Define several methods inline.

Sun 5.9 was having some issues.

[SVN r61831]
This commit is contained in:
Daniel James
2010-05-06 20:13:25 +00:00
parent 71a8e56ae3
commit 076e195cac
2 changed files with 418 additions and 549 deletions

View File

@ -47,41 +47,150 @@ namespace boost { namespace unordered_detail {
: table(x, a, m) {}
~hash_equivalent_table() {}
// Insert methods
iterator_base emplace_impl(node_constructor& a);
void emplace_impl_no_rehash(node_constructor& a);
// equals
bool equals(hash_equivalent_table const&) const;
inline node_ptr add_node(node_constructor& a,
bucket_ptr bucket, node_ptr pos);
////////////////////////////////////////////////////////////////////////
// A convenience method for adding nodes.
inline node_ptr add_node(
node_constructor& a, bucket_ptr bucket, node_ptr pos)
{
node_ptr n = a.release();
if(BOOST_UNORDERED_BORLAND_BOOL(pos)) {
node::add_after_node(n, pos);
}
else {
node::add_to_bucket(n, *bucket);
if(bucket < this->cached_begin_bucket_)
this->cached_begin_bucket_ = bucket;
}
++this->size_;
return n;
}
////////////////////////////////////////////////////////////////////////
// Insert methods
inline iterator_base emplace_impl(node_constructor& a)
{
key_type const& k = this->get_key(a.value());
std::size_t hash_value = this->hash_function()(k);
if(!this->size_) {
return this->emplace_empty_impl_with_node(a, 1);
}
else {
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr position = this->find_iterator(bucket, k);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
return iterator_base(bucket, add_node(a, bucket, position));
}
}
inline void emplace_impl_no_rehash(node_constructor& a)
{
key_type const& k = this->get_key(a.value());
bucket_ptr bucket = this->get_bucket(this->bucket_index(k));
add_node(a, bucket, this->find_iterator(bucket, k));
}
#if defined(BOOST_UNORDERED_STD_FORWARD)
// Emplace (equivalent key containers)
// (I'm using an overloaded emplace for both 'insert' and 'emplace')
// if hash function throws, basic exception safety
// strong otherwise
template <class... Args>
iterator_base emplace(Args&&... args);
iterator_base emplace(Args&&... args)
{
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_impl(a);
}
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, n, _) \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
iterator_base emplace(BOOST_UNORDERED_FUNCTION_PARAMS(z, n));
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
iterator_base emplace( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_impl(a); \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
////////////////////////////////////////////////////////////////////////////
// Insert range methods
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
template <class I>
void insert_for_range(I i, I j, forward_traversal_tag);
inline void insert_for_range(I i, I j, forward_traversal_tag)
{
if(i == j) return;
std::size_t distance = unordered_detail::distance(i, j);
if(distance == 1) {
emplace(*i);
}
else {
node_constructor a(*this);
// Only require basic exception safety here
if(this->size_) {
this->reserve_for_insert(this->size_ + distance);
}
else {
a.construct(*i++);
this->emplace_empty_impl_with_node(a, distance);
}
for (; i != j; ++i) {
a.construct(*i);
emplace_impl_no_rehash(a);
}
}
}
// if hash function throws, or inserting > 1 element, basic exception
// safety strong otherwise
template <class I>
void insert_for_range(I i, I j, boost::incrementable_traversal_tag);
inline void insert_for_range(
I i, I j, boost::incrementable_traversal_tag)
{
node_constructor a(*this);
for (; i != j; ++i) {
a.construct(*i);
emplace_impl(a);
}
}
// if hash function throws, or inserting > 1 element, basic exception
// safety strong otherwise
template <class I>
void insert_range(I i, I j);
void insert_range(I i, I j)
{
BOOST_DEDUCED_TYPENAME boost::iterator_traversal<I>::type
iterator_traversal_tag;
insert_for_range(i, j, iterator_traversal_tag);
}
};
template <class H, class P, class A>
@ -142,163 +251,6 @@ namespace boost { namespace unordered_detail {
return true;
}
////////////////////////////////////////////////////////////////////////////
// A convenience method for adding nodes.
template <class T>
inline BOOST_DEDUCED_TYPENAME hash_equivalent_table<T>::node_ptr
hash_equivalent_table<T>
::add_node(node_constructor& a, bucket_ptr bucket, node_ptr pos)
{
node_ptr n = a.release();
if(BOOST_UNORDERED_BORLAND_BOOL(pos)) {
node::add_after_node(n, pos);
}
else {
node::add_to_bucket(n, *bucket);
if(bucket < this->cached_begin_bucket_)
this->cached_begin_bucket_ = bucket;
}
++this->size_;
return n;
}
////////////////////////////////////////////////////////////////////////////
// Insert methods
template <class T>
inline BOOST_DEDUCED_TYPENAME
hash_equivalent_table<T>::iterator_base
hash_equivalent_table<T>::emplace_impl(node_constructor& a)
{
key_type const& k = this->get_key(a.value());
std::size_t hash_value = this->hash_function()(k);
if(!this->size_) {
return this->emplace_empty_impl_with_node(a, 1);
}
else {
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr position = this->find_iterator(bucket, k);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
return iterator_base(bucket, add_node(a, bucket, position));
}
}
template <class T>
inline void hash_equivalent_table<T>
::emplace_impl_no_rehash(node_constructor& a)
{
key_type const& k = this->get_key(a.value());
bucket_ptr bucket = this->get_bucket(this->bucket_index(k));
add_node(a, bucket, this->find_iterator(bucket, k));
}
#if defined(BOOST_UNORDERED_STD_FORWARD)
// Emplace (equivalent key containers)
// (I'm using an overloaded emplace for both 'insert' and 'emplace')
// if hash function throws, basic exception safety
// strong otherwise
template <class T>
template <class... Args>
BOOST_DEDUCED_TYPENAME hash_equivalent_table<T>::iterator_base
hash_equivalent_table<T>
::emplace(Args&&... args)
{
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_impl(a);
}
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <class T> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
BOOST_DEDUCED_TYPENAME hash_equivalent_table<T>::iterator_base \
hash_equivalent_table<T> \
::emplace(BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_impl(a); \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
////////////////////////////////////////////////////////////////////////////
// Insert range methods
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
template <class T>
template <class I>
inline void hash_equivalent_table<T>
::insert_for_range(I i, I j, forward_traversal_tag)
{
if(i == j) return;
std::size_t distance = unordered_detail::distance(i, j);
if(distance == 1) {
emplace(*i);
}
else {
node_constructor a(*this);
// Only require basic exception safety here
if(this->size_) {
this->reserve_for_insert(this->size_ + distance);
}
else {
a.construct(*i++);
this->emplace_empty_impl_with_node(a, distance);
}
for (; i != j; ++i) {
a.construct(*i);
emplace_impl_no_rehash(a);
}
}
}
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
template <class T>
template <class I>
inline void hash_equivalent_table<T>
::insert_for_range(I i, I j, boost::incrementable_traversal_tag)
{
node_constructor a(*this);
for (; i != j; ++i) {
a.construct(*i);
emplace_impl(a);
}
}
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
template <class T>
template <class I>
void hash_equivalent_table<T>::insert_range(I i, I j)
{
BOOST_DEDUCED_TYPENAME boost::iterator_traversal<I>::type
iterator_traversal_tag;
insert_for_range(i, j, iterator_traversal_tag);
}
}}
#endif

View File

@ -48,43 +48,190 @@ namespace boost { namespace unordered_detail {
: table(x, a, m) {}
~hash_unique_table() {}
// Insert methods
emplace_return emplace_impl_with_node(node_constructor& a);
value_type& operator[](key_type const& k);
// equals
bool equals(hash_unique_table const&) const;
node_ptr add_node(node_constructor& a, bucket_ptr bucket);
////////////////////////////////////////////////////////////////////////
// A convenience method for adding nodes.
inline node_ptr add_node(node_constructor& a, bucket_ptr bucket)
{
node_ptr n = a.release();
node::add_to_bucket(n, *bucket);
++this->size_;
if(bucket < this->cached_begin_bucket_)
this->cached_begin_bucket_ = bucket;
return n;
}
////////////////////////////////////////////////////////////////////////
// Insert methods
// if hash function throws, basic exception safety
// strong otherwise
value_type& operator[](key_type const& k)
{
typedef BOOST_DEDUCED_TYPENAME value_type::second_type mapped_type;
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
if(!this->buckets_) {
node_constructor a(*this);
a.construct_pair(k, (mapped_type*) 0);
return *this->emplace_empty_impl_with_node(a, 1);
}
node_ptr pos = this->find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
return node::get_value(pos);
}
else {
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct_pair(k, (mapped_type*) 0);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return node::get_value(add_node(a, bucket));
}
}
inline emplace_return emplace_impl_with_node(node_constructor& a)
{
// No side effects in this initial code
key_type const& k = this->get_key(a.value());
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = this->find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Found an existing key, return it (no throw).
return emplace_return(iterator_base(bucket, pos), false);
} else {
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return emplace_return(
iterator_base(bucket, add_node(a, bucket)),
true);
}
}
#if defined(BOOST_UNORDERED_STD_FORWARD)
template<class... Args>
emplace_return emplace(Args&&... args);
inline emplace_return emplace_impl(key_type const& k, Args&&... args)
{
// No side effects in this initial code
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = this->find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Found an existing key, return it (no throw).
return emplace_return(iterator_base(bucket, pos), false);
} else {
// Doesn't already exist, add to bucket.
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return emplace_return(
iterator_base(bucket, add_node(a, bucket)),
true);
}
}
template<class... Args>
emplace_return emplace_impl(key_type const& k, Args&&... args);
inline emplace_return emplace_impl(no_key, Args&&... args)
{
// Construct the node regardless - in order to get the key.
// It will be discarded if it isn't used
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_impl_with_node(a);
}
template<class... Args>
emplace_return emplace_impl(no_key, Args&&... args);
template<class... Args>
emplace_return emplace_empty_impl(Args&&... args);
inline emplace_return emplace_empty_impl(Args&&... args)
{
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_return(this->emplace_empty_impl_with_node(a, 1),
true);
}
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, n, _) \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
emplace_return emplace( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n)); \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
emplace_return emplace_impl(key_type const& k, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n)); \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
emplace_return emplace_impl(no_key, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n)); \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, n)> \
emplace_return emplace_empty_impl( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, n));
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline emplace_return emplace_impl( \
key_type const& k, BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
std::size_t hash_value = this->hash_function()(k); \
bucket_ptr bucket \
= this->bucket_ptr_from_hash(hash_value); \
node_ptr pos = this->find_iterator(bucket, k); \
\
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) { \
return emplace_return(iterator_base(bucket, pos), false); \
} else { \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
\
if(this->reserve_for_insert(this->size_ + 1)) \
bucket = this->bucket_ptr_from_hash(hash_value); \
\
return emplace_return(iterator_base(bucket, \
add_node(a, bucket)), true); \
} \
} \
\
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline emplace_return emplace_impl( \
no_key, BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_impl_with_node(a); \
} \
\
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline emplace_return emplace_empty_impl( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_return(this->emplace_empty_impl_with_node(a, 1), \
true); \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
@ -92,14 +239,127 @@ namespace boost { namespace unordered_detail {
#endif
#if defined(BOOST_UNORDERED_STD_FORWARD)
// Emplace (unique keys)
// (I'm using an overloaded emplace for both 'insert' and 'emplace')
// if hash function throws, basic exception safety
// strong otherwise
template<class... Args>
emplace_return hash_unique_table<T>::emplace(Args&&... args)
{
return this->size_ ?
emplace_impl(
extractor::extract(std::forward<Args>(args)...),
std::forward<Args>(args)...) :
emplace_empty_impl(std::forward<Args>(args)...);
}
#else
template <class Arg0>
emplace_return emplace(Arg0 const& arg0)
{
return this->size_ ?
emplace_impl(extractor::extract(arg0), arg0) :
emplace_empty_impl(arg0);
}
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
emplace_return emplace( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
return this->size_ ? \
emplace_impl(extractor::extract(arg0, arg1), \
BOOST_UNORDERED_CALL_PARAMS(z, num_params)) : \
emplace_empty_impl( \
BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
}
BOOST_PP_REPEAT_FROM_TO(2, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
////////////////////////////////////////////////////////////////////////
// Insert range methods
template <class InputIt>
inline void insert_range_impl(key_type const&, InputIt i, InputIt j)
{
node_constructor a(*this);
if(!this->size_) {
a.construct(*i);
this->emplace_empty_impl_with_node(a, 1);
++i;
if(i == j) return;
}
do {
// No side effects in this initial code
// Note: can't use get_key as '*i' might not be value_type - it
// could be a pair with first_types as key_type without const or
// a different second_type.
key_type const& k = extractor::extract(*i);
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = this->find_iterator(bucket, k);
if (!BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Doesn't already exist, add to bucket.
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
a.construct(*i);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->size_ + 1 >= this->max_load_) {
this->reserve_for_insert(
this->size_ + insert_size(i, j));
bucket = this->bucket_ptr_from_hash(hash_value);
}
// Nothing after this point can throw.
add_node(a, bucket);
}
} while(++i != j);
}
template <class InputIt>
inline void insert_range_impl(no_key, InputIt i, InputIt j)
{
node_constructor a(*this);
if(!this->size_) {
a.construct(*i);
this->emplace_empty_impl_with_node(a, 1);
++i;
if(i == j) return;
}
do {
// No side effects in this initial code
a.construct(*i);
emplace_impl_with_node(a);
} while(++i != j);
}
// if hash function throws, or inserting > 1 element, basic exception
// safety strong otherwise
template <class InputIt>
void insert_range(InputIt i, InputIt j);
template <class InputIt>
void insert_range_impl(key_type const&, InputIt i, InputIt j);
template <class InputIt>
void insert_range_impl(no_key, InputIt i, InputIt j);
void insert_range(InputIt i, InputIt j)
{
if(i != j)
return insert_range_impl(extractor::extract(*i), i, j);
}
};
template <class H, class P, class A>
@ -152,349 +412,6 @@ namespace boost { namespace unordered_detail {
return true;
}
////////////////////////////////////////////////////////////////////////////
// A convenience method for adding nodes.
template <class T>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<T>::node_ptr
hash_unique_table<T>::add_node(node_constructor& a,
bucket_ptr bucket)
{
node_ptr n = a.release();
node::add_to_bucket(n, *bucket);
++this->size_;
if(bucket < this->cached_begin_bucket_)
this->cached_begin_bucket_ = bucket;
return n;
}
////////////////////////////////////////////////////////////////////////////
// Insert methods
// if hash function throws, basic exception safety
// strong otherwise
template <class T>
BOOST_DEDUCED_TYPENAME hash_unique_table<T>::value_type&
hash_unique_table<T>::operator[](key_type const& k)
{
typedef BOOST_DEDUCED_TYPENAME value_type::second_type mapped_type;
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
if(!this->buckets_) {
node_constructor a(*this);
a.construct_pair(k, (mapped_type*) 0);
return *this->emplace_empty_impl_with_node(a, 1);
}
node_ptr pos = this->find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
return node::get_value(pos);
}
else {
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct_pair(k, (mapped_type*) 0);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return node::get_value(add_node(a, bucket));
}
}
template <class T>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<T>::emplace_return
hash_unique_table<T>::emplace_impl_with_node(node_constructor& a)
{
// No side effects in this initial code
key_type const& k = this->get_key(a.value());
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = this->find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Found an existing key, return it (no throw).
return emplace_return(iterator_base(bucket, pos), false);
} else {
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return emplace_return(
iterator_base(bucket, add_node(a, bucket)),
true);
}
}
#if defined(BOOST_UNORDERED_STD_FORWARD)
template <class T>
template<class... Args>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<T>::emplace_return
hash_unique_table<T>::emplace_impl(key_type const& k,
Args&&... args)
{
// No side effects in this initial code
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = this->find_iterator(bucket, k);
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Found an existing key, return it (no throw).
return emplace_return(iterator_base(bucket, pos), false);
} else {
// Doesn't already exist, add to bucket.
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1))
bucket = this->bucket_ptr_from_hash(hash_value);
// Nothing after this point can throw.
return emplace_return(
iterator_base(bucket, add_node(a, bucket)),
true);
}
}
template <class T>
template<class... Args>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<T>::emplace_return
hash_unique_table<T>::emplace_impl(no_key, Args&&... args)
{
// Construct the node regardless - in order to get the key.
// It will be discarded if it isn't used
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_impl_with_node(a);
}
template <class T>
template<class... Args>
inline BOOST_DEDUCED_TYPENAME hash_unique_table<T>::emplace_return
hash_unique_table<T>::emplace_empty_impl(Args&&... args)
{
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_return(this->emplace_empty_impl_with_node(a, 1), true);
}
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <class T> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline BOOST_DEDUCED_TYPENAME \
hash_unique_table<T>::emplace_return \
hash_unique_table<T>::emplace_impl( \
key_type const& k, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
std::size_t hash_value = this->hash_function()(k); \
bucket_ptr bucket \
= this->bucket_ptr_from_hash(hash_value); \
node_ptr pos = this->find_iterator(bucket, k); \
\
if (BOOST_UNORDERED_BORLAND_BOOL(pos)) { \
return emplace_return(iterator_base(bucket, pos), false); \
} else { \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
\
if(this->reserve_for_insert(this->size_ + 1)) \
bucket = this->bucket_ptr_from_hash(hash_value); \
\
return emplace_return(iterator_base(bucket, \
add_node(a, bucket)), true); \
} \
} \
\
template <class T> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline BOOST_DEDUCED_TYPENAME \
hash_unique_table<T>::emplace_return \
hash_unique_table<T>:: \
emplace_impl(no_key, \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_impl_with_node(a); \
} \
\
template <class T> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
inline BOOST_DEDUCED_TYPENAME \
hash_unique_table<T>::emplace_return \
hash_unique_table<T>:: \
emplace_empty_impl( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_return(this->emplace_empty_impl_with_node(a, 1), true); \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
#if defined(BOOST_UNORDERED_STD_FORWARD)
// Emplace (unique keys)
// (I'm using an overloaded emplace for both 'insert' and 'emplace')
// if hash function throws, basic exception safety
// strong otherwise
template <class T>
template<class... Args>
BOOST_DEDUCED_TYPENAME hash_unique_table<T>::emplace_return
hash_unique_table<T>::emplace(Args&&... args)
{
return this->size_ ?
emplace_impl(
extractor::extract(std::forward<Args>(args)...),
std::forward<Args>(args)...) :
emplace_empty_impl(std::forward<Args>(args)...);
}
#else
template <class T>
template <class Arg0>
BOOST_DEDUCED_TYPENAME hash_unique_table<T>::emplace_return
hash_unique_table<T>::emplace(Arg0 const& arg0)
{
return this->size_ ?
emplace_impl(extractor::extract(arg0), arg0) :
emplace_empty_impl(arg0);
}
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <class T> \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
BOOST_DEDUCED_TYPENAME hash_unique_table<T>::emplace_return \
hash_unique_table<T>::emplace( \
BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
return this->size_ ? \
emplace_impl(extractor::extract(arg0, arg1), \
BOOST_UNORDERED_CALL_PARAMS(z, num_params)) : \
emplace_empty_impl( \
BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
}
BOOST_PP_REPEAT_FROM_TO(2, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
////////////////////////////////////////////////////////////////////////////
// Insert range methods
template <class T>
template <class InputIt>
inline void hash_unique_table<T>::insert_range_impl(
key_type const&, InputIt i, InputIt j)
{
node_constructor a(*this);
if(!this->size_) {
a.construct(*i);
this->emplace_empty_impl_with_node(a, 1);
++i;
if(i == j) return;
}
do {
// No side effects in this initial code
// Note: can't use get_key as '*i' might not be value_type - it
// could be a pair with first_types as key_type without const or a
// different second_type.
key_type const& k = extractor::extract(*i);
std::size_t hash_value = this->hash_function()(k);
bucket_ptr bucket = this->bucket_ptr_from_hash(hash_value);
node_ptr pos = this->find_iterator(bucket, k);
if (!BOOST_UNORDERED_BORLAND_BOOL(pos)) {
// Doesn't already exist, add to bucket.
// Side effects only in this block.
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
a.construct(*i);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->size_ + 1 >= this->max_load_) {
this->reserve_for_insert(this->size_ + insert_size(i, j));
bucket = this->bucket_ptr_from_hash(hash_value);
}
// Nothing after this point can throw.
add_node(a, bucket);
}
} while(++i != j);
}
template <class T>
template <class InputIt>
inline void hash_unique_table<T>::insert_range_impl(
no_key, InputIt i, InputIt j)
{
node_constructor a(*this);
if(!this->size_) {
a.construct(*i);
this->emplace_empty_impl_with_node(a, 1);
++i;
if(i == j) return;
}
do {
// No side effects in this initial code
a.construct(*i);
emplace_impl_with_node(a);
} while(++i != j);
}
// if hash function throws, or inserting > 1 element, basic exception safety
// strong otherwise
template <class T>
template <class InputIt>
void hash_unique_table<T>::insert_range(InputIt i, InputIt j)
{
if(i != j)
return insert_range_impl(extractor::extract(*i), i, j);
}
}}
#endif