More documentation fixes reflecting Dave Abrahams' comments

[SVN r15411]
This commit is contained in:
Peter Dimov
2002-09-17 13:59:17 +00:00
parent 0f05f41306
commit 024f918b86
4 changed files with 329 additions and 399 deletions

View File

@ -1,51 +1,38 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>scoped_ptr</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86"><a name="scoped_ptr">scoped_ptr</a> class template</h1>
<p>The <b>scoped_ptr</b> class template stores a pointer to a dynamically allocated
object. (Dynamically allocated objects are allocated with the C++ <b>new</b>
expression.) The object pointed to is guaranteed to be deleted,
either on destruction of the <b>scoped_ptr</b>, or via an explicit <b>reset</b>.
See the <a href="#example">example</a>.</p>
<p>The <b>scoped_ptr</b> template is a simple solution for simple
needs. It supplies a basic &quot;resource acquisition is
initialization&quot; facility, without shared-ownership or transfer-of-ownership
semantics. Both its name and enforcement of semantics (by being
<a href="../utility/utility.htm#class noncopyable">noncopyable</a>)
signal its intent to retain ownership solely within the current scope.
Because it is <a href="../utility/utility.htm#class noncopyable">noncopyable</a>, it is
safer than <b>shared_ptr</b> or <b>std::auto_ptr</b> for pointers which should not be
copied.</p>
<p>Because <b>scoped_ptr</b> is simple, in its usual implementation
every operation is as fast as for a built-in pointer and it has no more space overhead
that a built-in pointer.</p>
<p>It cannot be used in C++ Standard Library containers.
See <a href="shared_ptr.htm"><b>shared_ptr</b></a>
or <b>std::auto_ptr</b> if <b>scoped_ptr</b> does not meet your needs.</p>
<p>It cannot correctly hold a pointer to a
dynamically allocated array. See <a href="scoped_array.htm"><b>scoped_array</b></a>
for that usage.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object
pointed to. <b>T</b> must meet the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h2>Synopsis</h2>
<pre>namespace boost {
<head>
<title>scoped_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86"><a name="scoped_ptr">scoped_ptr</a>
class template</h1>
<p>The <b>scoped_ptr</b> class template stores a pointer to a dynamically allocated
object. (Dynamically allocated objects are allocated with the C++ <b>new</b> expression.)
The object pointed to is guaranteed to be deleted, either on destruction of the <b>scoped_ptr</b>,
or via an explicit <b>reset</b>. See the <a href="#example">example</a>.</p>
<p>The <b>scoped_ptr</b> template is a simple solution for simple needs. It
supplies a basic "resource acquisition is initialization" facility, without
shared-ownership or transfer-of-ownership semantics. Both its name and
enforcement of semantics (by being <a href="../utility/utility.htm#class noncopyable">
noncopyable</a>) signal its intent to retain ownership solely within the
current scope. Because it is <a href="../utility/utility.htm#class noncopyable">noncopyable</a>,
it is safer than <b>shared_ptr</b> or <b>std::auto_ptr</b> for pointers which
should not be copied.</p>
<p>Because <b>scoped_ptr</b> is simple, in its usual implementation every operation
is as fast as for a built-in pointer and it has no more space overhead that a
built-in pointer.</p>
<p><STRONG>scoped_ptr</STRONG> cannot be used in C++ Standard Library
containers. Use <a href="shared_ptr.htm"><b>shared_ptr</b></a> if you need
a smart pointer that can.</p>
<p><STRONG>scoped_ptr</STRONG> cannot correctly hold a pointer to a dynamically
allocated array. See <a href="scoped_array.htm"><b>scoped_array</b></a> for
that usage.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h2>Synopsis</h2>
<pre>namespace boost {
template&lt;typename T&gt; class scoped_ptr : <a href="../utility/utility.htm#class noncopyable">noncopyable</a> {
@ -53,7 +40,7 @@ pointed to. <b>T</b> must meet the smart pointer
typedef T <a href="#element_type">element_type</a>;
explicit <a href="#constructors">scoped_ptr</a>(T * p = 0); // never throws
<a href="#~scoped_ptr">~scoped_ptr</a>(); // never throws
<a href="#destructor">~scoped_ptr</a>(); // never throws
void <a href="#reset">reset</a>(T * p = 0); // never throws
@ -67,75 +54,59 @@ pointed to. <b>T</b> must meet the smart pointer
template&lt;typename T&gt; void <a href="#free-swap">swap</a>(scoped_ptr&lt;T&gt; &amp; a, scoped_ptr&lt;T&gt; &amp; b); // never throws
}</pre>
<h2>Members</h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit scoped_ptr(T * p = 0); // never throws</pre>
<p>Constructs a <b>scoped_ptr</b>, storing a copy of <b>p</b>, which must
have been allocated via a C++ <b>new</b> expression or be 0.
<b>T</b> is not required be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="~scoped_ptr">destructor</a></h3>
<pre>~scoped_ptr(); // never throws</pre>
<p>Deletes the object pointed to by the stored pointer.
Note that <b>delete</b> on a pointer with a value of 0 is harmless.
The guarantee that this does not throw exceptions depends on the requirement that the
deleted object's destructor does not throw exceptions.
See the smart pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0); // never throws</pre>
<p>If p is not equal to the stored pointer, deletes the object pointed to by the
stored pointer and then stores a copy of p, which must have been allocated via a
C++ <b>new</b> expression or be 0.
The guarantee that this does not throw exceptions depends on the requirement that the
deleted object's destructor does not throw exceptions.
See the smart pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<p>Returns a reference to the object pointed to by the stored pointer.
Behavior is undefined if the stored pointer is 0.</p>
<pre>T * operator-&gt;() const; // never throws</pre>
<p>Returns the stored pointer. Behavior is undefined if the stored pointer is 0.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(scoped_ptr &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt; void swap(scoped_ptr&lt;T&gt; &amp; a, scoped_ptr&lt;T&gt; &amp; b); // never throws</pre>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<h2><a name="example">Example</a></h2>
<p>Here's an example that uses <b>scoped_ptr</b>.</p>
<blockquote>
<pre>#include &lt;boost/scoped_ptr.hpp&gt;
<h2>Members</h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit scoped_ptr(T * p = 0); // never throws</pre>
<p>Constructs a <b>scoped_ptr</b>, storing a copy of <b>p</b>, which must have been
allocated via a C++ <b>new</b> expression or be 0. <b>T</b> is not required be
a complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">common
requirements</a>.</p>
<h3><a name="destructor">destructor</a></h3>
<pre>~scoped_ptr(); // never throws</pre>
<p>Destroys the object pointed to by the stored pointer, if any, as if by using <tt>delete
this-&gt;get()</tt>.</p>
<P>
The guarantee that this does not throw exceptions depends on the requirement
that the deleted object's destructor does not throw exceptions. See the smart
pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</P>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0); // never throws</pre>
<p>If p is not equal to the stored pointer, deletes the object pointed to by the
stored pointer and then stores a copy of p, which must have been allocated via
a C++ <b>new</b> expression or be 0. The guarantee that this does not throw
exceptions depends on the requirement that the deleted object's destructor does
not throw exceptions. See the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<p>Returns a reference to the object pointed to by the stored pointer. Behavior is
undefined if the stored pointer is 0.</p>
<pre>T * operator-&gt;() const; // never throws</pre>
<p>Returns the stored pointer. Behavior is undefined if the stored pointer is 0.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(scoped_ptr &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">common
requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt; void swap(scoped_ptr&lt;T&gt; &amp; a, scoped_ptr&lt;T&gt; &amp; b); // never throws</pre>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<h2><a name="example">Example</a></h2>
<p>Here's an example that uses <b>scoped_ptr</b>.</p>
<blockquote>
<pre>#include &lt;boost/scoped_ptr.hpp&gt;
#include &lt;iostream&gt;
struct Shoe { ~Shoe() { std::cout &lt;&lt; &quot;Buckle my shoe\n&quot;; } };
struct Shoe { ~Shoe() { std::cout &lt;&lt; "Buckle my shoe\n"; } };
class MyClass {
boost::scoped_ptr&lt;int&gt; ptr;
@ -151,67 +122,55 @@ void main()
std::cout &lt;&lt; my_instance.add_one() &lt;&lt; '\n';
std::cout &lt;&lt; my_instance.add_one() &lt;&lt; '\n';
}</pre>
</blockquote>
<p>The example program produces the beginning of a child's nursery rhyme:</p>
<blockquote>
<pre>1
</blockquote>
<p>The example program produces the beginning of a child's nursery rhyme:</p>
<blockquote>
<pre>1
2
Buckle my shoe</pre>
</blockquote>
<h2>Rationale</h2>
<p>The primary reason to use <b>scoped_ptr</b> rather than <b>auto_ptr</b> is to let readers
of your code know that you intend "resource acquisition is initialization" to be applied only
for the current scope, and have no intent to transfer ownership.</p>
<p>A secondary reason to use <b>scoped_ptr</b> is to prevent a later maintenance programmer
from adding a function that transfers ownership by returning the <b>auto_ptr</b>,
because the maintenance programmer saw <b>auto_ptr</b>, and assumed ownership could safely
be transferred.</p>
<p>Think of <b>bool</b> vs <b>int</b>. We all know that under the covers <b>bool</b> is usually
just an <b>int</b>. Indeed, some argued against including <b>bool</b> in the
C++ standard because of that. But by coding <b>bool</b> rather than <b>int</b>, you tell your readers
what your intent is. Same with <b>scoped_ptr</b>; by using it you are signaling intent.</p>
<p>It has been suggested that <b>scoped_ptr&lt;T&gt;</b> is equivalent to
<b>std::auto_ptr&lt;T> const</b>. Ed Brey pointed out, however, that
<b>reset</b> will not work on a <b>std::auto_ptr&lt;T> const.</b></p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>scoped_ptr</b> is to implement a handle/body (also
called pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <a href="scoped_ptr_example_test.cpp">scoped_ptr_example_test.cpp</a>
sample program includes a header file, <a href="scoped_ptr_example.hpp">scoped_ptr_example.hpp</a>,
which uses a <b>scoped_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The
instantiation of member functions which require a complete type occurs in
the <a href="scoped_ptr_example.cpp">scoped_ptr_example.cpp</a>
implementation file.</p>
<h2>Frequently Asked Questions</h2>
<p><b>Q</b>. Why doesn't <b>scoped_ptr</b> have a release() member?<br>
<b>A</b>. Because the point of <b>scoped_ptr</b> is to signal intent, not
to transfer ownership. Use <b>std::auto_ptr</b> if ownership transfer is
required.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->1 February 2002<!--webbot bot="Timestamp" endspan i-checksum="15110" --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies.
This document is provided &quot;as is&quot; without express or implied warranty,
and with no claim as to its suitability for any purpose.</p>
</body>
</blockquote>
<h2>Rationale</h2>
<p>The primary reason to use <b>scoped_ptr</b> rather than <b>auto_ptr</b> is to
let readers of your code know that you intend "resource acquisition is
initialization" to be applied only for the current scope, and have no intent to
transfer ownership.</p>
<p>A secondary reason to use <b>scoped_ptr</b> is to prevent a later maintenance
programmer from adding a function that transfers ownership by returning the <b>auto_ptr</b>,
because the maintenance programmer saw <b>auto_ptr</b>, and assumed ownership
could safely be transferred.</p>
<p>Think of <b>bool</b> vs <b>int</b>. We all know that under the covers <b>bool</b>
is usually just an <b>int</b>. Indeed, some argued against including <b>bool</b>
in the C++ standard because of that. But by coding <b>bool</b> rather than <b>int</b>,
you tell your readers what your intent is. Same with <b>scoped_ptr</b>; by
using it you are signaling intent.</p>
<p>It has been suggested that <b>scoped_ptr&lt;T&gt;</b> is equivalent to <b>std::auto_ptr&lt;T&gt;
const</b>. Ed Brey pointed out, however, that <b>reset</b> will not work on
a <b>std::auto_ptr&lt;T&gt; const.</b></p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>scoped_ptr</b> is to implement a handle/body (also called
pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <a href="scoped_ptr_example_test.cpp">scoped_ptr_example_test.cpp</a> sample
program includes a header file, <a href="scoped_ptr_example.hpp">scoped_ptr_example.hpp</a>,
which uses a <b>scoped_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The instantiation of member functions which require a complete
type occurs in the <a href="scoped_ptr_example.cpp">scoped_ptr_example.cpp</a> implementation
file.</p>
<h2>Frequently Asked Questions</h2>
<p><b>Q</b>. Why doesn't <b>scoped_ptr</b> have a release() member?<br>
<b>A</b>. When reading source code, it is valuable to be able to draw
conclusions about program behavior based on the types being used. If <STRONG>scoped_ptr</STRONG>
had a release() member, it would become possible to transfer ownership out of
its scope, weakening its role as a way of limiting resource lifetime to a given
scope. Use <STRONG>std::auto_ptr</STRONG> where transfer of ownership is
required. (supplied by Dave Abrahams)</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->
17 September 2002<!--webbot bot="Timestamp" endspan i-checksum="15110" --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>

View File

@ -15,13 +15,13 @@
requirements of the C++ Standard Library, and so can be used in standard
library containers. Comparison operators are supplied so that <b>shared_array</b>
works with the standard library's associative containers.</p>
<p>Normally, a <b>shared_array</b> cannot correctly hold a pointer to a single
dynamically allocated object. See <a href="shared_ptr.htm"><b>shared_ptr</b></a>
for that usage.</p>
<p>Because the implementation uses reference counting, <b>shared_array</b> will not
work correctly with cyclic data structures. For example, if <b>main()</b> holds
a <b>shared_array</b> to <b>A</b>, which directly or indirectly holds a <b>shared_array</b>
back to <b>A</b>, <b>A</b>'s use count will be 2. Destruction of the original <b>shared_array</b>
<p>Normally, a <b>shared_array</b> cannot correctly hold a pointer to an object
that has been allocated with the non-array form of <STRONG>new</STRONG>. See <a href="shared_ptr.htm">
<b>shared_ptr</b></a> for that usage.</p>
<p>Because the implementation uses reference counting, cycles of <b>shared_array</b>
instances will not be reclaimed. For example, if <b>main()</b> holds a <b>shared_array</b>
to <b>A</b>, which directly or indirectly holds a <b>shared_array</b> back to <b>A</b>,
<b>A</b>'s use count will be 2. Destruction of the original <b>shared_array</b>
will leave <b>A</b> dangling with a use count of 1.</p>
<p>A <b>shared_ptr</b> to a <b>std::vector</b> is an alternative to a <b>shared_array</b>
that is a bit heavier duty but far more flexible.</p>

View File

@ -150,9 +150,12 @@ void bad()
<P><EM>[It might be&nbsp;convenient to relax the requirements on <STRONG>shared_ptr</STRONG>'s
signature, allowing an additional, defaulted, template parameter; the parameter
can encode the threading model, for example. This would help in detecting
possible ODR violations. On the other hand, using <STRONG>shared_ptr</STRONG> as
an argument to a&nbsp;template template parameter requires an exact signature
match.]</EM></P>
possible ODR violations.</EM></P>
<P><EM> On the other hand, using <STRONG>shared_ptr</STRONG> as an argument to
a&nbsp;template template parameter requires an exact signature match. </EM><EM>Metaprogramming
experts tend to deemphasize template template parameters as they are too
inflexible, but the alternative is typically an std::allocator::rebind-type
"hack".]</EM></P>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
@ -229,18 +232,18 @@ void bad()
pointer users.</EM><EM>]</EM></P>
<pre>template&lt;typename Y, typename D&gt; shared_ptr(Y * p, D d);</pre>
<blockquote>
<p><b>Requirements:</b> <B>p</B> must be convertible to <B>T *</B>. The copy
constructor and destructor of <b>D</b> must not throw. The expression <code>d2(p)</code>,
where <STRONG>d2</STRONG> is a copy of <STRONG>d</STRONG>, must be well-formed,
must not invoke undefined behavior, and must not throw exceptions.
<p><b>Requirements:</b> <B>p</B> must be convertible to <B>T *</B>. <STRONG>D</STRONG>
must be <STRONG>CopyConstructible</STRONG>. The copy constructor and destructor
of <b>D</b> must not throw. The expression <code>d(p)</code> must be
well-formed, must not invoke undefined behavior, and must not throw exceptions.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b> and <b>d</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>d(p)</code> is called.</p>
<p><b>Notes:</b> When the the time comes to delete the object pointed to by <b>p</b>,
<code>d2(p)</code> is invoked, where <STRONG>d2</STRONG> is the stored copy of <STRONG>
d</STRONG>.</p>
<p><b>Notes:</b> When the the time comes to delete the object pointed to by <b>p</b>,
the stored copy of <STRONG>d</STRONG> is invoked with the stored copy of <STRONG>p</STRONG>
as an argument.</p>
</blockquote>
<P><EM>[Custom deallocators allow a factory function returning a <STRONG>shared_ptr</STRONG>
to insulate the user from its memory allocation strategy. Since the deallocator
@ -311,9 +314,10 @@ template&lt;typename Y&gt; shared_ptr &amp; operator=(shared_ptr&lt;Y&gt; const
template&lt;typename Y&gt; shared_ptr &amp; operator=(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(r).swap(*this)</code>.</P>
<P><B>Notes:</B> The implementation is free to meet the effects (and the implied
guarantees) via different means, without creating a temporary. In particular,
in the example:</P>
<P><B>Notes:</B> The use count updates caused by the temporary object construction
and destruction are not considered observable side effects, and the
implementation is free to meet the effects (and the implied guarantees) via
different means, without creating a temporary. In particular, in the example:</P>
<pre>
shared_ptr&lt;int&gt; p(new int);
shared_ptr&lt;void&gt; q(p);
@ -322,6 +326,12 @@ q = p;
</pre>
<p>both assignments may be no-ops.</p>
</BLOCKQUOTE>
<P><EM>[Some experts consider the note to be redundant, as it appears to essentially
mirror the "as if" rile. However, experience suggests that when C++ code is
used to describe effects, it is often misinterpreted as required
implementation. In addition, it is not entirely clear whether the "as if" rule
actually applies here, so it's better to be explicit about the possible
optimizations.]</EM></P>
<h3><a name="reset">reset</a></h3>
<pre>void reset();</pre>
<BLOCKQUOTE>
@ -649,7 +659,7 @@ int * p = a.release();
implementation or a linked list implementation, or some other specific
implementation. This is not the intent.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->
23 July 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and

View File

@ -1,207 +1,168 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Smart Pointers</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">Smart
Pointers</h1>
<p>Smart pointers are objects which store pointers to dynamically allocated
(heap) objects. They behave much like built-in C++ pointers except that
they automatically delete the object pointed to at the appropriate
time. Smart pointers are particularly useful in the face of exceptions as
they ensure proper destruction of dynamically allocated objects. They can also
be used to keep track of dynamically allocated objects shared by multiple
owners.</p>
<p>Conceptually, smart pointers are seen as owning the object pointed to, and
thus responsible for deletion of the object when it is no longer needed.</p>
<p>The smart pointer library provides five smart pointer class templates:</p>
<div align="left">
<table border="1" cellpadding="4" cellspacing="4">
<tr>
<td><a href="scoped_ptr.htm"><b>scoped_ptr</b></a></td>
<td><a href="../../boost/scoped_ptr.hpp">&lt;boost/scoped_ptr.hpp&gt;</a></td>
<td>Simple sole ownership of single objects. Noncopyable.</td>
</tr>
<tr>
<td><a href="scoped_array.htm"><b>scoped_array</b></a></td>
<td><a href="../../boost/scoped_array.hpp">&lt;boost/scoped_array.hpp&gt;</a></td>
<td>Simple sole ownership of arrays. Noncopyable.</td>
</tr>
<tr>
<td><a href="shared_ptr.htm"><b>shared_ptr</b></a></td>
<td><a href="../../boost/shared_ptr.hpp">&lt;boost/shared_ptr.hpp&gt;</a></td>
<td>Object ownership shared among multiple pointers</td>
</tr>
<tr>
<td><a href="shared_array.htm"><b>shared_array</b></a></td>
<td><a href="../../boost/shared_array.hpp">&lt;boost/shared_array.hpp&gt;</a></td>
<td>Array ownership shared among multiple pointers.</td>
</tr>
<tr>
<td><a href="weak_ptr.htm"><b>weak_ptr</b></a></td>
<td><a href="../../boost/weak_ptr.hpp">&lt;boost/weak_ptr.hpp&gt;</a></td>
<td>Non-owning observers of an object owned by <b>shared_ptr</b>.</td>
</tr>
</table>
</div>
<p>These templates are designed to complement the <b>std::auto_ptr</b> template.</p>
<p>They are examples of the &quot;resource acquisition is initialization&quot;
idiom described in Bjarne Stroustrup's &quot;The C++ Programming Language&quot;,
3rd edition, Section 14.4, Resource Management.</p>
<p>A test program, <a href="smart_ptr_test.cpp">smart_ptr_test.cpp</a>, is
provided to verify correct operation.</p>
<p>A page on <a href="compatibility.htm">compatibility</a> with older versions of
the Boost smart pointer library describes some of the changes since earlier versions
of the smart pointer implementation.</p>
<p>A page on <a href="smarttests.htm">smart pointer timings</a> will be of
interest to those curious about performance issues.</p>
<h2><a name="Common requirements">Common Requirements</a></h2>
<p>These smart pointer class templates have a template parameter, <b>T</b>, which
specifies the type of the object pointed to by the smart pointer. The
behavior of the smart pointer templates is undefined if the destructor or <b>operator delete</b>
for objects of type <b>T</b> throw exceptions.</p>
<p><b>T</b> may be an incomplete type at the point of smart pointer
declaration. Unless otherwise specified, it is required that <b>T</b>
be a complete type at points of smart pointer instantiation. Implementations are
required to diagnose (treat as an error) all violations of this requirement,
including deletion of an incomplete type.
See the description of the <a href="../utility/utility.htm#checked_delete"><b>checked_delete</b></a>
function template.</p>
<h3>Rationale</h3>
<p>The requirements on <b>T</b> are carefully crafted to maximize safety
yet allow handle-body (also called pimpl) and similar idioms. In these idioms a
smart pointer may appear in translation units where <b>T</b> is an
incomplete type. This separates interface from implementation and hides
implementation from translation units which merely use the interface.
Examples described in the documentation for specific smart pointers illustrate
use of smart pointers in these idioms.</p>
<p>Note that <b>scoped_ptr</b> requires that <b>T</b> be a complete type
at destruction time, but <b>shared_ptr</b> does not.</p>
<h2>Exception Safety</h2>
<p>Several functions in these smart pointer classes are specified as having
&quot;no effect&quot; or &quot;no effect except such-and-such&quot; if an
exception is thrown. This means that when an exception is thrown by
an object of one of these classes, the entire program state remains the same as
it was prior to the function call which resulted in the exception being
thrown. This amounts to a guarantee that there are no detectable side
effects. Other functions never throw exceptions. The only exception
ever thrown by functions which do throw (assuming <b>T</b> meets the
<a href="#Common requirements">common requirements</a>) is <b>std::bad_alloc</b>,
and that is thrown only by functions which are explicitly documented as possibly
throwing <b>std::bad_alloc</b>.</p>
<h2>Exception-specifications</h2>
<p>Exception-specifications are not used; see
<a href="../../more/lib_guide.htm#Exception-specification">exception-specification
rationale</a>.</p>
<p>All the smart pointer templates contain member functions which can never throw exceptions,
because they neither throw exceptions themselves nor call other functions which
may throw exceptions. These members are indicated by a comment:
<code>// never throws</code>. </p>
<p>Functions which destroy objects of the pointed to type are prohibited from
throwing exceptions by the <a href="#Common requirements">common requirements</a>.</p>
<h2>History and Acknowledgements</h2>
<p>January 2002. Peter Dimov reworked all four classes, adding features, fixing bugs,
and splitting them into four separate headers, and added <b>weak_ptr</b>. See the
<a href="compatibility.htm">compatibility</a> page for a summary of the changes.</p>
<p>May 2001. Vladimir Prus suggested requiring a complete type on
destruction. Refinement evolved in discussions including Dave Abrahams,
Greg Colvin, Beman Dawes, Rainer Deyke, Peter Dimov, John Maddock, Vladimir Prus,
Shankar Sai, and others.</p>
<p>November 1999. Darin Adler provided <b>operator ==</b>, <b>operator !=</b>, and <b>std::swap</b>
and <b>std::less</b> specializations for shared types.</p>
<p>September 1999. Luis Coelho provided <b>shared_ptr::swap</b> and <b>shared_array::swap</b></p>
<p>May 1999. In April and May, 1999, Valentin Bonnard and David Abrahams
made a number of suggestions resulting in numerous improvements.</p>
<p>October 1998. In 1994 Greg Colvin proposed to the C++ Standards Committee
classes named <b>auto_ptr</b> and <b>counted_ptr</b> which
were very similar to what we now call <b>scoped_ptr</b> and <b>shared_ptr</b>.
The committee document was 94-168/N0555, Exception Safe Smart Pointers. In
one of the very few cases where the Library Working Group's recommendations were
not followed by the full committee, <b>counted_ptr</b> was rejected
and surprising transfer-of-ownership semantics were added to <b>auto_ptr</b>.</p>
<p>Beman Dawes proposed reviving the original semantics under the names <b>safe_ptr</b>
and <b>counted_ptr</b> at an October, 1998, meeting of Per Andersson,
Matt Austern, Greg Colvin, Sean Corfield, Pete Becker, Nico Josuttis, Dietmar
K<EFBFBD>hl, Nathan Myers, Chichiang Wan and Judy Ward. During the discussion,
the four class names were finalized, it was decided that there was no need to
exactly follow the <b>std::auto_ptr</b> interface, and various
function signatures and semantics were finalized.</p>
<p>Over the next three months, several implementations were considered for <b>shared_ptr</b>,
and discussed on the <a href="http://www.boost.org">boost.org</a> mailing
list. The implementation questions revolved around the reference count
which must be kept, either attached to the pointed to object, or detached
elsewhere. Each of those variants have themselves two major variants:
<ul>
<li>Direct detached: the shared_ptr contains a pointer to the object, and a
pointer to the count.</li>
<li>Indirect detached: the shared_ptr contains a pointer to a helper object,
which in turn contains a pointer to the object and the count.</li>
<li>Embedded attached: the count is a member of the object pointed to.</li>
<li>Placement attached: the count is attached via operator new manipulations.</li>
</ul>
<p>Each implementation technique has advantages and disadvantages. We went
so far as to run various timings of the direct and indirect approaches, and
found that at least on Intel Pentium chips there was very little measurable
difference. Kevlin Henney provided a paper he wrote on &quot;Counted Body
Techniques.&quot; Dietmar K<>hl suggested an elegant partial template
specialization technique to allow users to choose which implementation they
preferred, and that was also experimented with.</p>
<p>But Greg Colvin and Jerry Schwarz argued that &quot;parameterization will
discourage users&quot;, and in the end we choose to supply only the direct
implementation.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan
-->4 February 2002<!--webbot bot="Timestamp" endspan i-checksum="40737"
<head>
<title>Smart Pointers</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">Smart
Pointers</h1>
<p>Smart pointers are objects which store pointers to dynamically allocated (heap)
objects. They behave much like built-in C++ pointers except that they
automatically delete the object pointed to at the appropriate time. Smart
pointers are particularly useful in the face of exceptions as they ensure
proper destruction of dynamically allocated objects. They can also be used to
keep track of dynamically allocated objects shared by multiple owners.</p>
<p>Conceptually, smart pointers are seen as owning the object pointed to, and thus
responsible for deletion of the object when it is no longer needed.</p>
<p>The smart pointer library provides five smart pointer class templates:</p>
<div align="left">
<table border="1" cellpadding="4" cellspacing="4">
<tr>
<td><a href="scoped_ptr.htm"><b>scoped_ptr</b></a></td>
<td><a href="../../boost/scoped_ptr.hpp">&lt;boost/scoped_ptr.hpp&gt;</a></td>
<td>Simple sole ownership of single objects. Noncopyable.</td>
</tr>
<tr>
<td><a href="scoped_array.htm"><b>scoped_array</b></a></td>
<td><a href="../../boost/scoped_array.hpp">&lt;boost/scoped_array.hpp&gt;</a></td>
<td>Simple sole ownership of arrays. Noncopyable.</td>
</tr>
<tr>
<td><a href="shared_ptr.htm"><b>shared_ptr</b></a></td>
<td><a href="../../boost/shared_ptr.hpp">&lt;boost/shared_ptr.hpp&gt;</a></td>
<td>Object ownership shared among multiple pointers</td>
</tr>
<tr>
<td><a href="shared_array.htm"><b>shared_array</b></a></td>
<td><a href="../../boost/shared_array.hpp">&lt;boost/shared_array.hpp&gt;</a></td>
<td>Array ownership shared among multiple pointers.</td>
</tr>
<tr>
<td><a href="weak_ptr.htm"><b>weak_ptr</b></a></td>
<td><a href="../../boost/weak_ptr.hpp">&lt;boost/weak_ptr.hpp&gt;</a></td>
<td>Non-owning observers of an object owned by <b>shared_ptr</b>.</td>
</tr>
</table>
</div>
<p>These templates are designed to complement the <b>std::auto_ptr</b> template.</p>
<p>They are examples of the "resource acquisition is initialization" idiom
described in Bjarne Stroustrup's "The C++ Programming Language", 3rd edition,
Section 14.4, Resource Management.</p>
<p>A test program, <a href="smart_ptr_test.cpp">smart_ptr_test.cpp</a>, is provided
to verify correct operation.</p>
<p>A page on <a href="compatibility.htm">compatibility</a> with older versions of
the Boost smart pointer library describes some of the changes since earlier
versions of the smart pointer implementation.</p>
<p>A page on <a href="smarttests.htm">smart pointer timings</a> will be of interest
to those curious about performance issues.</p>
<h2><a name="Common requirements">Common Requirements</a></h2>
<p>These smart pointer class templates have a template parameter, <b>T</b>, which
specifies the type of the object pointed to by the smart pointer. The behavior
of the smart pointer templates is undefined if the destructor or <b>operator delete</b>
for objects of type <b>T</b> throw exceptions.</p>
<p><b>T</b> may be an incomplete type at the point of smart pointer declaration.
Unless otherwise specified, it is required that <b>T</b> be a complete type at
points of smart pointer instantiation. Implementations are required to diagnose
(treat as an error) all violations of this requirement, including deletion of
an incomplete type. See the description of the <a href="../utility/utility.htm#checked_delete">
<b>checked_delete</b></a> function template.</p>
<P>Note that <STRONG>shared_ptr</STRONG> does not have this restriction, as most of
its member functions do not require <STRONG>T</STRONG> to be a complete type.</P>
<h3>Rationale</h3>
<p>The requirements on <b>T</b> are carefully crafted to maximize safety yet allow
handle-body (also called pimpl) and similar idioms. In these idioms a smart
pointer may appear in translation units where <b>T</b> is an incomplete type.
This separates interface from implementation and hides implementation from
translation units which merely use the interface. Examples described in the
documentation for specific smart pointers illustrate use of smart pointers in
these idioms.</p>
<p>Note that <b>scoped_ptr</b> requires that <b>T</b> be a complete type at
destruction time, but <b>shared_ptr</b> does not.</p>
<h2>Exception Safety</h2>
<p>Several functions in these smart pointer classes are specified as having "no
effect" or "no effect except such-and-such" if an exception is thrown. This
means that when an exception is thrown by an object of one of these classes,
the entire program state remains the same as it was prior to the function call
which resulted in the exception being thrown. This amounts to a guarantee that
there are no detectable side effects. Other functions never throw exceptions.
The only exception ever thrown by functions which do throw (assuming <b>T</b> meets
the <a href="#Common requirements">common requirements</a>) is <b>std::bad_alloc</b>,
and that is thrown only by functions which are explicitly documented as
possibly throwing <b>std::bad_alloc</b>.</p>
<h2>Exception-specifications</h2>
<p>Exception-specifications are not used; see <a href="../../more/lib_guide.htm#Exception-specification">
exception-specification rationale</a>.</p>
<p>All the smart pointer templates contain member functions which can never throw
exceptions, because they neither throw exceptions themselves nor call other
functions which may throw exceptions. These members are indicated by a comment: <code>
// never throws</code>.
</p>
<p>Functions which destroy objects of the pointed to type are prohibited from
throwing exceptions by the <a href="#Common requirements">common requirements</a>.</p>
<h2>History and Acknowledgements</h2>
<p>January 2002. Peter Dimov reworked all four classes, adding features, fixing
bugs, and splitting them into four separate headers, and added <b>weak_ptr</b>.
See the <a href="compatibility.htm">compatibility</a> page for a summary of the
changes.</p>
<p>May 2001. Vladimir Prus suggested requiring a complete type on destruction.
Refinement evolved in discussions including Dave Abrahams, Greg Colvin, Beman
Dawes, Rainer Deyke, Peter Dimov, John Maddock, Vladimir Prus, Shankar Sai, and
others.</p>
<p>November 1999. Darin Adler provided <b>operator ==</b>, <b>operator !=</b>, and <b>std::swap</b>
and <b>std::less</b> specializations for shared types.</p>
<p>September 1999. Luis Coelho provided <b>shared_ptr::swap</b> and <b>shared_array::swap</b></p>
<p>May 1999. In April and May, 1999, Valentin Bonnard and David Abrahams made a
number of suggestions resulting in numerous improvements.</p>
<p>October 1998. In 1994 Greg Colvin proposed to the C++ Standards Committee
classes named <b>auto_ptr</b> and <b>counted_ptr</b> which were very similar to
what we now call <b>scoped_ptr</b> and <b>shared_ptr</b>. The committee
document was 94-168/N0555, Exception Safe Smart Pointers. In one of the very
few cases where the Library Working Group's recommendations were not followed
by the full committee, <b>counted_ptr</b> was rejected and surprising
transfer-of-ownership semantics were added to <b>auto_ptr</b>.</p>
<p>Beman Dawes proposed reviving the original semantics under the names <b>safe_ptr</b>
and <b>counted_ptr</b> at an October, 1998, meeting of Per Andersson, Matt
Austern, Greg Colvin, Sean Corfield, Pete Becker, Nico Josuttis, Dietmar K<>hl,
Nathan Myers, Chichiang Wan and Judy Ward. During the discussion, the four
class names were finalized, it was decided that there was no need to exactly
follow the <b>std::auto_ptr</b> interface, and various function signatures and
semantics were finalized.</p>
<p>Over the next three months, several implementations were considered for <b>shared_ptr</b>,
and discussed on the <a href="http://www.boost.org">boost.org</a> mailing list.
The implementation questions revolved around the reference count which must be
kept, either attached to the pointed to object, or detached elsewhere. Each of
those variants have themselves two major variants:
<ul>
<li>
Direct detached: the shared_ptr contains a pointer to the object, and a pointer
to the count.
<li>
Indirect detached: the shared_ptr contains a pointer to a helper object, which
in turn contains a pointer to the object and the count.
<li>
Embedded attached: the count is a member of the object pointed to.
<li>
Placement attached: the count is attached via operator new manipulations.</li>
</ul>
<p>Each implementation technique has advantages and disadvantages. We went so far
as to run various timings of the direct and indirect approaches, and found that
at least on Intel Pentium chips there was very little measurable difference.
Kevlin Henney provided a paper he wrote on "Counted Body Techniques." Dietmar
K<>hl suggested an elegant partial template specialization technique to allow
users to choose which implementation they preferred, and that was also
experimented with.</p>
<p>But Greg Colvin and Jerry Schwarz argued that "parameterization will discourage
users", and in the end we choose to supply only the direct implementation.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan
-->
4 February 2002<!--webbot bot="Timestamp" endspan i-checksum="40737"
--></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>