Compare commits

..

1 Commits

Author SHA1 Message Date
dd70baeb84 This commit was manufactured by cvs2svn to create branch
'compiler_supported_error_messages'.

[SVN r13249]
2002-03-22 12:16:42 +00:00
8 changed files with 134 additions and 281 deletions

View File

@ -74,14 +74,22 @@ Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <co
The template parameters specify the types of the tuple elements.
The current version supports tuples with 0-10 elements.
If necessary, the upper limit can be increased up to, say, a few dozen elements.
The data element can be any C++ type.
Note that <code>void</code> and plain function types are valid
C++ types, but objects of such types cannot exist.
Hence, if a tuple type contains such types as elements, the tuple type
can exist, but not an object of that type.
There are natural limitations for element types that cannot
be be copied, or that are not default constructible (see 'Constructing tuples'
below).
The data element can be any C++ type, except for a non-reference type
that is not copy constructible from a const qualified reference to that
same type. In practice this means, that the element type must be <i>CopyConstructible</i> [C++ Standard 20.1.3]. (To be precise, CopyConstrucible is an unnecessary strong requirement for a valid element type, as the <code>operator&amp;</code> is not used by the library.)
</p>
<p>
Examples of types that are not allowed as tuple elements:
<ul>
<li>classes that do not have a public copy constructor</li>
<li>classes, where the copy constructor takes its argument as a non-const reference (cf. <code>auto_ptr</code>)
<li>arrays</li>
</ul>
Note that a reference to any of these non-copyable types is a valid element
type.
<p>
For example, the following definitions are valid tuple instantiations (<code>A</code>, <code>B</code> and <code>C</code> are some user defined classes):
@ -93,6 +101,21 @@ tuple&lt;std::string, std::pair&lt;A, B&gt; &gt;
tuple&lt;A*, tuple&lt;const A*, const B&amp;, C&gt;, bool, void*&gt;
</code></pre>
<p>
The following code shows some invalid tuple instantiations:
<pre><code>class Y {
Y(const Y&amp;);
public:
Y();
};
tuple&lt;Y&gt; // not allowed, objects of type Y cannot be copied
tuple&lt;char[10]&gt; // not allowed: arrays cannot be copied
</code></pre>
Note however that <code>tuple&lt;Y&amp;&gt;</code> and <code>tuple&lt;char(&)[10]&gt;</code> are valid instantiations.
<h2><a name = "constructing_tuples">Constructing tuples</a></h2>
<p>
@ -133,31 +156,6 @@ tuple&lt;const double&amp;&gt;(d+3.14) // ok, but dangerous:
// the element becomes a dangling reference
</code></pre>
<p>Using an initial value for an element that cannot be copied, is a compile
time error:
<pre><code>class Y {
Y(const Y&amp;);
public:
Y();
};
char a[10];
tuple&lt;char[10], Y&gt;(a, Y()); // error, neither arrays nor Y can be copied
tuple&lt;char[10], Y&gt;(); // ok
</code></pre>
Note particularly that the following is perfectly ok:
<code><pre>Y y;
tuple&lt;char(&amp;)[10], Y&amp;&gt;(a, y);
</code></pre>
It is possible to come up with a tuple type that cannot be constructed.
This occurs if an element that cannot be initialized has a lower
index than an element that requires initialization.
For example: <code>tuple&lt;char[10], int&amp;&gt;</code>.
<p>In sum, the tuple construction is semantically just a group of individual elementary constructions.
</p>

View File

@ -23,11 +23,6 @@
// David Abrahams.
// Revision history:
// 2002 05 01 Hugo Duncan: Fix for Borland after Jaakko's previous changes
// 2002 04 18 Jaakko: tuple element types can be void or plain function
// types, as long as no object is created.
// Tuple objects can no hold even noncopyable types
// such as arrays.
// 2001 10 22 John Maddock
// Fixes for Borland C++
// 2001 08 30 David Abrahams
@ -41,8 +36,7 @@
#include <utility> // needed for the assignment from pair to tuple
#include "boost/type_traits/cv_traits.hpp"
#include "boost/type_traits/function_traits.hpp"
namespace boost {
namespace tuples {
@ -51,18 +45,7 @@ struct null_type {};
// a helper function to provide a const null_type type temporary
namespace detail {
inline const null_type cnull() { return null_type(); }
// -- if construct ------------------------------------------------
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
template <class Then, class Else> struct IF<false, Then, Else> {
typedef Else RET;
};
inline const null_type cnull_type() { return null_type(); }
} // end detail
// - cons forward declaration -----------------------------------------------
@ -100,6 +83,41 @@ namespace detail {
template<class T>
class generate_error;
// tuple default argument wrappers ---------------------------------------
// Work for non-reference types, intentionally not for references
template <class T>
struct default_arg {
// Non-class temporaries cannot have qualifiers.
// To prevent f to return for example const int, we remove cv-qualifiers
// from all temporaries.
static typename boost::remove_cv<T>::type f() { return T(); }
};
// This is just to produce a more informative error message
// The code would fail in any case
template<class T, int N>
struct default_arg<T[N]> {
static T* f() {
return generate_error<T[N]>::arrays_are_not_valid_tuple_elements; }
};
template <class T>
struct default_arg<T&> {
static T& f() {
#ifndef __sgi
return generate_error<T>::no_default_values_for_reference_types;
#else
// MIPSpro instantiates functions even when it should not, so
// this technique can not be used for error checking.
// The simple workaround is to just not have this error checking
// with MIPSpro.
static T x;
return x;
#endif
}
};
// - cons getters --------------------------------------------------------
// called: get_class<N>::get<RETURN_TYPE>(aTuple)
@ -167,7 +185,6 @@ template <class T> struct access_traits {
typedef T& non_const_type;
typedef const typename boost::remove_cv<T>::type& parameter_type;
// used as the tuple constructors parameter types
// Rationale: non-reference tuple element types can be cv-qualified.
// It should be possible to initialize such types with temporaries,
@ -183,6 +200,7 @@ template <class T> struct access_traits<T&> {
typedef T& parameter_type;
};
// get function for non-const cons-lists, returns a reference to the element
template<int N, class HT, class TT>
@ -213,28 +231,6 @@ get(const cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) {
}
// -- the cons template --------------------------------------------------
namespace detail {
// These helper templates wrap void types and plain function types.
// The reationale is to allow one to write tuple types with those types
// as elements, even though it is not possible to instantiate such object.
// E.g: typedef tuple<void> some_type; // ok
// but: some_type x; // fails
template <class T> class non_storeable_type {
non_storeable_type();
};
template <class T> struct wrap_non_storeable_type {
typedef typename IF<
::boost::is_function<T>::value, non_storeable_type<T>, T
>::RET type;
};
template <> struct wrap_non_storeable_type<void> {
typedef non_storeable_type<void> type;
};
} // detail
template <class HT, class TT>
struct cons {
@ -242,33 +238,28 @@ struct cons {
typedef HT head_type;
typedef TT tail_type;
typedef typename
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
head_type head;
tail_type tail;
typename access_traits<stored_head_type>::non_const_type
typename access_traits<head_type>::non_const_type
get_head() { return head; }
typename access_traits<tail_type>::non_const_type
get_tail() { return tail; }
typename access_traits<stored_head_type>::const_type
typename access_traits<head_type>::const_type
get_head() const { return head; }
typename access_traits<tail_type>::const_type
get_tail() const { return tail; }
cons() : head(), tail() {}
// cons() : head(detail::default_arg<HT>::f()), tail() {}
cons() : head(detail::default_arg<HT>::f()), tail() {}
// the argument for head is not strictly needed, but it prevents
// array type elements. This is good, since array type elements
// cannot be supported properly in any case (no assignment,
// copy works only if the tails are exactly the same type, ...)
cons(typename access_traits<stored_head_type>::parameter_type h,
cons(typename access_traits<head_type>::parameter_type h,
const tail_type& t)
: head (h), tail(t) {}
@ -277,18 +268,9 @@ struct cons {
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (t1),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull_type())
{}
template <class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
cons( const null_type& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
{}
template <class HT2, class TT2>
cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}
@ -333,24 +315,21 @@ struct cons<HT, null_type> {
typedef HT head_type;
typedef null_type tail_type;
typedef typename
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
head_type head;
typename access_traits<stored_head_type>::non_const_type
typename access_traits<head_type>::non_const_type
get_head() { return head; }
null_type get_tail() { return null_type(); }
typename access_traits<stored_head_type>::const_type
typename access_traits<head_type>::const_type
get_head() const { return head; }
const null_type get_tail() const { return null_type(); }
// cons() : head(detail::default_arg<HT>::f()) {}
cons() : head() {}
cons() : head(detail::default_arg<HT>::f()) {}
cons(typename access_traits<stored_head_type>::parameter_type h,
cons(typename access_traits<head_type>::parameter_type h,
const null_type& = null_type())
: head (h) {}
@ -360,12 +339,6 @@ struct cons<HT, null_type> {
const null_type&, const null_type&, const null_type&)
: head (t1) {}
cons(const null_type& t1,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head () {}
template <class HT2>
cons( const cons<HT2, null_type>& u ) : head(u.head) {}
@ -451,95 +424,29 @@ public:
// access_traits<T>::parameter_type takes non-reference types as const T&
tuple() {}
tuple(typename access_traits<T0>::parameter_type t0)
: inherited(t0, detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1)
: inherited(t0, t1, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2)
: inherited(t0, t1, t2, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3)
: inherited(t0, t1, t2, t3, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4)
: inherited(t0, t1, t2, t3, t4, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5)
: inherited(t0, t1, t2, t3, t4, t5, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6)
: inherited(t0, t1, t2, t3, t4, t5, t6, detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7,
typename access_traits<T8>::parameter_type t8)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7,
typename access_traits<T8>::parameter_type t8,
typename access_traits<T9>::parameter_type t9)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {}
explicit tuple(
typename access_traits<T0>::parameter_type t0
= detail::default_arg<T0>::f(),
typename access_traits<T1>::parameter_type t1
= detail::default_arg<T1>::f(),
typename access_traits<T2>::parameter_type t2
= detail::default_arg<T2>::f(),
typename access_traits<T3>::parameter_type t3
= detail::default_arg<T3>::f(),
typename access_traits<T4>::parameter_type t4
= detail::default_arg<T4>::f(),
typename access_traits<T5>::parameter_type t5
= detail::default_arg<T5>::f(),
typename access_traits<T6>::parameter_type t6
= detail::default_arg<T6>::f(),
typename access_traits<T7>::parameter_type t7
= detail::default_arg<T7>::f(),
typename access_traits<T8>::parameter_type t8
= detail::default_arg<T8>::f(),
typename access_traits<T9>::parameter_type t9
= detail::default_arg<T9>::f())
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {}
template<class U1, class U2>
tuple(const cons<U1, U2>& p) : inherited(p) {}
@ -862,6 +769,6 @@ tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
#undef BOOST_TUPLE_DUMMY_PARM
#undef BOOST_TUPLE_SINGLE_DUMMY_PARM
#endif // BOOST_TUPLE_BASIC_HPP
#endif // BOOST_TUPLE_BASIC_HPP

View File

@ -246,58 +246,6 @@ namespace tuples {
namespace detail {
#if defined(BOOST_MSVC) && (BOOST_MSVC == 1300)
// special workaround for vc7:
template <bool x>
struct reference_adder
{
template <class T>
struct rebind
{
typedef T& type;
};
};
template <>
struct reference_adder<true>
{
template <class T>
struct rebind
{
typedef T type;
};
};
// Return a reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
enum { is_ref = is_reference<elt_type>::value };
public:
typedef reference_adder<is_ref>::rebind<elt_type>::type RET;
typedef RET type;
};
// Return a const reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_const_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
enum { is_ref = is_reference<elt_type>::value };
public:
typedef reference_adder<is_ref>::rebind<const elt_type>::type RET;
typedef RET type;
};
#else // vc7
// Return a reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_ref
@ -321,7 +269,6 @@ namespace tuples {
typedef typename add_reference<const elt_type>::type RET;
typedef RET type;
};
#endif // vc7
} // namespace detail
@ -648,8 +595,8 @@ namespace tuples {
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T5>(&t5),
detail::assign_to_pointee<T6>(&t6));
detail::assign_to_pointee<T6>(&t5),
detail::assign_to_pointee<T5>(&t6));
}
// Tie variables into a tuple

View File

@ -32,7 +32,7 @@
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace boost {
namespace boost {
using tuples::tuple;
using tuples::make_tuple;
@ -85,4 +85,4 @@ get(const tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0
} // end namespace boost
#endif // BOOST_TUPLE_HPP
#endif // BOOST_TUPLE_HPP

View File

@ -69,7 +69,7 @@ inline bool neq(const T1& lhs, const T2& rhs) {
neq(lhs.get_tail(), rhs.get_tail());
}
template<>
inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return false; }
inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return true; }
template<class T1, class T2>
inline bool lt(const T1& lhs, const T2& rhs) {
@ -177,4 +177,4 @@ inline bool operator>=(const cons<T1, T2>& lhs, const cons<S1, S2>& rhs)
} // end of namespace boost
#endif // BOOST_TUPLE_COMPARISON_HPP
#endif // BOOST_TUPLE_COMPARISON_HPP

View File

@ -25,7 +25,7 @@
# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 97)
#define BOOST_NO_TEMPLATED_STREAMS
#endif
#endif // __GNUC__
#endif // __GNUC__
#if defined BOOST_NO_TEMPLATED_STREAMS
#include <iostream>
@ -36,6 +36,8 @@
#include "boost/tuple/tuple.hpp"
namespace boost {
namespace tuples {
@ -69,8 +71,8 @@ public:
// parentheses and space are the default manipulators
if (!c) {
switch(m) {
case open : c = '('; break;
case close : c = ')'; break;
case open : c = '('; break;
case close : c = ')'; break;
case delimiter : c = ' '; break;
}
}
@ -92,8 +94,8 @@ public:
// parentheses and space are the default manipulators
if (!c) {
switch(m) {
case open : c = i.widen('('); break;
case close : c = i.widen(')'); break;
case open : c = i.widen('('); break;
case close : c = i.widen(')'); break;
case delimiter : c = i.widen(' '); break;
}
}
@ -110,7 +112,7 @@ public:
// convertible long.
i.iword(get_stream_index(m)) = static_cast<long>(c);
}
#endif // BOOST_NO_TEMPLATED_STREAMS
#endif // BOOST_NO_TEMPLATED_STREAMS
};
} // end of namespace detail
@ -139,8 +141,8 @@ public:
void set(std::basic_ios<CharType, CharTrait> &io) const {
detail::format_info::set_manipulator(io, mt, f_c);
}
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#endif // BOOST_NO_TEMPLATED_STREAMS
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#endif // BOOST_NO_TEMPLATED_STREAMS
};
#if defined (BOOST_NO_TEMPLATED_STREAMS)
@ -210,7 +212,7 @@ template<class T1>
inline std::ostream& print(std::ostream& o, const cons<T1, null_type>& t) {
return o << t.head;
}
#endif // BOOST_NO_TEMPLATED_STREAMS
#endif // BOOST_NO_TEMPLATED_STREAMS
inline std::ostream& print(std::ostream& o, const null_type&) { return o; }
@ -224,7 +226,7 @@ print(std::ostream& o, const cons<T1, T2>& t) {
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
if (tuples::length<T2>::value == 0)
return o;
return o;
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
o << d;
@ -261,14 +263,14 @@ print(std::basic_ostream<CharType, CharTrait>& o, const cons<T1, T2>& t) {
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
if (tuples::length<T2>::value == 0)
return o;
return o;
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
o << d;
return print(o, t.tail);
}
#endif // BOOST_NO_TEMPLATED_STREAMS
#endif // BOOST_NO_TEMPLATED_STREAMS
} // namespace detail
@ -312,7 +314,7 @@ operator<<(std::basic_ostream<CharType, CharTrait>& o,
return o;
}
#endif // BOOST_NO_TEMPLATED_STREAMS
#endif // BOOST_NO_TEMPLATED_STREAMS
// -------------------------------------------------------------
@ -355,7 +357,7 @@ read (std::istream &is, cons<T1, null_type>& t1) {
}
#else
inline std::istream& read(std::istream& i, const null_type&) { return i; }
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<class T1, class T2>
inline std::istream&
@ -367,7 +369,7 @@ read(std::istream &is, cons<T1, T2>& t1) {
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
if (tuples::length<T2>::value == 0)
return is;
return is;
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
extract_and_check_delimiter(is, format_info::delimiter);
@ -442,7 +444,7 @@ template<class CharType, class CharTrait>
inline std::basic_istream<CharType, CharTrait>&
read(std::basic_istream<CharType, CharTrait>& i, const null_type&) { return i; }
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<class CharType, class CharTrait, class T1, class T2>
inline std::basic_istream<CharType, CharTrait>&
@ -454,7 +456,7 @@ read(std::basic_istream<CharType, CharTrait> &is, cons<T1, T2>& t1) {
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
if (tuples::length<T2>::value == 0)
return is;
return is;
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
extract_and_check_delimiter(is, format_info::delimiter);
@ -492,11 +494,11 @@ operator>>(std::basic_istream<CharType, CharTrait>& is, cons<T1, T2>& t1) {
return is;
}
#endif // BOOST_NO_TEMPLATED_STREAMS
#endif // BOOST_NO_TEMPLATED_STREAMS
} // end of namespace tuples
} // end of namespace boost
#endif // BOOST_TUPLE_IO_HPP
#endif // BOOST_TUPLE_IO_HPP

View File

@ -75,7 +75,7 @@ int test_main(int argc, char * argv[] ) {
// When teading tuples from a stream, manipulators must be set correctly:
ifstream tmp3("temp.tmp");
tuple<string, string, int> j;
tuple<string, string, int> j;
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
tmp3 >> j;

View File

@ -186,7 +186,7 @@ void element_access_test()
double e = get<1>(t);
BOOST_TEST(e > 2.69 && e < 2.71);
get<1>(t) = 3.14+i;
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15);
@ -214,7 +214,7 @@ void element_access_test()
double e = get<1>(t);
BOOST_TEST(e > 2.69 && e < 2.71);
get<1>(t) = 3.14+i;
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15);
@ -308,7 +308,7 @@ make_tuple_test()
// the result of make_tuple is assignable:
BOOST_TEST(make_tuple(2, 4, 6) ==
(make_tuple(1, 2, 3) = make_tuple(2, 4, 6)));
(make_tuple(1, 2, 3) = make_tuple(2, 4, 6)));
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
make_tuple("Donald", "Daisy"); // should work;
@ -395,7 +395,6 @@ equality_test()
tuple<int, char> t4(2, 'a');
BOOST_TEST(t1 != t3);
BOOST_TEST(t1 != t4);
BOOST_TEST(!(t1 != t2));
}