forked from boostorg/tuple
Ported documentation to boostbook
This commit is contained in:
31
doc/Jamfile.v2
Normal file
31
doc/Jamfile.v2
Normal file
@ -0,0 +1,31 @@
|
||||
# Copyright (c) 2001 Jaakko J<>rvi
|
||||
|
||||
# Distributed under the Boost Software License, Version 1.0.
|
||||
# (See accompanying file LICENSE_1_0.txt or copy at
|
||||
# http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
project doc/tuple ;
|
||||
|
||||
import boostbook ;
|
||||
import quickbook ;
|
||||
|
||||
xml tuple : tuple_users_guide.qbk ;
|
||||
|
||||
boostbook standalone_tuple
|
||||
:
|
||||
tuple
|
||||
:
|
||||
<xsl:param>boost.root=../../../..
|
||||
# File name of HTML output:
|
||||
<xsl:param>root.filename=tuple_users_guide
|
||||
# How far down we chunk nested sections, basically all of them:
|
||||
<xsl:param>chunk.section.depth=0
|
||||
# Don't put the first section on the same page as the TOC:
|
||||
<xsl:param>chunk.first.sections=0
|
||||
# How far down sections get TOC's
|
||||
<xsl:param>toc.section.depth=1
|
||||
# Max depth in each TOC:
|
||||
<xsl:param>toc.max.depth=1
|
||||
# How far down we go with TOC's
|
||||
<xsl:param>generate.section.toc.level=0
|
||||
;
|
@ -1,155 +0,0 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
<html>
|
||||
|
||||
<title>Design decisions rationale for Boost Tuple Library</title>
|
||||
|
||||
<body bgcolor="#FFFFFF" text="#000000">
|
||||
|
||||
<IMG SRC="../../../boost.png"
|
||||
ALT="C++ Boost" width="277" height="86">
|
||||
|
||||
<h1>Tuple Library : design decisions rationale</h1>
|
||||
|
||||
<h2>About namespaces</h2>
|
||||
|
||||
<p>
|
||||
There was a discussion about whether tuples should be in a separate namespace or directly in the <code>boost</code> namespace.
|
||||
The common principle is that domain libraries (like <i>graph</i>, <i>python</i>) should be on a separate
|
||||
subnamespace, while utility like libraries directly in the <code>boost</code> namespace.
|
||||
Tuples are somewhere in between, as the tuple template is clearly a general utility, but the library introduces quite a lot of names in addition to just the tuple template.
|
||||
Tuples were originally under a subnamespace.
|
||||
As a result of the discussion, tuple definitions were moved directly under the <code>boost</code> namespace.
|
||||
As a result of a continued discussion, the subnamespace was reintroduced.
|
||||
The final (I truly hope so) solution is now to have all definitions in namespace <code>::boost::tuples</code>, and the most common names in the <code>::boost</code> namespace as well.
|
||||
This is accomplished with using declarations (suggested by Dave Abrahams):</p>
|
||||
<pre><code>namespace boost {
|
||||
namespace tuples {
|
||||
...
|
||||
// All library code
|
||||
...
|
||||
}
|
||||
using tuples::tuple;
|
||||
using tuples::make_tuple;
|
||||
using tuples::tie;
|
||||
using tuples::get;
|
||||
}
|
||||
</code></pre>
|
||||
<p>With this arrangement, tuple creation with direct constructor calls, <code>make_tuple</code> or <code>tie</code> functions do not need the namespace qualifier.
|
||||
Further, all functions that manipulate tuples are found with Koenig-lookup.
|
||||
The only exceptions are the <code>get<N></code> functions, which are always called with an explicitly qualified template argument, and thus Koenig-lookup does not apply.
|
||||
Therefore, get is lifted to <code>::boost</code> namespace with a using declaration.
|
||||
Hence, the interface for an application programmer is in practice under the namespace <code>::boost</code>.
|
||||
</p>
|
||||
<p>
|
||||
The other names, forming an interface for library writers (cons lists, metafunctions manipulating cons lists, ...) remain in the subnamespace <code>::boost::tuples</code>.
|
||||
Note, that the names <code>ignore</code>, <code>set_open</code>, <code>set_close</code> and <code>set_delimiter</code> are considered to be part of the application programmer's interface, but are still not under <code>boost</code> namespace.
|
||||
The reason being the danger for name clashes for these common names.
|
||||
Further, the usage of these features is probably not very frequent.
|
||||
</p>
|
||||
|
||||
<h4>For those who are really interested in namespaces</h4>
|
||||
|
||||
<p>
|
||||
The subnamespace name <i>tuples</i> raised some discussion.
|
||||
The rationale for not using the most natural name 'tuple' is to avoid having an identical name with the tuple template.
|
||||
Namespace names are, however, not generally in plural form in boost libraries.
|
||||
First, no real trouble was reported for using the same name for a namespace and a class and we considered changing the name 'tuples' to 'tuple'.
|
||||
But we found some trouble after all.
|
||||
Both gcc and edg compilers reject using declarations where the namespace and class names are identical:</p>
|
||||
|
||||
<pre><code>namespace boost {
|
||||
namespace tuple {
|
||||
... tie(...);
|
||||
class tuple;
|
||||
...
|
||||
}
|
||||
using tuple::tie; // ok
|
||||
using tuple::tuple; // error
|
||||
...
|
||||
}
|
||||
</code></pre>
|
||||
|
||||
<p>Note, however, that a corresponding using declaration in the global namespace seems to be ok:</p>
|
||||
|
||||
<pre><code>
|
||||
using boost::tuple::tuple; // ok;
|
||||
</code></pre>
|
||||
|
||||
|
||||
<h2>The end mark of the cons list (nil, null_type, ...)</h2>
|
||||
|
||||
<p>
|
||||
Tuples are internally represented as <code>cons</code> lists:
|
||||
|
||||
<pre><code>tuple<int, int>
|
||||
</code></pre>
|
||||
<p>inherits from</p>
|
||||
<pre><code>cons<int, cons<int, null_type> >
|
||||
</code></pre>
|
||||
|
||||
<p>
|
||||
<code>null_type</code> is the end mark of the list. Original proposition was <code>nil</code>, but the name is used in MacOS, and might have caused problems, so <code>null_type</code> was chosen instead.
|
||||
Other names considered were <i>null_t</i> and <i>unit</i> (the empty tuple type in SML).</p>
|
||||
<p>
|
||||
Note that <code>null_type</code> is the internal representation of an empty tuple: <code>tuple<></code> inherits from <code>null_type</code>.
|
||||
</p>
|
||||
|
||||
<h2>Element indexing</h2>
|
||||
|
||||
<p>
|
||||
Whether to use 0- or 1-based indexing was discussed more than thoroughly, and the following observations were made:</p>
|
||||
|
||||
<ul>
|
||||
<li> 0-based indexing is 'the C++ way' and used with arrays etc.</li>
|
||||
<li> 1-based 'name like' indexing exists as well, eg. <code>bind1st</code>, <code>bind2nd</code>, <code>pair::first</code>, etc.</li>
|
||||
</ul>
|
||||
<p>Tuple access with the syntax <code>get<N>(a)</code>, or <code>a.get<N>()</code> (where <code>a</code> is a tuple and <code>N</code> an index), was considered to be of the first category, hence, the index of the first element in a tuple is 0.</p>
|
||||
|
||||
<p>
|
||||
A suggestion to provide 1-based 'name like' indexing with constants like <code>_1st</code>, <code>_2nd</code>, <code>_3rd</code>, ... was made.
|
||||
By suitably chosen constant types, this would allow alternative syntaxes:
|
||||
|
||||
<pre><code>a.get<0>() == a.get(_1st) == a[_1st] == a(_1st);
|
||||
</code></pre>
|
||||
|
||||
<p>We chose not to provide more than one indexing method for the following reasons:</p>
|
||||
<ul>
|
||||
<li>0-based indexing might not please everyone, but once its fixed, it is less confusing than having two different methods (would anyone want such constants for arrays?).</li>
|
||||
<li>Adding the other indexing scheme doesn't really provide anything new (like a new feature) to the user of the library.</li>
|
||||
<li>C++ variable and constant naming rules don't give many possibilities for defining short and nice index constants (like <code>_1st</code>, ...).
|
||||
Let the binding and lambda libraries use these for a better purpose.</li>
|
||||
<li>The access syntax <code>a[_1st]</code> (or <code>a(_1st)</code>) is appealing, and almost made us add the index constants after all. However, 0-based subscripting is so deep in C++, that we had a fear for confusion.</li>
|
||||
<li>
|
||||
Such constants are easy to add.
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
|
||||
<h2>Tuple comparison</h2>
|
||||
|
||||
<p>The comparison operator implements lexicographical order.
|
||||
Other orderings were considered, mainly dominance (<i>a < b iff for each i a(i) < b(i)</i>).
|
||||
Our belief is, that lexicographical ordering, though not mathematically the most natural one, is the most frequently needed ordering in everyday programming.</p>
|
||||
|
||||
<h2>Streaming</h2>
|
||||
|
||||
<p>
|
||||
The characters specified with tuple stream manipulators are stored within the space allocated by <code>ios_base::xalloc</code>, which allocates storage for <code>long</code> type objects.
|
||||
<code>static_cast</code> is used in casting between <code>long</code> and the stream's character type.
|
||||
Streams that have character types not convertible back and forth to long thus fail to compile.</p>
|
||||
|
||||
<p>This may be revisited at some point. The two possible solutions are:</p>
|
||||
<ul>
|
||||
<li>Allow only plain <code>char</code> types as the tuple delimiters and use <code>widen</code> and <code>narrow</code> to convert between the real character type of the stream.
|
||||
This would always compile, but some calls to set manipulators might result in a different
|
||||
character than expected (some default character).</li>
|
||||
<li>Allocate enough space to hold the real character type of the stream.
|
||||
This means memory for holding the delimiter characters must be allocated separately, and that pointers to this memory are stored in the space allocated with <code>ios_base::xalloc</code>.
|
||||
Any volunteers?</li>
|
||||
</ul>
|
||||
|
||||
<A href="tuple_users_guide.html">Back to the user's guide</A>
|
||||
<hr><p>© Copyright Jaakko Järvi 2001.
|
||||
</body>
|
||||
</html>
|
||||
|
190
doc/design_decisions_rationale.qbk
Normal file
190
doc/design_decisions_rationale.qbk
Normal file
@ -0,0 +1,190 @@
|
||||
[/
|
||||
/ Copyright (c) 2001 Jaakko J<>rvi
|
||||
/
|
||||
/ Distributed under the Boost Software License, Version 1.0. (See
|
||||
/ accompanying file LICENSE_1_0.txt or copy at
|
||||
/ http://www.boost.org/LICENSE_1_0.txt)
|
||||
/]
|
||||
|
||||
[article Design decisions rationale
|
||||
[quickbook 1.6]
|
||||
[id design_decisions_rationale]
|
||||
[copyright 2001 Jaakko J\u00E4rvi]
|
||||
[license Distributed under the
|
||||
[@http://boost.org/LICENSE_1_0.txt Boost Software License,
|
||||
Version 1.0].
|
||||
]
|
||||
]
|
||||
|
||||
[template simplesect[title]
|
||||
[block '''<simplesect><title>'''[title]'''</title>''']]
|
||||
|
||||
[template endsimplesect[]
|
||||
[block '''</simplesect>''']]
|
||||
|
||||
[section About namespaces]
|
||||
|
||||
There was a discussion about whether tuples should be in a separate namespace
|
||||
or directly in the `boost` namespace. The common principle is that domain
|
||||
libraries (like /graph/, /python/) should be on a separate subnamespace, while
|
||||
utility like libraries directly in the boost namespace. Tuples are somewhere
|
||||
in between, as the tuple template is clearly a general utility, but the
|
||||
library introduces quite a lot of names in addition to just the tuple template.
|
||||
Tuples were originally under a subnamespace. As a result of the discussion,
|
||||
tuple definitions were moved directly under the `boost` namespace. As a result
|
||||
of a continued discussion, the subnamespace was reintroduced. The final (I
|
||||
truly hope so) solution is now to have all definitions in namespace
|
||||
`::boost::tuples`, and the most common names in the `::boost` namespace as well.
|
||||
This is accomplished with using declarations (suggested by Dave Abrahams):
|
||||
|
||||
namespace boost {
|
||||
namespace tuples {
|
||||
...
|
||||
// All library code
|
||||
...
|
||||
}
|
||||
using tuples::tuple;
|
||||
using tuples::make_tuple;
|
||||
using tuples::tie;
|
||||
using tuples::get;
|
||||
}
|
||||
|
||||
With this arrangement, tuple creation with direct constructor calls,
|
||||
`make_tuple` or `tie` functions do not need the namespace qualifier. Further,
|
||||
all functions that manipulate tuples are found with Koenig-lookup. The only
|
||||
exceptions are the `get<N>` functions, which are always called with an
|
||||
explicitly qualified template argument, and thus Koenig-lookup does not apply.
|
||||
Therefore, `get` is lifted to `::boost` namespace with a using declaration.
|
||||
Hence, the interface for an application programmer is in practice under the
|
||||
namespace `::boost`.
|
||||
|
||||
The other names, forming an interface for library writers (cons lists,
|
||||
metafunctions manipulating cons lists, ...) remain in the subnamespace
|
||||
`::boost::tuples`. Note, that the names `ignore`, `set_open`, `set_close` and
|
||||
`set_delimiter` are considered to be part of the application programmer's
|
||||
interface, but are still not under `boost` namespace. The reason being the
|
||||
danger for name clashes for these common names. Further, the usage of these
|
||||
features is probably not very frequent.
|
||||
|
||||
[section For those who are really interested in namespaces]
|
||||
|
||||
The subnamespace name /tuples/ raised some discussion. The rationale for not
|
||||
using the most natural name 'tuple' is to avoid having an identical name with
|
||||
the tuple template. Namespace names are, however, not generally in plural form
|
||||
in Boost libraries. First, no real trouble was reported for using the same
|
||||
name for a namespace and a class and we considered changing the name 'tuples'
|
||||
to 'tuple'. But we found some trouble after all. Both gcc and edg compilers
|
||||
reject using declarations where the namespace and class names are identical:
|
||||
|
||||
namespace boost {
|
||||
namespace tuple {
|
||||
... tie(...);
|
||||
class tuple;
|
||||
...
|
||||
}
|
||||
using tuple::tie; // ok
|
||||
using tuple::tuple; // error
|
||||
...
|
||||
}
|
||||
|
||||
Note, however, that a corresponding using declaration in the global namespace
|
||||
seems to be ok:
|
||||
|
||||
using boost::tuple::tuple; // ok;
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
||||
|
||||
[section The end mark of the cons list (`nil`, `null_type`, ...)]
|
||||
|
||||
Tuples are internally represented as cons lists:
|
||||
|
||||
tuple<int, int>
|
||||
|
||||
inherits from
|
||||
|
||||
cons<int, cons<int, null_type> >
|
||||
|
||||
`null_type` is the end mark of the list. Original proposition was `nil`, but
|
||||
the name is used in MacOS, and might have caused problems, so `null_type` was
|
||||
chosen instead. Other names considered were /null_t/ and /unit/ (the empty
|
||||
tuple type in SML).
|
||||
|
||||
Note that `null_type` is the internal representation of an empty tuple:
|
||||
`tuple<>` inherits from `null_type`.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section Element indexing]
|
||||
|
||||
Whether to use `0`- or `1`-based indexing was discussed more than thoroughly,
|
||||
and the following observations were made:
|
||||
|
||||
* `0`-based indexing is 'the C++ way' and used with arrays etc.
|
||||
|
||||
* `1`-based 'name like' indexing exists as well, eg. `bind1st`, `bind2nd`,
|
||||
`pair::first`, etc.
|
||||
|
||||
Tuple access with the syntax `get<N>(a)`, or `a.get<N>()` (where `a` is a
|
||||
tuple and `N` an index), was considered to be of the first category, hence,
|
||||
the index of the first element in a tuple is `0`.
|
||||
|
||||
A suggestion to provide `1`-based 'name like' indexing with constants like
|
||||
`_1st`, `_2nd`, `_3rd`, ... was made. By suitably chosen constant types, this
|
||||
would allow alternative syntaxes:
|
||||
|
||||
a.get<0>() == a.get(_1st) == a[_1st] == a(_1st);
|
||||
|
||||
We chose not to provide more than one indexing method for the following
|
||||
reasons:
|
||||
|
||||
* `0`-based indexing might not please everyone, but once its fixed, it is less
|
||||
confusing than having two different methods (would anyone want such
|
||||
constants for arrays?).
|
||||
|
||||
* Adding the other indexing scheme doesn't really provide anything new (like a
|
||||
new feature) to the user of the library.
|
||||
|
||||
* C++ variable and constant naming rules don't give many possibilities for
|
||||
defining short and nice index constants (like `_1st`, ...). Let the binding
|
||||
and lambda libraries use these for a better purpose.
|
||||
|
||||
* The access syntax a[_1st] (or a(_1st)) is appealing, and almost made us add
|
||||
the index constants after all. However, `0`-based subscripting is so deep in
|
||||
C++, that we had a fear for confusion.
|
||||
|
||||
* Such constants are easy to add.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section Tuple comparison]
|
||||
|
||||
The comparison operator implements lexicographical order. Other orderings were
|
||||
considered, mainly dominance /(a < b iff for each i a(i) < b(i))/. Our belief
|
||||
is, that lexicographical ordering, though not mathematically the most natural
|
||||
one, is the most frequently needed ordering in everyday programming.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section Streaming]
|
||||
|
||||
The characters specified with tuple stream manipulators are stored within the
|
||||
space allocated by `ios_base::xalloc`, which allocates storage for `long` type
|
||||
objects. `static_cast` is used in casting between `long` and the stream's
|
||||
character type. Streams that have character types not convertible back and
|
||||
forth to long thus fail to compile.
|
||||
|
||||
This may be revisited at some point. The two possible solutions are:
|
||||
|
||||
* Allow only plain `char` types as the tuple delimiters and use `widen` and
|
||||
`narrow` to convert between the real character type of the stream. This
|
||||
would always compile, but some calls to set manipulators might result in a
|
||||
different character than expected (some default character).
|
||||
|
||||
* Allocate enough space to hold the real character type of the stream. This
|
||||
means memory for holding the delimiter characters must be allocated
|
||||
separately, and that pointers to this memory are stored in the space
|
||||
allocated with `ios_base::xalloc`. Any volunteers?
|
||||
|
||||
[endsect]
|
@ -1,134 +0,0 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
<html>
|
||||
<head>
|
||||
<title>Tuple library advanced features</title>
|
||||
</head>
|
||||
|
||||
<body bgcolor="#FFFFFF" text="#000000">
|
||||
|
||||
<IMG SRC="../../../boost.png"
|
||||
ALT="C++ Boost" width="277" height="86">
|
||||
|
||||
<h1>Tuple library advanced features</h1>
|
||||
|
||||
The advanced features described in this document are all under namespace <code>::boost::tuples</code>
|
||||
|
||||
<h2>Metafunctions for tuple types</h2>
|
||||
<p>
|
||||
Suppose <code>T</code> is a tuple type, and <code>N</code> is a constant integral expression.</p>
|
||||
|
||||
<pre><code>element<N, T>::type</code></pre>
|
||||
|
||||
<p>gives the type of the <code>N</code>th element in the tuple type <code>T</code>. If <code>T</code> is const, the resulting type is const qualified as well.
|
||||
Note that the constness of <code>T</code> does not affect reference type
|
||||
elements.
|
||||
</p>
|
||||
|
||||
<pre><code>length<T>::value</code></pre>
|
||||
|
||||
<p>gives the length of the tuple type <code>T</code>.
|
||||
</p>
|
||||
|
||||
<h2>Cons lists</h2>
|
||||
|
||||
<p>
|
||||
Tuples are internally represented as <i>cons lists</i>.
|
||||
For example, the tuple </p>
|
||||
|
||||
<pre><code>tuple<A, B, C, D></code></pre>
|
||||
|
||||
<p>inherits from the type</p>
|
||||
<pre><code>cons<A, cons<B, cons<C, cons<D, null_type> > > >
|
||||
</code></pre>
|
||||
|
||||
<p>The tuple template provides the typedef <code>inherited</code> to access the cons list representation. E.g.:
|
||||
<code>tuple<A>::inherited</code> is the type <code>cons<A, null_type></code>.
|
||||
</p>
|
||||
|
||||
<h4>Empty tuple</h4>
|
||||
<p>
|
||||
The internal representation of the empty tuple <code>tuple<></code> is <code>null_type</code>.
|
||||
</p>
|
||||
|
||||
<h4>Head and tail</h4>
|
||||
<p>
|
||||
Both tuple template and the cons templates provide the typedefs <code>head_type</code> and <code>tail_type</code>.
|
||||
The <code>head_type</code> typedef gives the type of the first element of the tuple (or the cons list).
|
||||
The
|
||||
<code>tail_type</code> typedef gives the remaining cons list after removing the first element.
|
||||
The head element is stored in the member variable <code>head</code> and the tail list in the member variable <code>tail</code>.
|
||||
Cons lists provide the member function <code>get_head()</code> for getting a reference to the head of a cons list, and <code>get_tail()</code> for getting a reference to the tail.
|
||||
There are const and non-const versions of both functions.
|
||||
</p>
|
||||
<p>
|
||||
Note that in a one element tuple, <code>tail_type</code> equals <code>null_type</code> and the <code>get_tail()</code> function returns an object of type <code>null_type</code>.
|
||||
</p>
|
||||
<p>
|
||||
The empty tuple (<code>null_type</code>) has no head or tail, hence the <code>get_head</code> and <code>get_tail</code> functions are not provided.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Treating tuples as cons lists gives a convenient means to define generic functions to manipulate tuples. For example, the following pair of function templates assign 0 to each element of a tuple (obviously, the assignments must be valid operations for the element types):
|
||||
|
||||
<pre><code>inline void set_to_zero(const null_type&) {};
|
||||
|
||||
template <class H, class T>
|
||||
inline void set_to_zero(cons<H, T>& x) { x.get_head() = 0; set_to_zero(x.get_tail()); }
|
||||
</code></pre>
|
||||
<p>
|
||||
|
||||
<h4>Constructing cons lists</h4>
|
||||
|
||||
<p>
|
||||
A cons list can be default constructed provided that all its elements can be default constructed.
|
||||
</p>
|
||||
<p>
|
||||
A cons list can be constructed from its head and tail. The prototype of the constructor is:</p>
|
||||
<pre><code>cons(typename access_traits<head_type>::parameter_type h,
|
||||
const tail_type& t)
|
||||
</code></pre>
|
||||
<p>The traits template for the head parameter selects correct parameter types for different kinds of element types (for reference elements the parameter type equals the element type, for non-reference types the parameter type is a reference to const non-volatile element type).
|
||||
</p>
|
||||
<p>
|
||||
For a one-element cons list the tail argument (<code>null_type</code>) can be omitted.
|
||||
</p>
|
||||
|
||||
|
||||
<h2>Traits classes for tuple element types</h2>
|
||||
|
||||
<h4><code>access_traits</code></h4>
|
||||
<p>
|
||||
The template <code>access_traits</code> defines three type functions. Let <code>T</code> be a type of an element in a tuple:</p>
|
||||
<ol>
|
||||
<li><code>access_traits<T>::non_const_type</code> maps <code>T</code> to the return type of the non-const access functions (nonmember and member <code>get</code> functions, and the <code>get_head</code> function).</li>
|
||||
<li><code>access_traits<T>::const_type</code> maps <code>T</code> to the return type of the const access functions.</li>
|
||||
<li><code>access_traits<T>::parameter_type</code> maps <code>T</code> to the parameter type of the tuple constructor.</li>
|
||||
</ol>
|
||||
<h4><code>make_tuple_traits</code></h4>
|
||||
|
||||
<p>The element types of the tuples that are created with the <code>make_tuple</code> functions are computed with the type function <code>make_tuple_traits</code>.
|
||||
The type function call <code>make_tuple_traits<T>::type</code> implements the following type mapping:</p>
|
||||
<ul>
|
||||
<li><i>any reference type</i> -> <i>compile time error</i>
|
||||
</li>
|
||||
<li><i>any array type</i> -> <i>constant reference to the array type</i>
|
||||
</li>
|
||||
<li><code>reference_wrapper<T></code> -> <code>T&</code>
|
||||
</li>
|
||||
<li><code>T</code> -> <code>T</code>
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<p>Objects of type <code>reference_wrapper</code> are created with the <code>ref</code> and <code>cref</code> functions (see <A href="tuple_users_guide.html#make_tuple">The <code>make_tuple</code> function</A>.)
|
||||
</p>
|
||||
|
||||
<p>Reference wrappers were originally part of the tuple library, but they are now a general utility of boost.
|
||||
The <code>reference_wrapper</code> template and the <code>ref</code> and <code>cref</code> functions are defined in a separate file <code>ref.hpp</code> in the main boost include directory; and directly in the <code>boost</code> namespace.
|
||||
</p>
|
||||
|
||||
<A href="tuple_users_guide.html">Back to the user's guide</A>
|
||||
<hr>
|
||||
|
||||
<p>© Copyright Jaakko Järvi 2001.</p>
|
||||
</body>
|
||||
</html>
|
159
doc/tuple_advanced_interface.qbk
Normal file
159
doc/tuple_advanced_interface.qbk
Normal file
@ -0,0 +1,159 @@
|
||||
[/
|
||||
/ Copyright (c) 2001 Jaakko J<>rvi
|
||||
/
|
||||
/ Distributed under the Boost Software License, Version 1.0. (See
|
||||
/ accompanying file LICENSE_1_0.txt or copy at
|
||||
/ http://www.boost.org/LICENSE_1_0.txt)
|
||||
/]
|
||||
|
||||
[article Tuple library advanced features
|
||||
[quickbook 1.6]
|
||||
[id tuple_advanced_interface]
|
||||
[copyright 2001 Jaakko J\u00E4rvi]
|
||||
[license Distributed under the
|
||||
[@http://boost.org/LICENSE_1_0.txt Boost Software License,
|
||||
Version 1.0].
|
||||
]
|
||||
]
|
||||
|
||||
[template simplesect[title]
|
||||
[block '''<simplesect><title>'''[title]'''</title>''']]
|
||||
|
||||
[template endsimplesect[]
|
||||
[block '''</simplesect>''']]
|
||||
|
||||
The advanced features described in this document are all under namespace
|
||||
`::boost::tuples`
|
||||
|
||||
[section Metafunctions for tuple types]
|
||||
|
||||
Suppose `T` is a tuple type, and `N` is a constant integral expression.
|
||||
|
||||
element<N, T>::type
|
||||
|
||||
gives the type of the `N`-th element in the tuple type `T`. If `T` is `const`,
|
||||
the resulting type is `const` qualified as well. Note that the constness of `T`
|
||||
does not affect reference type elements.
|
||||
|
||||
length<T>::value
|
||||
|
||||
gives the length of the tuple type `T`.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section Cons lists]
|
||||
|
||||
Tuples are internally represented as /cons lists/. For example, the tuple
|
||||
|
||||
tuple<A, B, C, D>
|
||||
|
||||
inherits from the type
|
||||
|
||||
cons<A, cons<B, cons<C, cons<D, null_type> > > >
|
||||
|
||||
The tuple template provides the typedef inherited to access the cons list
|
||||
representation. E.g.: `tuple<A>::inherited` is the type `cons<A, null_type>`.
|
||||
|
||||
[section Empty tuple]
|
||||
|
||||
The internal representation of the empty tuple `tuple<>` is `null_type`.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section Head and tail]
|
||||
|
||||
Both tuple template and the cons templates provide the typedefs `head_type`
|
||||
and `tail_type`. The `head_type` typedef gives the type of the first element
|
||||
of the tuple (or the cons list). The `tail_type` typedef gives the remaining
|
||||
cons list after removing the first element. The head element is stored in the
|
||||
member variable `head` and the tail list in the member variable `tail`. Cons
|
||||
lists provide the member function `get_head()` for getting a reference to the
|
||||
head of a cons list, and `get_tail()` for getting a reference to the tail.
|
||||
There are const and non-const versions of both functions.
|
||||
|
||||
Note that in a one element tuple, `tail_type` equals `null_type` and the
|
||||
`get_tail()` function returns an object of type `null_type`.
|
||||
|
||||
The empty tuple (`null_type`) has no head or tail, hence the `get_head` and
|
||||
`get_tail` functions are not provided.
|
||||
|
||||
Treating tuples as cons lists gives a convenient means to define generic
|
||||
functions to manipulate tuples. For example, the following pair of function
|
||||
templates assign `0` to each element of a tuple (obviously, the assignments
|
||||
must be valid operations for the element types):
|
||||
|
||||
inline void set_to_zero(const null_type&) {};
|
||||
|
||||
template <class H, class T>
|
||||
inline void set_to_zero(cons<H, T>& x) { x.get_head() = 0; set_to_zero(x.get_tail()); }
|
||||
|
||||
[endsect]
|
||||
|
||||
[section Constructing cons lists]
|
||||
|
||||
A cons list can be default constructed provided that all its elements can be
|
||||
default constructed.
|
||||
|
||||
A cons list can be constructed from its head and tail. The prototype of the
|
||||
constructor is:
|
||||
|
||||
cons(typename access_traits<head_type>::parameter_type h, const tail_type& t)
|
||||
|
||||
The traits template for the head parameter selects correct parameter types for
|
||||
different kinds of element types (for reference elements the parameter type
|
||||
equals the element type, for non-reference types the parameter type is a
|
||||
reference to const non-volatile element type).
|
||||
|
||||
For a one-element cons list the tail argument (`null_type`) can be omitted.
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
||||
|
||||
[section Traits classes for tuple element types]
|
||||
|
||||
[section access_traits]
|
||||
|
||||
The template `access_traits` defines three type functions. Let `T` be a type
|
||||
of an element in a tuple:
|
||||
|
||||
* `access_traits<T>::non_const_type` maps `T` to the return type of the no
|
||||
n-const access functions (nonmember and member `get` functions, and the
|
||||
`get_head` function).
|
||||
|
||||
* `access_traits<T>::const_type` maps `T` to the return type of the const
|
||||
access functions.
|
||||
|
||||
* `access_traits<T>::parameter_type` maps `T` to the parameter type of the
|
||||
tuple constructor.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section make_tuple_traits]
|
||||
|
||||
The element types of the tuples that are created with the `make_tuple`
|
||||
functions are computed with the type function `make_tuple_traits`. The type
|
||||
function call `make_tuple_traits<T>::type` implements the following type
|
||||
mapping:
|
||||
|
||||
* /any reference type/ -> /compile time error/
|
||||
|
||||
* /any array type/ -> /constant reference to the array type/
|
||||
|
||||
* `reference_wrapper<T>` -> `T&`
|
||||
|
||||
* `T` -> `T`
|
||||
|
||||
Objects of type `reference_wrapper` are created with the `ref` and `cref`
|
||||
functions (see [link tuple.constructing_tuples.make_tuple The `make_tuple`
|
||||
function]).
|
||||
|
||||
Reference wrappers were originally part of the tuple library, but they are now
|
||||
a general utility of boost. The `reference_wrapper` template and the `ref` and
|
||||
`cref` functions are defined in a separate file
|
||||
[@boost:/libs/core/doc/html/core/ref.html `ref.hpp`] in the main boost include
|
||||
directory; and directly in the `boost` namespace.
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
@ -1,535 +0,0 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
<html>
|
||||
<head>
|
||||
<title>The Boost Tuple Library</title>
|
||||
</head>
|
||||
<body bgcolor="#FFFFFF" text="#000000">
|
||||
|
||||
<IMG SRC="../../../boost.png"
|
||||
ALT="C++ Boost" width="277" height="86">
|
||||
|
||||
<h1>The Boost Tuple Library</h1>
|
||||
|
||||
<p>
|
||||
A tuple (or <i>n</i>-tuple) is a fixed size collection of elements.
|
||||
Pairs, triples, quadruples etc. are tuples.
|
||||
In a programming language, a tuple is a data object containing other objects as elements.
|
||||
These element objects may be of different types.
|
||||
</p>
|
||||
|
||||
<p>Tuples are convenient in many circumstances.
|
||||
For instance, tuples make it easy to define functions that return more than one value.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs.
|
||||
Unfortunately C++ does not.
|
||||
To compensate for this "deficiency", the Boost Tuple Library implements a tuple construct using templates.
|
||||
</p>
|
||||
|
||||
<h2>Table of Contents</h2>
|
||||
|
||||
<ol>
|
||||
<li><a href = "#using_library">Using the library</a></li>
|
||||
<li><a href = "#tuple_types">Tuple types</a></li>
|
||||
<li><a href = "#constructing_tuples">Constructing tuples</a></li>
|
||||
<li><a href = "#accessing_elements">Accessing tuple elements</a></li>
|
||||
<li><a href = "#construction_and_assignment">Copy construction and tuple assignment</a></li>
|
||||
<li><a href = "#relational_operators">Relational operators</a></li>
|
||||
<li><a href = "#tiers">Tiers</a></li>
|
||||
<li><a href = "#streaming">Streaming</a></li>
|
||||
<li><a href = "#performance">Performance</a></li>
|
||||
<li><a href = "#portability">Portability</a></li>
|
||||
<li><a href = "#thanks">Acknowledgements</a></li>
|
||||
<li><a href = "#references">References</a></li>
|
||||
</ol>
|
||||
|
||||
<h4>More details</h4>
|
||||
|
||||
<p>
|
||||
<a href = "tuple_advanced_interface.html">Advanced features</a> (describes some metafunctions etc.).</p>
|
||||
<p>
|
||||
<a href = "design_decisions_rationale.html">Rationale behind some design/implementation decisions.</a></p>
|
||||
|
||||
|
||||
<h2><a name="using_library">Using the library</a></h2>
|
||||
|
||||
<p>To use the library, just include:</p>
|
||||
|
||||
<pre><code>#include "boost/tuple/tuple.hpp"</code></pre>
|
||||
|
||||
<p>Comparison operators can be included with:</p>
|
||||
<pre><code>#include "boost/tuple/tuple_comparison.hpp"</code></pre>
|
||||
|
||||
<p>To use tuple input and output operators,</p>
|
||||
|
||||
<pre><code>#include "boost/tuple/tuple_io.hpp"</code></pre>
|
||||
|
||||
<p>Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <code>tuple.hpp</code>.</p>
|
||||
|
||||
<p>All definitions are in namespace <code>::boost::tuples</code>, but the most common names are lifted to namespace
|
||||
<code>::boost</code> with using declarations. These names are: <code>tuple</code>, <code>make_tuple</code>, <code>tie</code> and <code>get</code>.
|
||||
Further, <code>ref</code> and <code>cref</code> are defined directly under the <code>::boost</code> namespace.</p>
|
||||
|
||||
<h2><a name = "tuple_types">Tuple types</a></h2>
|
||||
|
||||
<p>A tuple type is an instantiation of the <code>tuple</code> template.
|
||||
The template parameters specify the types of the tuple elements.
|
||||
The current version supports tuples with 0-10 elements.
|
||||
If necessary, the upper limit can be increased up to, say, a few dozen elements.
|
||||
The data element can be any C++ type.
|
||||
Note that <code>void</code> and plain function types are valid
|
||||
C++ types, but objects of such types cannot exist.
|
||||
Hence, if a tuple type contains such types as elements, the tuple type
|
||||
can exist, but not an object of that type.
|
||||
There are natural limitations for element types that cannot
|
||||
be copied, or that are not default constructible (see 'Constructing tuples'
|
||||
below). </p>
|
||||
|
||||
<p>
|
||||
For example, the following definitions are valid tuple instantiations (<code>A</code>, <code>B</code> and <code>C</code> are some user defined classes):</p>
|
||||
|
||||
<pre><code>tuple<int>
|
||||
tuple<double&, const double&, const double, double*, const double*>
|
||||
tuple<A, int(*)(char, int), B(A::*)(C&), C>
|
||||
tuple<std::string, std::pair<A, B> >
|
||||
tuple<A*, tuple<const A*, const B&, C>, bool, void*>
|
||||
</code></pre>
|
||||
|
||||
<h2><a name = "constructing_tuples">Constructing tuples</a></h2>
|
||||
|
||||
<p>
|
||||
The tuple constructor takes the tuple elements as arguments.
|
||||
For an <i>n</i>-element tuple, the constructor can be invoked with <i>k</i> arguments, where 0 <= <i>k</i> <= <i>n</i>.
|
||||
For example:</p>
|
||||
<pre><code>tuple<int, double>()
|
||||
tuple<int, double>(1)
|
||||
tuple<int, double>(1, 3.14)
|
||||
</code></pre>
|
||||
|
||||
<p>
|
||||
If no initial value for an element is provided, it is default initialized (and hence must be default initializable).
|
||||
For example.</p>
|
||||
|
||||
<pre><code>class X {
|
||||
X();
|
||||
public:
|
||||
X(std::string);
|
||||
};
|
||||
|
||||
tuple<X,X,X>() // error: no default constructor for X
|
||||
tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")) // ok
|
||||
</code></pre>
|
||||
|
||||
<p>In particular, reference types do not have a default initialization: </p>
|
||||
|
||||
<pre><code>tuple<double&>() // error: reference must be
|
||||
// initialized explicitly
|
||||
|
||||
double d = 5;
|
||||
tuple<double&>(d) // ok
|
||||
|
||||
tuple<double&>(d+3.14) // error: cannot initialize
|
||||
// non-const reference with a temporary
|
||||
|
||||
tuple<const double&>(d+3.14) // ok, but dangerous:
|
||||
// the element becomes a dangling reference
|
||||
</code></pre>
|
||||
|
||||
<p>Using an initial value for an element that cannot be copied, is a compile
|
||||
time error:</p>
|
||||
|
||||
<pre><code>class Y {
|
||||
Y(const Y&);
|
||||
public:
|
||||
Y();
|
||||
};
|
||||
|
||||
char a[10];
|
||||
|
||||
tuple<char[10], Y>(a, Y()); // error, neither arrays nor Y can be copied
|
||||
tuple<char[10], Y>(); // ok
|
||||
</code></pre>
|
||||
|
||||
<p>Note particularly that the following is perfectly ok:</p>
|
||||
<pre><code>Y y;
|
||||
tuple<char(&)[10], Y&>(a, y);
|
||||
</code></pre>
|
||||
|
||||
<p>It is possible to come up with a tuple type that cannot be constructed.
|
||||
This occurs if an element that cannot be initialized has a lower
|
||||
index than an element that requires initialization.
|
||||
For example: <code>tuple<char[10], int&></code>.</p>
|
||||
|
||||
<p>In sum, the tuple construction is semantically just a group of individual elementary constructions.
|
||||
</p>
|
||||
|
||||
<h4><a name="make_tuple">The <code>make_tuple</code> function</a></h4>
|
||||
|
||||
<p>
|
||||
Tuples can also be constructed using the <code>make_tuple</code> (cf. <code>std::make_pair</code>) helper functions.
|
||||
This makes the construction more convenient, saving the programmer from explicitly specifying the element types:</p>
|
||||
<pre><code>tuple<int, int, double> add_multiply_divide(int a, int b) {
|
||||
return make_tuple(a+b, a*b, double(a)/double(b));
|
||||
}
|
||||
</code></pre>
|
||||
|
||||
<p>
|
||||
By default, the element types are deduced to the plain non-reference types. E.g.: </p>
|
||||
<pre><code>void foo(const A& a, B& b) {
|
||||
...
|
||||
make_tuple(a, b);
|
||||
</code></pre>
|
||||
<p>The <code>make_tuple</code> invocation results in a tuple of type <code>tuple<A, B></code>.</p>
|
||||
|
||||
<p>
|
||||
Sometimes the plain non-reference type is not desired, e.g. if the element type cannot be copied.
|
||||
Therefore, the programmer can control the type deduction and state that a reference to const or reference to
|
||||
non-const type should be used as the element type instead.
|
||||
This is accomplished with two helper template functions: <code>ref</code> and <code>cref</code>.
|
||||
Any argument can be wrapped with these functions to get the desired type.
|
||||
The mechanism does not compromise const correctness since a const object wrapped with <code>ref</code> results
|
||||
in a tuple element with const reference type (see the fifth example below).
|
||||
For example:</p>
|
||||
|
||||
<pre><code>A a; B b; const A ca = a;
|
||||
make_tuple(cref(a), b); // creates tuple<const A&, B>
|
||||
make_tuple(ref(a), b); // creates tuple<A&, B>
|
||||
make_tuple(ref(a), cref(b)); // creates tuple<A&, const B&>
|
||||
make_tuple(cref(ca)); // creates tuple<const A&>
|
||||
make_tuple(ref(ca)); // creates tuple<const A&>
|
||||
</code></pre>
|
||||
|
||||
|
||||
<p>
|
||||
Array arguments to <code>make_tuple</code> functions are deduced to reference to const types by default; there is no need to wrap them with <code>cref</code>. For example:</p>
|
||||
<pre><code>make_tuple("Donald", "Daisy");
|
||||
</code></pre>
|
||||
|
||||
<p>This creates an object of type <code>tuple<const char (&)[7], const char (&)[6]></code>
|
||||
(note that the type of a string literal is an array of const characters, not <code>const char*</code>).
|
||||
However, to get <code>make_tuple</code> to create a tuple with an element of a
|
||||
non-const array type one must use the <code>ref</code> wrapper.</p>
|
||||
|
||||
<p>
|
||||
Function pointers are deduced to the plain non-reference type, that is, to plain function pointer.
|
||||
A tuple can also hold a reference to a function,
|
||||
but such a tuple cannot be constructed with <code>make_tuple</code> (a const qualified function type would result, which is illegal):</p>
|
||||
<pre><code>void f(int i);
|
||||
...
|
||||
make_tuple(&f); // tuple<void (*)(int)>
|
||||
...
|
||||
tuple<tuple<void (&)(int)> > a(f) // ok
|
||||
make_tuple(f); // not ok
|
||||
</code></pre>
|
||||
|
||||
<h2><a name = "accessing_elements">Accessing tuple elements</a></h2>
|
||||
|
||||
<p>
|
||||
Tuple elements are accessed with the expression:</p>
|
||||
|
||||
<pre><code>t.get<N>()
|
||||
</code></pre>
|
||||
<p>or</p>
|
||||
<pre><code>get<N>(t)
|
||||
</code></pre>
|
||||
<p>where <code>t</code> is a tuple object and <code>N</code> is a constant integral expression specifying the index of the element to be accessed.
|
||||
Depending on whether <code>t</code> is const or not, <code>get</code> returns the <code>N</code>th element as a reference to const or
|
||||
non-const type.
|
||||
The index of the first element is 0 and thus<code>
|
||||
N</code> must be between 0 and <code>k-1</code>, where <code>k</code> is the number of elements in the tuple.
|
||||
Violations of these constraints are detected at compile time. Examples:</p>
|
||||
|
||||
<pre><code>double d = 2.7; A a;
|
||||
tuple<int, double&, const A&> t(1, d, a);
|
||||
const tuple<int, double&, const A&> ct = t;
|
||||
...
|
||||
int i = get<0>(t); i = t.get<0>(); // ok
|
||||
int j = get<0>(ct); // ok
|
||||
get<0>(t) = 5; // ok
|
||||
get<0>(ct) = 5; // error, can't assign to const
|
||||
...
|
||||
double e = get<1>(t); // ok
|
||||
get<1>(t) = 3.14; // ok
|
||||
get<2>(t) = A(); // error, can't assign to const
|
||||
A aa = get<3>(t); // error: index out of bounds
|
||||
...
|
||||
++get<0>(t); // ok, can be used as any variable
|
||||
</code></pre>
|
||||
|
||||
<p>
|
||||
Note! The member get functions are not supported with MS Visual C++ compiler.
|
||||
Further, the compiler has trouble with finding the non-member get functions without an explicit namespace qualifier.
|
||||
Hence, all <code>get</code> calls should be qualified as: <code>tuples::get<N>(a_tuple)</code> when writing code that should compile with MSVC++ 6.0.
|
||||
</p>
|
||||
|
||||
<h2><a name = "construction_and_assignment">Copy construction and tuple assignment</a></h2>
|
||||
|
||||
<p>
|
||||
A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible.
|
||||
Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable.
|
||||
For example:</p>
|
||||
|
||||
<pre><code>class A {};
|
||||
class B : public A {};
|
||||
struct C { C(); C(const B&); };
|
||||
struct D { operator C() const; };
|
||||
tuple<char, B*, B, D> t;
|
||||
...
|
||||
tuple<int, A*, C, C> a(t); // ok
|
||||
a = t; // ok
|
||||
</code></pre>
|
||||
|
||||
<p>In both cases, the conversions performed are: <code>char -> int</code>, <code>B* -> A*</code> (derived class pointer to base class pointer), <code>B -> C</code> (a user defined conversion) and <code>D -> C</code> (a user defined conversion).</p>
|
||||
|
||||
<p>
|
||||
Note that assignment is also defined from <code>std::pair</code> types:</p>
|
||||
|
||||
<pre><code>tuple<float, int> a = std::make_pair(1, 'a');
|
||||
</code></pre>
|
||||
|
||||
<h2><a name = "relational_operators">Relational operators</a></h2>
|
||||
<p>
|
||||
Tuples reduce the operators <code>==, !=, <, >, <=</code> and <code>>=</code> to the corresponding elementary operators.
|
||||
This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well.
|
||||
|
||||
The equality operators for two tuples <code>a</code> and <code>b</code> are defined as:</p>
|
||||
<ul>
|
||||
<li><code>a == b</code> iff for each <code>i</code>: <code>a<sub>i</sub> == b<sub>i</sub></code></li>
|
||||
<li><code>a != b</code> iff exists <code>i</code>: <code>a<sub>i</sub> != b<sub>i</sub></code></li>
|
||||
</ul>
|
||||
|
||||
<p>The operators <code><, >, <=</code> and <code>>=</code> implement a lexicographical ordering.</p>
|
||||
|
||||
<p>
|
||||
Note that an attempt to compare two tuples of different lengths results in a compile time error.
|
||||
Also, the comparison operators are <i>"short-circuited"</i>: elementary comparisons start from the first elements and are performed only until the result is clear.</p>
|
||||
|
||||
<p>Examples:</p>
|
||||
|
||||
<pre><code>tuple<std::string, int, A> t1(std::string("same?"), 2, A());
|
||||
tuple<std::string, long, A> t2(std::string("same?"), 2, A());
|
||||
tuple<std::string, long, A> t3(std::string("different"), 3, A());
|
||||
|
||||
bool operator==(A, A) { std::cout << "All the same to me..."; return true; }
|
||||
|
||||
t1 == t2; // true
|
||||
t1 == t3; // false, does not print "All the..."
|
||||
</code></pre>
|
||||
|
||||
|
||||
<h2><a name = "tiers">Tiers</a></h2>
|
||||
|
||||
<p>
|
||||
<i>Tiers</i> are tuples, where all elements are of non-const reference types.
|
||||
They are constructed with a call to the <code>tie</code> function template (cf. <code>make_tuple</code>):</p>
|
||||
|
||||
<pre><code>int i; char c; double d;
|
||||
...
|
||||
tie(i, c, a);
|
||||
</code></pre>
|
||||
|
||||
<p>
|
||||
The above <code>tie</code> function creates a tuple of type <code>tuple<int&, char&, double&></code>.
|
||||
The same result could be achieved with the call <code>make_tuple(ref(i), ref(c), ref(a))</code>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
A tuple that contains non-const references as elements can be used to 'unpack' another tuple into variables. E.g.:</p>
|
||||
|
||||
<pre><code>int i; char c; double d;
|
||||
tie(i, c, d) = make_tuple(1,'a', 5.5);
|
||||
std::cout << i << " " << c << " " << d;
|
||||
</code></pre>
|
||||
<p>This code prints <code>1 a 5.5</code> to the standard output stream.
|
||||
|
||||
A tuple unpacking operation like this is found for example in ML and Python.
|
||||
It is convenient when calling functions which return tuples.</p>
|
||||
|
||||
<p>
|
||||
The tying mechanism works with <code>std::pair</code> templates as well:</p>
|
||||
|
||||
<pre><code>int i; char c;
|
||||
tie(i, c) = std::make_pair(1, 'a');
|
||||
</code></pre>
|
||||
<h4>Ignore</h4>
|
||||
<p>There is also an object called <code>ignore</code> which allows you to ignore an element assigned by a tuple.
|
||||
The idea is that a function may return a tuple, only part of which you are interested in. For example (note, that <code>ignore</code> is under the <code>tuples</code> subnamespace):</p>
|
||||
|
||||
<pre><code>char c;
|
||||
tie(tuples::ignore, c) = std::make_pair(1, 'a');
|
||||
</code></pre>
|
||||
|
||||
<h2><a name = "streaming">Streaming</a></h2>
|
||||
|
||||
<p>
|
||||
The global <code>operator<<</code> has been overloaded for <code>std::ostream</code> such that tuples are
|
||||
output by recursively calling <code>operator<<</code> for each element.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Analogously, the global <code>operator>></code> has been overloaded to extract tuples from <code>std::istream</code> by recursively calling <code>operator>></code> for each element.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The default delimiter between the elements is space, and the tuple is enclosed
|
||||
in parenthesis.
|
||||
For Example:
|
||||
|
||||
<pre><code>tuple<float, int, std::string> a(1.0f, 2, std::string("Howdy folks!");
|
||||
|
||||
cout << a;
|
||||
</code></pre>
|
||||
<p>outputs the tuple as: <code>(1.0 2 Howdy folks!)</code></p>
|
||||
|
||||
<p>
|
||||
The library defines three <i>manipulators</i> for changing the default behavior:</p>
|
||||
<ul>
|
||||
<li><code>set_open(char)</code> defines the character that is output before the first
|
||||
element.</li>
|
||||
<li><code>set_close(char)</code> defines the character that is output after the
|
||||
last element.</li>
|
||||
<li><code>set_delimiter(char)</code> defines the delimiter character between
|
||||
elements.</li>
|
||||
</ul>
|
||||
|
||||
<p>Note, that these manipulators are defined in the <code>tuples</code> subnamespace.
|
||||
For example:</p>
|
||||
<pre><code>cout << tuples::set_open('[') << tuples::set_close(']') << tuples::set_delimiter(',') << a;
|
||||
</code></pre>
|
||||
<p>outputs the same tuple <code>a</code> as: <code>[1.0,2,Howdy folks!]</code></p>
|
||||
|
||||
<p>The same manipulators work with <code>operator>></code> and <code>istream</code> as well. Suppose the <code>cin</code> stream contains the following data:
|
||||
|
||||
<pre><code>(1 2 3) [4:5]</code></pre>
|
||||
|
||||
<p>The code:</p>
|
||||
|
||||
<pre><code>tuple<int, int, int> i;
|
||||
tuple<int, int> j;
|
||||
|
||||
cin >> i;
|
||||
cin >> tuples::set_open('[') >> tuples::set_close(']') >> tuples::set_delimiter(':');
|
||||
cin >> j;
|
||||
</code></pre>
|
||||
|
||||
<p>reads the data into the tuples <code>i</code> and <code>j</code>.</p>
|
||||
|
||||
<p>
|
||||
Note that extracting tuples with <code>std::string</code> or C-style string
|
||||
elements does not generally work, since the streamed tuple representation may not be unambiguously
|
||||
parseable.
|
||||
</p>
|
||||
|
||||
<h2><a name = "performance">Performance</a></h2>
|
||||
|
||||
<p>All tuple access and construction functions are small inlined one-liners.
|
||||
Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand-written tuple like classes.
|
||||
Particularly, with a decent compiler there is no performance difference between this code:</p>
|
||||
|
||||
<pre><code>class hand_made_tuple {
|
||||
A a; B b; C c;
|
||||
public:
|
||||
hand_made_tuple(const A& aa, const B& bb, const C& cc)
|
||||
: a(aa), b(bb), c(cc) {};
|
||||
A& getA() { return a; };
|
||||
B& getB() { return b; };
|
||||
C& getC() { return c; };
|
||||
};
|
||||
|
||||
hand_made_tuple hmt(A(), B(), C());
|
||||
hmt.getA(); hmt.getB(); hmt.getC();
|
||||
</code></pre>
|
||||
|
||||
<p>and this code:</p>
|
||||
|
||||
<pre><code>tuple<A, B, C> t(A(), B(), C());
|
||||
t.get<0>(); t.get<1>(); t.get<2>();
|
||||
</code></pre>
|
||||
|
||||
<p>Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.
|
||||
</p>
|
||||
<p>
|
||||
Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using
|
||||
non-const reference parameters as a mechanism for returning multiple values from a function.
|
||||
For example, suppose that the following functions <code>f1</code> and <code>f2</code> have equivalent functionalities:</p>
|
||||
|
||||
<pre><code>void f1(int&, double&);
|
||||
tuple<int, double> f2();
|
||||
</code></pre>
|
||||
|
||||
<p>Then, the call #1 may be slightly faster than #2 in the code below:</p>
|
||||
|
||||
<pre><code>int i; double d;
|
||||
...
|
||||
f1(i,d); // #1
|
||||
tie(i,d) = f2(); // #2
|
||||
</code></pre>
|
||||
<p>See
|
||||
[<a href="#publ_1">1</a>,
|
||||
<a href="#publ_2">2</a>]
|
||||
for more in-depth discussions about efficiency.</p>
|
||||
|
||||
<h4>Effect on Compile Time</h4>
|
||||
|
||||
<p>
|
||||
Compiling tuples can be slow due to the excessive amount of template instantiations.
|
||||
Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the <code>hand_made_tuple</code> class above.
|
||||
However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable.
|
||||
Compile time increases between 5 and 10 percent were measured for programs which used tuples very frequently.
|
||||
With the same test programs, memory consumption of compiling increased between 22% to 27%. See
|
||||
[<a href="#publ_1">1</a>,
|
||||
<a href="#publ_2">2</a>]
|
||||
for details.
|
||||
</p>
|
||||
|
||||
<h2><a name = "portability">Portability</a></h2>
|
||||
|
||||
<p>The library code is(?) standard C++ and thus the library works with a standard conforming compiler.
|
||||
Below is a list of compilers and known problems with each compiler:
|
||||
</p>
|
||||
<table>
|
||||
<tr><td><u>Compiler</u></td><td><u>Problems</u></td></tr>
|
||||
<tr><td>gcc 2.95</td><td>-</td></tr>
|
||||
<tr><td>edg 2.44</td><td>-</td></tr>
|
||||
<tr><td>Borland 5.5</td><td>Can't use function pointers or member pointers as tuple elements</td></tr>
|
||||
<tr><td>Metrowerks 6.2</td><td>Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
|
||||
<tr><td>MS Visual C++</td><td>No reference elements (<code>tie</code> still works). Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
|
||||
</table>
|
||||
|
||||
<h2><a name = "thanks">Acknowledgements</a></h2>
|
||||
<p>Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC, David Abrahams found a way to get rid of most of the restrictions for compilers not supporting partial specialization. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions.
|
||||
The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the
|
||||
library.
|
||||
The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.</p>
|
||||
<h2><a name = "references">References</a></h2>
|
||||
|
||||
<p>
|
||||
<a name="publ_1"></a>[1]
|
||||
Järvi J.: <i>Tuples and multiple return values in C++</i>, TUCS Technical Report No 249, 1999<!-- (<a href="http://www.tucs.fi/Publications">http://www.tucs.fi/Publications</a>)-->.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<a name="publ_2"></a>[2]
|
||||
Järvi J.: <i>ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism</i>, TUCS Technical Report No 267, 1999<!-- (<a href="http://www.tucs.fi/Publications">http://www.tucs.fi/Publications</a>)-->.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
[3] Järvi J.:<i>Tuple Types and Multiple Return Values</i>, C/C++ Users Journal, August 2001.
|
||||
</p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p>Last modified 2003-09-07</p>
|
||||
|
||||
<p>© Copyright <a href="http://www.boost.org/people/jaakko_jarvi.htm"> Jaakko Järvi</a> 2001.
|
||||
|
||||
Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies.
|
||||
This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.
|
||||
</p>
|
||||
</body>
|
||||
</html>
|
||||
|
||||
|
||||
|
||||
|
525
doc/tuple_users_guide.qbk
Normal file
525
doc/tuple_users_guide.qbk
Normal file
@ -0,0 +1,525 @@
|
||||
[/
|
||||
/ Copyright (c) 2001 Jaakko J<>rvi
|
||||
/
|
||||
/ Distributed under the Boost Software License, Version 1.0. (See
|
||||
/ accompanying file LICENSE_1_0.txt or copy at
|
||||
/ http://www.boost.org/LICENSE_1_0.txt)
|
||||
/]
|
||||
|
||||
[library Boost.Tuple
|
||||
[quickbook 1.6]
|
||||
[id tuple]
|
||||
[copyright 2001 Jaakko J\u00E4rvi]
|
||||
[dirname tuple]
|
||||
[license Distributed under the
|
||||
[@http://boost.org/LICENSE_1_0.txt Boost Software License,
|
||||
Version 1.0].
|
||||
]
|
||||
]
|
||||
|
||||
[include tuple_advanced_interface.qbk]
|
||||
[include design_decisions_rationale.qbk]
|
||||
|
||||
[template simplesect[title]
|
||||
[block '''<simplesect><title>'''[title]'''</title>''']]
|
||||
|
||||
[template endsimplesect[]
|
||||
[block '''</simplesect>''']]
|
||||
|
||||
A tuple (or n-tuple) is a fixed size collection of elements. Pairs, triples,
|
||||
quadruples etc. are tuples. In a programming language, a tuple is a data
|
||||
object containing other objects as elements. These element objects may be of
|
||||
different types.
|
||||
|
||||
Tuples are convenient in many circumstances. For instance, tuples make it easy
|
||||
to define functions that return more than one value.
|
||||
|
||||
Some programming languages, such as ML, Python and Haskell, have built-in
|
||||
tuple constructs. Unfortunately C++ does not. To compensate for this
|
||||
"deficiency", the Boost Tuple Library implements a tuple construct using
|
||||
templates.
|
||||
|
||||
[section:using_library Using the Library]
|
||||
|
||||
To use the library, just include:
|
||||
|
||||
#include "boost/tuple/tuple.hpp"
|
||||
|
||||
Comparison operators can be included with:
|
||||
|
||||
#include "boost/tuple/tuple_comparison.hpp"
|
||||
|
||||
To use tuple input and output operators,
|
||||
|
||||
#include "boost/tuple/tuple_io.hpp"
|
||||
|
||||
Both `tuple_io.hpp` and `tuple_comparison.hpp` include `tuple.hpp`.
|
||||
|
||||
All definitions are in namespace `::boost::tuples`, but the most common names
|
||||
are lifted to namespace `::boost` with using declarations. These names are:
|
||||
`tuple`, `make_tuple`, `tie` and `get`. Further, `ref` and `cref` are defined
|
||||
directly under the `::boost` namespace.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:tuple_types Tuple Types]
|
||||
|
||||
A tuple type is an instantiation of the `tuple` template. The template
|
||||
parameters specify the types of the tuple elements. The current version
|
||||
supports tuples with 0-10 elements. If necessary, the upper limit can be
|
||||
increased up to, say, a few dozen elements. The data element can be any C++
|
||||
type. Note that `void` and plain function types are valid C++ types, but
|
||||
objects of such types cannot exist. Hence, if a tuple type contains such types
|
||||
as elements, the tuple type can exist, but not an object of that type. There
|
||||
are natural limitations for element types that cannot be copied, or that are
|
||||
not default constructible (see [link tuple.constructing_tuples 'Constructing tuples']
|
||||
below).
|
||||
|
||||
For example, the following definitions are valid tuple instantiations (`A`,
|
||||
`B` and `C` are some user defined classes):
|
||||
|
||||
tuple<int>
|
||||
tuple<double&, const double&, const double, double*, const double*>
|
||||
tuple<A, int(*)(char, int), B(A::*)(C&), C>
|
||||
tuple<std::string, std::pair<A, B> >
|
||||
tuple<A*, tuple<const A*, const B&, C>, bool, void*>
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:constructing_tuples Constructing Tuples]
|
||||
|
||||
The tuple constructor takes the tuple elements as arguments. For an /n/-
|
||||
element tuple, the constructor can be invoked with /k/ arguments, where
|
||||
`0` <= /k/ <= /n/. For example:
|
||||
|
||||
tuple<int, double>()
|
||||
tuple<int, double>(1)
|
||||
tuple<int, double>(1, 3.14)
|
||||
|
||||
If no initial value for an element is provided, it is default initialized
|
||||
(and hence must be default initializable). For example:
|
||||
|
||||
class X {
|
||||
X();
|
||||
public:
|
||||
X(std::string);
|
||||
};
|
||||
|
||||
tuple<X,X,X>() // error: no default constructor for X
|
||||
tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")) // ok
|
||||
|
||||
In particular, reference types do not have a default initialization:
|
||||
|
||||
tuple<double&>() // error: reference must be
|
||||
// initialized explicitly
|
||||
|
||||
double d = 5;
|
||||
tuple<double&>(d) // ok
|
||||
|
||||
tuple<double&>(d+3.14) // error: cannot initialize
|
||||
// non-const reference with a temporary
|
||||
|
||||
tuple<const double&>(d+3.14) // ok, but dangerous:
|
||||
// the element becomes a dangling reference
|
||||
|
||||
Using an initial value for an element that cannot be copied, is a compile time
|
||||
error:
|
||||
|
||||
class Y {
|
||||
Y(const Y&);
|
||||
public:
|
||||
Y();
|
||||
};
|
||||
|
||||
char a[10];
|
||||
|
||||
tuple<char[10], Y>(a, Y()); // error, neither arrays nor Y can be copied
|
||||
tuple<char[10], Y>(); // ok
|
||||
|
||||
Note particularly that the following is perfectly ok:
|
||||
|
||||
Y y;
|
||||
tuple<char(&)[10], Y&>(a, y);
|
||||
|
||||
It is possible to come up with a tuple type that cannot be constructed. This
|
||||
occurs if an element that cannot be initialized has a lower index than an
|
||||
element that requires initialization. For example: `tuple<char[10], int&>`.
|
||||
|
||||
In sum, the tuple construction is semantically just a group of individual
|
||||
elementary constructions.
|
||||
|
||||
[section:make_tuple The `make_tuple` function]
|
||||
|
||||
Tuples can also be constructed using the `make_tuple` (cf. `std::make_pair`)
|
||||
helper functions. This makes the construction more convenient, saving the
|
||||
programmer from explicitly specifying the element types:
|
||||
|
||||
tuple<int, int, double> add_multiply_divide(int a, int b) {
|
||||
return make_tuple(a+b, a*b, double(a)/double(b));
|
||||
}
|
||||
|
||||
By default, the element types are deduced to the plain non-reference types.
|
||||
E.g.:
|
||||
|
||||
void foo(const A& a, B& b) {
|
||||
...
|
||||
make_tuple(a, b);
|
||||
|
||||
The `make_tuple` invocation results in a tuple of type `tuple<A, B>`.
|
||||
|
||||
Sometimes the plain non-reference type is not desired, e.g. if the element
|
||||
type cannot be copied. Therefore, the programmer can control the type
|
||||
deduction and state that a reference to const or reference to non-const type
|
||||
should be used as the element type instead. This is accomplished with two
|
||||
helper template functions: [@boost:/libs/core/doc/html/core/ref.html `boost::ref`]
|
||||
and [@boost:/libs/core/doc/html/core/ref.html `boost::cref`]. Any argument can
|
||||
be wrapped with these functions to get the desired type. The mechanism does
|
||||
not compromise const correctness since a const object wrapped with ref results
|
||||
in a tuple element with const reference type (see the fifth example below).
|
||||
For example:
|
||||
|
||||
A a; B b; const A ca = a;
|
||||
make_tuple(cref(a), b); // creates tuple<const A&, B>
|
||||
make_tuple(ref(a), b); // creates tuple<A&, B>
|
||||
make_tuple(ref(a), cref(b)); // creates tuple<A&, const B&>
|
||||
make_tuple(cref(ca)); // creates tuple<const A&>
|
||||
make_tuple(ref(ca)); // creates tuple<const A&>
|
||||
|
||||
Array arguments to `make_tuple` functions are deduced to reference to const
|
||||
types by default; there is no need to wrap them with `cref`. For example:
|
||||
|
||||
make_tuple("Donald", "Daisy");
|
||||
|
||||
This creates an object of type `tuple<const char (&)[7], const char (&)[6]>`
|
||||
(note that the type of a string literal is an array of const characters, not
|
||||
`const char*`). However, to get `make_tuple` to create a tuple with an element
|
||||
of a non-const array type one must use the `ref` wrapper.
|
||||
|
||||
Function pointers are deduced to the plain non-reference type, that is, to
|
||||
plain function pointer. A tuple can also hold a reference to a function, but
|
||||
such a tuple cannot be constructed with `make_tuple` (a const qualified
|
||||
function type would result, which is illegal):
|
||||
|
||||
void f(int i);
|
||||
...
|
||||
make_tuple(&f); // tuple<void (*)(int)>
|
||||
...
|
||||
tuple<tuple<void (&)(int)> > a(f) // ok
|
||||
make_tuple(f); // not ok
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:accessing_elements Accessing Tuple Elements]
|
||||
|
||||
Tuple elements are accessed with the expression:
|
||||
|
||||
t.get<N>()
|
||||
|
||||
or
|
||||
|
||||
get<N>(t)
|
||||
|
||||
where `t` is a tuple object and `N` is a constant integral expression
|
||||
specifying the index of the element to be accessed. Depending on whether `t`
|
||||
is const or not, `get` returns the `N`-th element as a reference to const or
|
||||
non-const type. The index of the first element is `0` and thus `N` must be
|
||||
between `0` and /k/`-1`, where /k/ is the number of elements in the tuple.
|
||||
Violations of these constraints are detected at compile time. Examples:
|
||||
|
||||
double d = 2.7; A a;
|
||||
tuple<int, double&, const A&> t(1, d, a);
|
||||
const tuple<int, double&, const A&> ct = t;
|
||||
...
|
||||
int i = get<0>(t); i = t.get<0>(); // ok
|
||||
int j = get<0>(ct); // ok
|
||||
get<0>(t) = 5; // ok
|
||||
get<0>(ct) = 5; // error, can't assign to const
|
||||
...
|
||||
double e = get<1>(t); // ok
|
||||
get<1>(t) = 3.14; // ok
|
||||
get<2>(t) = A(); // error, can't assign to const
|
||||
A aa = get<3>(t); // error: index out of bounds
|
||||
...
|
||||
++get<0>(t); // ok, can be used as any variable
|
||||
|
||||
/[Note:/ The member `get` functions are not supported with MS Visual C++
|
||||
compiler. Further, the compiler has trouble with finding the non-member `get`
|
||||
functions without an explicit namespace qualifier. Hence, all `get` calls
|
||||
should be qualified as `tuples::get<N>(a_tuple)` when writing code that should
|
||||
compile with MSVC++ 6.0./]/
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:construction_and_assignment Copy Construction and Tuple Assignment]
|
||||
|
||||
A tuple can be copy constructed from another tuple, provided that the element
|
||||
types are element-wise copy constructible. Analogously, a tuple can be
|
||||
assigned to another tuple, provided that the element types are element-wise
|
||||
assignable. For example:
|
||||
|
||||
class A {};
|
||||
class B : public A {};
|
||||
struct C { C(); C(const B&); };
|
||||
struct D { operator C() const; };
|
||||
tuple<char, B*, B, D> t;
|
||||
...
|
||||
tuple<int, A*, C, C> a(t); // ok
|
||||
a = t; // ok
|
||||
|
||||
In both cases, the conversions performed are:
|
||||
|
||||
* `char -> int`,
|
||||
* `B* -> A*` (derived class pointer to base class pointer),
|
||||
* `B -> C` (a user defined conversion), and
|
||||
* `D -> C` (a user defined conversion).
|
||||
|
||||
Note that assignment is also defined from `std::pair` types:
|
||||
|
||||
tuple<float, int> a = std::make_pair(1, 'a');
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:relational_operators Relational Operators]
|
||||
|
||||
Tuples reduce the operators `==`, `!=`, `<`, `>`, `<=` and `>=` to the
|
||||
corresponding elementary operators. This means, that if any of these operators
|
||||
is defined between all elements of two tuples, then the same operator is
|
||||
defined between the tuples as well. The equality operators for two tuples `a`
|
||||
and `b` are defined as:
|
||||
|
||||
* `a == b` iff for each `i`: `a`'''<subscript>i</subscript>'''` == b`'''<subscript>i</subscript>'''
|
||||
* `a != b` iff exists `i`: `a`'''<subscript>i</subscript>'''` != b`'''<subscript>i</subscript>'''
|
||||
|
||||
The operators `<`, `>`, `<=` and `>=` implement a lexicographical ordering.
|
||||
|
||||
Note that an attempt to compare two tuples of different lengths results in a
|
||||
compile time error. Also, the comparison operators are /"short-circuited"/:
|
||||
elementary comparisons start from the first elements and are performed only
|
||||
until the result is clear.
|
||||
|
||||
Examples:
|
||||
|
||||
tuple<std::string, int, A> t1(std::string("same?"), 2, A());
|
||||
tuple<std::string, long, A> t2(std::string("same?"), 2, A());
|
||||
tuple<std::string, long, A> t3(std::string("different"), 3, A());
|
||||
|
||||
bool operator==(A, A) { std::cout << "All the same to me..."; return true; }
|
||||
|
||||
t1 == t2; // true
|
||||
t1 == t3; // false, does not print "All the..."
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:tiers Tiers]
|
||||
|
||||
/Tiers/ are tuples, where all elements are of non-const reference types. They
|
||||
are constructed with a call to the `tie` function template (cf. `make_tuple`):
|
||||
|
||||
int i; char c; double d;
|
||||
...
|
||||
tie(i, c, a);
|
||||
|
||||
The above `tie` function creates a tuple of type `tuple<int&, char&, double&>`.
|
||||
The same result could be achieved with the call `make_tuple(ref(i), ref(c), ref(a))`.
|
||||
|
||||
A tuple that contains non-const references as elements can be used to 'unpack'
|
||||
another tuple into variables. E.g.:
|
||||
|
||||
int i; char c; double d;
|
||||
tie(i, c, d) = make_tuple(1,'a', 5.5);
|
||||
std::cout << i << " " << c << " " << d;
|
||||
|
||||
This code prints `1 a 5.5` to the standard output stream. A tuple unpacking
|
||||
operation like this is found for example in ML and Python. It is convenient
|
||||
when calling functions which return tuples.
|
||||
|
||||
The tying mechanism works with `std::pair` templates as well:
|
||||
|
||||
int i; char c;
|
||||
tie(i, c) = std::make_pair(1, 'a');
|
||||
|
||||
[section Ignore]
|
||||
|
||||
There is also an object called `ignore` which allows you to ignore an element
|
||||
assigned by a tuple. The idea is that a function may return a tuple, only part
|
||||
of which you are interested in. For example (note, that ignore is under the
|
||||
`tuples` subnamespace):
|
||||
|
||||
char c;
|
||||
tie(tuples::ignore, c) = std::make_pair(1, 'a');
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:streaming Streaming]
|
||||
|
||||
The global `operator<<` has been overloaded for `std::ostream` such that
|
||||
tuples are output by recursively calling `operator<<` for each element.
|
||||
|
||||
Analogously, the global `operator>>` has been overloaded to extract tuples
|
||||
from `std::istream` by recursively calling `operator>>` for each element.
|
||||
|
||||
The default delimiter between the elements is space, and the tuple is enclosed
|
||||
in parenthesis. For Example:
|
||||
|
||||
tuple<float, int, std::string> a(1.0f, 2, std::string("Howdy folks!");
|
||||
|
||||
cout << a;
|
||||
|
||||
outputs the tuple as: `(1.0 2 Howdy folks!)`
|
||||
|
||||
The library defines three manipulators for changing the default behavior:
|
||||
|
||||
* `set_open(char)` defines the character that is output before the first element.
|
||||
* `set_close(char)` defines the character that is output after the last element.
|
||||
* `set_delimiter(char)` defines the delimiter character between elements.
|
||||
|
||||
Note, that these manipulators are defined in the tuples subnamespace. For
|
||||
example:
|
||||
|
||||
cout << tuples::set_open('[') << tuples::set_close(']') << tuples::set_delimiter(',') << a;
|
||||
|
||||
outputs the same tuple `a` as: `[1.0,2,Howdy folks!]`
|
||||
|
||||
The same manipulators work with `operator>>` and `istream` as well. Suppose
|
||||
the `cin` stream contains the following data:
|
||||
|
||||
(1 2 3) [4:5]
|
||||
|
||||
The code:
|
||||
|
||||
tuple<int, int, int> i;
|
||||
tuple<int, int> j;
|
||||
|
||||
cin >> i;
|
||||
cin >> tuples::set_open('[') >> tuples::set_close(']') >> tuples::set_delimiter(':');
|
||||
cin >> j;
|
||||
|
||||
reads the data into the tuples `i` and `j`.
|
||||
|
||||
Note that extracting tuples with `std::string` or C-style string elements does
|
||||
not generally work, since the streamed tuple representation may not be
|
||||
unambiguously parseable.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:performance Performance]
|
||||
|
||||
All tuple access and construction functions are small inlined one-liners.
|
||||
Therefore, a decent compiler can eliminate any extra cost of using tuples
|
||||
compared to using hand-written tuple like classes. Particularly, with a decent
|
||||
compiler there is no performance difference between this code:
|
||||
|
||||
class hand_made_tuple {
|
||||
A a; B b; C c;
|
||||
public:
|
||||
hand_made_tuple(const A& aa, const B& bb, const C& cc)
|
||||
: a(aa), b(bb), c(cc) {};
|
||||
A& getA() { return a; };
|
||||
B& getB() { return b; };
|
||||
C& getC() { return c; };
|
||||
};
|
||||
|
||||
hand_made_tuple hmt(A(), B(), C());
|
||||
hmt.getA(); hmt.getB(); hmt.getC();
|
||||
|
||||
and this code:
|
||||
|
||||
tuple<A, B, C> t(A(), B(), C());
|
||||
t.get<0>(); t.get<1>(); t.get<2>();
|
||||
|
||||
Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to
|
||||
optimize this kind of tuple usage.
|
||||
|
||||
Depending on the optimizing ability of the compiler, the tier mechanism may
|
||||
have a small performance penalty compared to using non-const reference
|
||||
parameters as a mechanism for returning multiple values from a function. For
|
||||
example, suppose that the following functions `f1` and `f2` have equivalent
|
||||
functionalities:
|
||||
|
||||
void f1(int&, double&);
|
||||
tuple<int, double> f2();
|
||||
|
||||
Then, the call #1 may be slightly faster than #2 in the code below:
|
||||
|
||||
int i; double d;
|
||||
...
|
||||
f1(i,d); // #1
|
||||
tie(i,d) = f2(); // #2
|
||||
|
||||
See [[link publ_1 1], [link publ_2 2]] for more in-depth discussions about
|
||||
efficiency.
|
||||
|
||||
[section Effect on Compile Time]
|
||||
|
||||
Compiling tuples can be slow due to the excessive amount of template
|
||||
instantiations. Depending on the compiler and the tuple length, it may be more
|
||||
than 10 times slower to compile a tuple construct, compared to compiling an
|
||||
equivalent explicitly written class, such as the `hand_made_tuple` class above.
|
||||
However, as a realistic program is likely to contain a lot of code in addition
|
||||
to tuple definitions, the difference is probably unnoticeable. Compile time
|
||||
increases between 5 and 10 percent were measured for programs which used tuples
|
||||
very frequently. With the same test programs, memory consumption of compiling
|
||||
increased between 22% to 27%. See [[link publ_1 1], [link publ_2 2]] for
|
||||
details.
|
||||
|
||||
[endsect]
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:portability Portability]
|
||||
|
||||
The library code is(?) standard C++ and thus the library works with a standard
|
||||
conforming compiler. Below is a list of compilers and known problems with each
|
||||
compiler:
|
||||
|
||||
[table
|
||||
[[Compiler] [Problems]]
|
||||
[[gcc 2.95] [-]]
|
||||
[[edg 2.44] [-]]
|
||||
[[Borland 5.5] [Can't use function pointers or member pointers as
|
||||
tuple elements]]
|
||||
[[Metrowerks 6.2] [Can't use `ref` and `cref` wrappers]]
|
||||
[[MS Visual C++] [No reference elements (`tie` still works). Can't use
|
||||
`ref` and `cref` wrappers]]
|
||||
]
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:more_details More Details]
|
||||
|
||||
[link tuple_advanced_interface Advanced features] (describes some metafunctions etc.).
|
||||
|
||||
[link design_decisions_rationale Rationale behind some design/implementation decisions].
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:thanks Acknowledgements]
|
||||
|
||||
Gary Powell has been an indispensable helping hand. In particular, stream
|
||||
manipulators for tuples were his idea. Doug Gregor came up with a working
|
||||
version for MSVC, David Abrahams found a way to get rid of most of the
|
||||
restrictions for compilers not supporting partial specialization. Thanks to
|
||||
Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions. The
|
||||
comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David
|
||||
Abrahams and Hartmut Kaiser helped to improve the library. The idea for the
|
||||
`tie` mechanism came from an old usenet article by Ian McCulloch, where he
|
||||
proposed something similar for `std::pair`s.
|
||||
|
||||
[endsect]
|
||||
|
||||
[section:references References]
|
||||
|
||||
[#publ_1]
|
||||
[1] J\u00E4rvi J.: /Tuples and multiple return values in C++/, TUCS Technical Report No 249, 1999.
|
||||
|
||||
[#publ_2]
|
||||
[2] J\u00E4rvi J.: /ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism/, TUCS Technical Report No 267, 1999.
|
||||
|
||||
[#publ_3]
|
||||
[3] J\u00E4rvi J.: /Tuple Types and Multiple Return Values/, C/C++ Users Journal, August 2001.
|
||||
|
||||
[endsect]
|
@ -1,9 +1,9 @@
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="refresh" content="0; URL=doc/tuple_users_guide.html">
|
||||
<meta http-equiv="refresh" content="0; URL=doc/html/tuple_users_guide.html">
|
||||
</head>
|
||||
<body>
|
||||
Automatic redirection failed, please go to <a href="doc/tuple_users_guide.html">doc/tuple_users_guide.html</a>
|
||||
Automatic redirection failed, please go to <a href="doc/html/tuple_users_guide.html">doc/html/tuple_users_guide.html</a>
|
||||
<hr>
|
||||
<p><EFBFBD> Copyright Beman Dawes, 2001</p>
|
||||
<p>Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||||
|
Reference in New Issue
Block a user