true``, but it should be ``false``. |is_convertible|_
lies because it can only see as far as the *declaration* of
``node_iter``\ 's converting constructor, but can't look inside at
the *definition* to make sure it will compile. A perfect solution
would make ``node_iter``\ 's converting constructor disappear when
the ``m_node`` conversion would fail.
.. |is_convertible| replace:: ``is_convertible``
.. _is_convertible: ../../type_traits/index.html#relationships
In fact, that sort of magic is possible using
|enable_if|__. By rewriting the converting constructor as
follows, we can remove it from the overload set when it's not
appropriate::
#include <boost/type_traits/is_convertible.hpp>
#include <boost/utility/enable_if.hpp>
...
template <class OtherValue>
node_iter(
node_iter<OtherValue> const& other
, typename boost::enable_if<
boost::is_convertible<OtherValue*,Value*>
, enabler
>::type = enabler()
)
: m_node(other.m_node) {}
.. |enable_if| replace:: ``boost::enable_if``
__ ../../utility/enable_if.html
Wrap Up
-------
This concludes our ``iterator_facade`` tutorial, but before you
stop reading we urge you to take a look at |iterator_adaptor|__.
There's another way to approach writing these iterators which might
even be superior.
.. |iterator_adaptor| replace:: ``iterator_adaptor``
__ iterator_adaptor.html
.. _`iterator traversal concept`: new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal
.. _`readable iterator`: new-iter-concepts.html#readable-iterators-lib-readable-iterators
.. _`lvalue iterator`: new-iter-concepts.html#lvalue-iterators-lib-lvalue-iterators
.. _`single pass iterator`: new-iter-concepts.html#single-pass-iterators-lib-single-pass-iterators
.. _`incrementable iterator`: new-iter-concepts.html#incrementable-iterators-lib-incrementable-iterators
.. _`forward traversal iterator`: new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators
.. _`bidirectional traversal iterator`: new-iter-concepts.html#bidirectional-traversal-iterators-lib-bidirectional-traversal-iterators
.. _`random access traversal iterator`: new-iter-concepts.html#random-access-traversal-iterators-lib-random-access-traversal-iterators

16
doc/make_filter_iterator.rst Executable file
View File

@ -0,0 +1,16 @@
::
template <class Predicate, class Iterator>
filter_iterator<Predicate,Iterator>
make_filter_iterator(Predicate f, Iterator x, Iterator end = Iterator());
:Returns: filter_iterator<Predicate,Iterator>(f, x, end)
::
template <class Predicate, class Iterator>
filter_iterator<Predicate,Iterator>
make_filter_iterator(Iterator x, Iterator end = Iterator());
:Returns: filter_iterator<Predicate,Iterator>(x, end)

179
doc/pointee.html Executable file
View File

@ -0,0 +1,179 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.1: http://docutils.sourceforge.net/" />
<title>pointee and indirect_reference</title>
<meta name="author" content="David Abrahams" />
<meta name="organization" content="Boost Consulting" />
<meta name="date" content="2004-01-13" />
<meta name="copyright" content="Copyright David Abrahams 2004. All rights reserved" />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<div class="document" id="pointee-and-indirect-reference">
<h1 class="title"><tt class="literal"><span class="pre">pointee</span></tt> and <tt class="literal"><span class="pre">indirect_reference</span></tt></h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>, <a class="reference" href="mailto:jsiek&#64;osl.iu.edu">jsiek&#64;osl.iu.edu</a>, <a class="last reference" href="mailto:witt&#64;ive.uni-hannover.de">witt&#64;ive.uni-hannover.de</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first last reference" href="http://www.boost-consulting.com">Boost Consulting</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-01-13</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams 2004. All rights reserved</td></tr>
</tbody>
</table>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body">Provides the capability to deduce the referent types of
pointers, smart pointers and iterators in generic code.</td>
</tr>
</tbody>
</table>
<div class="section" id="overview">
<h1><a name="overview">Overview</a></h1>
<p>Have you ever wanted to write a generic function that can operate
on any kind of dereferenceable object? If you have, you've
probably run into the problem of how to determine the type that the
object &quot;points at&quot;:</p>
<pre class="literal-block">
template &lt;class Dereferenceable&gt;
void f(Dereferenceable p)
{
<em>what-goes-here?</em> value = *p;
...
}
</pre>
<div class="section" id="pointee">
<h2><a name="pointee"><tt class="literal"><span class="pre">pointee</span></tt></a></h2>
<p>It turns out to be impossible to come up with a fully-general
algorithm to do determine <em>what-goes-here</em> directly, but it is
possible to require that <tt class="literal"><span class="pre">pointee&lt;Dereferenceable&gt;::type</span></tt> is
correct. Naturally, <tt class="literal"><span class="pre">pointee</span></tt> has the same difficulty: it can't
determine the appropriate <tt class="literal"><span class="pre">::type</span></tt> reliably for all
<tt class="literal"><span class="pre">Dereferenceable</span></tt>s, but it makes very good guesses (it works
for all pointers, standard and boost smart pointers, and
iterators), and when it guesses wrongly, it can be specialized as
neccessary:</p>
<pre class="literal-block">
namespace boost
{
template &lt;class T&gt;
struct pointee&lt;third_party_lib::smart_pointer&lt;T&gt; &gt;
{
typedef T type;
};
}
</pre>
</div>
<div class="section" id="indirect-reference">
<h2><a name="indirect-reference"><tt class="literal"><span class="pre">indirect_reference</span></tt></a></h2>
<p><tt class="literal"><span class="pre">indirect_reference&lt;T&gt;::type</span></tt> is rather more specialized than
<tt class="literal"><span class="pre">pointee</span></tt>, and is meant to be used to forward the result of
dereferencing an object of its argument type. Most dereferenceable
types just return a reference to their pointee, but some return
proxy references or return the pointee by value. When that
information is needed, call on <tt class="literal"><span class="pre">indirect_reference</span></tt>.</p>
<p>Both of these templates are essential to the correct functioning of
<a class="reference" href="indirect_iterator.html"><tt class="literal"><span class="pre">indirect_iterator</span></tt></a>.</p>
</div>
</div>
<div class="section" id="reference">
<h1><a name="reference">Reference</a></h1>
<div class="section" id="id1">
<h2><a name="id1"><tt class="literal"><span class="pre">pointee</span></tt></a></h2>
<!-- Copyright David Abrahams 2004. Use, modification and distribution is -->
<!-- subject to the Boost Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<pre class="literal-block">
template &lt;class Dereferenceable&gt;
struct pointee
{
typedef /* see below */ type;
};
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body">For an object <tt class="literal"><span class="pre">x</span></tt> of type <tt class="literal"><span class="pre">Dereferenceable</span></tt>, <tt class="literal"><span class="pre">*x</span></tt>
is well-formed. If <tt class="literal"><span class="pre">++x</span></tt> is ill-formed it shall neither be
ambiguous nor shall it violate access control, and
<tt class="literal"><span class="pre">Dereferenceable::element_type</span></tt> shall be an accessible type.
Otherwise <tt class="literal"><span class="pre">iterator_traits&lt;Dereferenceable&gt;::value_type</span></tt> shall
be well formed. [Note: These requirements need not apply to
explicit or partial specializations of <tt class="literal"><span class="pre">pointee</span></tt>]</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">type</span></tt> is determined according to the following algorithm, where
<tt class="literal"><span class="pre">x</span></tt> is an object of type <tt class="literal"><span class="pre">Dereferenceable</span></tt>:</p>
<pre class="literal-block">
if ( ++x is ill-formed )
{
return ``Dereferenceable::element_type``
}
else if (``*x`` is a mutable reference to
std::iterator_traits&lt;Dereferenceable&gt;::value_type)
{
return iterator_traits&lt;Dereferenceable&gt;::value_type
}
else
{
return iterator_traits&lt;Dereferenceable&gt;::value_type const
}
</pre>
</div>
<div class="section" id="id2">
<h2><a name="id2"><tt class="literal"><span class="pre">indirect_reference</span></tt></a></h2>
<!-- Copyright David Abrahams 2004. Use, modification and distribution is -->
<!-- subject to the Boost Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<pre class="literal-block">
template &lt;class Dereferenceable&gt;
struct indirect_reference
{
typedef /* see below */ type;
};
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body">For an object <tt class="literal"><span class="pre">x</span></tt> of type <tt class="literal"><span class="pre">Dereferenceable</span></tt>, <tt class="literal"><span class="pre">*x</span></tt>
is well-formed. If <tt class="literal"><span class="pre">++x</span></tt> is ill-formed it shall neither be
ambiguous nor shall it violate access control, and
<tt class="literal"><span class="pre">pointee&lt;Dereferenceable&gt;::type&amp;</span></tt> shall be well-formed.
Otherwise <tt class="literal"><span class="pre">iterator_traits&lt;Dereferenceable&gt;::reference</span></tt> shall
be well formed. [Note: These requirements need not apply to
explicit or partial specializations of <tt class="literal"><span class="pre">indirect_reference</span></tt>]</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">type</span></tt> is determined according to the following algorithm, where
<tt class="literal"><span class="pre">x</span></tt> is an object of type <tt class="literal"><span class="pre">Dereferenceable</span></tt>:</p>
<pre class="literal-block">
if ( ++x is ill-formed )
return ``pointee&lt;Dereferenceable&gt;::type&amp;``
else
std::iterator_traits&lt;Dereferenceable&gt;::reference
</pre>
</div>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="pointee.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>

84
doc/pointee.rst Executable file
View File

@ -0,0 +1,84 @@
++++++++++++++++++++++++++++++++++++++++
``pointee`` and ``indirect_reference``
++++++++++++++++++++++++++++++++++++++++
:Author: David Abrahams
:Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
:organization: `Boost Consulting`_
:date: $Date$
:copyright: Copyright David Abrahams 2004. All rights reserved
.. _`Boost Consulting`: http://www.boost-consulting.com
:abstract: Provides the capability to deduce the referent types of
pointers, smart pointers and iterators in generic code.
Overview
========
Have you ever wanted to write a generic function that can operate
on any kind of dereferenceable object? If you have, you've
probably run into the problem of how to determine the type that the
object "points at":
.. parsed-literal::
template <class Dereferenceable>
void f(Dereferenceable p)
{
*what-goes-here?* value = \*p;
...
}
``pointee``
-----------
It turns out to be impossible to come up with a fully-general
algorithm to do determine *what-goes-here* directly, but it is
possible to require that ``pointee<Dereferenceable>::type`` is
correct. Naturally, ``pointee`` has the same difficulty: it can't
determine the appropriate ``::type`` reliably for all
``Dereferenceable``\ s, but it makes very good guesses (it works
for all pointers, standard and boost smart pointers, and
iterators), and when it guesses wrongly, it can be specialized as
neccessary::
namespace boost
{
template <class T>
struct pointee<third_party_lib::smart_pointer<T> >
{
typedef T type;
};
}
``indirect_reference``
----------------------
``indirect_reference<T>::type`` is rather more specialized than
``pointee``, and is meant to be used to forward the result of
dereferencing an object of its argument type. Most dereferenceable
types just return a reference to their pointee, but some return
proxy references or return the pointee by value. When that
information is needed, call on ``indirect_reference``.
Both of these templates are essential to the correct functioning of
|indirect_iterator|_.
.. |indirect_iterator| replace:: ``indirect_iterator``
.. _indirect_iterator: indirect_iterator.html
Reference
=========
``pointee``
-----------
.. include:: pointee_ref.rst
``indirect_reference``
----------------------
.. include:: indirect_reference_ref.rst

38
doc/pointee_ref.rst Executable file
View File

@ -0,0 +1,38 @@
.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
::
template <class Dereferenceable>
struct pointee
{
typedef /* see below */ type;
};
:Requires: For an object ``x`` of type ``Dereferenceable``, ``*x``
is well-formed. If ``++x`` is ill-formed it shall neither be
ambiguous nor shall it violate access control, and
``Dereferenceable::element_type`` shall be an accessible type.
Otherwise ``iterator_traits<Dereferenceable>::value_type`` shall
be well formed. [Note: These requirements need not apply to
explicit or partial specializations of ``pointee``]
``type`` is determined according to the following algorithm, where
``x`` is an object of type ``Dereferenceable``::
if ( ++x is ill-formed )
{
return ``Dereferenceable::element_type``
}
else if (``*x`` is a mutable reference to
std::iterator_traits<Dereferenceable>::value_type)
{
return iterator_traits<Dereferenceable>::value_type
}
else
{
return iterator_traits<Dereferenceable>::value_type const
}

7
doc/rst2html Executable file
View File

@ -0,0 +1,7 @@
#!/bin/sh
PYTHONPATH="c:/src/docutils/docutils;c:/src/docutils/docutils/extras"
export PYTHONPATH
python c:/src/docutils/docutils/tools/html.py -gs $1 `echo $1 | sed 's/\(.*\)\..*/\1.html/'`

29
doc/scanrst.py Normal file
View File

@ -0,0 +1,29 @@
# Copyright David Abrahams 2004. Use, modification and distribution is
# subject to the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
# This script accepts a list of .rst files to be processed and
# generates Makefile dependencies for .html and .rst files to stdout.
import os,sys
import re
include = re.compile(r' *\.\. +(include|image):: +(.*)', re.MULTILINE)
def deps(path, found):
dir = os.path.split(path)[0]
for m in re.findall(include, open(path).read()):
dependency = os.path.normpath(os.path.join(dir,m[1]))
if dependency not in found:
found[dependency] = 1
if m[0] == 'include':
deps(dependency, found)
return found
for file in sys.argv[1:]:
found = deps(file, {})
if found:
base = os.path.splitext(os.path.basename(file))[0]
print '%s.tex %s.html: %s' % (base, base, ' '.join(found.keys()))