Compare commits

..

18 Commits

Author SHA1 Message Date
597229b10b *** empty log message ***
[SVN r11537]
2001-11-02 20:12:01 +00:00
2e74e298c8 towards a fix
[SVN r11536]
2001-11-02 17:19:18 +00:00
79c6d11694 changed named parameters, still need to add suppose for no template part. spec.
[SVN r11416]
2001-10-21 16:37:25 +00:00
d5443d7fe2 removed less() function from policies
policies now operate on whole adaptors rather than Base types


[SVN r11377]
2001-10-12 21:58:50 +00:00
41be2127df This commit was manufactured by cvs2svn to create branch
'iterator_adaptor_update'.

[SVN r11341]
2001-10-04 21:02:13 +00:00
3fd1c4bc5d Changed projection_iterator to not rely on the default reference,
working around a limitation of detail::iterator_traits


[SVN r11340]
2001-10-04 21:02:12 +00:00
2d6f48d5ab Applied indirect_iterator patch from George A. Heintzelman <georgeh@aya.yale.edu>
Changed name of "bind" to "select" to avoid problems with MSVC.


[SVN r11337]
2001-10-04 19:36:28 +00:00
d1c7594344 Added borland bug fix
[SVN r11290]
2001-09-27 00:26:01 +00:00
ac327f51e9 commit of split-config, including any changes required to existing libraries (mainly regex).
[SVN r11138]
2001-09-18 11:13:39 +00:00
4e18b11263 metrowerks fix for decrement()
[SVN r10997]
2001-09-03 15:38:05 +00:00
81e3df2b36 changed _MSC_VER to BOOST_MSVC
[SVN r10705]
2001-07-25 19:38:41 +00:00
ac05307515 added "Traversal" to the names
[SVN r10297]
2001-06-08 17:05:37 +00:00
552a1e6785 replaced by iterator_categories.htm
[SVN r10296]
2001-06-08 16:58:44 +00:00
134b8b51aa updated
[SVN r10295]
2001-06-08 15:37:16 +00:00
efecfd17b9 updated to match working group paper
[SVN r10294]
2001-06-08 15:36:30 +00:00
799158841e this is the original
[SVN r10293]
2001-06-08 15:17:14 +00:00
582ebfd054 updated to match changes in the headers
[SVN r10260]
2001-06-03 21:07:46 +00:00
42e4db1539 updated to match my paper to the committee
[SVN r10259]
2001-06-03 21:06:49 +00:00
15 changed files with 379 additions and 2211 deletions

View File

@ -1,199 +0,0 @@
#ifndef BOOST_ITERATOR_CONCEPTS_HPP
#define BOOST_ITERATOR_CONCEPTS_HPP
#include <boost/concept_check.hpp>
#include <boost/iterator_traits.hpp>
#include <boost/type_traits/conversion_traits.hpp>
#include <boost/static_assert.hpp>
namespace boost_concepts {
// Used a different namespace here (instead of "boost") so that the
// concept descriptions do not take for granted the names in
// namespace boost.
//===========================================================================
// Iterator Access Concepts
template <typename Iterator>
class ReadableIteratorConcept {
public:
typedef typename boost::iterator_traits<Iterator>::value_type value_type;
typedef typename boost::iterator_traits<Iterator>::reference reference;
typedef typename boost::iterator_traits<Iterator>::return_category
return_category;
void constraints() {
boost::function_requires< boost::SGIAssignableConcept<Iterator> >();
boost::function_requires< boost::EqualityComparableConcept<Iterator> >();
boost::function_requires<
boost::DefaultConstructibleConcept<Iterator> >();
BOOST_STATIC_ASSERT((boost::is_convertible<return_category*,
boost::readable_iterator_tag*>::value));
reference r = *i; // or perhaps read(x)
value_type v(r);
boost::ignore_unused_variable_warning(v);
}
Iterator i;
};
template <typename Iterator, typename ValueType>
class WritableIteratorConcept {
public:
typedef typename boost::iterator_traits<Iterator>::return_category
return_category;
void constraints() {
boost::function_requires< boost::SGIAssignableConcept<Iterator> >();
boost::function_requires< boost::EqualityComparableConcept<Iterator> >();
boost::function_requires<
boost::DefaultConstructibleConcept<Iterator> >();
BOOST_STATIC_ASSERT((boost::is_convertible<return_category*,
boost::writable_iterator_tag*>::value));
*i = v; // an alternative could be something like write(x, v)
}
ValueType v;
Iterator i;
};
template <typename Iterator>
class ConstantLvalueIteratorConcept {
public:
typedef typename boost::iterator_traits<Iterator>::value_type value_type;
typedef typename boost::iterator_traits<Iterator>::reference reference;
typedef typename boost::iterator_traits<Iterator>::return_category
return_category;
void constraints() {
boost::function_requires< ReadableIteratorConcept<Iterator> >();
BOOST_STATIC_ASSERT((boost::is_convertible<return_category*,
boost::constant_lvalue_iterator_tag*>::value));
BOOST_STATIC_ASSERT((boost::is_same<reference,
const value_type&>::value));
reference v = *i;
boost::ignore_unused_variable_warning(v);
}
Iterator i;
};
template <typename Iterator>
class MutableLvalueIteratorConcept {
public:
typedef typename boost::iterator_traits<Iterator>::value_type value_type;
typedef typename boost::iterator_traits<Iterator>::reference reference;
typedef typename boost::iterator_traits<Iterator>::return_category
return_category;
void constraints() {
boost::function_requires< ReadableIteratorConcept<Iterator> >();
boost::function_requires<
WritableIteratorConcept<Iterator, value_type> >();
BOOST_STATIC_ASSERT((boost::is_convertible<return_category*,
boost::mutable_lvalue_iterator_tag*>::value));
BOOST_STATIC_ASSERT((boost::is_same<reference, value_type&>::value));
reference v = *i;
boost::ignore_unused_variable_warning(v);
}
Iterator i;
};
//===========================================================================
// Iterator Traversal Concepts
template <typename Iterator>
class SinglePassIteratorConcept {
public:
typedef typename boost::iterator_traits<Iterator>::traversal_category
traversal_category;
typedef typename boost::iterator_traits<Iterator>::difference_type
difference_type;
void constraints() {
boost::function_requires< boost::SGIAssignableConcept<Iterator> >();
boost::function_requires< boost::EqualityComparableConcept<Iterator> >();
boost::function_requires<
boost::DefaultConstructibleConcept<Iterator> >();
BOOST_STATIC_ASSERT((boost::is_convertible<traversal_category*,
boost::single_pass_iterator_tag*>::value));
// difference_type must be a signed integral type
++i;
(void)i++;
}
Iterator i;
};
template <typename Iterator>
class ForwardIteratorConcept {
public:
typedef typename boost::iterator_traits<Iterator>::traversal_category
traversal_category;
void constraints() {
boost::function_requires< SinglePassIteratorConcept<Iterator> >();
BOOST_STATIC_ASSERT((boost::is_convertible<traversal_category*,
boost::forward_iterator_tag*>::value));
}
};
template <typename Iterator>
class BidirectionalIteratorConcept {
public:
typedef typename boost::iterator_traits<Iterator>::traversal_category
traversal_category;
void constraints() {
boost::function_requires< ForwardIteratorConcept<Iterator> >();
BOOST_STATIC_ASSERT((boost::is_convertible<traversal_category*,
boost::bidirectional_iterator_tag*>::value));
--i;
(void)i--;
}
Iterator i;
};
template <typename Iterator>
class RandomAccessIteratorConcept {
public:
typedef typename boost::iterator_traits<Iterator>::traversal_category
traversal_category;
typedef typename boost::iterator_traits<Iterator>::difference_type
difference_type;
void constraints() {
boost::function_requires< BidirectionalIteratorConcept<Iterator> >();
BOOST_STATIC_ASSERT((boost::is_convertible<traversal_category*,
boost::random_access_iterator_tag*>::value));
i += n;
i = i + n;
i = n + i;
i -= n;
i = i - n;
n = i - j;
}
difference_type n;
Iterator i, j;
};
} // namespace boost_concepts
#endif // BOOST_ITERATOR_CONCEPTS_HPP

View File

@ -1,137 +0,0 @@
#ifndef BOOST_ITERATOR_TRAITS_HPP
#define BOOST_ITERATOR_TRAITS_HPP
#include <boost/config.hpp>
#include <boost/type_traits/conversion_traits.hpp>
#include <boost/type_traits/cv_traits.hpp>
#include <boost/pending/ct_if.hpp>
#include <boost/detail/iterator.hpp>
namespace boost {
// Traversal Categories
struct single_pass_iterator_tag { };
struct forward_iterator_tag : public single_pass_iterator_tag { };
struct bidirectional_iterator_tag : public forward_iterator_tag { };
struct random_access_iterator_tag : public bidirectional_iterator_tag { };
// Return Type Categories
struct readable_iterator_tag { };
struct writable_iterator_tag { };
struct mutable_lvalue_iterator_tag : virtual public writable_iterator_tag,
virtual public readable_iterator_tag { };
struct constant_lvalue_iterator_tag : public readable_iterator_tag { };
struct error_iterator_tag { };
// Inherit from iterator_base if your iterator defines its own
// return_category and traversal_category. Otherwise, the "old style"
// iterator category will be mapped to the return_category and
// traversal_category.
struct new_iterator_base { };
namespace detail {
struct iter_traits_from_nested_types {
template <typename Iterator> struct bind {
typedef typename Iterator::value_type value_type;
typedef typename Iterator::reference reference;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::return_category return_category;
typedef typename Iterator::traversal_category traversal_category;
};
};
template <typename ValueType>
struct choose_lvalue_return {
typedef typename ct_if<is_const<ValueType>::value,
boost::constant_lvalue_iterator_tag,
boost::mutable_lvalue_iterator_tag>::type type;
};
template <typename Category, typename ValueType>
struct iter_category_to_return {
typedef typename ct_if<
is_convertible<Category*, std::forward_iterator_tag*>::value,
typename choose_lvalue_return<ValueType>::type,
typename ct_if<
is_convertible<Category*, std::input_iterator_tag*>::value,
boost::readable_iterator_tag,
typename ct_if<
is_convertible<Category*, std::output_iterator_tag*>::value,
boost::writable_iterator_tag,
boost::error_iterator_tag
>::type
>::type
>::type type;
};
template <typename Category>
struct iter_category_to_traversal {
typedef typename ct_if<
is_convertible<Category*, std::random_access_iterator_tag*>::value,
boost::random_access_iterator_tag,
typename ct_if<
is_convertible<Category*, std::bidirectional_iterator_tag*>::value,
boost::bidirectional_iterator_tag,
typename ct_if<
is_convertible<Category*, std::forward_iterator_tag*>::value,
boost::forward_iterator_tag,
boost::single_pass_iterator_tag>::type
>::type
>::type type;
};
struct iter_traits_from_old_traits {
template <typename Iterator> class bind {
typedef boost::detail::iterator_traits<Iterator> OldTraits;
typedef typename OldTraits::iterator_category Cat;
public:
typedef typename OldTraits::value_type value_type;
typedef typename OldTraits::reference reference;
typedef typename OldTraits::pointer pointer;
typedef typename OldTraits::difference_type difference_type;
typedef iter_category_to_return<Cat,value_type>::type return_category;
typedef iter_category_to_traversal<Cat>::type traversal_category;
};
};
template <typename Iterator>
class choose_iter_traits {
typedef typename ct_if<is_convertible<Iterator*,
new_iterator_base*>::value,
iter_traits_from_nested_types,
iter_traits_from_old_traits>::type Choice;
public:
typedef typename Choice:: template bind<Iterator> type;
};
} // namespace detail
template <typename Iterator>
class iterator_traits
: public detail::choose_iter_traits<Iterator>::type { };
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
template <typename T>
struct iterator_traits<T*>
{
typedef T value_type;
typedef T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
typedef typename ct_if<is_const<T>::value,
boost::constant_lvalue_iterator_tag,
boost::mutable_lvalue_iterator_tag>::type
return_category;
typedef boost::random_access_iterator_tag traversal_category;
};
#endif
} // namespace boost
#endif // BOOST_ITERATOR_TRAITS_HPP

View File

@ -1,76 +0,0 @@
#include <boost/iterator_concepts.hpp>
#include <boost/operators.hpp>
struct new_iterator
: public boost::iterator<std::random_access_iterator_tag, int>,
public boost::new_iterator_base
{
typedef boost::random_access_iterator_tag traversal_category;
typedef boost::mutable_lvalue_iterator_tag return_category;
int& operator*() const { return *m_x; }
new_iterator& operator++() { return *this; }
new_iterator operator++(int) { return *this; }
new_iterator& operator--() { return *this; }
new_iterator operator--(int) { return *this; }
new_iterator& operator+=(std::ptrdiff_t) { return *this; }
new_iterator operator+(std::ptrdiff_t) { return *this; }
new_iterator& operator-=(std::ptrdiff_t) { return *this; }
std::ptrdiff_t operator-(const new_iterator&) const { return 0; }
new_iterator operator-(std::ptrdiff_t) const { return *this; }
bool operator==(const new_iterator&) const { return false; }
bool operator!=(const new_iterator&) const { return false; }
bool operator<(const new_iterator&) const { return false; }
int* m_x;
};
new_iterator operator+(std::ptrdiff_t, new_iterator x) { return x; }
struct old_iterator
: public boost::iterator<std::random_access_iterator_tag, int>
{
int& operator*() const { return *m_x; }
old_iterator& operator++() { return *this; }
old_iterator operator++(int) { return *this; }
old_iterator& operator--() { return *this; }
old_iterator operator--(int) { return *this; }
old_iterator& operator+=(std::ptrdiff_t) { return *this; }
old_iterator operator+(std::ptrdiff_t) { return *this; }
old_iterator& operator-=(std::ptrdiff_t) { return *this; }
old_iterator operator-(std::ptrdiff_t) const { return *this; }
std::ptrdiff_t operator-(const old_iterator&) const { return 0; }
bool operator==(const old_iterator&) const { return false; }
bool operator!=(const old_iterator&) const { return false; }
bool operator<(const old_iterator&) const { return false; }
int* m_x;
};
old_iterator operator+(std::ptrdiff_t, old_iterator x) { return x; }
struct bar { };
void foo(bar) { }
int
main()
{
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
boost::function_requires<
boost_concepts::MutableLvalueIteratorConcept<int*> >();
boost::function_requires<
boost_concepts::RandomAccessIteratorConcept<int*> >();
boost::function_requires<
boost_concepts::ConstantLvalueIteratorConcept<const int*> >();
boost::function_requires<
boost_concepts::RandomAccessIteratorConcept<const int*> >();
#endif
boost::function_requires<
boost_concepts::MutableLvalueIteratorConcept<new_iterator> >();
boost::function_requires<
boost_concepts::RandomAccessIteratorConcept<new_iterator> >();
boost::function_requires<
boost_concepts::MutableLvalueIteratorConcept<old_iterator> >();
boost::function_requires<
boost_concepts::RandomAccessIteratorConcept<old_iterator> >();
return 0;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.9 KiB

View File

@ -1,606 +0,0 @@
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. I make no representations about the
-- suitability of this software for any purpose. It is provided "as is"
-- without express or implied warranty.
-->
<!--
-- Copyright (c) 1996-1999
-- Silicon Graphics Computer Systems, Inc.
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-- Copyright (c) 1994
-- Hewlett-Packard Company
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Hewlett-Packard Company makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-->
<Head>
<Title>Iterator Concepts</Title>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<BR Clear>
<h1>Iterator Concepts</h1>
<p>The standard iterator concepts (the iterator requirements defined
in the C++ Standard) have a flaw. They glom together two separate
issues into a single set of concepts. The two issues are iterator
traversal and dereference return type semantics. These two issues are
inherently orthogonal and therefore ought to be represented by two
separate sets of concepts. The concepts described here do just
that.</p>
One set of concepts handles the return type semantics:
<ul>
<li><a href="#concept:ReadableIterator">Readable Iterator</a></li>
<li><a href="#concept:WritableIterator">Writable Iterator</a></li>
<li><a href="#concept:MutableLvalueIterator">Mutable Lvalue Iterator</a></li>
<li><a href="#concept:ConstantLvalueIterator">Constant Lvalue Iterator</a></li>
</ul>
The other set of concepts handles iterator traversal:
<ul>
<li><a href="#concept:SinglePassIterator">Single-Pass Iterator</a></li>
<li><a href="#concept:ForwardIterator">Forward Iterator</a></li>
<li><a href="#concept:BidirectionalIterator">Bidirectional Iterator</a></li>
<li><a href="#concept:RandomAccessIterator">Random Access Iterator</a></li>
</ul>
<p></p>
<DIV ALIGN="CENTER"><A NAME="fig:graph-concepts"></A></A>
<TABLE>
<CAPTION ALIGN="TOP"><STRONG>Figure 1:</STRONG>
The iterator concepts and refinement relationships.
</CAPTION>
<TR><TD><IMG SRC="./iterator_concepts.gif" width="541" height="214"></TD></TR>
</TABLE>
</DIV>
<p></p>
<h2>Relationship with the standard iterator concepts</h2>
<p>
std::Input Iterator refines boost::Single-Pass Iterator and
boost::ReadableIterator.
<p>
std::Output Iterator refines boost::Single-Pass Iterator and
boost::Writable Iterator.
<p>
std::Forward Iterator refines boost::Forward Iterator and
boost::Constant Lvalue Iterator or boost::Mutable Lvalue Iterator.
<p>
std::Bidirectional Iterator refines boost::Bidirectional Iterator and
boost::Constant Lvalue Iterator or boost::Mutable Lvalue Iterator.
<p>
std::Random Access Iterator refines boost::Random Access Iterator and
boost::Constant Lvalue Iterator or boost::Mutable Lvalue Iterator.
<h3>Notation</h3>
<Table>
<TR>
<TD><tt>X</tt></TD>
<TD>The iterator type.</TD>
</TR>
<TR>
<TD><tt>T</tt></TD>
<TD>The value type of <tt>X</tt>.</TD>
</TR>
<TR>
<TD><tt>x</tt>, <tt>y</tt></TD>
<TD>An object of type <tt>X</tt>.</TD>
</TR>
<TR>
<TD><tt>t</tt></TD>
<TD>An object of type <tt>T</tt>.</TD>
</tr>
</table>
<p>
<hr>
<H2><A NAME="concept:ReadableIterator"></A>
Readable Iterator
</H2>
A Readable Iterator is an iterator that dereferences to produce an
rvalue that is convertible to the <tt>value_type</tt> of the
iterator. For example, derefencing may return a temporary object and
therefore it would be a mistake to bind the result to a reference.
Also, an attempt to assign a value to the result will most likely
cause an error.
<pre>
template &lt;class Readable Iterator&gt;
void foo(Readable Iterator x)
{
typedef std::iterator_traits&lt;Readable Iterator&gt;::value_type T;
T t = *x; // Read a value. This is OK.
T& s = *x; // Bind to a reference. This is a bad idea.
*x = t; // Try to assign. This is a really bad idea.
}
</pre>
<h3>Associated Types</h3>
<Table border>
<TR>
<TD>Value type</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::value_type</tt></TD>
<TD>
The type of the value obtained by dereferencing a LvalueIterator
</TD>
</tr>
<TR>
<TD>Return Category</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::return_category</tt></TD>
<TD>
A type convertible to <tt>boost::readable_iterator_tag</tt>
</TD>
</tr>
</Table>
<h3>Refinement of</h3>
<A href="http://www.sgi.com/Technology/STL/Assignable.html">Assignable</A>,
<A href="http://www.sgi.com/Technology/STL/EqualityComparable.html">Equality Comparable</A>,
<A href="http://www.sgi.com/Technology/STL/DefaultConstructible.html">Default Constructible</A>
<h3>Valid expressions</h3>
<Table border>
<TR><TH>Name</TH><TH>Expression</TH><TH>Type requirements</TH><TH>Return type</TH></TR>
<TR>
<TD>Dereference</TD>
<TD><tt>*x</tt></TD>
<TD>&nbsp;</TD>
<TD>Convertible to <tt>T</tt>.</TD>
</TR>
<TR>
<TD>Member access</TD>
<TD><tt>x-&gt;m</tt></TD>
<TD><tt>T</tt> is a type with a member named <tt>m</tt>.</TD>
<TD>
&nbsp;
</TD>
</tr>
</table>
<p>
<hr>
<H2><A NAME="concept:WritableIterator"></A>
Writable Iterator
</H2>
A Writable Iterator is an iterator that can be used to store a value
using the dereference-assignment expression.
<h3>Definitions</h3>
If <tt>x</tt> is an Writable Iterator of type <tt>X</tt>, then the
expression <tt>*x = a;</tt> stores the value <tt>a</tt> into
<tt>x</tt>. Note that <tt>operator=</tt>, like other C++ functions,
may be overloaded; it may, in fact, even be a template function. In
general, then, <tt>a</tt> may be any of several different types. A
type <tt>A</tt> belongs to the <i>set of value types</i> of <tt>X</tt>
if, for an object <tt>a</tt> of type <tt>A</tt>, <tt>*x = a;</tt> is
well-defined and does not require performing any non-trivial
conversions on <tt>a</tt>.
<h3>Associated Types</h3>
<Table border>
<TR>
<TD>Return Category</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::return_category</tt></TD>
<TD>
A type convertible to <tt>boost::writable_iterator_tag</tt>
</TD>
</tr>
</Table>
<h3>Refinement of</h3>
<A href="http://www.sgi.com/Technology/STL/Assignable.html">Assignable</A>,
<A href="http://www.sgi.com/Technology/STL/EqualityComparable.html">Equality Comparable</A>,
<A href="http://www.sgi.com/Technology/STL/DefaultConstructible.html">Default Constructible</A>
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>Name</TH><TH>Expression</TH><TH>Return type</TH>
</TR>
<TR>
<TD>Dereference assignment</TD>
<TD><tt>*x = a</tt></TD>
<TD>unspecified</TD>
</TR>
</table>
<p>
<hr>
<H2><A NAME="concept:ConstantLvalueIterator"></A>
Constant Lvalue Iterator
</H2>
A Constant Lvalue Iterator is an iterator that dereferences to produce a
const reference to the pointed-to object, i.e., the associated
<tt>reference</tt> type is <tt>const T&amp;</tt>. Changing the value
of or destroying an iterator that models Constant Lvalue Iterator does
not invalidate pointers and references previously obtained from that
iterator.
<h3>Refinement of</h3>
<a href="#concept:Readable Iterator">Readable Iterator</a>
<h3>Associated Types</h3>
<Table border>
<TR>
<TD>Value type</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::value_type</tt></TD>
<TD>
The type of the value obtained by dereferencing a Constant Lvalue Iterator.
</TD>
</tr>
<TR>
<TD>Reference type</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::reference</tt></TD>
<TD>
The return type of <tt>operator*()</tt>, which must be
<tt>const T&amp;</tt>.
</TD>
</tr>
<TR>
<TD>POinter type</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::pointer</tt></TD>
<TD>
The pointer to the value type, which must be <tt>const T*</tt>.
</TD>
</tr>
<TR>
<TD>Return Category</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::return_category</tt></TD>
<TD>
A type convertible to <tt>boost::constant_lvalue_iterator_tag</tt>
</TD>
</tr>
</table>
<h3>Valid expressions</h3>
<Table border>
<TR><TH>Name</TH><TH>Expression</TH><TH>Type requirements</TH><TH>Return type</TH></TR>
<TR>
<TD>Dereference</TD>
<TD><tt>*x</tt></TD>
<TD>&nbsp;</TD>
<TD><tt>const T&amp;</tt></TD>
</TR>
<TR>
<TD>Member access</TD>
<TD><tt>x-&gt;m</tt></TD>
<TD><tt>T</tt> is a type with a member named <tt>m</tt>.</TD>
<TD>
&nbsp;
</TD>
</tr>
</table>
<H2><A NAME="concept:MutableLvalueIterator"></A>
Mutable Lvalue Iterator
</H2>
A Mutable Lvalue Iterator is an iterator that dereferences to produce a
reference to the pointed-to object. The associated <tt>reference</tt>
type is <tt>T&amp;</tt>. Changing the value of or destroying an
iterator that models Mutable Lvalue Iterator does not invalidate
pointers and references previously obtained from that iterator.
<h3>Refinement of</h3>
<a href="#concept:Readable Iterator">Readable Iterator</a> and
<a href="#concept:WritableIterator">Writable Iterator</a>.
<h3>Associated Types</h3>
<Table border>
<TR>
<TD>Value type</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::value_type</tt></TD>
<TD>
The type of the value obtained by dereferencing a Mutable Lvalue Iterator.
</TD>
</tr>
<TR>
<TD>Reference type</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::reference</tt></TD>
<TD>
The return type of <tt>operator*()</tt>, which is
<tt>T&amp;</tt>.
</TD>
</tr>
<TR>
<TD>Pointer type</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::pointer</tt></TD>
<TD>
The pointer to the value type, which is <tt>T*</tt>.
</TD>
</tr>
<TR>
<TD>Return Category</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::return_category</tt></TD>
<TD>
A type convertible to <tt>boost::mutable_lvalue_iterator_tag</tt>
</TD>
</tr>
</table>
<h3>Valid expressions</h3>
<Table border>
<TR><TH>Name</TH><TH>Expression</TH><TH>Type requirements</TH><TH>Return type</TH></TR>
<TR>
<TD>Dereference</TD>
<TD><tt>*x</tt></TD>
<TD>&nbsp;</TD>
<TD> <tt>T&amp;</tt> </TD>
</TR>
<TR>
<TD>Member access</TD>
<TD><tt>x-&gt;m</tt></TD>
<TD><tt>T</tt> is a type with a member named <tt>m</tt>.</TD>
<TD>
&nbsp;
</TD>
</tr>
</table>
<p>
<hr>
<H2><A NAME="concept:SinglePassIterator"></A>
Single-Pass Iterator
</H2>
A Single-Pass Iterator is an iterator that can be incremented to
traverse through a sequence of objects, but the sequence can only be
traversed a single time.
<h3>Associated types</h3>
<Table border>
<TR>
<TD>Difference type</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::difference_type</tt></TD>
<TD>
A signed integral type used to represent the distance from one
iterator to another, or the number of elements in a range.
</TD>
</TR>
<TR>
<TD>Traversal Category</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::traversal_category</tt></TD>
<TD>
A type convertible to <tt>boost::single_pass_iterator_tag</tt>
</TD>
</tr>
</table>
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>Name</TH><TH>Expression</TH><TH>Type requirements</TH>
<TH>Return type</TH>
</TR>
<TR>
<TD>Preincrement</TD>
<TD><tt>++i</tt></TD><TD>&nbsp;</TD><TD><tt>X&amp;</tt></TD>
</TR>
<TR>
<TD>Postincrement</TD>
<TD><tt>(void)i++</tt></TD><TD>&nbsp;</TD><TD>&nbsp;</TD>
</TR>
</Table>
<p>
<hr>
<H2><A NAME="concept:ForwardIterator"></A>
Forward Iterator
</H2>
The Forward Iterator is an iterator that can be incremented. Also, it
is permissible to make multiple passes through the sequence.
<h3>Refinement of</h3>
<a href="#concept:SinglePassIterator">Single-Pass Iterator</a>
<h3>Associated types</h3>
<Table border>
<TR>
<TD>Traversal Category</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::traversal_category</tt></TD>
<TD>
A type convertible to <tt>boost::forward_iterator_tag</tt>
</TD>
</tr>
</Table>
<p>
<hr>
<H2><A NAME="concept:BidirectionalIterator"></A>
Bidirectional Iterator
</H2>
An iterator that can be incremented and decremented.
<h3>Refinement of</h3>
<a href="#concept:ForwardIterator">Forward Iterator</a>
<h3>Associated types</h3>
<Table border>
<TR>
<TD>Traversal Category</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::traversal_category</tt></TD>
<TD>
A type convertible to <tt>boost::bidirectional_iterator_tag</tt>
</TD>
</tr>
</Table>
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>Name</TH><TH>Expression</TH><TH>Type requirements</TH>
<TH>Return type</TH>
</TR>
<TR><TD>Predecrement</TD>
<TD><tt>--i</tt></TD><TD>&nbsp;</TD><TD><tt>X&amp;</tt></TD>
</TR>
<TR><TD>Postdecrement</TD>
<TD><tt>i--</tt></TD><TD>&nbsp;</TD><TD><tt>X</tt></TD>
</tr>
</table>
<p>
<hr>
<H2><A NAME="concept:RandomAccessIterator"></A>
Random Access Iterator
</H2>
An iterator that provides constant-time methods for moving forward and
backward in arbitrary-sized steps
<h3>Refinement of</h3>
<a href="#concept:BidirectionalIterator">Bidirectional Iterator</a>
<h3>Associated types</h3>
<Table border>
<TR>
<TD>Traversal Category</TD>
<TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::traversal_category</tt></TD>
<TD>
A type convertible to <tt>boost::random_access_iterator_tag</tt>
</TD>
</tr>
</Table>
<h3>Valid expressions</h3>
<Table border>
<TR><TH>Name</TH><TH>Expression</TH><TH>Type requirements</TH>
<TH>Return type</TH>
</TR>
<TR><TD>Iterator addition</TD>
<TD><tt>i += n</tt></TD><TD>&nbsp;</TD><TD><tt>X&amp;</tt></TD>
</TR>
<TR><TD>Iterator addition</TD>
<TD><tt>i + n</tt> or <tt>n + i</tt></TD><TD>&nbsp;</TD><TD><tt>X</tt></TD>
</TR>
<TR><TD>Iterator subtraction</TD>
<TD><tt>i -= n</tt></TD><TD>&nbsp;</TD><TD><tt>X&amp;</tt></TD>
</TR>
<TR><TD>Iterator subtraction</TD>
<TD><tt>i - n</tt></TD><TD>&nbsp;</TD><TD><tt>X</tt></TD>
</TR>
<TR><TD>Difference</TD>
<TD><tt>i - j</tt></TD><TD>&nbsp;</TD><TD><tt><a href="./iterator_traits.htm">boost::iterator_traits</a>&lt;X&gt;::difference_type</tt></TD>
</TR>
<TR><TD>Element operator</TD>
<TD><tt>i[n]</tt></TD>
<TD><tt>X</tt> must be a model of
<a href="#concept:Readable Iterator">Readable Iterator</a>. </TD>
<TD>The same return type as <tt>*i</tt>.</TD>
</TR>
<TR><TD>Element assignment</TD>
<TD><tt>i[n] = t</tt></TD>
<TD><tt>X</tt> must be a model of
<a href="#concept:WritableIterator">Writable Iterator</a>.</TD>
<TD>unspecified</TD>
</tr>
</table>
<hr>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF="../../../../people/jeremy_siek.htm">Jeremy Siek</A>, Univ.of Notre Dame (<A HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)
</TD></TR></TABLE>
</body>
</html>

View File

@ -1,137 +0,0 @@
<html>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. I make no representations about the
-- suitability of this software for any purpose. It is provided "as is"
-- without express or implied warranty.
-->
<head>
<title>Boost Iterator Traits</title>
</head>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<BR Clear>
<h1>Boost Iterator Traits</h1>
Header <tt><a href="../../boost/iterator_traits.hpp">boost/iterator_traits.hpp</a></tt>
<p>
The <tt>boost::iterator_traits</tt> class provides access to the
associated types of iterators that model the Boost <a
href="./iterator_concepts.htm">Iterator Concepts</a>, which are a
replacement for the iterator requirements in the C++ standard.
The main difference between <tt>std::iterator_traits</tt> and
<tt>boost::iterator_traits</tt> is that the <tt>iterator_category</tt>
type has been removed, and replaced with two new types:
<ul>
<li><tt>traversal_category</tt>:&nbsp;&nbsp; Can the iterator go forward, backward, etc.?
<li><tt>return_category</tt>:&nbsp;&nbsp; Is the iterator read or write only?
Is the dereferenced type an lvalue?
</ul>
<p>
An important feature of the <tt>boost::iterator_traits</tt> is that it
is <b>backwards compatible</b>, i.e., it will automatically work for
iterators for which there are valid definitions of
<tt>std::iterator_traits</tt>. The old <tt>iterator_category</tt> is
mapped to the appropriate traversal and return categories.
<p>
When creating a new iterator type that is meant to work with
<tt>boost::iterator_traits</tt>, you can either create a
specialization of <tt>boost::iterator_traits</tt> for your iterator
type, or you can provide all the necessary associated types as nested
typedefs. In this case, your iterator class will need to inherit from
<tt>new_iterator_base</tt> to let <tt>boost::iterator_traits</tt> know
that it will be able to find typedefs for <tt>traversal_category</tt>
and <tt>return_category</tt> in you iterator class.
<pre>
namespace boost {
<i>// Inherit from iterator_base if your iterator defines its own
// return_category and traversal_category. Otherwise, the "old style"
// iterator category will be mapped to the return_category and
// traversal_category.</i>
struct new_iterator_base { };
template &lt;typename Iterator&gt;
struct iterator_traits
{
if (Iterator inherits from new_iterator_base) {
typedef typename Iterator::value_type value_type;
typedef typename Iterator::reference reference;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::return_category return_category;
typedef typename Iterator::traversal_category traversal_category;
} else {
typedef std::iterator_traits&lt;Iterator&gt; OldTraits;
typedef typename OldTraits::value_type value_type;
typedef typename OldTraits::reference reference;
typedef typename OldTraits::pointer pointer;
typedef typename OldTraits::difference_type difference_type;
typedef typename OldTraits::iterator_category Cat;
<i>// Determine the traversal_category based on the old iterator_category</i>
if (Cat inherits from std::random_access_iterator_tag)
typedef boost::random_access_iterator_tag traversal_category;
else if (Cat inherits from std::bidirectional_iterator_tag)
typedef boost::bidirectional_iterator_tag traversal_category;
else if (Cat inherits from std::forward_iterator_tag)
typedef boost::forward_iterator_tag traversal_category;
else
typedef boost::single_pass_iterator_tag traversal_category;
<i>// Determine the return_category based on the old iterator_category and value_type</i>
if (Cat inherits from std::forward_iterator_tag)
if (is-const(T))
typedef boost::constant_lvalue_iterator_tag return_category;
else
typedef boost::mutable_lvalue_iterator_tag return_category;
else if (Cat inherits from std::input_iterator_tag)
typedef boost::readable_iterator_tag return_category;
else if (Cat inherits from std::output_iterator_tag)
typedef boost::writable_iterator_tag return_category;
else
typedef boost::error_iterator_tag return_category;
}
};
template &lt;typename T&gt;
struct iterator_traits&lt;T*&gt;
{
typedef T value_type;
typedef T&amp; reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
if (is-const(T))
typedef boost::constant_lvalue_iterator_tag return_category;
else
typedef boost::mutable_lvalue_iterator_tag return_category;
typedef boost::random_access_iterator_tag traversal_category;
};
}
</pre>
<hr>
<address><a href="mailto:jsiek@lsc.nd.edu">jeremy siek</a></address>
<!-- Created: Sun Mar 18 14:06:57 EST 2001 -->
<!-- hhmts start -->
Last modified: Mon Mar 19 12:59:30 EST 2001
<!-- hhmts end -->
</body>
</html>

View File

@ -135,7 +135,15 @@ namespace detail {
// For a while, this wasn't true, but we rely on it below. This is a regression assert.
BOOST_STATIC_ASSERT(::boost::is_integral<char>::value);
# ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_CONSTANT(bool, value = std::numeric_limits<T>::is_specialized);
# if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
BOOST_STATIC_CONSTANT(bool,
value = (
std::numeric_limits<T>::is_specialized
| boost::is_same<T,long long>::value
| boost::is_same<T,unsigned long long>::value));
# else
BOOST_STATIC_CONSTANT(bool, value = std::numeric_limits<T>::is_specialized);
# endif
# else
# if !defined(__BORLANDC__)
BOOST_STATIC_CONSTANT(bool, value = (
@ -173,14 +181,17 @@ struct counting_iterator_traits {
template <class Incrementable>
struct counting_iterator_policies : public default_iterator_policies
{
const Incrementable& dereference(type<const Incrementable&>, const Incrementable& i) const
{ return i; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& i) const
{ return i.base(); }
template <class Iterator1, class Iterator2>
typename Iterator1::difference_type distance(
const Iterator1& x, const Iterator2& y) const
{
return boost::detail::any_distance<Difference>(x, y);//,(Difference*)());
typedef typename Iterator1::difference_type difference_type;
return boost::detail::any_distance<difference_type>(
x.base(), y.base());
}
};

View File

@ -1,55 +0,0 @@
// (C) Copyright Jeremy Siek 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// Revision History:
// 27 Feb 2001 Jeremy Siek
// Initial checkin.
#ifndef BOOST_FUNCTION_OUTPUT_ITERATOR_HPP
#define BOOST_FUNCTION_OUTPUT_ITERATOR_HPP
#include <iterator>
namespace boost {
template <class UnaryFunction>
class function_output_iterator {
typedef function_output_iterator self;
public:
typedef std::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
explicit function_output_iterator(const UnaryFunction& f = UnaryFunction())
: m_f(f) {}
struct output_proxy {
output_proxy(UnaryFunction& f) : m_f(f) { }
template <class T> output_proxy& operator=(const T& value) {
m_f(value);
return *this;
}
UnaryFunction& m_f;
};
output_proxy operator*() { return output_proxy(m_f); }
self& operator++() { return *this; }
self& operator++(int) { return *this; }
private:
UnaryFunction m_f;
};
template <class UnaryFunction>
inline function_output_iterator<UnaryFunction>
make_function_output_iterator(const UnaryFunction& f = UnaryFunction()) {
return function_output_iterator<UnaryFunction>(f);
}
} // namespace boost
#endif // BOOST_FUNCTION_OUTPUT_ITERATOR_HPP

View File

@ -1,426 +0,0 @@
// (C) Copyright Jeremy Siek and David Abrahams 2000-2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its suitability
// for any purpose.
//
// Revision History:
// 11 Feb 2001 Use new iterator_adaptor interface, Fixes for Borland.
// (Dave Abrahams)
// 04 Feb 2001 Support for user-defined iterator categories (Dave Abrahams)
// 30 Jan 2001 Initial Checkin (Dave Abrahams)
#ifndef BOOST_HALF_OPEN_RANGE_HPP_
# define BOOST_HALF_OPEN_RANGE_HPP_
# include <boost/counting_iterator.hpp>
# include <functional>
# include <cassert>
# include <boost/operators.hpp>
# include <string>
# include <stdexcept>
# include <iterator>
namespace boost {
namespace detail {
// Template class choose_finish -- allows us to maintain the invariant that
// start() <= finish() on half_open_range specializations that support random
// access.
#ifdef __MWERKS__
template <class T>
const T& choose_finish(const T&, const T& finish, std::input_iterator_tag)
{
return finish;
}
template <class T>
const T& choose_finish(const T&, const T& finish, std::output_iterator_tag)
{
return finish;
}
template <class T>
const T& choose_finish(const T& start, const T& finish, std::random_access_iterator_tag)
{
return finish < start ? start : finish;
}
#else
template <bool is_random_access> struct finish_chooser;
template <>
struct finish_chooser<false>
{
template <class T>
struct rebind
{
static T choose(const T&, const T& finish)
{ return finish; }
};
};
template <>
struct finish_chooser<true>
{
template <class T>
struct rebind
{
static T choose(const T& start, const T& finish)
{ return finish < start ? start : finish; }
};
};
template <class Category, class Incrementable>
struct choose_finish
{
static const Incrementable choose(const Incrementable& start, const Incrementable& finish)
{
return finish_chooser<(
::boost::is_convertible<Category*,std::random_access_iterator_tag*>::value
)>::template rebind<Incrementable>::choose(start, finish);
}
};
#endif
}
template <class Incrementable>
struct half_open_range
{
typedef typename counting_iterator_generator<Incrementable>::type iterator;
private: // utility type definitions
// Using iter_t prevents compiler confusion with boost::iterator
typedef typename counting_iterator_generator<Incrementable>::type iter_t;
typedef std::less<Incrementable> less_value;
typedef typename iter_t::iterator_category category;
typedef half_open_range<Incrementable> self;
public:
typedef iter_t const_iterator;
typedef typename counting_iterator_traits<Incrementable>::value_type value_type;
typedef typename counting_iterator_traits<Incrementable>::difference_type difference_type;
typedef typename counting_iterator_traits<Incrementable>::reference reference;
typedef typename counting_iterator_traits<Incrementable>::reference const_reference;
typedef typename counting_iterator_traits<Incrementable>::pointer pointer;
typedef typename counting_iterator_traits<Incrementable>::pointer const_pointer;
// It would be nice to select an unsigned type, but this is appropriate
// since the library makes an attempt to select a difference_type which can
// hold the difference between any two iterators.
typedef typename counting_iterator_traits<Incrementable>::difference_type size_type;
half_open_range(Incrementable start, Incrementable finish)
: m_start(start),
m_finish(
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(start, finish)
#else
detail::choose_finish(start, finish, category())
#endif
)
{}
// Implicit conversion from std::pair<Incrementable,Incrementable> allows us
// to accept the results of std::equal_range(), for example.
half_open_range(const std::pair<Incrementable,Incrementable>& x)
: m_start(x.first),
m_finish(
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(x.first, x.second)
#else
detail::choose_finish(x.first, x.second, category())
#endif
)
{}
half_open_range& operator=(const self& x)
{
m_start = x.m_start;
m_finish = x.m_finish;
return *this;
}
half_open_range& operator=(const std::pair<Incrementable,Incrementable>& x)
{
m_start = x.first;
m_finish =
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(x.first, x.second);
#else
detail::choose_finish(x.first, x.second, category();
#endif
}
iterator begin() const { return iterator(m_start); }
iterator end() const { return iterator(m_finish); }
Incrementable front() const { assert(!this->empty()); return m_start; }
Incrementable back() const { assert(!this->empty()); return boost::prior(m_finish); }
Incrementable start() const { return m_start; }
Incrementable finish() const { return m_finish; }
size_type size() const { return boost::detail::distance(begin(), end()); }
bool empty() const
{
return m_finish == m_start;
}
void swap(half_open_range& x) {
std::swap(m_start, x.m_start);
std::swap(m_finish, x.m_finish);
}
public: // functions requiring random access elements
// REQUIRES: x is reachable from this->front()
bool contains(const value_type& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return !less_value()(x, m_start) && less_value()(x, m_finish);
}
bool contains(const half_open_range& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return x.empty() || !less_value()(x.m_start, m_start) && !less_value()(m_finish, x.m_finish);
}
bool intersects(const half_open_range& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return less_value()(
less_value()(this->m_start, x.m_start) ? x.m_start : this->m_start,
less_value()(this->m_finish, x.m_finish) ? this->m_finish : x.m_finish);
}
half_open_range& operator&=(const half_open_range& x)
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
if (less_value()(this->m_start, x.m_start))
this->m_start = x.m_start;
if (less_value()(x.m_finish, this->m_finish))
this->m_finish = x.m_finish;
if (less_value()(this->m_finish, this->m_start))
this->m_start = this->m_finish;
return *this;
}
half_open_range& operator|=(const half_open_range& x)
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
if (!x.empty())
{
if (this->empty())
{
*this = x;
}
else
{
if (less_value()(x.m_start, this->m_start))
this->m_start = x.m_start;
if (less_value()(this->m_finish, x.m_finish))
this->m_finish = x.m_finish;
}
}
return *this;
}
// REQUIRES: x is reachable from this->front()
const_iterator find(const value_type& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return const_iterator(this->contains(x) ? x : m_finish);
}
// REQUIRES: index >= 0 && index < size()
value_type operator[](size_type index) const
{
assert(index >= 0 && index < size());
return m_start + index;
}
value_type at(size_type index) const
{
if (index < 0 || index >= size())
throw std::out_of_range(std::string("half_open_range"));
return m_start + index;
}
private: // data members
Incrementable m_start, m_finish;
};
template <class Incrementable>
half_open_range<Incrementable> operator|(
half_open_range<Incrementable> x,
const half_open_range<Incrementable>& y)
{
return x |= y;
}
template <class Incrementable>
half_open_range<Incrementable> operator&(
half_open_range<Incrementable> x,
const half_open_range<Incrementable>& y)
{
return x &= y;
}
template <class Incrementable>
inline bool operator==(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
const bool y_empty = y.empty();
return x.empty() ? y_empty : !y_empty && x.start() == y.start() && x.finish() == y.finish();
}
template <class Incrementable>
inline bool operator!=(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(x == y);
}
template <class Incrementable>
inline half_open_range<Incrementable>
make_half_open_range(Incrementable first, Incrementable last)
{
return half_open_range<Incrementable>(first, last);
}
template <class Incrementable>
bool intersects(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return x.intersects(y);
}
template <class Incrementable>
bool contains(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return x.contains(y);
}
} // namespace boost
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace std {
template <class Incrementable> struct less<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
less<Incrementable> cmp;
return !y.empty() && (
cmp(x.start(), y.start())
|| !cmp(y.start(), x.start())
&& cmp(x.finish(), y.finish()));
}
};
template <class Incrementable> struct less_equal<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return !cmp(y,x);
}
};
template <class Incrementable> struct greater<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return cmp(y,x);
}
};
template <class Incrementable> struct greater_equal<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return !cmp(x,y);
}
};
} // namespace std
#else
namespace boost {
// Can't partially specialize std::less et al, so we must provide the operators
template <class Incrementable>
bool operator<(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !y.empty() && (
x.empty() || std::less<Incrementable>()(x.start(), y.start())
|| !std::less<Incrementable>()(y.start(), x.start())
&& std::less<Incrementable>()(x.finish(), y.finish()));
}
template <class Incrementable>
bool operator>(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return y < x;
}
template <class Incrementable>
bool operator<=(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(y < x);
}
template <class Incrementable>
bool operator>=(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(x < y);
}
} // namespace boost
#endif
#endif // BOOST_HALF_OPEN_RANGE_HPP_

View File

@ -1,60 +0,0 @@
// interator.hpp workarounds for non-conforming standard libraries ---------//
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 12 Jan 01 added <cstddef> for std::ptrdiff_t (Jens Maurer)
// 28 Jun 00 Workarounds to deal with known MSVC bugs (David Abrahams)
// 26 Jun 00 Initial version (Jeremy Siek)
#ifndef BOOST_ITERATOR_HPP
#define BOOST_ITERATOR_HPP
#include <iterator>
#include <cstddef> // std::ptrdiff_t
#include <boost/config.hpp>
namespace boost
{
# ifdef BOOST_NO_STD_ITERATOR
template <class Category, class T,
class Distance = std::ptrdiff_t,
class Pointer = T*, class Reference = T&>
struct iterator
{
typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;
};
# else
// declare iterator_base in namespace detail to work around MSVC bugs which
// prevent derivation from an identically-named class in a different namespace.
namespace detail {
template <class Category, class T, class Distance, class Pointer, class Reference>
# if !defined(BOOST_MSVC_STD_ITERATOR)
struct iterator_base : std::iterator<Category, T, Distance, Pointer, Reference> {};
# else
struct iterator_base : std::iterator<Category, T, Distance>
{
typedef Reference reference;
typedef Pointer pointer;
typedef Distance difference_type;
};
# endif
}
template <class Category, class T, class Distance = std::ptrdiff_t,
class Pointer = T*, class Reference = T&>
struct iterator : detail::iterator_base<Category, T, Distance, Pointer, Reference> {};
# endif
} // namespace boost
#endif // BOOST_ITERATOR_HPP

View File

@ -12,6 +12,14 @@
//
// Revision History:
// 04 Oct 2001 Jeremy Siek
// Changed projection_iterator to not rely on the default reference,
// working around a limitation of detail::iterator_traits.
// 04 Oct 2001 David Abrahams
// Applied indirect_iterator patch from George A. Heintzelman <georgeh@aya.yale.edu>
// Changed name of "bind" to "select" to avoid problems with MSVC.
// 26 Sep 2001 David Abrahams
// Added borland bug fix
// 08 Mar 2001 Jeremy Siek
// Added support for optional named template parameters.
// 19 Feb 2001 David Abrahams
@ -106,7 +114,7 @@
# include <boost/type_traits.hpp>
# include <boost/detail/iterator.hpp>
# include <boost/detail/select_type.hpp>
# include <boost/detail/named_template_params.hpp>
# include <boost/pending/ct_if.hpp>
// I was having some problems with VC6. I couldn't tell whether our hack for
// stock GCC was causing problems so I needed an easy way to turn it on and
@ -138,7 +146,7 @@ struct TrivialIteratorPoliciesConcept
const_constraints();
}
void const_constraints() const {
Reference r = p.dereference(type<Reference>(), x);
Reference r = p.dereference(x);
b = p.equal(x, x);
ignore_unused_variable_warning(r);
}
@ -200,8 +208,7 @@ struct RandomAccessIteratorPoliciesConcept
ignore_unused_variable_warning(t);
}
void const_constraints() const {
n = p.distance(type<DifferenceType>(), x, x);
b = p.less(x, x);
n = p.distance(x, x);
}
Policies p;
Adapted x;
@ -223,37 +230,30 @@ struct default_iterator_policies
void initialize(Base&)
{ }
// The "type<Reference>" parameter is a portable mechanism for
// the iterator_adaptor class to tell this member function what
// the Reference type is, which is needed for the return type.
template <class Reference, class Base>
Reference dereference(type<Reference>, const Base& x) const
{ return *x; }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *x.base(); }
template <class Base>
void increment(Base& x)
{ ++x; }
template <class IteratorAdaptor>
void increment(IteratorAdaptor& x)
{ ++x.base(); }
template <class Base>
void decrement(Base& x)
{ --x; }
template <class IteratorAdaptor>
void decrement(IteratorAdaptor& x)
{ --x.base(); }
template <class Base, class DifferenceType>
void advance(Base& x, DifferenceType n)
{ x += n; }
template <class IteratorAdaptor, class DifferenceType>
void advance(IteratorAdaptor& x, DifferenceType n)
{ x.base() += n; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return y - x; }
template <class IteratorAdaptor1, class IteratorAdaptor2>
typename IteratorAdaptor1::difference_type
distance(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return y.base() - x.base(); }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return x < y; }
template <class IteratorAdaptor1, class IteratorAdaptor2>
bool equal(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return x.base() == y.base(); }
};
// putting the comparisons in a base class avoids the g++
@ -269,7 +269,7 @@ inline bool operator==(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().equal(x.iter(), y.iter());
return x.policies().equal(x, y);
}
template <class D1, class D2, class Base1, class Base2>
@ -278,7 +278,7 @@ inline bool operator!=(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().equal(x.iter(), y.iter());
return !x.policies().equal(x, y);
}
template <class D1, class D2, class Base1, class Base2>
@ -287,7 +287,7 @@ inline bool operator<(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().less(x.iter(), y.iter());
return x.policies().distance(x, y) > 0;
}
template <class D1, class D2, class Base1, class Base2>
@ -296,7 +296,7 @@ inline bool operator>(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().less(y.iter(), x.iter());
return x.policies().distance(y, x) > 0;
}
template <class D1, class D2, class Base1, class Base2>
@ -305,7 +305,7 @@ inline bool operator>=(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().less(x.iter(), y.iter());
return !(x.policies().distance(x, y) > 0);
}
template <class D1, class D2, class Base1, class Base2>
@ -314,7 +314,7 @@ inline bool operator<=(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().less(y.iter(), x.iter());
return !(x.policies().distance(y, x) > 0);
}
#endif
@ -409,7 +409,7 @@ namespace detail {
{
BOOST_STATIC_CONSTANT(bool, is_ptr = boost::is_pointer<Iterator>::value);
typedef iterator_defaults_select<is_ptr>::template traits<Iterator,Value> traits;
typedef typename iterator_defaults_select<is_ptr>::template traits<Iterator,Value> traits;
typedef typename traits::pointer pointer;
typedef typename traits::reference reference;
};
@ -438,107 +438,279 @@ namespace detail {
//===========================================================================
// Specify the defaults for iterator_adaptor's template parameters
struct default_argument { };
// This class template is a workaround for MSVC.
struct dummy_default_gen {
template <class Base, class Traits>
struct select { typedef default_argument type; };
};
// This class template is a workaround for MSVC.
template <class Gen> struct default_generator {
typedef dummy_default_gen type;
};
struct default_value_type {
template <class Base, class Traits>
struct bind {
struct select {
typedef typename boost::detail::iterator_traits<Base>::value_type type;
};
};
template <> struct default_generator<default_value_type>
{ typedef default_value_type type; }; // VC++ workaround
struct default_difference_type {
template <class Base, class Traits>
struct bind {
struct select {
typedef typename boost::detail::iterator_traits<Base>::difference_type type;
};
};
template <> struct default_generator<default_difference_type>
{ typedef default_difference_type type; }; // VC++ workaround
struct default_iterator_category {
template <class Base, class Traits>
struct bind {
struct select {
typedef typename boost::detail::iterator_traits<Base>::iterator_category type;
};
};
template <> struct default_generator<default_iterator_category>
{ typedef default_iterator_category type; }; // VC++ workaround
struct default_pointer {
template <class Base, class Traits>
struct bind {
struct select {
typedef typename Traits::value_type Value;
typedef typename boost::detail::iterator_defaults<Base,Value>::pointer
type;
};
};
template <> struct default_generator<default_pointer>
{ typedef default_pointer type; }; // VC++ workaround
struct default_reference {
template <class Base, class Traits>
struct bind {
struct select {
typedef typename Traits::value_type Value;
typedef typename boost::detail::iterator_defaults<Base,Value>::reference
type;
};
};
template <> struct default_generator<default_reference>
{ typedef default_reference type; }; // VC++ workaround
} // namespace detail
//===========================================================================
// Support for named template parameters
#if !defined(__BORLANDC__)
// Borland C++ thinks the nested recursive inheritance here is illegal.
struct named_template_param_base { };
template <class V = default_argument,
class R = default_argument,
class P = default_argument,
class C = default_argument,
class D = default_argument>
struct iter_traits_gen : public named_template_param_base {
template <class T>
struct value_type : public iter_traits_gen<T,R,P,C,D> { };
template <class T>
struct reference : public iter_traits_gen<V,T,P,C,D> { };
template <class T>
struct pointer : public iter_traits_gen<V,R,T,C,D> { };
template <class T>
struct iterator_category : public iter_traits_gen<V,R,P,T,D>{};
template <class T>
struct difference_type : public iter_traits_gen<V,R,P,C,T> { };
namespace detail {
struct value_type_tag { };
struct reference_tag { };
struct pointer_tag { };
struct difference_type_tag { };
struct iterator_category_tag { };
typedef boost::iterator<C, V, D, P, R> traits;
// avoid using std::pair because A or B might be a reference type, and g++
// complains about forming references to references inside std::pair
template <class A, class B>
struct cons_type {
typedef A first_type;
typedef B second_type;
};
} // namespace detail
template <class Value> struct value_type_is : public named_template_param_base
{
typedef detail::cons_type<detail::value_type_tag, Value> type;
};
template <class Reference> struct reference_is : public named_template_param_base
{
typedef detail::cons_type<detail::reference_tag, Reference> type;
};
template <class Pointer> struct pointer_is : public named_template_param_base
{
typedef detail::cons_type<detail::pointer_tag, Pointer> type;
};
template <class Difference> struct difference_type_is
: public named_template_param_base
{
typedef detail::cons_type<detail::difference_type_tag, Difference> type;
};
template <class IteratorCategory> struct iterator_category_is
: public named_template_param_base
{
typedef detail::cons_type<detail::iterator_category_tag, IteratorCategory> type;
};
namespace detail {
struct end_of_list { };
// Given an associative list, find the value with the matching key.
// An associative list is a list of key-value pairs. The list is
// built out of cons_type's and is terminated by end_of_list.
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class AssocList, class Key>
struct find_param;
struct find_param_continue {
template <class AssocList, class Key2> struct bind {
typedef typename AssocList::first_type Head;
typedef typename Head::first_type Key1;
typedef typename Head::second_type Value;
typedef typename ct_if<is_same<Key1, Key2>::value,
Value,
typename find_param<typename AssocList::second_type, Key2>::type
>::type type;
};
};
struct find_param_end {
template <class AssocList, class Key>
struct bind { typedef detail::default_argument type; };
};
template <class AssocList> struct find_param_helper1
{ typedef find_param_continue type; };
template <> struct find_param_helper1<end_of_list>
{ typedef find_param_end type; };
template <class AssocList, class Key>
struct find_param {
typedef typename find_param_helper1<AssocList>::type select1;
typedef typename select1::template bind<AssocList, Key>::type type;
};
#else
template <class AssocList, class Key> struct find_param;
template <class Key>
struct find_param<end_of_list, Key> { typedef default_argument type; };
// Found a matching Key, return the associated Value
template <class Key, class Value, class Rest>
struct find_param<detail::cons_type< detail::cons_type<Key, Value>, Rest>, Key> {
typedef Value type;
};
// Non-matching keys, continue the search
template <class Key1, class Value, class Rest, class Key2>
struct find_param<detail::cons_type< detail::cons_type<Key1, Value>, Rest>, Key2> {
typedef typename find_param<Rest, Key2>::type type;
};
#endif
BOOST_NAMED_TEMPLATE_PARAM(value_type);
BOOST_NAMED_TEMPLATE_PARAM(reference);
BOOST_NAMED_TEMPLATE_PARAM(pointer);
BOOST_NAMED_TEMPLATE_PARAM(iterator_category);
BOOST_NAMED_TEMPLATE_PARAM(difference_type);
struct make_named_arg {
template <class Key, class Value>
struct bind { typedef typename Value::type type; };
};
struct make_key_value {
template <class Key, class Value>
struct bind { typedef detail::cons_type<Key, Value> type; };
};
template <class Key, class Value>
class make_arg {
enum { is_named = is_convertible<Value, named_template_param_base>::value };
typedef typename ct_if<is_named, make_named_arg, make_key_value>::type Make;
typedef typename Make::template bind<Key, Value>::type type;
};
// Mechanism for resolving the default argument for a template parameter.
template <class T> struct is_default { typedef type_traits::no_type type; };
template <> struct is_default<default_argument>
{ typedef type_traits::yes_type type; };
struct choose_default {
template <class Arg, class DefaultGen, class Base, class Traits>
struct bind {
#if 1
typedef typename default_generator<DefaultGen>::type Gen;
typedef typename Gen::template select<Base,Traits>::type type;
#endif
};
};
struct choose_arg {
template <class Arg, class DefaultGen, class Base, class Traits>
struct bind {
typedef Arg type;
};
};
template <class UseDefault>
struct choose_arg_or_default { typedef choose_arg type; };
template <> struct choose_arg_or_default<type_traits::yes_type> {
typedef choose_default type;
};
template <class Arg, class DefaultGen, class Base, class Traits>
class resolve_default {
typedef typename choose_arg_or_default<typename is_default<Arg>::type>::type
Selector;
public:
typedef typename Selector
::template bind<Arg, DefaultGen, Base, Traits>::type type;
};
template <class Base, class Value, class Reference, class Pointer,
class Category, class Distance>
class iterator_adaptor_traits_gen
{
// Form an associative list out of the template parameters
// If the argument is a normal parameter (not named) then make_arg
// creates a key-value pair. If the argument is a named parameter,
// then make_arg extracts the key-value pair defined inside the
// named parameter.
typedef detail::cons_type< typename make_arg<value_type_tag, Value>::type,
detail::cons_type<typename make_arg<reference_tag, Reference>::type,
detail::cons_type<typename make_arg<pointer_tag, Pointer>::type,
detail::cons_type<typename make_arg<iterator_category_tag, Category>::type,
detail::cons_type<typename make_arg<difference_type_tag, Distance>::type,
end_of_list> > > > > ArgList;
// Search the list for particular parameters
typedef typename find_param<ArgList, value_type_tag>::type Val;
typedef typename find_param<ArgList, difference_type_tag>::type Diff;
typedef typename find_param<ArgList, iterator_category_tag>::type Cat;
typedef typename find_param<ArgList, pointer_tag>::type Ptr;
typedef typename find_param<ArgList, reference_tag>::type Ref;
typedef boost::iterator<Category, Value, Distance, Pointer, Reference>
Traits0;
typedef typename get_value_type<Base,
typename boost::remove_const<Value>::type, Traits0
>::type value_type;
typedef typename get_difference_type<Base, Distance, Traits0>::type
difference_type;
typedef typename get_iterator_category<Base, Category, Traits0>::type
iterator_category;
// Compute the defaults if necessary
typedef typename resolve_default<Val, default_value_type, Base, Traits0>::type
value_type;
// if getting default value type from iterator_traits, then it won't be const
typedef typename resolve_default<Diff, default_difference_type, Base,
Traits0>::type difference_type;
typedef typename resolve_default<Cat, default_iterator_category, Base,
Traits0>::type iterator_category;
typedef boost::iterator<iterator_category, value_type, difference_type,
Pointer, Reference> Traits1;
// Compute the defaults for pointer and reference. This is done as a
// separate step because the defaults for pointer and reference depend
// on value_type.
typedef typename resolve_default<Ptr, default_pointer, Base, Traits1>::type
pointer;
typedef typename resolve_default<Ref, default_reference, Base, Traits1>::type
reference;
typedef typename get_pointer<Base, Pointer, Traits1>::type pointer;
typedef typename get_reference<Base, Reference, Traits1>::type reference;
public:
typedef boost::iterator<iterator_category, value_type, difference_type,
pointer, reference> type;
typedef boost::iterator<iterator_category,
typename remove_const<value_type>::type,
difference_type, pointer, reference> type;
};
} // namespace detail
#if !defined(__BORLANDC__)
struct iterator_traits_generator
: public detail::iter_traits_gen<> { };
#endif
// This macro definition is only temporary in this file
# if !defined(BOOST_MSVC)
@ -579,10 +751,10 @@ template <class T> struct undefined;
// supplied, iterator_traits<Base>::difference_type is used.
template <class Base, class Policies,
class Value = detail::default_argument,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME detail::choose_default_argument<Value>::type,
class Pointer = BOOST_ARG_DEPENDENT_TYPENAME detail::choose_default_argument<Reference>::type,
class Category = BOOST_ARG_DEPENDENT_TYPENAME detail::choose_default_argument<Pointer>::type,
class Distance = BOOST_ARG_DEPENDENT_TYPENAME detail::choose_default_argument<Category>::type
class Reference = detail::default_argument,
class Pointer = detail::default_argument,
class Category = detail::default_argument,
class Distance = detail::default_argument
>
struct iterator_adaptor :
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
@ -633,30 +805,30 @@ struct iterator_adaptor :
explicit
iterator_adaptor(const Base& it, const Policies& p = Policies())
: m_iter_p(it, p) {
policies().initialize(iter());
policies().initialize(base());
}
template <class Iter2, class Value2, class Pointer2, class Reference2>
iterator_adaptor (
const iterator_adaptor<Iter2,Policies,Value2,Reference2,Pointer2,Category,Distance>& src)
: m_iter_p(src.iter(), src.policies())
: m_iter_p(src.base(), src.policies())
{
policies().initialize(iter());
policies().initialize(base());
}
#ifdef BOOST_MSVC
#if defined(BOOST_MSVC) || defined(__BORLANDC__)
// This is required to prevent a bug in how VC++ generates
// the assignment operator for compressed_pair.
// the assignment operator for compressed_pairv
iterator_adaptor& operator= (const iterator_adaptor& x) {
m_iter_p = x.m_iter_p;
return *this;
}
#endif
reference operator*() const {
return policies().dereference(type<reference>(), iter());
return policies().dereference(*this);
}
#ifdef _MSC_VER
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning( disable : 4284 )
#endif
@ -665,7 +837,7 @@ struct iterator_adaptor :
operator->() const
{ return detail::operator_arrow(*this, iterator_category()); }
#ifdef _MSC_VER
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
@ -676,9 +848,9 @@ struct iterator_adaptor :
#ifdef __MWERKS__
// Odd bug, MWERKS couldn't deduce the type for the member template
// Workaround by explicitly specifying the type.
policies().increment<Base>(iter());
policies().increment<self>(*this);
#else
policies().increment(iter());
policies().increment(*this);
#endif
return *this;
}
@ -686,23 +858,27 @@ struct iterator_adaptor :
self operator++(int) { self tmp(*this); ++*this; return tmp; }
self& operator--() {
policies().decrement(iter());
#ifdef __MWERKS__
policies().decrement<self>(*this);
#else
policies().decrement(*this);
#endif
return *this;
}
self operator--(int) { self tmp(*this); --*this; return tmp; }
self& operator+=(difference_type n) {
policies().advance(iter(), n);
policies().advance(*this, n);
return *this;
}
self& operator-=(difference_type n) {
policies().advance(iter(), -n);
policies().advance(*this, -n);
return *this;
}
base_type base() const { return m_iter_p.first(); }
base_type const& base() const { return m_iter_p.first(); }
// Moved from global scope to avoid ambiguity with the operator-() which
// subtracts iterators from one another.
@ -712,11 +888,9 @@ private:
compressed_pair<Base,Policies> m_iter_p;
public: // implementation details (too many compilers have trouble when these are private).
base_type& base() { return m_iter_p.first(); }
Policies& policies() { return m_iter_p.second(); }
const Policies& policies() const { return m_iter_p.second(); }
Base& iter() { return m_iter_p.first(); }
const Base& iter() const { return m_iter_p.first(); }
};
template <class Base, class Policies, class Value, class Reference, class Pointer,
@ -749,7 +923,7 @@ operator-(
{
typedef typename iterator_adaptor<Iterator1,Policies,Value1,Reference1,
Pointer1,Category,Distance>::difference_type difference_type;
return x.policies().distance(type<difference_type>(), y.iter(), x.iter());
return x.policies().distance(y, x);
}
#ifndef BOOST_RELOPS_AMBIGUITY_BUG
@ -761,7 +935,7 @@ operator==(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().equal(x.iter(), y.iter());
return x.policies().equal(x, y);
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -772,7 +946,7 @@ operator<(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().less(x.iter(), y.iter());
return x.policies().distance(x, y) > 0;
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -783,7 +957,7 @@ operator>(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().less(y.iter(), x.iter());
return x.policies().distance(y, x) > 0;
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -794,7 +968,7 @@ operator>=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return !x.policies().less(x.iter(), y.iter());
return !(x.policies().distance(x, y) > 0);
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -805,7 +979,7 @@ operator<=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return !x.policies().less(y.iter(), x.iter());
return !(x.policies().distance(y, x) > 0);
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -816,7 +990,7 @@ operator!=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return !x.policies().equal(x.iter(), y.iter());
return !x.policies().equal(x, y);
}
#endif
@ -832,9 +1006,10 @@ struct transform_iterator_policies : public default_iterator_policies
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& iter) const
{ return m_f(*iter); }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference
dereference(const IteratorAdaptor& iter) const
{ return m_f(*iter.base()); }
AdaptableUnaryFunction m_f;
};
@ -877,17 +1052,19 @@ make_transform_iterator(
struct indirect_iterator_policies : public default_iterator_policies
{
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return **x; }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return **x.base(); }
};
namespace detail {
# if !defined(BOOST_MSVC) // stragely instantiated even when unused! Maybe try a recursive template someday ;-)
template <class T>
struct value_type_of_value_type {
struct traits_of_value_type {
typedef typename boost::detail::iterator_traits<T>::value_type outer_value;
typedef typename boost::detail::iterator_traits<outer_value>::value_type type;
typedef typename boost::detail::iterator_traits<outer_value>::value_type value_type;
typedef typename boost::detail::iterator_traits<outer_value>::reference reference;
typedef typename boost::detail::iterator_traits<outer_value>::pointer pointer;
};
# endif
}
@ -895,11 +1072,25 @@ namespace detail {
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::value_type_of_value_type<OuterIterator>::type
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::value_type
#endif
, class Reference
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::reference
#else
= Value &
#endif
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<
OuterIterator>::iterator_category
, class Pointer
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::pointer
#else
= Value*
#endif
, class Reference = Value&
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<OuterIterator>::iterator_category
, class Pointer = Value*
>
struct indirect_iterator_generator
{
@ -910,12 +1101,26 @@ struct indirect_iterator_generator
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::value_type_of_value_type<OuterIterator>::type
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::value_type
#endif
, class Reference
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::reference
#else
= Value &
#endif
, class Reference = Value&
, class ConstReference = const Value&
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<OuterIterator>::iterator_category
, class Pointer = Value*
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<
OuterIterator>::iterator_category
, class Pointer
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::pointer
#else
= Value*
#endif
, class ConstPointer = const Value*
>
struct indirect_iterator_pair_generator
@ -942,34 +1147,30 @@ make_indirect_iterator(OuterIterator base)
struct reverse_iterator_policies : public default_iterator_policies
{
template <class Reference, class BidirectionalIterator>
Reference dereference(type<Reference>, const BidirectionalIterator& x) const
{ return *boost::prior(x); }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *boost::prior(x.base()); }
template <class BidirectionalIterator>
void increment(BidirectionalIterator& x) const
{ --x; }
{ --x.base(); }
template <class BidirectionalIterator>
void decrement(BidirectionalIterator& x) const
{ ++x; }
{ ++x.base(); }
template <class BidirectionalIterator, class DifferenceType>
void advance(BidirectionalIterator& x, DifferenceType n) const
{ x -= n; }
{ x.base() -= n; }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return x - y; }
template <class Iterator1, class Iterator2>
typename Iterator1::difference_type distance(
const Iterator1& x, const Iterator2& y) const
{ return x.base() - y.base(); }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return y < x; }
{ return x.base() == y.base(); }
};
template <class BidirectionalIterator,
@ -1002,9 +1203,9 @@ struct projection_iterator_policies : public default_iterator_policies
projection_iterator_policies() { }
projection_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class Reference, class Iterator>
Reference dereference (type<Reference>, Iterator const& iter) const {
return m_f(*iter);
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(IteratorAdaptor const& iter) const {
return m_f(*iter.base());
}
AdaptableUnaryFunction m_f;
@ -1015,7 +1216,7 @@ class projection_iterator_generator {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef projection_iterator_policies<AdaptableUnaryFunction> policies;
public:
typedef iterator_adaptor<Iterator,policies,value_type> type;
typedef iterator_adaptor<Iterator,policies,value_type,value_type&,value_type*> type;
};
template <class AdaptableUnaryFunction, class Iterator>
@ -1071,28 +1272,29 @@ public:
// The Iter template argument is neccessary for compatibility with a MWCW
// bug workaround
template <class Iter>
void increment(Iter& x) {
++x;
satisfy_predicate(x);
template <class IteratorAdaptor>
void increment(IteratorAdaptor& x) {
++x.base();
satisfy_predicate(x.base());
}
template <class Reference, class Iter>
Reference dereference(type<Reference>, const Iter& x) const
{ return *x; }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *x.base(); }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class IteratorAdaptor1, class IteratorAdaptor2>
bool equal(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return x.base() == y.base(); }
private:
void satisfy_predicate(Iterator& iter);
Predicate m_predicate;
Iterator m_end;
};
template <class Predicate, class Iterator>
void filter_iterator_policies<Predicate,Iterator>
::satisfy_predicate(Iterator& iter)
void filter_iterator_policies<Predicate,Iterator>::satisfy_predicate(
Iterator& iter)
{
while (m_end != iter && !m_predicate(*iter))
++iter;

View File

@ -1,75 +0,0 @@
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef BOOST_INT_ITERATOR_H
#define BOOST_INT_ITERATOR_H
#include <boost/iterator.hpp>
#if !defined BOOST_MSVC
#include <boost/operators.hpp>
#endif
#include <iostream>
//using namespace std;
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost {
#endif
// this should use random_access_iterator_helper but I've had
// VC++ portablility problems with that. -JGS
template <class IntT>
class int_iterator
{
typedef int_iterator self;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef IntT value_type;
typedef IntT& reference;
typedef IntT* pointer;
typedef std::ptrdiff_t difference_type;
inline int_iterator() : _i(0) { }
inline int_iterator(IntT i) : _i(i) { }
inline int_iterator(const self& x) : _i(x._i) { }
inline self& operator=(const self& x) { _i = x._i; return *this; }
inline IntT operator*() { return _i; }
inline IntT operator[](IntT n) { return _i + n; }
inline self& operator++() { ++_i; return *this; }
inline self operator++(int) { self t = *this; ++_i; return t; }
inline self& operator+=(IntT n) { _i += n; return *this; }
inline self operator+(IntT n) { self t = *this; t += n; return t; }
inline self& operator--() { --_i; return *this; }
inline self operator--(int) { self t = *this; --_i; return t; }
inline self& operator-=(IntT n) { _i -= n; return *this; }
inline IntT operator-(const self& x) const { return _i - x._i; }
inline bool operator==(const self& x) const { return _i == x._i; }
// vc++ had a problem finding != in random_access_iterator_helper
// need to look into this... for now implementing everything here -JGS
inline bool operator!=(const self& x) const { return _i != x._i; }
inline bool operator<(const self& x) const { return _i < x._i; }
inline bool operator<=(const self& x) const { return _i <= x._i; }
inline bool operator>(const self& x) const { return _i > x._i; }
inline bool operator>=(const self& x) const { return _i >= x._i; }
protected:
IntT _i;
};
template <class IntT>
inline int_iterator<IntT>
operator+(IntT n, int_iterator<IntT> t) { t += n; return t; }
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
} /* namespace boost */
#endif
#ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost {
using ::int_iterator;
}
#endif
#endif /* BOOST_INT_ITERATOR_H */

View File

@ -1,59 +0,0 @@
// (C) Copyright David Abrahams and Jeremy Siek 2000-2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its suitability
// for any purpose.
//
// Revision History:
// 04 Jan 2001 Factored counting_iterator stuff into
// boost/counting_iterator.hpp (David Abrahams)
#ifndef BOOST_INTEGER_RANGE_HPP_
#define BOOST_INTEGER_RANGE_HPP_
#include <boost/config.hpp>
#include <boost/counting_iterator.hpp>
namespace boost {
//=============================================================================
// Counting Iterator and Integer Range Class
template <class IntegerType>
struct integer_range {
typedef typename counting_iterator_generator<IntegerType>::type iterator;
typedef iterator const_iterator;
typedef IntegerType value_type;
typedef std::ptrdiff_t difference_type;
typedef IntegerType reference;
typedef IntegerType const_reference;
typedef const IntegerType* pointer;
typedef const IntegerType* const_pointer;
typedef IntegerType size_type;
integer_range(IntegerType start, IntegerType finish)
: m_start(start), m_finish(finish) { }
iterator begin() const { return iterator(m_start); }
iterator end() const { return iterator(m_finish); }
size_type size() const { return m_finish - m_start; }
bool empty() const { return m_finish == m_start; }
void swap(integer_range& x) {
std::swap(m_start, x.m_start);
std::swap(m_finish, x.m_finish);
}
protected:
IntegerType m_start, m_finish;
};
template <class IntegerType>
inline integer_range<IntegerType>
make_integer_range(IntegerType first, IntegerType last)
{
return integer_range<IntegerType>(first, last);
}
} // namespace boost
#endif // BOOST_INTEGER_RANGE_HPP_

View File

@ -1 +0,0 @@
#include <boost/iterator_adaptors.hpp>

View File

@ -1,214 +0,0 @@
#ifndef BOOST_ITERATOR_TESTS_HPP
# define BOOST_ITERATOR_TESTS_HPP
// This is meant to be the beginnings of a comprehensive, generic
// test suite for STL concepts such as iterators and containers.
//
// Revision History:
// 08 Feb 2001 Fixed bidirectional iterator test so that
// --i is no longer a precondition.
// (Jeremy Siek)
// 04 Feb 2001 Added lvalue test, corrected preconditions
// (David Abrahams)
# include <iterator>
# include <assert.h>
# include <boost/type_traits.hpp>
# include <boost/static_assert.hpp>
# include <boost/concept_archetype.hpp> // for detail::dummy_constructor
namespace boost {
// use this for the value type
struct dummyT {
dummyT() { }
dummyT(detail::dummy_constructor) { }
dummyT(int x) : m_x(x) { }
int foo() const { return m_x; }
bool operator==(const dummyT& d) const { return m_x == d.m_x; }
int m_x;
};
// Tests whether type Iterator satisfies the requirements for a
// TrivialIterator.
// Preconditions: i != j, *i == val
template <class Iterator, class T>
void trivial_iterator_test(const Iterator i, const Iterator j, T val)
{
Iterator k;
assert(i == i);
assert(j == j);
assert(i != j);
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
T v = *i;
#else
typename std::iterator_traits<Iterator>::value_type v = *i;
#endif
assert(v == val);
#if 0
// hmm, this will give a warning for transform_iterator... perhaps
// this should be separated out into a stand-alone test since there
// are several situations where it can't be used, like for
// integer_range::iterator.
assert(v == i->foo());
#endif
k = i;
assert(k == k);
assert(k == i);
assert(k != j);
assert(*k == val);
}
// Preconditions: i != j
template <class Iterator, class T>
void mutable_trivial_iterator_test(const Iterator i, const Iterator j, T val)
{
*i = val;
trivial_iterator_test(i, j, val);
}
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void input_iterator_test(Iterator i, T v1, T v2)
{
Iterator i1 = i, i2 = i;
assert(i == i1++);
assert(i != ++i2);
trivial_iterator_test(i, i1, v1);
trivial_iterator_test(i, i2, v1);
++i;
assert(i == i1);
assert(i == i2);
++i1;
++i2;
trivial_iterator_test(i, i1, v2);
trivial_iterator_test(i, i2, v2);
}
// how to test output iterator?
template <bool is_pointer> struct lvalue_test
{
template <class Iterator> static void check(Iterator)
{
# ifndef BOOST_NO_STD_ITERATOR_TRAITS
typedef typename std::iterator_traits<Iterator>::reference reference;
typedef typename std::iterator_traits<Iterator>::value_type value_type;
# else
typedef typename Iterator::reference reference;
typedef typename Iterator::value_type value_type;
# endif
BOOST_STATIC_ASSERT(boost::is_reference<reference>::value);
BOOST_STATIC_ASSERT((boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value
));
}
};
# ifdef BOOST_NO_STD_ITERATOR_TRAITS
template <> struct lvalue_test<true> {
template <class T> static void check(T) {}
};
#endif
template <class Iterator, class T>
void forward_iterator_test(Iterator i, T v1, T v2)
{
input_iterator_test(i, v1, v2);
// borland doesn't allow non-type template parameters
# if !defined(__BORLANDC__) || (__BORLANDC__ > 0x551)
lvalue_test<(boost::is_pointer<Iterator>::value)>::check(i);
#endif
}
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void bidirectional_iterator_test(Iterator i, T v1, T v2)
{
forward_iterator_test(i, v1, v2);
++i;
Iterator i1 = i, i2 = i;
assert(i == i1--);
assert(i != --i2);
trivial_iterator_test(i, i1, v2);
trivial_iterator_test(i, i2, v2);
--i;
assert(i == i1);
assert(i == i2);
++i1;
++i2;
trivial_iterator_test(i, i1, v1);
trivial_iterator_test(i, i2, v1);
}
// mutable_bidirectional_iterator_test
// Preconditions: [i,i+N) is a valid range
template <class Iterator, class TrueVals>
void random_access_iterator_test(Iterator i, int N, TrueVals vals)
{
bidirectional_iterator_test(i, vals[0], vals[1]);
const Iterator j = i;
int c;
for (c = 0; c < N-1; ++c) {
assert(i == j + c);
assert(*i == vals[c]);
assert(*i == j[c]);
assert(*i == *(j + c));
assert(*i == *(c + j));
++i;
assert(i > j);
assert(i >= j);
assert(j <= i);
assert(j < i);
}
Iterator k = j + N - 1;
for (c = 0; c < N-1; ++c) {
assert(i == k - c);
assert(*i == vals[N - 1 - c]);
assert(*i == j[N - 1 - c]);
Iterator q = k - c;
assert(*i == *q);
assert(i > j);
assert(i >= j);
assert(j <= i);
assert(j < i);
--i;
}
}
// Precondition: i != j
template <class Iterator, class ConstIterator>
void const_nonconst_iterator_test(Iterator i, ConstIterator j)
{
assert(i != j);
assert(j != i);
ConstIterator k(i);
assert(k == i);
assert(i == k);
k = i;
assert(k == i);
assert(i == k);
}
} // namespace boost
#endif // BOOST_ITERATOR_TESTS_HPP