Compare commits

...

44 Commits

Author SHA1 Message Date
8645e388d9 This commit was manufactured by cvs2svn to create branch
'thread_rewrite'.

[SVN r30953]
2005-09-13 14:20:32 +00:00
2d13a60d05 applied patch by Rupert Kittinger, avoids potentially undefined behavior
[SVN r30690]
2005-08-26 16:03:05 +00:00
9c6ef41dfe Large patch from Ulrich Eckhardt to fix support for EVC++ 4.
[SVN r30670]
2005-08-25 16:27:28 +00:00
5686969287 Merged from 1.33.0 release
[SVN r30540]
2005-08-12 13:02:37 +00:00
a17ce206f2 replaced BOOST_TEST
[SVN r27057]
2005-02-03 13:55:45 +00:00
34690282fe fixes in element<> for BCB compilers, with help from Tobias Schwinger
[SVN r25763]
2004-10-18 06:03:18 +00:00
bc3d37ec2b c++boost.gif -> boost.png replacement
[SVN r25573]
2004-10-05 15:45:52 +00:00
eea1937afc Converted to Boost Software License, Version 1.0
[SVN r24096]
2004-07-27 03:43:34 +00:00
8820994ffd Doug Gregor -> Douglas Gregor
[SVN r24016]
2004-07-25 02:29:29 +00:00
045d761ab5 suppressed scoping the call get_class to the detail namespace
[SVN r23113]
2004-06-17 13:51:33 +00:00
63c93b59b4 port to vacpp:
added default template arguments explicitly (Joaquin M Lopez)
  removed member template keyword (Toon Knapen)


[SVN r23109]
2004-06-17 07:01:13 +00:00
78572fca7b Bug fix for vc6
[SVN r20866]
2003-11-19 22:01:52 +00:00
ad29f96e5b updated swallow_assign constness bug
[SVN r20520]
2003-10-28 09:42:43 +00:00
9734556efe made "ingnore" a const object to avoid linker errors
[SVN r20449]
2003-10-21 23:25:17 +00:00
c8e03a518b added praise for Dave for improving tuple support on non-partial
template specialization compilers


[SVN r19965]
2003-09-08 15:10:04 +00:00
e4b869219b More complete functionality for compilers without partial specialization.
[SVN r19925]
2003-09-05 16:52:55 +00:00
eef0e01c8d Adjust for changed test library name
[SVN r19924]
2003-09-05 16:18:53 +00:00
41d649b08c cleaning up after previous commit
[SVN r19688]
2003-08-18 19:35:29 +00:00
122bf636f5 getting rid of some library specific macros and using BOOST_NO_EXPLICIT_-
FUNCTION_TEMPLATE_ARGUMENTS related helper macros from the config library


[SVN r19687]
2003-08-18 19:33:47 +00:00
359eaeecbf added tests to ensure correct constness behaviour
[SVN r18871]
2003-06-26 15:19:01 +00:00
28e34eb757 fixed a typo
[SVN r18386]
2003-05-12 14:51:42 +00:00
5ea6623d49 restore from disk crash
[SVN r18353]
2003-05-08 02:19:10 +00:00
d349450992 fixed a few links
[SVN r18344]
2003-05-07 16:01:33 +00:00
8b4daa1385 patch of a patch
[SVN r17706]
2003-03-03 16:45:55 +00:00
1972959fda element<T>::type takes constness into consideration
[SVN r17666]
2003-02-26 23:10:55 +00:00
496cc84960 a patch for borland
[SVN r17660]
2003-02-26 16:04:56 +00:00
c1a28e5d81 typofix
[SVN r17557]
2003-02-20 15:30:48 +00:00
4d4fe0010f Added copyright statement
[SVN r17193]
2003-02-04 11:54:01 +00:00
8992af95d1 Link bug workaround for MSVC and old Dec CXX
[SVN r16342]
2002-11-20 13:17:52 +00:00
ae40fce7c9 added namespace qualifiers to make MIPS PRO happy
[SVN r16033]
2002-10-31 18:14:29 +00:00
607b65a946 fixing a borland warning
[SVN r15810]
2002-10-08 19:24:36 +00:00
2c213c8295 fix one borland warning
[SVN r15808]
2002-10-08 18:43:52 +00:00
5b8506c39b typo fixes
[SVN r15652]
2002-10-02 16:51:43 +00:00
22f56bbe58 fixed Bemans name in a comment
[SVN r15594]
2002-10-01 03:26:10 +00:00
fb8fa3c7b6 work-around for MIPSpro bug
[SVN r15574]
2002-09-30 19:45:22 +00:00
cc5a2ae388 Fixes which make it possible to declare with reference elements
[SVN r15532]
2002-09-28 07:25:27 +00:00
4cd544f4c1 applied patch Markus Schöpflin, ::template replaced with ::BOOST_NESTED_TEMPLATE
[SVN r15466]
2002-09-20 15:55:10 +00:00
74a2ab1242 changed jamfile includes from <include> to <sysinclude>
[SVN r15305]
2002-09-13 16:26:12 +00:00
7896766f8f a fix of a fix
[SVN r15278]
2002-09-12 20:59:05 +00:00
0a33edd21d workaround for isspace and metrowerks
[SVN r15277]
2002-09-12 20:50:10 +00:00
53c1bb2c20 removed an extraneous include
[SVN r14993]
2002-08-20 15:54:11 +00:00
ea8d71487d workaround for boost test library problem
[SVN r14992]
2002-08-20 15:51:36 +00:00
6a92d10f25 added a redirection index.html file
[SVN r14898]
2002-08-15 18:26:17 +00:00
3570bdb6b6 fixed some warningns about unused variables, added Jamfile
[SVN r14854]
2002-08-14 20:55:52 +00:00
12 changed files with 498 additions and 1912 deletions

View File

@ -1,153 +0,0 @@
<html>
<title>Design decisions rationale for Boost Tuple Library</title>
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<h1>Tuple Library : design decisions rationale</h1>
<h2>About namespaces</h2>
<p>
There was a discussion about whether tuples should be in a separate namespace or directly in the <code>boost</code> namespace.
The common principle is that domain libraries (like <i>graph</i>, <i>python</i>) should be on a separate
subnamespace, while utility like libraries directly in the <code>boost</code> namespace.
Tuples are somewhere in between, as the tuple template is clearly a general utility, but the library introduces quite a lot of names in addition to just the tuple template.
Tuples were originally under a subnamespace.
As a result of the discussion, tuple definitions were moved directly under the <code>boost</code> namespace.
As a result of a continued discussion, the subnamespace was reintroduced.
The final (I truly hope so) solution is now to have all definitions in namespace <code>::boost::tuples</code>, and the most common names in the <code>::boost</code> namespace as well.
This is accomplished with using declarations (suggested by Dave Abrahams):
<code><pre>namespace boost {
namespace tuples {
...
// All library code
...
}
using tuples::tuple;
using tuples::make_tuple;
using tuples::tie;
using tuples::get;
}
</pre></code>
With this arrangement, tuple creation with direct constructor calls, <code>make_tuple</code> or <code>tie</code> functions do not need the namespace qualifier.
Further, all functions that manipulate tuples are found with Koenig-lookup.
The only exceptions are the <code>get&lt;N&gt;</code> functions, which are always called with an explicitly qualified template argument, and thus Koenig-lookup does not apply.
Therefore, get is lifted to <code>::boost</code> namespace with a using declaration.
Hence, the interface for an application programmer is in practice under the namespace <code>::boost</code>.
</p>
<p>
The other names, forming an interface for library writers (cons lists, metafunctions manipulating cons lists, ...) remain in the subnamespace <code>::boost::tuples</code>.
Note, that the names <code>ignore</code>, <code>set_open</code>, <code>set_close</code> and <code>set_delimiter</code> are considered to be part of the application programmer's interface, but are still not under <code>boost</code> namespace.
The reason being the danger for name clashes for these common names.
Further, the usage of these features is probably not very frequent.
</p>
<h4>For those who are really interested in namespaces</h4>
<p>
The subnamespace name <i>tuples</i> raised some discussion.
The rationale for not using the most natural name 'tuple' is to avoid having an identical name with the tuple template.
Namespace names are, however, not generally in plural form in boost libraries.
First, no real trouble was reported for using the same name for a namespace and a class and we considered changing the name 'tuples' to 'tuple'.
But we found some trouble after all.
Both gcc and edg compilers reject using declarations where the namespace and class names are identical:
<code><pre>namespace boost {
namespace tuple {
... tie(...);
class tuple;
&nbsp; ...
}
using tuple::tie; // ok
using tuple::tuple; // error
...
}
</pre></code>
Note, however, that a corresponding using declaration in the global namespace seems to be ok:
<code><pre>
using boost::tuple::tuple; // ok;
</pre></code>
<h2>The end mark of the cons list (nil, null_type, ...)</h2>
<p>
Tuples are internally represented as <code>cons</code> lists:
<code><pre>tuple&lt;int, int&gt;
</pre></code>
inherits from
<code><pre>cons&lt;int, cons&lt;int, null_type&gt; &gt;
</code></pre>
<code>null_type</code> is the end mark of the list. Original proposition was <code>nil</code>, but the name is used in MacOS, and might have caused problems, so <code>null_type</code> was chosen instead.
Other names considered were <i>null_t</i> and <i>unit</i> (the empty tuple type in SML).
<p>
Note that <code>null_type</code> is the internal representation of an empty tuple: <code>tuple&lt;&gt;</code> inherits from <code>null_type</code>.
</p>
<h2>Element indexing</h2>
<p>
Whether to use 0- or 1-based indexing was discussed more than thoroughly, and the following observations were made:
<ul>
<li> 0-based indexing is 'the C++ way' and used with arrays etc.</li>
<li> 1-based 'name like' indexing exists as well, eg. <code>bind1st</code>, <code>bind2nd</code>, <code>pair::first</code>, etc.</li>
</ul>
Tuple access with the syntax <code>get&lt;N&gt;(a)</code>, or <code>a.get&lt;N&gt;()</code> (where <code>a</code> is a tuple and <code>N</code> an index), was considered to be of the first category, hence, the index of the first element in a tuple is 0.
<p>
A suggestion to provide 1-based 'name like' indexing with constants like <code>_1st</code>, <code>_2nd</code>, <code>_3rd</code>, ... was made.
By suitably chosen constant types, this would allow alternative syntaxes:
<code><pre>a.get&lt;0&gt;() == a.get(_1st) == a[_1st] == a(_1st);
</pre></code>
We chose not to provide more than one indexing method for the following reasons:
<ul>
<li>0-based indexing might not please everyone, but once its fixed, it is less confusing than having two different methods (would anyone want such constants for arrays?).</li>
<li>Adding the other indexing scheme doesn't really provide anything new (like a new feature) to the user of the library.</li>
<li>C++ variable and constant naming rules don't give many possibilities for defining short and nice index constants (like <code>_1st</code>, ...).
Let the binding and lambda libraries use these for a better purpose.</li>
<li>The access syntax <code>a[_1st]</code> (or <code>a(_1st)</code>) is appealing, and almost made us add the index constants after all. However, 0-based subscripting is so deep in C++, that we had a fear for confusion.</li>
<li>
Such constants are easy to add.
</li>
</ul>
<h2>Tuple comparison</h2>
The comparison operator implements lexicographical order.
Other orderings were considered, mainly dominance (<i>a &lt; b iff for each i a(i) < b(i)</i>).
Our belief is, that lexicographical ordering, though not mathematically the most natural one, is the most frequently needed ordering in everyday programming.
<h2>Streaming</h2>
<p>
The characters specified with tuple stream manipulators are stored within the space allocated by <code>ios_base::xalloc</code>, which allocates storage for <code>long</code> type objects.
<code>static_cast</code> is used in casting between <code>long</code> and the stream's character type.
Streams that have character types not convertible back and forth to long thus fail to compile.
This may be revisited at some point. The two possible solutions are:
<ul>
<li>Allow only plain <code>char</code> types as the tuple delimiters and use <code>widen</code> and <code>narrow</code> to convert between the real character type of the stream.
This would always compile, but some calls to set manipulators might result in a different
character than expected (some default character).</li>
<li>Allocate enough space to hold the real character type of the stream.
This means memory for holding the delimiter characters must be allocated separately, and that pointers to this memory are stored in the space allocated with <code>ios_base::xalloc</code>.
Any volunteers?</li>
</ul>
<A href="tuple_users_guide.html">Back to the user's guide</A>
<hr><p>&copy; Copyright Jaakko J&auml;rvi 2001.
</body>
</html>

View File

@ -1,133 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Tuple library advanced features</title>
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
</head>
<body>
<h1>Tuple library advanced features</h1>
The advanced features described in this document are all under namespace <code>::boost::tuples</code>
<h2>Metafunctions for tuple types</h2>
<p>
Suppose <code>T</code> is a tuple type, and <code>N</code> is a constant integral expression.
<code><pre>element&lt;N, T&gt;::type</pre></code>
gives the type of the <code>N</code>th element in the tuple type <code>T</code>.
</p>
<code><pre>length&lt;T&gt;::value</pre></code>
gives the length of the tuple type <code>T</code>.
</p>
<h2>Cons lists</h2>
<p>
Tuples are internally represented as <i>cons lists</i>.
For example, the tuple
<code><pre>tuple&lt;A, B, C, D&gt;</pre></code>
inherits from the type
<code><pre>cons&lt;A, cons&lt;B, cons&lt;C, cons&lt;D, null_type&gt; &gt; &gt; &gt;
</pre></code>
The tuple template provides the typedef <code>inherited</code> to access the cons list representation. E.g.:
<code>tuple&lt;A&gt;::inherited</code> is the type <code>cons&lt;A, null_type&gt;</code>.
</p>
<h4>Empty tuple</h4>
<p>
The internal representation of the empty tuple <code>tuple&lt;&gt</code> is <code>null_type</code>.
</p>
<h4>Head and tail</h4>
<p>
Both tuple template and the cons templates provide the typedefs <code>head_type</code> and <code>tail_type</code>.
The <code>head_type</code> typedef gives the type of the first element of the tuple (or the cons list).
The
<code>tail_type</code> typedef gives the remaining cons list after removing the first element.
The head element is stored in the member variable <code>head</code> and the tail list in the member variable <code>tail</code>.
Cons lists provide the member function <code>get_head()</code> for getting a reference to the head of a cons list, and <code>get_tail()</code> for getting a reference to the tail.
There are const and non-const versions of both functions.
</p>
<p>
Note that in a one element tuple, <code>tail_type</code> equals <code>null_type</code> and the <code>get_tail()</code> function returns an object of type <code>null_type</code>.
</p>
<p>
The empty tuple (<code>null_type</code>) has no head or tail, hence the <code>get_head</code> and <code>get_tail</code> functions are not provided.
</p>
<p>
Treating tuples as cons lists gives a convenient means to define generic functions to manipulate tuples. For example, the following pair of function templates assign 0 to each element of a tuple (obviously, the assignments must be valid operations for the element types):
<pre><code>inline void set_to_zero(const null_type&amp;) {};
template &lt;class H, class T&gt;
inline void set_to_zero(cons&lt;H, T&gt;&amp; x) { x.get_head() = 0; set_to_zero(x.get_tail()); }
</code></pre>
<p>
<h4>Constructing cons lists</h4>
<p>
A cons list can be default constructed provided that all its elements can be default constructed.
</p>
<p>
A cons list can be constructed from its head and tail. The prototype of the constructor is:
<pre><code>cons(typename access_traits&lt;head_type&gt;::parameter_type h,
const tail_type&amp; t)
</code></pre>
The traits template for the head parameter selects correct parameter types for different kinds of element types (for reference elements the parameter type equals the element type, for non-reference types the parameter type is a reference to const non-volatile element type).
</p>
<p>
For a one-element cons list the tail argument (<code>null_type</code>) can be omitted.
</p>
<h2>Traits classes for tuple element types</h2>
<h4><code>access_traits</code></h4>
<p>
The template <code>access_traits</code> defines three type functions. Let <code>T</code> be a type of an element in a tuple:
<ol>
<li><code>access_traits&lt;T&gt;::type</code> maps <code>T</code> to the return type of the non-const access functions (nonmeber and member <code>get</code> functions, and the <code>get_head</code> function).</li>
<li><code>access_traits&lt;T&gt;::const_type</code> maps <code>T</code> to the return type of the const access functions.</li>
<li><code>access_traits&lt;T&gt;::parameter_type</code> maps <code>T</code> to the parameter type of the tuple constructor.</li>
</ol>
<h4><code>make_tuple_traits</code></h4>
The element types of the tuples that are created with the <code>make_tuple</code> functions are computed with the type function <code>make_tuple_traits</code>.
The type function call <code>make_tuple_traits&lt;T&gt;::type</code> implements the following type mapping:
<ul>
<li><i>any reference type</i> -&gt; <i>compile time error</i>
</li>
<li><i>any array type</i> -&gt; <i>constant reference to the array type</i>
</li>
<li><code>reference_wrapper&lt;T&gt;</code> -&gt; <code>T&amp;</code>
</li>
<li><code>T</code> -&gt; <code>T</code>
</li>
</ul>
Objects of type <code>reference_wrapper</code> are created with the <code>ref</code> and <code>cref</code> functions (see <A href="tuple_users_guide.html#make_tuple">The <code>make_tuple</code> function</A>.)
</p>
<p>Reference wrappers were originally part of the tuple library, but they are now a general utility of boost.
The <code>reference_wrapper</code> template and the <code>ref</code> and <code>cref</code> functions are defined in a separate file <code>ref.hpp</code> in the main boost include directory; and directly in the <code>boost</code> namespace.
</p>
<A href="tuple_users_guide.html">Back to the user's guide</A>
<hr>
<p>&copy; Copyright Jaakko J&auml;rvi 2001.</p>
</body>
</html>

View File

@ -1,529 +0,0 @@
<html>
<head>
<title>The Boost Tuple Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<h1>The Boost Tuple Library</h1>
<p>
A tuple (or <i>n</i>-tuple) is a fixed size collection of elements.
Pairs, triples, quadruples etc. are tuples.
In a programming language, a tuple is a data object containing other objects as elements.
These element objects may be of different types.
</p>
<p>Tuples are convenient in many circumstances.
For instance, tuples make it easy to define functions that return more than one value.
</p>
<p>
Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs.
Unfortunately C++ does not.
To compensate for this &quot;deficiency&quot;, the Boost Tuple Library implements a tuple construct using templates.
</p>
<h2>Table of Contents</h2>
<ol>
<li><a href = "#using_library">Using the library</a></li>
<li><a href = "#tuple_types">Tuple types</a></li>
<li><a href = "#constructing_tuples">Constructing tuples</a></li>
<li><a href = "#accessing_elements">Accessing tuple elements</a></li>
<li><a href = "#construction_and_assignment">Copy construction and tuple assignment</a></li>
<li><a href = "#relational_operators">Relational operators</a></li>
<li><a href = "#tiers">Tiers</a></li>
<li><a href = "#streaming">Streaming</a></li>
<li><a href = "#performance">Performance</a></li>
<li><a href = "#portability">Portability</a></li>
<li><a href = "#thanks">Acknowledgements</a></li>
<li><a href = "#references">References</a></li>
</ol>
<h4>More details</h4>
<p>
<a href = "tuple_advanced_interface.html">Advanced features</a> (describes some metafunctions etc.).</p>
<p>
<a href = "design_decisions_rationale.html">Rationale behind some design/implementation decisions.</a></p>
<h2><a name="using_library">Using the library</a></h2>
<p>To use the library, just include:
<pre><code>#include &quot;boost/tuple/tuple.hpp&quot;</code></pre>
<p>Comparison operators can be included with:
<pre><code>#include &quot;boost/tuple/tuple_comparison.hpp&quot;</code></pre>
<p>To use tuple input and output operators,
<pre><code>#include &quot;boost/tuple/tuple_io.hpp&quot;</code></pre>
Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <code>tuple.hpp</code>.
<p>All definitions are in namespace <code>::boost::tuples</code>, but the most common names are lifted to namespace <code>::boost</code> with using declarations. These names are: <code>tuple</code>, <code>make_tuple</code>, <code>tie</code> and <code>get</code>. Further, <code>ref</code> and <code>cref</code> are defined directly under the <code>::boost</code> namespace.
<h2><a name = "tuple_types">Tuple types</a></h2>
<p>A tuple type is an instantiation of the <code>tuple</code> template.
The template parameters specify the types of the tuple elements.
The current version supports tuples with 0-10 elements.
If necessary, the upper limit can be increased up to, say, a few dozen elements.
The data element can be any C++ type.
Note that <code>void</code> and plain function types are valid
C++ types, but objects of such types cannot exist.
Hence, if a tuple type contains such types as elements, the tuple type
can exist, but not an object of that type.
There are natural limitations for element types that cannot
be be copied, or that are not default constructible (see 'Constructing tuples'
below).
<p>
For example, the following definitions are valid tuple instantiations (<code>A</code>, <code>B</code> and <code>C</code> are some user defined classes):
<pre><code>tuple&lt;int&gt;
tuple&lt;double&amp;, const double&amp;, const double, double*, const double*&gt;
tuple&lt;A, int(*)(char, int), B(A::*)(C&amp;), C&gt;
tuple&lt;std::string, std::pair&lt;A, B&gt; &gt;
tuple&lt;A*, tuple&lt;const A*, const B&amp;, C&gt;, bool, void*&gt;
</code></pre>
<h2><a name = "constructing_tuples">Constructing tuples</a></h2>
<p>
The tuple constructor takes the tuple elements as arguments.
For an <i>n</i>-element tuple, the constructor can be invoked with <i>k</i> arguments, where 0 &lt; <i>k</i> &lt;= <i>n</i>.
For example:
<pre><code>tuple&lt;int, double&gt;()
tuple&lt;int, double&gt;(1)
tuple&lt;int, double&gt;(1, 3.14)
</code></pre>
<p>
If no initial value for an element is provided, it is default initialized (and hence must be default initializable).
For example.
<pre><code>class X {
X();
public:
X(std::string);
};
tuple&lt;X,X,X&gt;() // error: no default constructor for X
tuple&lt;X,X,X&gt;(string(&quot;Jaba&quot;), string(&quot;Daba&quot;), string(&quot;Duu&quot;)) // ok
</code></pre>
In particular, reference types do not have a default initialization:
<pre><code>tuple&lt;double&amp;&gt;() // error: reference must be
// initialized explicitly
double d = 5;
tuple&lt;double&amp;&gt;(d) // ok
tuple&lt;double&amp;&gt;(d+3.14) // error: cannot initialize
// non-const reference with a temporary
tuple&lt;const double&amp;&gt;(d+3.14) // ok, but dangerous:
// the element becomes a dangling reference
</code></pre>
<p>Using an initial value for an element that cannot be copied, is a compile
time error:
<pre><code>class Y {
Y(const Y&amp;);
public:
Y();
};
char a[10];
tuple&lt;char[10], Y&gt;(a, Y()); // error, neither arrays nor Y can be copied
tuple&lt;char[10], Y&gt;(); // ok
</code></pre>
Note particularly that the following is perfectly ok:
<code><pre>Y y;
tuple&lt;char(&amp;)[10], Y&amp;&gt;(a, y);
</code></pre>
It is possible to come up with a tuple type that cannot be constructed.
This occurs if an element that cannot be initialized has a lower
index than an element that requires initialization.
For example: <code>tuple&lt;char[10], int&amp;&gt;</code>.
<p>In sum, the tuple construction is semantically just a group of individual elementary constructions.
</p>
<h4><a name="make_tuple">The <code>make_tuple</code> function</a></h4>
<p>
Tuples can also be constructed using the <code>make_tuple</code> (cf. <code>std::make_pair</code>) helper functions.
This makes the construction more convenient, saving the programmer from explicitly specifying the element types:
<pre><code>tuple&lt;int, int, double&gt; add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));
}
</code></pre>
<p>
By default, the element types are deduced to the plain non-reference types. E.g:
<pre><code>void foo(const A&amp; a, B&amp; b) {
...
make_tuple(a, b);
</code></pre>
The <code>make_tuple</code> invocation results in a tuple of type <code>tuple&lt;A, B&gt;</code>.
<p>
Sometimes the plain non-reference type is not desired, e.g. if the element type cannot be copied.
Therefore, the programmer can control the type deduction and state that a reference to const or reference to
non-const type should be used as the element type instead.
This is accomplished with two helper template functions: <code>ref</code> and <code>cref</code>.
Any argument can be wrapped with these functions to get the desired type.
The mechanism does not compromise const correctness since a const object wrapped with <code>ref</code> results in a tuple element with const reference type (see the fifth code line below).
For example:
<pre><code>A a; B b; const A ca = a;
make_tuple(cref(a), b); // creates tuple&lt;const A&amp;, B&gt;
make_tuple(ref(a), b); // creates tuple&lt;A&amp;, B&gt;
make_tuple(ref(a), cref(b)); // creates tuple&lt;A&amp;, const B&amp;&gt;
make_tuple(cref(ca)); // creates tuple&lt;const A&amp;&gt;
make_tuple(ref(ca)); // creates tuple&lt;const A&amp;&gt;
</code></pre>
<p>
Array arguments to <code>make_tuple</code> functions are deduced to reference to const types by default; there is no need to wrap them with <code>cref</code>. For example:
<pre><code>make_tuple(&quot;Donald&quot;, &quot;Daisy&quot;);
</code></pre>
This creates an object of type <code>tuple&lt;const char (&amp;)[5], const char (&amp;)[6]&gt;</code>
(note that the type of a string literal is an array of const characters, not <code>const char*</code>).
However, to get <code>make_tuple</code> to create a tuple with an element of a
non-const array type one must use the <code>ref</code> wrapper.
<p>
Function pointers are deduced to the plain non-reference type, that is, to plain function pointer.
A tuple can also hold a reference to a function,
but such a tuple cannot be constructed with <code>make_tuple</code> (a const qualified function type would result, which is illegal):
<pre><code>void f(int i);
...
make_tuple(&amp;f); // tuple&lt;void (*)(int)&gt;
...
tuple&lt;tuple&lt;void (&amp;)(int)&gt; &gt; a(f) // ok
make_tuple(f); // not ok
</code></pre>
<h2><a name = "accessing_elements">Accessing tuple elements</a></h2>
<p>
Tuple elements are accessed with the expression:
<pre><code>t.get&lt;N&gt;()
</code></pre>
or
<pre><code>get&lt;N&gt;(t)
</code></pre>
where <code>t</code> is a tuple object and <code>N</code> is a constant integral expression specifying the index of the element to be accessed.
Depending on whether <code>t</code> is const or not, <code>get</code> returns the <code>N</code>th element as a reference to const or
non-const type.
The index of the first element is 0 and thus<code>
N</code> must be between 0 and <code>k-1</code>, where <code>k</code> is the number of elements in the tuple.
Violations of these constrains are detected at compile time. Examples:
<pre><code>double d = 2.7; A a;
tuple&lt;int, double&amp;, const A&amp;&gt; t(1, d, a);
const tuple&lt;int, double&amp;, const A&amp;&gt; ct = t;
...
int i = get&lt;0&gt;(t); i = t.get&lt;0&gt;(); // ok
int j = get&lt;0&gt;(ct); // ok
get&lt;0&gt;(t) = 5; // ok
get&lt;0&gt;(ct) = 5; // error, can't assign to const
...
double e = get&lt;1&gt;(t); // ok
get&lt;1&gt;(t) = 3.14; // ok
get&lt;2&gt;(t) = A(); // error, can't assign to const
A aa = get&lt;3&gt;(t); // error: index out of bounds
...
++get&lt;0&gt;(t); // ok, can be used as any variable
</code></pre>
Note! The member get functions are not supported with MS Visual C++ compiler.
Further, the compiler has trouble with finding the non-member get functions without an explicit namespace qualifier.
Hence, all <code>get</code> calls should be qualified as: <code>tuples::get&lt;N&gt;(a_tuple)</code> when writing code that shoud compile with MSVC++ 6.0.
<h2><a name = "construction_and_assignment">Copy construction and tuple assignment</a></h2>
<p>
A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible.
Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable.
For example:
<pre><code>class A;
class B : public A {};
struct C { C(); C(const B&amp;); }
struct D { operator C() const; }
tuple&lt;char, B*, B, D&gt; t;
...
tuple&lt;int, A*, C, C&gt; a(t); // ok
a = t; // ok
</code></pre>
In both cases, the conversions performed are: <code>char -> int</code>, <code>B* -> A*</code> (derived class pointer to base class pointer), <code>B -> C</code> (a user defined conversion) and <code>D -> C</code> (a user defined conversion).
<p>
Note that assignment is also defined from <code>std::pair</code> types:
<pre><code>tuple&lt;float, int&gt; a = std::make_pair(1, 'a');
</code></pre>
<h2><a name = "relational_operators">Relational operators</a></h2>
<p>
Tuples reduce the operators <code>==, !=, &lt;, >, &lt;=</code> and <code>>=</code> to the corresponding elementary operators.
This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well.
The equality operators for two tuples <code>a</code> and <code>b</code> are defined as:
<ul>
<li><code>a == b</code> iff for each <code>i</code>: <code>a<sub>i</sub> == b<sub>i</sub></code></li>
<li><code>a != b</code> iff exists <code>i</code>: <code>a<sub>i</sub> != b<sub>i</sub></code></li>
</ul>
The operators <code>&lt;, >, &lt;=</code> and <code>>=</code> implement a lexicographical ordering.
<p>
Note that an attempt to compare two tuples of different lengths results in a compile time error.</p>
Also, the comparison operators are <i>"short-circuited"</i>: elementary comparisons start from the first elements and are performed only until the result is clear.
<p>Examples:
<pre><code>tuple&lt;std::string, int, A&gt; t1(std::string(&quot;same?&quot;), 2, A());
tuple&lt;std::string, long, A&gt; t2(std::string(&quot;same?&quot;), 2, A());
tuple&lt;std::string, long, A&gt; t3(std::string(&quot;different&quot;), 3, A());
bool operator==(A, A) { std::cout &lt;&lt; &quot;All the same to me...&quot;; return true; }
t1 == t2; // true
t1 == t3; // false, does not print &quot;All the...&quot;
</code></pre>
<h2><a name = "tiers">Tiers</a></h2>
<p>
<i>Tiers</i> are tuples, where all elements are of non-const reference types.
They are constructed with a call to the <code>tie</code> function template (cf. <code>make_tuple</code>):
<pre><code>int i; char c; double d;
...
tie(i, c, a);
</code></pre>
<p>
The above <code>tie</code> function creates a tuple of type <code>tuple&lt;int&amp;, char&amp;, double&amp;&gt;</code>.
The same result could be achieved with the call <code>make_tuple(ref(i), ref(c), ref(a))</code>.
</p>
<p>
A tuple that contains non-const references as elements can be used to 'unpack' another tuple into variables. E.g.:
<pre><code>int i; char c; double d;
tie(i, c, d) = make_tuple(1,'a', 5.5);
std::cout &lt;&lt; i &lt;&lt; &quot; &quot; &lt;&lt; c &lt;&lt; &quot; &quot; &lt;&lt; d;
</code></pre>
This code prints <code>1 a 5.5</code> to the standard output stream.
A tuple unpacking operation like this is found for example in ML and Python.
It is convenient when calling functions which return tuples.
<p>
The tying mechanism works with <code>std::pair</code> templates as well:
<pre><code>int i; char c;
tie(i, c) = std::make_pair(1, 'a');
</code></pre>
<h4>Ignore</h4>
There is also an object called <code>ignore</code> which allows you to ignore an element assigned by a tuple.
The idea is that a function may return a tuple, only part of which you are interested in. For example (note, that <code>ignore</code> is under the <code>tuples</code> subnamespace):
<pre><code>char c;
tie(tuples::ignore, c) = std::make_pair(1, 'a');
</code></pre>
<h2><a name = "streaming">Streaming</a></h2>
<p>
The global <code>operator&lt;&lt;</code> has been overloaded for <code>std::ostream</code> such that tuples are
output by recursively calling <code>operator&lt;&lt;</code> for each element.
</p>
<p>
Analogously, the global <code>operator&gt;&gt;</code> has been overloaded to extract tuples from <code>std::istream</code> by recursively calling <code>operator&gt;&gt;</code> for each element.
</p>
<p>
The default delimiter between the elements is space, and the tuple is enclosed
in parenthesis.
For Example:
<pre><code>tuple&lt;float, int, std::string&gt; a(1.0f, 2, std::string(&quot;Howdy folks!&quot;);
cout &lt;&lt; a;
</code></pre>
outputs the tuple as: <code>(1.0 2 Howdy folks!)</code>
<p>
The library defines three <i>manipulators</i> for changing the default behavior:
<ul>
<li><code>set_open(char)</code> defines the character that is output before the first
element.</li>
<li><code>set_close(char)</code> defines the character that is output after the
last element.</li>
<li><code>set_delimiter(char)</code> defines the delimiter character between
elements.</li>
</ul>
Note, that these manipulators are defined in the <code>tuples</code> subnamespace.
For example:
<code><pre>cout &lt;&lt; tuples::set_open('[') &lt;&lt; tuples::set_close(']') &lt;&lt; tuples::set_delimiter(',') &lt;&lt; a;
</code></pre>
outputs the same tuple <code>a</code> as: <code>[1.0,2,Howdy folks!]</code>
<p>The same manipulators work with <code>operator&gt;&gt;</code> and <code>istream</code> as well. Suppose the <code>cin</code> stream contains the following data:
<pre><code>(1 2 3) [4:5]</code></pre>
The code:
<code><pre>tuple&lt;int, int, int&gt; i;
tuple&lt;int, int&gt; j;
cin &gt;&gt; i;
cin &gt;&gt; tuples::set_open('[') &gt;&gt; tuples::set_close(']') &gt;&gt; tules::set_delimiter(':');
cin &gt;&gt; j;
</code></pre>
reads the data into the tuples <code>i</code> and <code>j</code>.
<p>
Note that extracting tuples with <code>std::string</code> or C-style string
elements does not generally work, since the streamed tuple representation may not be unambiguously
parseable.
</p>
<h2><a name = "performance">Performance</a></h2>
All tuple access and construction functions are small inlined one-liners.
Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand written tuple like classes.
Particularly, with a decent compiler there is no performance difference between this code:
<pre><code>class hand_made_tuple {
A a; B b; C c;
public:
hand_made_tuple(const A&amp; aa, const B&amp; bb, const C&amp; cc)
: a(aa), b(bb), c(cc) {};
A&amp; getA() { return a; };
B&amp; getB() { return b; };
C&amp; getC() { return c; };
};
hand_made_tuple hmt(A(), B(), C());
hmt.getA(); hmt.getB(); hmt.getC();
</code></pre>
and this code:
<pre><code>tuple&lt;A, B, C&gt; t(A(), B(), C());
t.get&lt;0&gt;(); t.get&lt;1&gt;(); t.get&lt;2&gt;();
</code></pre>
<p>Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.
</p>
<p>
Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using
non-const reference parameters as a mechanism for returning multiple values from a function.
For example, suppose that the following functions <code>f1</code> and <code>f2</code> have equivalent functionalities:
<pre><code>void f1(int&amp;, double&amp;);
tuple&lt;int, double&gt; f2();
</code></pre>
Then, the call #1 may be slightly faster than #2 in the code below:
<pre><code>int i; double d;
...
f1(i,d); // #1
tie(i,d) = f2(); // #2
</code></pre>
See
[<a href=#publ_1>1</a>,
<a href=#publ_2>2</a>]
for more in-depth discussions about efficiency.
<h4>Effect on Compile Time</h4>
<p>
Compiling tuples can be slow due to the excessive amount of template instantiations.
Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the <code>hand_made_tuple</code> class above.
However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable.
Compile time increases between 5 to 10 percentages were measured for programs which used tuples very frequently.
With the same test programs, memory consumption of compiling increased between 22% to 27%. See
[<a href=#publ_1>1</a>,
<a href=#publ_2>2</a>]
for details.
</p>
<h2><a name = "portability">Portability</a></h2>
<p>The library code is(?) standard C++ and thus the library works with a standard conforming compiler.
Below is a list of compilers and known problems with each compiler:
</p>
<table>
<tr><td><u>Compiler</u></td><td><u>Problems</u></td></tr>
<tr><td>gcc 2.95</td><td>-</td></tr>
<tr><td>edg 2.44</td><td>-</td></tr>
<tr><td>Borland 5.5</td><td>Can't use function pointers or member pointers as tuple elements</td></tr>
<tr><td>Metrowerks 6.2</td><td>Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
<tr><td>MS Visual C++</td><td>No reference elements (<code>tie</code> still works). Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
</table>
<h2><a name = "thanks">Acknowledgements</a></h2>
Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions.
The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the
library.
The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.
<h2><a name = "references">References</a></h2>
<p>
<a name="publ_1"></a>[1]
J&auml;rvi J.: <i>Tuples and multiple return values in C++</i>, TUCS Technical Report No 249, 1999 (<a href="http://www.tucs.fi/publications">http://www.tucs.fi/publications</a>).
</p>
<p>
<a name="publ_2"></a>[2]
J&auml;rvi J.: <i>ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism</i>, TUCS Technical Report No 267, 1999 (<a href="http://www.tucs.fi/publications">http://www.tucs.fi/publications</a>).
</p>
<p>
[3] J&auml;rvi J.:<i>Tuple Types and Multiple Return Values</i>, C/C++ Users Journal, August 2001.
</p>
<hr>
<p>Last modified 2001-09-13</p>
<p>&copy; Copyright <a href="../../../people/jaakko_jarvi.htm"> Jaakko J&auml;rvi</a> 2001.
Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies.
This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.
</p>
</body>
</html>

View File

@ -2,37 +2,32 @@
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// Outside help:
// This and that, Gary Powell.
// Fixed return types for get_head/get_tail
// Fixed return types for get_head/get_tail
// ( and other bugs ) per suggestion of Jens Maurer
// simplified element type accessors + bug fix (Jeremy Siek)
// Several changes/additions according to suggestions by Doug Gregor,
// William Kempf, Vesa Karvonen, John Max Skaller, Ed Brey, Beman Davis,
// Several changes/additions according to suggestions by Douglas Gregor,
// William Kempf, Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes,
// David Abrahams.
// Revision history:
// 2002 05 01 Hugo Duncan: Fix for Borland after Jaakko's previous changes
// 2002 04 18 Jaakko: tuple element types can be void or plain function
// 2002 04 18 Jaakko: tuple element types can be void or plain function
// types, as long as no object is created.
// Tuple objects can no hold even noncopyable types
// such as arrays.
// such as arrays.
// 2001 10 22 John Maddock
// Fixes for Borland C++
// 2001 08 30 David Abrahams
// Added default constructor for cons<>.
// -----------------------------------------------------------------
// -----------------------------------------------------------------
#ifndef BOOST_TUPLE_BASIC_HPP
#define BOOST_TUPLE_BASIC_HPP
@ -42,7 +37,9 @@
#include "boost/type_traits/cv_traits.hpp"
#include "boost/type_traits/function_traits.hpp"
#include "boost/detail/workaround.hpp" // needed for BOOST_WORKAROUND
namespace boost {
namespace tuples {
@ -66,16 +63,16 @@ template <class Then, class Else> struct IF<false, Then, Else> {
} // end detail
// - cons forward declaration -----------------------------------------------
template <class HT, class TT> struct cons;
template <class HT, class TT> struct cons;
// - tuple forward declaration -----------------------------------------------
template <
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T9 = null_type>
class tuple;
class tuple;
// tuple_length forward declaration
template<class T> struct length;
@ -84,18 +81,7 @@ template<class T> struct length;
namespace detail {
#ifdef BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS
template<int N> struct workaround_holder {};
# define BOOST_TUPLE_DUMMY_PARM , detail::workaround_holder<N>* = 0
# define BOOST_TUPLE_SINGLE_DUMMY_PARM detail::workaround_holder<N>* = 0
#else
# define BOOST_TUPLE_DUMMY_PARM
# define BOOST_TUPLE_SINGLE_DUMMY_PARM
#endif
// -- generate error template, referencing to non-existing members of this
// -- generate error template, referencing to non-existing members of this
// template is used to produce compilation errors intentionally
template<class T>
class generate_error;
@ -108,23 +94,33 @@ struct get_class {
template<class RET, class HT, class TT >
inline static RET get(const cons<HT, TT>& t)
{
return get_class<N-1>::template get<RET>(t.tail);
#if BOOST_WORKAROUND(__IBMCPP__,==600)
// vacpp 6.0 is not very consistent regarding the member template keyword
// Here it generates an error when the template keyword is used.
return get_class<N-1>::get<RET>(t.tail);
#else
return get_class<N-1>::BOOST_NESTED_TEMPLATE get<RET>(t.tail);
#endif
}
template<class RET, class HT, class TT >
inline static RET get(cons<HT, TT>& t)
{
return get_class<N-1>::template get<RET>(t.tail);
#if BOOST_WORKAROUND(__IBMCPP__,==600)
return get_class<N-1>::get<RET>(t.tail);
#else
return get_class<N-1>::BOOST_NESTED_TEMPLATE get<RET>(t.tail);
#endif
}
};
template<>
struct get_class<0> {
template<class RET, class HT, class TT>
template<class RET, class HT, class TT>
inline static RET get(const cons<HT, TT>& t)
{
return t.head;
}
template<class RET, class HT, class TT>
template<class RET, class HT, class TT>
inline static RET get(cons<HT, TT>& t)
{
return t.head;
@ -135,10 +131,12 @@ struct get_class<0> {
// -cons type accessors ----------------------------------------
// typename tuples::element<N,T>::type gets the type of the
// typename tuples::element<N,T>::type gets the type of the
// Nth element ot T, first element is at index 0
// -------------------------------------------------------
#ifndef BOOST_NO_CV_SPECIALIZATIONS
template<int N, class T>
struct element
{
@ -153,6 +151,76 @@ struct element<0,T>
typedef typename T::head_type type;
};
template<int N, class T>
struct element<N, const T>
{
private:
typedef typename T::tail_type Next;
typedef typename element<N-1, Next>::type unqualified_type;
public:
#if BOOST_WORKAROUND(__BORLANDC__,<0x600)
typedef const unqualified_type type;
#else
typedef typename boost::add_const<unqualified_type>::type type;
#endif
};
template<class T>
struct element<0,const T>
{
#if BOOST_WORKAROUND(__BORLANDC__,<0x600)
typedef const typename T::head_type type;
#else
typedef typename boost::add_const<typename T::head_type>::type type;
#endif
};
#else // def BOOST_NO_CV_SPECIALIZATIONS
namespace detail {
template<int N, class T, bool IsConst>
struct element_impl
{
private:
typedef typename T::tail_type Next;
public:
typedef typename element_impl<N-1, Next, IsConst>::type type;
};
template<int N, class T>
struct element_impl<N, T, true /* IsConst */>
{
private:
typedef typename T::tail_type Next;
public:
typedef const typename element_impl<N-1, Next, true>::type type;
};
template<class T>
struct element_impl<0, T, false /* IsConst */>
{
typedef typename T::head_type type;
};
template<class T>
struct element_impl<0, T, true /* IsConst */>
{
typedef const typename T::head_type type;
};
} // end of namespace detail
template<int N, class T>
struct element:
public detail::element_impl<N, T, ::boost::is_const<T>::value>
{
};
#endif
// -get function templates -----------------------------------------------
// Usage: get<N>(aTuple)
@ -179,8 +247,8 @@ template <class T> struct access_traits<T&> {
typedef T& const_type;
typedef T& non_const_type;
typedef T& parameter_type;
typedef T& parameter_type;
};
// get function for non-const cons-lists, returns a reference to the element
@ -189,13 +257,19 @@ template<int N, class HT, class TT>
inline typename access_traits<
typename element<N, cons<HT, TT> >::type
>::non_const_type
get(cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) {
return detail::get_class<N>::template
get(cons<HT, TT>& c BOOST_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
#if BOOST_WORKAROUND(__IBMCPP__,==600 )
return detail::get_class<N>::
#else
return detail::get_class<N>::BOOST_NESTED_TEMPLATE
#endif
get<
typename access_traits<
typename element<N, cons<HT, TT> >::type
>::non_const_type>(c);
}
>::non_const_type,
HT,TT
>(c);
}
// get function for const cons-lists, returns a const reference to
// the element. If the element is a reference, returns the reference
@ -204,13 +278,19 @@ template<int N, class HT, class TT>
inline typename access_traits<
typename element<N, cons<HT, TT> >::type
>::const_type
get(const cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) {
return detail::get_class<N>::template
get(const cons<HT, TT>& c BOOST_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
#if BOOST_WORKAROUND(__IBMCPP__,==600)
return detail::get_class<N>::
#else
return detail::get_class<N>::BOOST_NESTED_TEMPLATE
#endif
get<
typename access_traits<
typename element<N, cons<HT, TT> >::type
>::const_type>(c);
}
>::const_type,
HT,TT
>(c);
}
// -- the cons template --------------------------------------------------
namespace detail {
@ -231,7 +311,7 @@ template <class T> struct wrap_non_storeable_type {
>::RET type;
};
template <> struct wrap_non_storeable_type<void> {
typedef non_storeable_type<void> type;
typedef non_storeable_type<void> type;
};
} // detail
@ -242,49 +322,49 @@ struct cons {
typedef HT head_type;
typedef TT tail_type;
typedef typename
typedef typename
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
tail_type tail;
typename access_traits<stored_head_type>::non_const_type
typename access_traits<stored_head_type>::non_const_type
get_head() { return head; }
typename access_traits<tail_type>::non_const_type
get_tail() { return tail; }
typename access_traits<tail_type>::non_const_type
get_tail() { return tail; }
typename access_traits<stored_head_type>::const_type
typename access_traits<stored_head_type>::const_type
get_head() const { return head; }
typename access_traits<tail_type>::const_type
get_tail() const { return tail; }
typename access_traits<tail_type>::const_type
get_tail() const { return tail; }
cons() : head(), tail() {}
// cons() : head(detail::default_arg<HT>::f()), tail() {}
// the argument for head is not strictly needed, but it prevents
// array type elements. This is good, since array type elements
// cannot be supported properly in any case (no assignment,
// the argument for head is not strictly needed, but it prevents
// array type elements. This is good, since array type elements
// cannot be supported properly in any case (no assignment,
// copy works only if the tails are exactly the same type, ...)
cons(typename access_traits<stored_head_type>::parameter_type h,
const tail_type& t)
: head (h), tail(t) {}
: head (h), tail(t) {}
template <class T1, class T2, class T3, class T4, class T5,
template <class T1, class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (t1),
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (t1),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
{}
template <class T2, class T3, class T4, class T5,
template <class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
cons( const null_type& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (),
cons( const null_type& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
{}
@ -293,18 +373,18 @@ struct cons {
cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}
template <class HT2, class TT2>
cons& operator=( const cons<HT2, TT2>& u ) {
head=u.head; tail=u.tail; return *this;
cons& operator=( const cons<HT2, TT2>& u ) {
head=u.head; tail=u.tail; return *this;
}
// must define assignment operator explicitly, implicit version is
// must define assignment operator explicitly, implicit version is
// illformed if HT is a reference (12.8. (12))
cons& operator=(const cons& u) {
head = u.head; tail = u.tail; return *this;
cons& operator=(const cons& u) {
head = u.head; tail = u.tail; return *this;
}
template <class T1, class T2>
cons& operator=( const std::pair<T1, T2>& u ) {
cons& operator=( const std::pair<T1, T2>& u ) {
BOOST_STATIC_ASSERT(length<cons>::value == 2); // check length = 2
head = u.first; tail.head = u.second; return *this;
}
@ -332,64 +412,65 @@ struct cons<HT, null_type> {
typedef HT head_type;
typedef null_type tail_type;
typedef cons<HT, null_type> self_type;
typedef typename
typedef typename
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
typename access_traits<stored_head_type>::non_const_type
get_head() { return head; }
null_type get_tail() { return null_type(); }
typename access_traits<stored_head_type>::const_type
typename access_traits<stored_head_type>::non_const_type
get_head() { return head; }
null_type get_tail() { return null_type(); }
typename access_traits<stored_head_type>::const_type
get_head() const { return head; }
const null_type get_tail() const { return null_type(); }
const null_type get_tail() const { return null_type(); }
// cons() : head(detail::default_arg<HT>::f()) {}
cons() : head() {}
cons(typename access_traits<stored_head_type>::parameter_type h,
const null_type& = null_type())
: head (h) {}
: head (h) {}
template<class T1>
cons(T1& t1, const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
cons(T1& t1, const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head (t1) {}
cons(const null_type& t1,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
cons(const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head () {}
template <class HT2>
cons( const cons<HT2, null_type>& u ) : head(u.head) {}
template <class HT2>
cons& operator=(const cons<HT2, null_type>& u )
cons& operator=(const cons<HT2, null_type>& u )
{ head = u.head; return *this; }
// must define assignment operator explicitely, implicit version
// must define assignment operator explicitely, implicit version
// is illformed if HT is a reference
cons& operator=(const cons& u) { head = u.head; return *this; }
template <int N>
typename access_traits<
typename element<N, cons>::type
typename element<N, self_type>::type
>::non_const_type
get(BOOST_TUPLE_SINGLE_DUMMY_PARM) {
get(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
return boost::tuples::get<N>(*this);
}
template <int N>
typename access_traits<
typename element<N, cons>::type
typename element<N, self_type>::type
>::const_type
get(BOOST_TUPLE_SINGLE_DUMMY_PARM) const {
get(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) const {
return boost::tuples::get<N>(*this);
}
@ -416,12 +497,12 @@ struct length<null_type> {
namespace detail {
// Tuple to cons mapper --------------------------------------------------
template <class T0, class T1, class T2, class T3, class T4,
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
struct map_tuple_to_cons
{
typedef cons<T0,
typename map_tuple_to_cons<T1, T2, T3, T4, T5,
typedef cons<T0,
typename map_tuple_to_cons<T1, T2, T3, T4, T5,
T6, T7, T8, T9, null_type>::type
> type;
};
@ -437,46 +518,46 @@ struct map_tuple_to_cons<null_type, null_type, null_type, null_type, null_type,
// -------------------------------------------------------------------
// -- tuple ------------------------------------------------------
template <class T0, class T1, class T2, class T3, class T4,
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
class tuple :
public detail::map_tuple_to_cons<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
class tuple :
public detail::map_tuple_to_cons<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
{
public:
typedef typename
typedef typename
detail::map_tuple_to_cons<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type inherited;
typedef typename inherited::head_type head_type;
typedef typename inherited::tail_type tail_type;
typedef typename inherited::tail_type tail_type;
// access_traits<T>::parameter_type takes non-reference types as const T&
// access_traits<T>::parameter_type takes non-reference types as const T&
tuple() {}
tuple(typename access_traits<T0>::parameter_type t0)
: inherited(t0, detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
: inherited(t0, detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1)
: inherited(t0, t1, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
: inherited(t0, t1, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2)
: inherited(t0, t1, t2, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
: inherited(t0, t1, t2, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3)
: inherited(t0, t1, t2, t3, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
: inherited(t0, t1, t2, t3, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
@ -484,7 +565,7 @@ public:
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4)
: inherited(t0, t1, t2, t3, t4, detail::cnull(), detail::cnull(),
: inherited(t0, t1, t2, t3, t4, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
@ -493,7 +574,7 @@ public:
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5)
: inherited(t0, t1, t2, t3, t4, t5, detail::cnull(), detail::cnull(),
: inherited(t0, t1, t2, t3, t4, t5, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
@ -503,7 +584,7 @@ public:
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6)
: inherited(t0, t1, t2, t3, t4, t5, t6, detail::cnull(),
: inherited(t0, t1, t2, t3, t4, t5, t6, detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
@ -514,7 +595,7 @@ public:
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, detail::cnull(),
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
@ -545,16 +626,16 @@ public:
tuple(const cons<U1, U2>& p) : inherited(p) {}
template <class U1, class U2>
tuple& operator=(const cons<U1, U2>& k) {
inherited::operator=(k);
tuple& operator=(const cons<U1, U2>& k) {
inherited::operator=(k);
return *this;
}
template <class U1, class U2>
tuple& operator=(const std::pair<U1, U2>& k) {
tuple& operator=(const std::pair<U1, U2>& k) {
BOOST_STATIC_ASSERT(length<tuple>::value == 2);// check_length = 2
this->head = k.first;
this->tail.head = k.second;
this->tail.head = k.second;
return *this;
}
@ -562,8 +643,8 @@ public:
// The empty tuple
template <>
class tuple<null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type> :
public null_type
class tuple<null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type> :
public null_type
{
public:
typedef null_type inherited;
@ -574,19 +655,17 @@ public:
namespace detail {
struct swallow_assign {
template<typename T>
swallow_assign& operator=(const T&) {
swallow_assign const& operator=(const T&) const {
return *this;
}
};
} // namespace detail
// "ignore" allows tuple positions to be ignored when using "tie".
namespace {
detail::swallow_assign ignore;
}
// "ignore" allows tuple positions to be ignored when using "tie".
detail::swallow_assign const ignore = detail::swallow_assign();
// ---------------------------------------------------------------------------
// The call_traits for make_tuple
@ -598,7 +677,7 @@ namespace {
// from template<class T> foo(T& t) : make_tuple_traits<T>::type
// Conversions:
// T -> T,
// T -> T,
// references -> compile_time_error
// reference_wrapper<T> -> T&
// const reference_wrapper<T> -> T&
@ -607,19 +686,19 @@ namespace {
template<class T>
struct make_tuple_traits {
typedef T type;
typedef T type;
// commented away, see below (JJ)
// typedef typename IF<
// typedef typename IF<
// boost::is_function<T>::value,
// T&,
// T>::RET type;
};
// The is_function test was there originally for plain function types,
// The is_function test was there originally for plain function types,
// which can't be stored as such (we must either store them as references or
// pointers). Such a type could be formed if make_tuple was called with a
// pointers). Such a type could be formed if make_tuple was called with a
// reference to a function.
// But this would mean that a const qualified function type was formed in
// the make_tuple function and hence make_tuple can't take a function
@ -634,17 +713,17 @@ struct make_tuple_traits<T&> {
typedef typename
detail::generate_error<T&>::
do_not_use_with_reference_type error;
};
};
// Arrays can't be stored as plain types; convert them to references.
// All arrays are converted to const. This is because make_tuple takes its
// parameters as const T& and thus the knowledge of the potential
// parameters as const T& and thus the knowledge of the potential
// non-constness of actual argument is lost.
template<class T, int n> struct make_tuple_traits <T[n]> {
typedef const T (&type)[n];
};
template<class T, int n>
template<class T, int n>
struct make_tuple_traits<const T[n]> {
typedef const T (&type)[n];
};
@ -653,17 +732,17 @@ template<class T, int n> struct make_tuple_traits<volatile T[n]> {
typedef const volatile T (&type)[n];
};
template<class T, int n>
template<class T, int n>
struct make_tuple_traits<const volatile T[n]> {
typedef const volatile T (&type)[n];
};
template<class T>
template<class T>
struct make_tuple_traits<reference_wrapper<T> >{
typedef T& type;
};
template<class T>
template<class T>
struct make_tuple_traits<const reference_wrapper<T> >{
typedef T& type;
};
@ -676,20 +755,20 @@ namespace detail {
// a helper traits to make the make_tuple functions shorter (Vesa Karvonen's
// suggestion)
template <
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T9 = null_type
>
struct make_tuple_mapper {
typedef
tuple<typename make_tuple_traits<T0>::type,
typename make_tuple_traits<T1>::type,
typename make_tuple_traits<T2>::type,
typename make_tuple_traits<T3>::type,
typename make_tuple_traits<T4>::type,
typename make_tuple_traits<T5>::type,
typename make_tuple_traits<T6>::type,
tuple<typename make_tuple_traits<T0>::type,
typename make_tuple_traits<T1>::type,
typename make_tuple_traits<T2>::type,
typename make_tuple_traits<T3>::type,
typename make_tuple_traits<T4>::type,
typename make_tuple_traits<T5>::type,
typename make_tuple_traits<T6>::type,
typename make_tuple_traits<T7>::type,
typename make_tuple_traits<T8>::type,
typename make_tuple_traits<T9>::type> type;
@ -699,7 +778,7 @@ struct make_tuple_mapper {
// -make_tuple function templates -----------------------------------
inline tuple<> make_tuple() {
return tuple<>();
return tuple<>();
}
template<class T0>
@ -735,7 +814,7 @@ inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4) {
typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type t;
return t(t0, t1, t2, t3, t4);
return t(t0, t1, t2, t3, t4);
}
template<class T0, class T1, class T2, class T3, class T4, class T5>
@ -743,7 +822,7 @@ inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5) {
typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type t;
return t(t0, t1, t2, t3, t4, t5);
return t(t0, t1, t2, t3, t4, t5);
}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
@ -762,7 +841,7 @@ make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6, const T7& t7) {
typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7);
return t(t0, t1, t2, t3, t4, t5, t6, t7);
}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
@ -774,7 +853,7 @@ make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T8& t8) {
typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8);
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8);
}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
@ -786,7 +865,7 @@ make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T8& t8, const T9& t9) {
typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
}
@ -813,54 +892,52 @@ inline tuple<T1&, T2&, T3&, T4&> tie(T1& t1, T2& t2, T3& t3, T4& t4) {
}
template<class T1, class T2, class T3, class T4, class T5>
inline tuple<T1&, T2&, T3&, T4&, T5&>
inline tuple<T1&, T2&, T3&, T4&, T5&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5) {
return tuple<T1&, T2&, T3&, T4&, T5&> (t1, t2, t3, t4, t5);
}
template<class T1, class T2, class T3, class T4, class T5, class T6>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&> (t1, t2, t3, t4, t5, t6);
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&> (t1, t2, t3, t4, t5, t6, t7);
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
class T8>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&>
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&>
(t1, t2, t3, t4, t5, t6, t7, t8);
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
class T8, class T9>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
T9& t9) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&>
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&>
(t1, t2, t3, t4, t5, t6, t7, t8, t9);
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
class T8, class T9, class T10>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&, T10&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&, T10&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
T9& t9, T10& t10) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&, T10&>
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&, T10&>
(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10);
}
} // end of namespace tuples
} // end of namespace boost
#undef BOOST_TUPLE_DUMMY_PARM
#undef BOOST_TUPLE_SINGLE_DUMMY_PARM
#endif // BOOST_TUPLE_BASIC_HPP

View File

@ -1,32 +1,27 @@
// - tuple_basic_no_partial_spec.hpp -----------------------------------------
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Doug Gregor (gregod@rpi.edu)
// Copyright (C) 2001 Douglas Gregor (gregod@rpi.edu)
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org or http://lambda.cs.utu.fi
// For more information, see http://www.boost.org or http://lambda.cs.utu.fi
// Revision History
// Revision History
// 14 02 01 Remove extra ';'. Also, fixed 10-parameter to make_tuple. (DG)
// 10 02 01 Fixed "null_type" constructors.
// Implemented comparison operators globally.
// Hide element_type_ref and element_type_const_ref.
// (DG).
// 09 02 01 Extended to tuples of length 10. Changed comparison for
// 09 02 01 Extended to tuples of length 10. Changed comparison for
// operator<()
// to the same used by std::pair<>, added cnull_type() (GP)
// 03 02 01 Initial Version from original tuple.hpp code by JJ. (DG)
// -----------------------------------------------------------------
// -----------------------------------------------------------------
#ifndef BOOST_TUPLE_BASIC_NO_PARTIAL_SPEC_HPP
#define BOOST_TUPLE_BASIC_NO_PARTIAL_SPEC_HPP
@ -44,20 +39,20 @@ namespace boost {
namespace tuples {
// null_type denotes the end of a list built with "cons"
struct null_type
struct null_type
{
null_type() {}
null_type(const null_type&, const null_type&) {}
};
// a helper function to provide a const null_type type temporary
inline const null_type cnull_type() { return null_type(); }
// forward declaration of tuple
template<
typename T1 = null_type,
typename T2 = null_type,
typename T3 = null_type,
typename T1 = null_type,
typename T2 = null_type,
typename T3 = null_type,
typename T4 = null_type,
typename T5 = null_type,
typename T6 = null_type,
@ -68,6 +63,10 @@ namespace tuples {
>
class tuple;
// forward declaration of cons
template<typename Head, typename Tail = null_type>
struct cons;
namespace detail {
// Takes a pointer and routes all assignments to whatever it points to
@ -92,57 +91,125 @@ namespace tuples {
struct swallow_assign
{
template<typename T>
swallow_assign& operator=(const T&)
swallow_assign const& operator=(const T&) const
{
return *this;
}
};
template <typename T> struct add_const_reference : add_reference<typename add_const<T>::type> {};
template <class MyTail>
struct init_tail
{
// Each of vc6 and vc7 seem to require a different formulation
// of this return type
template <class H, class T>
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
static typename add_reference<typename add_const<T>::type>::type
#else
static typename add_const_reference<T>::type
#endif
execute( cons<H,T> const& u, long )
{
return u.get_tail();
}
};
template <>
struct init_tail<null_type>
{
template <class H>
static null_type execute( cons<H,null_type> const& u, long )
{
return null_type();
}
template <class U>
static null_type execute(U const&, ...)
{
return null_type();
}
private:
template <class H, class T>
void execute( cons<H,T> const&, int);
};
template <class Other>
Other const&
init_head( Other const& u, ... )
{
return u;
}
template <class H, class T>
typename add_reference<typename add_const<H>::type>::type
init_head( cons<H,T> const& u, int )
{
return u.get_head();
}
inline char**** init_head(null_type const&, int);
} // end of namespace detail
// cons builds a heterogenous list of types
template<typename Head, typename Tail = null_type>
template<typename Head, typename Tail>
struct cons
{
typedef cons self_type;
typedef Head head_type;
typedef Tail tail_type;
private:
typedef typename boost::add_reference<head_type>::type head_ref;
typedef typename boost::add_reference<tail_type>::type tail_ref;
typedef typename detail::add_const_reference<head_type>::type head_cref;
typedef typename detail::add_const_reference<tail_type>::type tail_cref;
public:
head_type head;
tail_type tail;
typename boost::add_reference<head_type>::type get_head() { return head; }
typename boost::add_reference<tail_type>::type get_tail() { return tail; }
head_ref get_head() { return head; }
tail_ref get_tail() { return tail; }
head_cref get_head() const { return head; }
tail_cref get_tail() const { return tail; }
cons() : head(), tail() {}
typename boost::add_reference<const head_type>::type get_head() const { return head; }
typename boost::add_reference<const tail_type>::type get_tail() const { return tail; }
#if defined BOOST_MSVC
template<typename Tail>
explicit cons(const head_type& h /* = head_type() */, // causes MSVC 6.5 to barf.
cons(head_cref h /* = head_type() */, // causes MSVC 6.5 to barf.
const Tail& t) : head(h), tail(t.head, t.tail)
{
}
explicit cons(const head_type& h /* = head_type() */, // causes MSVC 6.5 to barf.
cons(head_cref h /* = head_type() */, // causes MSVC 6.5 to barf.
const null_type& t) : head(h), tail(t)
{
}
#else
template<typename T>
explicit cons(const head_type& h, const T& t) :
explicit cons(head_cref h, const T& t) :
head(h), tail(t.head, t.tail)
{
}
explicit cons(const head_type& h = head_type(),
const tail_type& t = tail_type()) :
explicit cons(head_cref h = head_type(),
tail_cref t = tail_type()) :
head(h), tail(t)
{
}
#endif
template <class U>
cons( const U& u )
: head(detail::init_head(u, 0))
, tail(detail::init_tail<Tail>::execute(u, 0L))
{
}
template<typename Other>
cons& operator=(const Other& other)
@ -152,13 +219,13 @@ namespace tuples {
return *this;
}
};
namespace detail {
// Determines if the parameter is null_type
template<typename T> struct is_null_type { enum { RET = 0 }; };
template<> struct is_null_type<null_type> { enum { RET = 1 }; };
/* Build a cons structure from the given Head and Tail. If both are null_type,
return null_type. */
template<typename Head, typename Tail>
@ -178,15 +245,15 @@ namespace tuples {
// Map the N elements of a tuple into a cons list
template<
typename T1,
typename T2 = null_type,
typename T3 = null_type,
typename T4 = null_type,
typename T5 = null_type,
typename T6 = null_type,
typename T7 = null_type,
typename T8 = null_type,
typename T9 = null_type,
typename T1,
typename T2 = null_type,
typename T3 = null_type,
typename T4 = null_type,
typename T5 = null_type,
typename T6 = null_type,
typename T7 = null_type,
typename T8 = null_type,
typename T9 = null_type,
typename T10 = null_type
>
struct map_tuple_to_cons
@ -331,7 +398,7 @@ namespace tuples {
{
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename Tuple::tail_type>::value);
};
template<> struct length<tuple<> > {
BOOST_STATIC_CONSTANT(int, value = 0);
};
@ -389,9 +456,9 @@ namespace tuples {
// tuple class
template<
typename T1,
typename T2,
typename T3,
typename T1,
typename T2,
typename T3,
typename T4,
typename T5,
typename T6,
@ -400,7 +467,7 @@ namespace tuples {
typename T9,
typename T10
>
class tuple :
class tuple :
public detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>::cons1
{
private:
@ -416,26 +483,45 @@ namespace tuples {
typedef typename mapped_tuple::cons2 cons2;
typedef typename mapped_tuple::cons1 cons1;
typedef typename detail::add_const_reference<T1>::type t1_cref;
typedef typename detail::add_const_reference<T2>::type t2_cref;
typedef typename detail::add_const_reference<T3>::type t3_cref;
typedef typename detail::add_const_reference<T4>::type t4_cref;
typedef typename detail::add_const_reference<T5>::type t5_cref;
typedef typename detail::add_const_reference<T6>::type t6_cref;
typedef typename detail::add_const_reference<T7>::type t7_cref;
typedef typename detail::add_const_reference<T8>::type t8_cref;
typedef typename detail::add_const_reference<T9>::type t9_cref;
typedef typename detail::add_const_reference<T10>::type t10_cref;
public:
typedef cons1 inherited;
typedef tuple self_type;
explicit tuple(const T1& t1 = T1(),
const T2& t2 = T2(),
const T3& t3 = T3(),
const T4& t4 = T4(),
const T5& t5 = T5(),
const T6& t6 = T6(),
const T7& t7 = T7(),
const T8& t8 = T8(),
const T9& t9 = T9(),
const T10& t10 = T10()) :
tuple() : cons1(T1(), cons2(T2(), cons3(T3(), cons4(T4(), cons5(T5(), cons6(T6(),cons7(T7(),cons8(T8(),cons9(T9(),cons10(T10()))))))))))
{}
tuple(
t1_cref t1,
t2_cref t2,
t3_cref t3 = T3(),
t4_cref t4 = T4(),
t5_cref t5 = T5(),
t6_cref t6 = T6(),
t7_cref t7 = T7(),
t8_cref t8 = T8(),
t9_cref t9 = T9(),
t10_cref t10 = T10()
) :
cons1(t1, cons2(t2, cons3(t3, cons4(t4, cons5(t5, cons6(t6,cons7(t7,cons8(t8,cons9(t9,cons10(t10))))))))))
{
}
explicit tuple(t1_cref t1)
: cons1(t1, cons2(T2(), cons3(T3(), cons4(T4(), cons5(T5(), cons6(T6(),cons7(T7(),cons8(T8(),cons9(T9(),cons10(T10()))))))))))
{}
template<typename Head, typename Tail>
explicit tuple(const cons<Head, Tail>& other) :
tuple(const cons<Head, Tail>& other) :
cons1(other.head, other.tail)
{
}
@ -531,7 +617,7 @@ namespace tuples {
{
return tuple<T1, T2, T3, T4, T5, T6>(t1, t2, t3, t4, t5, t6);
}
// Make a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
inline
@ -580,7 +666,7 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2>
inline
tuple<detail::assign_to_pointee<T1>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2> >
tie(T1& t1, T2& t2)
{
@ -591,8 +677,8 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2, typename T3>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3> >
tie(T1& t1, T2& t2, T3& t3)
{
@ -604,9 +690,9 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4> >
tie(T1& t1, T2& t2, T3& t3, T4& t4)
{
@ -619,10 +705,10 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5)
{
@ -636,11 +722,11 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6)
{
@ -655,12 +741,12 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6, T7 &t7)
{
@ -676,13 +762,13 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
detail::assign_to_pointee<T8> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6, T7 &t7, T8 &t8)
{
@ -699,14 +785,14 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
detail::assign_to_pointee<T8>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
detail::assign_to_pointee<T8>,
detail::assign_to_pointee<T9> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6, T7 &t7, T8 &t8, T9 &t9)
{
@ -723,15 +809,15 @@ namespace tuples {
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
detail::assign_to_pointee<T8>,
detail::assign_to_pointee<T9>,
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
detail::assign_to_pointee<T8>,
detail::assign_to_pointee<T9>,
detail::assign_to_pointee<T10> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6, T7 &t7, T8 &t8, T9 &t9, T10 &t10)
{
@ -746,10 +832,9 @@ namespace tuples {
detail::assign_to_pointee<T9>(&t9),
detail::assign_to_pointee<T10>(&t10));
}
// "ignore" allows tuple positions to be ignored when using "tie".
namespace {
detail::swallow_assign ignore;
}
// "ignore" allows tuple positions to be ignored when using "tie".
detail::swallow_assign const ignore = detail::swallow_assign();
} // namespace tuples
} // namespace boost

View File

@ -2,14 +2,9 @@
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
@ -18,6 +13,13 @@
#ifndef BOOST_TUPLE_HPP
#define BOOST_TUPLE_HPP
#if defined(__sgi) && defined(_COMPILER_VERSION) && _COMPILER_VERSION <= 730
// Work around a compiler bug.
// boost::python::tuple has to be seen by the compiler before the
// boost::tuple class template.
namespace boost { namespace python { class tuple; }}
#endif
#include "boost/config.hpp"
#include "boost/static_assert.hpp"

View File

@ -3,14 +3,9 @@
// Copyright (C) 2001 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see http://www.boost.org
//

View File

@ -3,14 +3,9 @@
// Copyright (C) 2001 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// 2001 Gary Powell (gary.powell@sierra.com)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// ----------------------------------------------------------------------------
@ -36,6 +31,23 @@
#include "boost/tuple/tuple.hpp"
// This is ugly: one should be using twoargument isspace since whitspace can
// be locale dependent, in theory at least.
// not all libraries implement have the two-arg version, so we need to
// use the one-arg one, which one should get with <cctype> but there seem
// to be exceptions to this.
#if !defined (BOOST_NO_STD_LOCALE)
#include <locale> // for two-arg isspace
#else
#include <cctype> // for one-arg (old) isspace
#include <ctype.h> // Metrowerks does not find one-arg isspace from cctype
#endif
namespace boost {
namespace tuples {
@ -69,9 +81,9 @@ public:
// parentheses and space are the default manipulators
if (!c) {
switch(m) {
case open : c = '('; break;
case close : c = ')'; break;
case delimiter : c = ' '; break;
case detail::format_info::open : c = '('; break;
case detail::format_info::close : c = ')'; break;
case detail::format_info::delimiter : c = ' '; break;
}
}
return c;
@ -92,9 +104,9 @@ public:
// parentheses and space are the default manipulators
if (!c) {
switch(m) {
case open : c = i.widen('('); break;
case close : c = i.widen(')'); break;
case delimiter : c = i.widen(' '); break;
case detail::format_info::open : c = i.widen('('); break;
case detail::format_info::close : c = i.widen(')'); break;
case detail::format_info::delimiter : c = i.widen(' '); break;
}
}
return c;
@ -328,12 +340,16 @@ extract_and_check_delimiter(
{
const char d = format_info::get_manipulator(is, del);
const bool is_delimiter = (!isspace(d) );
#if defined (BOOST_NO_STD_LOCALE)
const bool is_delimiter = !isspace(d);
#else
const bool is_delimiter = (!std::isspace(d, is.getloc()) );
#endif
char c;
if (is_delimiter) {
is >> c;
if (c!=d) {
if (is.good() && c!=d) {
is.setstate(std::ios::failbit);
}
}
@ -415,12 +431,19 @@ extract_and_check_delimiter(
{
const CharType d = format_info::get_manipulator(is, del);
const bool is_delimiter = (!isspace(d) );
#if defined (BOOST_NO_STD_LOCALE)
const bool is_delimiter = !isspace(d);
#elif defined ( __BORLANDC__ )
const bool is_delimiter = !std::use_facet< std::ctype< CharType > >
(is.getloc() ).is( std::ctype_base::space, d);
#else
const bool is_delimiter = (!std::isspace(d, is.getloc()) );
#endif
CharType c;
if (is_delimiter) {
is >> c;
if (c!=d) {
if (is.good() && c!=d) {
is.setstate(std::ios::failbit);
}
}

View File

@ -1,16 +0,0 @@
To compile the
libs/tuple/test/*.cpp
files, you need to set include paths
for boost.
For example, in libs/tuple/test directory you would type (using g++):
g++ -I../../.. tuple_test_bench.cpp
The following is not true anymore:
If you want to use tuple_io, you need to compile and link src/tuple.cpp:
g++ -I../../.. ../src/tuple.cpp io_test.cpp
Thanks to Hartmut Kaiser's suggestion, the tuple.cpp is not needed anymore.

View File

@ -1,157 +0,0 @@
// another_test_bench.cpp --------------------------------
// This file has various tests to see that things that shouldn't
// compile, don't compile.
// Defining any of E1 to E5 or E7 to E11 opens some illegal code that
// should cause the compliation to fail.
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
#include "boost/tuple/tuple.hpp"
#include <string>
#include <utility>
using namespace std;
using namespace boost;
using namespace boost::tuples;
template<class T> void dummy(const T&) {}
class A {}; class B {}; class C {};
// A non-copyable class
class no_copy {
no_copy(const no_copy&) {}
public:
no_copy() {};
};
no_copy y;
#ifdef E1
tuple<no_copy> v1; // should faild
#endif
#ifdef E2
char cs[10];
tuple<char[10]> v3; // should fail, arrays must be stored as references
#endif
// a class without a public default constructor
class no_def_constructor {
no_def_constructor() {}
public:
no_def_constructor(std::string) {} // can be constructed with a string
};
void foo1() {
#ifdef E3
dummy(tuple<no_def_constructor, no_def_constructor, no_def_constructor>());
// should fail
#endif
}
void foo2() {
// testing default values
#ifdef E4
dummy(tuple<double&>()); // should fail, not defaults for references
dummy(tuple<const double&>()); // likewise
#endif
#ifdef E5
double dd = 5;
dummy(tuple<double&>(dd+3.14)); // should fail, temporary to non-const reference
#endif
}
// make_tuple ------------------------------------------
void foo3() {
#ifdef E7
std::make_pair("Doesn't","Work"); // fails
#endif
// make_tuple("Does", "Work"); // this should work
}
// - testing element access
void foo4()
{
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double d = 2.7;
A a;
tuple<int, double&, const A&> t(1, d, a);
const tuple<int, double&, const A> ct = t;
#ifdef E8
get<0>(ct) = 5; // can't assign to const
#endif
#ifdef E9
get<4>(t) = A(); // can't assign to const
#endif
#ifdef E10
dummy(get<5>(ct)); // illegal index
#endif
#endif
}
// testing copy and assignment with implicit conversions between elements
// testing tie
class AA {};
class BB : public AA {};
struct CC { CC() {} CC(const BB& b) {} };
struct DD { operator CC() const { return CC(); }; };
void foo5() {
tuple<char, BB*, BB, DD> t;
tuple<char, char> aaa;
tuple<int, int> bbb(aaa);
// tuple<int, AA*, CC, CC> a = t;
// a = t;
}
// testing tie
// testing assignment from std::pair
void foo7() {
tuple<int, int, float> a;
#ifdef E11
a = std::make_pair(1, 2); // should fail, tuple is of length 3, not 2
#endif
dummy(a);
}
// --------------------------------
// ----------------------------
int test_main(int, char *[]) {
foo1();
foo2();
foo3();
foo4();
foo5();
foo7();
return 0;
}

View File

@ -1,108 +0,0 @@
// -- io_test.cpp -----------------------------------------------
//
// Testing the I/O facilities of tuples
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
#include "boost/test/test_tools.hpp" // see "Header Implementation Option"
#include "boost/tuple/tuple_io.hpp"
#include "boost/tuple/tuple_comparison.hpp"
#include <fstream>
#include <iterator>
#include <algorithm>
#include <string>
#if defined BOOST_NO_STRINGSTREAM
#include <strstream>
#else
#include <sstream>
#endif
#include "boost/config.hpp"
using namespace std;
using namespace boost;
#if defined BOOST_NO_STRINGSTREAM
typedef ostrstream useThisOStringStream;
typedef istrstream useThisIStringStream;
#else
typedef ostringstream useThisOStringStream;
typedef istringstream useThisIStringStream;
#endif
int test_main(int argc, char * argv[] ) {
using boost::tuples::set_close;
using boost::tuples::set_open;
using boost::tuples::set_delimiter;
useThisOStringStream os1;
// Set format [a, b, c] for os1
os1 << set_open('[');
os1 << set_close(']');
os1 << set_delimiter(',');
os1 << make_tuple(1, 2, 3);
BOOST_TEST (os1.str() == std::string("[1,2,3]") );
{
useThisOStringStream os2;
// Set format (a:b:c) for os2;
os2 << set_open('(');
os2 << set_close(')');
os2 << set_delimiter(':');
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
os2 << make_tuple("TUPU", "HUPU", "LUPU", 4.5);
BOOST_TEST (os2.str() == std::string("(TUPU:HUPU:LUPU:4.5)") );
#endif
}
// The format is still [a, b, c] for os1
os1 << make_tuple(1, 2, 3);
BOOST_TEST (os1.str() == std::string("[1,2,3][1,2,3]") );
ofstream tmp("temp.tmp");
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
tmp << make_tuple("One", "Two", 3);
#endif
tmp << set_delimiter(':');
tmp << make_tuple(1000, 2000, 3000) << endl;
tmp.close();
// When teading tuples from a stream, manipulators must be set correctly:
ifstream tmp3("temp.tmp");
tuple<string, string, int> j;
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
tmp3 >> j;
BOOST_TEST (tmp3.good() );
#endif
tmp3 >> set_delimiter(':');
tuple<int, int, int> i;
tmp3 >> i;
BOOST_TEST (tmp3.good() );
tmp3.close();
// reading tuple<int, int, int> in format (a b c);
useThisIStringStream is("(100 200 300)");
tuple<int, int, int> ti;
BOOST_TEST(is >> ti);
BOOST_TEST(ti == make_tuple(100, 200, 300));
// Note that strings are problematic:
// writing a tuple on a stream and reading it back doesn't work in
// general. If this is wanted, some kind of a parseable string class
// should be used.
return 0;
}

View File

@ -1,500 +0,0 @@
// tuple_test_bench.cpp --------------------------------
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
#include "boost/tuple/tuple.hpp"
#include "boost/tuple/tuple_comparison.hpp"
#include <string>
#include <utility>
using namespace std;
using namespace boost;
// ----------------------------------------------------------------------------
// helpers
// ----------------------------------------------------------------------------
class A {};
class B {};
class C {};
// classes with different kinds of conversions
class AA {};
class BB : public AA {};
struct CC { CC() {} CC(const BB&) {} };
struct DD { operator CC() const { return CC(); }; };
// something to prevent warnings for unused variables
template<class T> void dummy(const T&) {}
// no public default constructor
class foo {
public:
explicit foo(int v) : val(v) {}
bool operator==(const foo& other) const {
return val == other.val;
}
private:
foo() {}
int val;
};
// another class without a public default constructor
class no_def_constructor {
no_def_constructor() {}
public:
no_def_constructor(std::string) {}
};
// A non-copyable class
class no_copy {
no_copy(const no_copy&) {}
public:
no_copy() {};
};
// ----------------------------------------------------------------------------
// Testing different element types --------------------------------------------
// ----------------------------------------------------------------------------
typedef tuple<int> t1;
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
typedef tuple<double&, const double&, const double, double*, const double*> t2;
typedef tuple<A, int(*)(char, int), C> t3;
typedef tuple<std::string, std::pair<A, B> > t4;
typedef tuple<A*, tuple<const A*, const B&, C>, bool, void*> t5;
typedef tuple<volatile int, const volatile char&, int(&)(float) > t6;
# if !defined(__BORLANDC__) || __BORLAND__ > 0x0551
typedef tuple<B(A::*)(C&), A&> t7;
#endif
#endif
// -----------------------------------------------------------------------
// -tuple construction tests ---------------------------------------------
// -----------------------------------------------------------------------
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
no_copy y;
tuple<no_copy&> x = tuple<no_copy&>(y); // ok
#endif
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
char cs[10];
tuple<char(&)[10]> v2(cs); // ok
#endif
void
construction_test()
{
// Note, the get function can be called without the tuples:: qualifier,
// as it is lifted to namespace boost with a "using tuples::get" but
// MSVC 6.0 just cannot find get without the namespace qualifier
tuple<int> t1;
BOOST_TEST(get<0>(t1) == int());
tuple<float> t2(5.5f);
BOOST_TEST(get<0>(t2) > 5.4f && get<0>(t2) < 5.6f);
tuple<foo> t3(foo(12));
BOOST_TEST(get<0>(t3) == foo(12));
tuple<double> t4(t2);
BOOST_TEST(get<0>(t4) > 5.4 && get<0>(t4) < 5.6);
tuple<int, float> t5;
BOOST_TEST(get<0>(t5) == int());
BOOST_TEST(get<1>(t5) == float());
tuple<int, float> t6(12, 5.5f);
BOOST_TEST(get<0>(t6) == 12);
BOOST_TEST(get<1>(t6) > 5.4f && get<1>(t6) < 5.6f);
tuple<int, float> t7(t6);
BOOST_TEST(get<0>(t7) == 12);
BOOST_TEST(get<1>(t7) > 5.4f && get<1>(t7) < 5.6f);
tuple<long, double> t8(t6);
BOOST_TEST(get<0>(t8) == 12);
BOOST_TEST(get<1>(t8) > 5.4f && get<1>(t8) < 5.6f);
dummy(
tuple<no_def_constructor, no_def_constructor, no_def_constructor>(
std::string("Jaba"), // ok, since the default
std::string("Daba"), // constructor is not used
std::string("Doo")
)
);
// testing default values
dummy(tuple<int, double>());
dummy(tuple<int, double>(1));
dummy(tuple<int, double>(1,3.14));
// dummy(tuple<double&>()); // should fail, not defaults for references
// dummy(tuple<const double&>()); // likewise
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double dd = 5;
dummy(tuple<double&>(dd)); // ok
dummy(tuple<const double&>(dd+3.14)); // ok, but dangerous
#endif
// dummy(tuple<double&>(dd+3.14)); // should fail,
// // temporary to non-const reference
}
// ----------------------------------------------------------------------------
// - testing element access ---------------------------------------------------
// ----------------------------------------------------------------------------
void element_access_test()
{
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double d = 2.7;
A a;
tuple<int, double&, const A&, int> t(1, d, a, 2);
const tuple<int, double&, const A, int> ct = t;
int i = get<0>(t);
int i2 = get<3>(t);
BOOST_TEST(i == 1 && i2 == 2);
int j = get<0>(ct);
BOOST_TEST(j == 1);
get<0>(t) = 5;
BOOST_TEST(t.head == 5);
// get<0>(ct) = 5; // can't assign to const
double e = get<1>(t);
BOOST_TEST(e > 2.69 && e < 2.71);
get<1>(t) = 3.14+i;
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15);
// get<4>(t) = A(); // can't assign to const
// dummy(get<5>(ct)); // illegal index
++get<0>(t);
BOOST_TEST(get<0>(t) == 6);
dummy(i); dummy(i2); dummy(j); dummy(e); // avoid warns for unused variables
#else
double d = 2.7;
A a;
tuple<int, double, const A, int> t(1, d, a, 2);
int i = get<0>(t);
int i2 = get<3>(t);
BOOST_TEST(i == 1 && i2 == 2);
get<0>(t) = 5;
BOOST_TEST(t.head == 5);
// get<0>(ct) = 5; // can't assign to const
double e = get<1>(t);
BOOST_TEST(e > 2.69 && e < 2.71);
get<1>(t) = 3.14+i;
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15);
// get<4>(t) = A(); // can't assign to const
// dummy(get<5>(ct)); // illegal index
++get<0>(t);
BOOST_TEST(get<0>(t) == 6);
dummy(i); dummy(i2); dummy(e); // avoid warns for unused variables
#endif
}
// ----------------------------------------------------------------------------
// - copying tuples -----------------------------------------------------------
// ----------------------------------------------------------------------------
void
copy_test()
{
tuple<int, char> t1(4, 'a');
tuple<int, char> t2(5, 'b');
t2 = t1;
BOOST_TEST(get<0>(t1) == get<0>(t2));
BOOST_TEST(get<1>(t1) == get<1>(t2));
tuple<long, std::string> t3(2, "a");
t3 = t1;
BOOST_TEST((double)get<0>(t1) == get<0>(t3));
BOOST_TEST(get<1>(t1) == get<1>(t3)[0]);
// testing copy and assignment with implicit conversions between elements
// testing tie
tuple<char, BB*, BB, DD> t;
tuple<int, AA*, CC, CC> a(t);
a = t;
int i; char c; double d;
tie(i, c, d) = make_tuple(1, 'a', 5.5);
BOOST_TEST(i==1);
BOOST_TEST(c=='a');
BOOST_TEST(d>5.4 && d<5.6);
}
void
mutate_test()
{
tuple<int, float, bool, foo> t1(5, 12.2f, true, foo(4));
get<0>(t1) = 6;
get<1>(t1) = 2.2f;
get<2>(t1) = false;
get<3>(t1) = foo(5);
BOOST_TEST(get<0>(t1) == 6);
BOOST_TEST(get<1>(t1) > 2.1f && get<1>(t1) < 2.3f);
BOOST_TEST(get<2>(t1) == false);
BOOST_TEST(get<3>(t1) == foo(5));
}
// ----------------------------------------------------------------------------
// make_tuple tests -----------------------------------------------------------
// ----------------------------------------------------------------------------
void
make_tuple_test()
{
tuple<int, char> t1 = make_tuple(5, 'a');
BOOST_TEST(get<0>(t1) == 5);
BOOST_TEST(get<1>(t1) == 'a');
tuple<int, std::string> t2;
t2 = make_tuple((short int)2, std::string("Hi"));
BOOST_TEST(get<0>(t2) == 2);
BOOST_TEST(get<1>(t2) == "Hi");
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
A a; B b;
const A ca = a;
make_tuple(cref(a), b);
make_tuple(ref(a), b);
make_tuple(ref(a), cref(b));
make_tuple(ref(ca));
#endif
// the result of make_tuple is assignable:
BOOST_TEST(make_tuple(2, 4, 6) ==
(make_tuple(1, 2, 3) = make_tuple(2, 4, 6)));
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
make_tuple("Donald", "Daisy"); // should work;
#endif
// std::make_pair("Doesn't","Work"); // fails
// You can store a reference to a function in a tuple
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
tuple<void(&)()> adf(make_tuple_test);
dummy(adf); // avoid warning for unused variable
#endif
// But make_tuple doesn't work
// with function references, since it creates a const qualified function type
// make_tuple(make_tuple_test);
// With function pointers, make_tuple works just fine
#if !defined(__BORLANDC__) || __BORLAND__ > 0x0551
make_tuple(&make_tuple_test);
#endif
// NOTE:
//
// wrapping it the function reference with ref helps on gcc 2.95.2.
// on edg 2.43. it results in a catastrophic error?
// make_tuple(ref(foo3));
// It seems that edg can't use implicitly the ref's conversion operator, e.g.:
// typedef void (&func_t) (void);
// func_t fref = static_cast<func_t>(ref(make_tuple_test)); // works fine
// func_t fref = ref(make_tuple_test); // error
// This is probably not a very common situation, so currently
// I don't know how which compiler is right (JJ)
}
void
tie_test()
{
int a;
char b;
foo c(5);
tie(a, b, c) = make_tuple(2, 'a', foo(3));
BOOST_TEST(a == 2);
BOOST_TEST(b == 'a');
BOOST_TEST(c == foo(3));
tie(a, tuples::ignore, c) = make_tuple((short int)5, false, foo(5));
BOOST_TEST(a == 5);
BOOST_TEST(b == 'a');
BOOST_TEST(c == foo(5));
// testing assignment from std::pair
int i, j;
tie (i, j) = std::make_pair(1, 2);
BOOST_TEST(i == 1 && j == 2);
tuple<int, int, float> ta;
#ifdef E11
ta = std::make_pair(1, 2); // should fail, tuple is of length 3, not 2
#endif
dummy(ta);
}
// ----------------------------------------------------------------------------
// - testing tuple equality -------------------------------------------------
// ----------------------------------------------------------------------------
void
equality_test()
{
tuple<int, char> t1(5, 'a');
tuple<int, char> t2(5, 'a');
BOOST_TEST(t1 == t2);
tuple<int, char> t3(5, 'b');
tuple<int, char> t4(2, 'a');
BOOST_TEST(t1 != t3);
BOOST_TEST(t1 != t4);
BOOST_TEST(!(t1 != t2));
}
// ----------------------------------------------------------------------------
// - testing tuple comparisons -----------------------------------------------
// ----------------------------------------------------------------------------
void
ordering_test()
{
tuple<int, float> t1(4, 3.3f);
tuple<short, float> t2(5, 3.3f);
tuple<long, double> t3(5, 4.4);
BOOST_TEST(t1 < t2);
BOOST_TEST(t1 <= t2);
BOOST_TEST(t2 > t1);
BOOST_TEST(t2 >= t1);
BOOST_TEST(t2 < t3);
BOOST_TEST(t2 <= t3);
BOOST_TEST(t3 > t2);
BOOST_TEST(t3 >= t2);
}
// ----------------------------------------------------------------------------
// - testing cons lists -------------------------------------------------------
// ----------------------------------------------------------------------------
void cons_test()
{
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
using tuples::cons;
using tuples::null_type;
cons<volatile float, null_type> a(1, null_type());
cons<const int, cons<volatile float, null_type> > b(2,a);
int i = 3;
cons<int&, cons<const int, cons<volatile float, null_type> > > c(i, b);
BOOST_TEST(make_tuple(3,2,1)==c);
cons<char, cons<int, cons<float, null_type> > > x;
dummy(x);
#endif
}
// ----------------------------------------------------------------------------
// - testing const tuples -----------------------------------------------------
// ----------------------------------------------------------------------------
void const_tuple_test()
{
const tuple<int, float> t1(5, 3.3f);
BOOST_TEST(get<0>(t1) == 5);
BOOST_TEST(get<1>(t1) == 3.3f);
}
// ----------------------------------------------------------------------------
// - testing length -----------------------------------------------------------
// ----------------------------------------------------------------------------
void tuple_length_test()
{
typedef tuple<int, float, double> t1;
using tuples::cons;
typedef cons<int, cons< float, cons <double, tuples::null_type> > > t1_cons;
typedef tuple<> t2;
typedef tuples::null_type t3;
BOOST_STATIC_ASSERT(tuples::length<t1>::value == 3);
BOOST_STATIC_ASSERT(tuples::length<t1_cons>::value == 3);
BOOST_STATIC_ASSERT(tuples::length<t2>::value == 0);
BOOST_STATIC_ASSERT(tuples::length<t3>::value == 0);
}
// ----------------------------------------------------------------------------
// - main ---------------------------------------------------------------------
// ----------------------------------------------------------------------------
int test_main(int, char *[]) {
construction_test();
element_access_test();
copy_test();
mutate_test();
make_tuple_test();
tie_test();
equality_test();
ordering_test();
cons_test();
const_tuple_test();
tuple_length_test();
return 0;
}