Reformat with clang-format

This commit is contained in:
Daniel James
2017-02-19 13:05:17 +00:00
parent 01dcd36c41
commit bf5ef9824d
70 changed files with 13000 additions and 13625 deletions

View File

@ -15,21 +15,21 @@
// Already defined.
#elif defined(BOOST_LIBSTDCXX11)
// https://github.com/gcc-mirror/gcc/blob/gcc-4_6-branch/libstdc++-v3/include/bits/stl_pair.h#L70
# if BOOST_LIBSTDCXX_VERSION > 40600
# define BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT 1
# endif
#if BOOST_LIBSTDCXX_VERSION > 40600
#define BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT 1
#endif
#elif defined(_LIBCPP_VERSION)
// https://github.com/llvm-mirror/libcxx/blob/release_30/include/utility#L206
# if LIBCPP_VERSION >= 3000
# define BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT 1
# endif
#if LIBCPP_VERSION >= 3000
#define BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT 1
#endif
#elif defined(BOOST_MSVC)
// Apparently C++11 standard supported in Visual Studio 2012
// https://msdn.microsoft.com/en-us/library/hh567368.aspx#stl
// 2012 = VC+11 = BOOST_MSVC 1700 Hopefully!
# if BOOST_MSVC >= 1700
# define BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT 1
# endif
#if BOOST_MSVC >= 1700
#define BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT 1
#endif
#endif
#if !defined(BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT)
@ -40,16 +40,16 @@
#include <utility>
#endif
namespace boost
{
namespace unordered
{
namespace boost {
namespace unordered {
#if BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT
using std::piecewise_construct_t;
using std::piecewise_construct;
using std::piecewise_construct_t;
using std::piecewise_construct;
#else
struct piecewise_construct_t {};
const piecewise_construct_t piecewise_construct = piecewise_construct_t();
struct piecewise_construct_t
{
};
const piecewise_construct_t piecewise_construct = piecewise_construct_t();
#endif
}
}

File diff suppressed because it is too large Load Diff

View File

@ -3,76 +3,73 @@
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/unordered/unordered_map_fwd.hpp>
#include <boost/unordered/detail/implementation.hpp>
#include <boost/unordered/unordered_map_fwd.hpp>
namespace boost { namespace unordered { namespace detail {
template <typename A, typename K, typename M, typename H, typename P>
struct map
{
typedef boost::unordered::detail::map<A, K, M, H, P> types;
namespace boost {
namespace unordered {
namespace detail {
template <typename A, typename K, typename M, typename H, typename P> struct map
{
typedef boost::unordered::detail::map<A, K, M, H, P> types;
typedef A allocator;
typedef std::pair<K const, M> value_type;
typedef H hasher;
typedef P key_equal;
typedef K key_type;
typedef A allocator;
typedef std::pair<K const, M> value_type;
typedef H hasher;
typedef P key_equal;
typedef K key_type;
typedef boost::unordered::detail::allocator_traits<allocator>
traits;
typedef boost::unordered::detail::pick_node<allocator, value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_node<allocator, value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::table_impl<types> table;
typedef boost::unordered::detail::map_extractor<key_type, value_type>
extractor;
typedef boost::unordered::detail::table_impl<types> table;
typedef boost::unordered::detail::map_extractor<key_type, value_type>
extractor;
typedef typename boost::unordered::detail::pick_policy<K>::type policy;
typedef typename boost::unordered::detail::pick_policy<K>::type policy;
typedef boost::unordered::iterator_detail::
iterator<node> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<node> c_iterator;
typedef boost::unordered::iterator_detail::
l_iterator<node, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<node, policy> cl_iterator;
};
typedef boost::unordered::iterator_detail::iterator<node> iterator;
typedef boost::unordered::iterator_detail::c_iterator<node> c_iterator;
typedef boost::unordered::iterator_detail::l_iterator<node, policy>
l_iterator;
typedef boost::unordered::iterator_detail::cl_iterator<node, policy>
cl_iterator;
};
template <typename A, typename K, typename M, typename H, typename P>
struct multimap
{
typedef boost::unordered::detail::multimap<A, K, M, H, P> types;
template <typename A, typename K, typename M, typename H, typename P>
struct multimap
{
typedef boost::unordered::detail::multimap<A, K, M, H, P> types;
typedef A allocator;
typedef std::pair<K const, M> value_type;
typedef H hasher;
typedef P key_equal;
typedef K key_type;
typedef A allocator;
typedef std::pair<K const, M> value_type;
typedef H hasher;
typedef P key_equal;
typedef K key_type;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_grouped_node<allocator,
value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_grouped_node<allocator, value_type>
pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::grouped_table_impl<types> table;
typedef boost::unordered::detail::map_extractor<key_type, value_type>
extractor;
typedef boost::unordered::detail::grouped_table_impl<types> table;
typedef boost::unordered::detail::map_extractor<key_type, value_type>
extractor;
typedef typename boost::unordered::detail::pick_policy<K>::type policy;
typedef typename boost::unordered::detail::pick_policy<K>::type policy;
typedef boost::unordered::iterator_detail::
iterator<node> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<node> c_iterator;
typedef boost::unordered::iterator_detail::
l_iterator<node, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<node, policy> cl_iterator;
};
}}}
typedef boost::unordered::iterator_detail::iterator<node> iterator;
typedef boost::unordered::iterator_detail::c_iterator<node> c_iterator;
typedef boost::unordered::iterator_detail::l_iterator<node, policy>
l_iterator;
typedef boost::unordered::iterator_detail::cl_iterator<node, policy>
cl_iterator;
};
}
}
}

View File

@ -3,72 +3,70 @@
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/unordered/unordered_set_fwd.hpp>
#include <boost/unordered/detail/implementation.hpp>
#include <boost/unordered/unordered_set_fwd.hpp>
namespace boost { namespace unordered { namespace detail {
template <typename A, typename T, typename H, typename P>
struct set
{
typedef boost::unordered::detail::set<A, T, H, P> types;
namespace boost {
namespace unordered {
namespace detail {
template <typename A, typename T, typename H, typename P> struct set
{
typedef boost::unordered::detail::set<A, T, H, P> types;
typedef A allocator;
typedef T value_type;
typedef H hasher;
typedef P key_equal;
typedef T key_type;
typedef A allocator;
typedef T value_type;
typedef H hasher;
typedef P key_equal;
typedef T key_type;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_node<allocator, value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_node<allocator, value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::table_impl<types> table;
typedef boost::unordered::detail::set_extractor<value_type> extractor;
typedef boost::unordered::detail::table_impl<types> table;
typedef boost::unordered::detail::set_extractor<value_type> extractor;
typedef typename boost::unordered::detail::pick_policy<T>::type policy;
typedef typename boost::unordered::detail::pick_policy<T>::type policy;
typedef boost::unordered::iterator_detail::
c_iterator<node> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<node> c_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<node, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<node, policy> cl_iterator;
};
typedef boost::unordered::iterator_detail::c_iterator<node> iterator;
typedef boost::unordered::iterator_detail::c_iterator<node> c_iterator;
typedef boost::unordered::iterator_detail::cl_iterator<node, policy>
l_iterator;
typedef boost::unordered::iterator_detail::cl_iterator<node, policy>
cl_iterator;
};
template <typename A, typename T, typename H, typename P>
struct multiset
{
typedef boost::unordered::detail::multiset<A, T, H, P> types;
template <typename A, typename T, typename H, typename P> struct multiset
{
typedef boost::unordered::detail::multiset<A, T, H, P> types;
typedef A allocator;
typedef T value_type;
typedef H hasher;
typedef P key_equal;
typedef T key_type;
typedef A allocator;
typedef T value_type;
typedef H hasher;
typedef P key_equal;
typedef T key_type;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_grouped_node<allocator,
value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_grouped_node<allocator, value_type>
pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
typedef boost::unordered::detail::grouped_table_impl<types> table;
typedef boost::unordered::detail::set_extractor<value_type> extractor;
typedef boost::unordered::detail::grouped_table_impl<types> table;
typedef boost::unordered::detail::set_extractor<value_type> extractor;
typedef typename boost::unordered::detail::pick_policy<T>::type policy;
typedef typename boost::unordered::detail::pick_policy<T>::type policy;
typedef boost::unordered::iterator_detail::
c_iterator<node> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<node> c_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<node, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<node, policy> cl_iterator;
};
}}}
typedef boost::unordered::iterator_detail::c_iterator<node> iterator;
typedef boost::unordered::iterator_detail::c_iterator<node> c_iterator;
typedef boost::unordered::iterator_detail::cl_iterator<node, policy>
l_iterator;
typedef boost::unordered::iterator_detail::cl_iterator<node, policy>
cl_iterator;
};
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -11,55 +11,48 @@
#pragma once
#endif
#include <memory>
#include <functional>
#include <boost/functional/hash_fwd.hpp>
#include <boost/unordered/detail/fwd.hpp>
#include <functional>
#include <memory>
namespace boost
{
namespace unordered
{
template <class K,
class T,
class H = boost::hash<K>,
class P = std::equal_to<K>,
class A = std::allocator<std::pair<const K, T> > >
class unordered_map;
namespace boost {
namespace unordered {
template <class K, class T, class H = boost::hash<K>,
class P = std::equal_to<K>,
class A = std::allocator<std::pair<const K, T> > >
class unordered_map;
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_map<K, T, H, P, A> const&,
unordered_map<K, T, H, P, A> const&);
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_map<K, T, H, P, A> const&,
unordered_map<K, T, H, P, A> const&);
template <class K, class T, class H, class P, class A>
inline void swap(unordered_map<K, T, H, P, A>&,
unordered_map<K, T, H, P, A>&);
template <class K, class T, class H, class P, class A>
inline bool operator==(
unordered_map<K, T, H, P, A> const&, unordered_map<K, T, H, P, A> const&);
template <class K, class T, class H, class P, class A>
inline bool operator!=(
unordered_map<K, T, H, P, A> const&, unordered_map<K, T, H, P, A> const&);
template <class K, class T, class H, class P, class A>
inline void swap(unordered_map<K, T, H, P, A>&, unordered_map<K, T, H, P, A>&);
template <class K,
class T,
class H = boost::hash<K>,
class P = std::equal_to<K>,
class A = std::allocator<std::pair<const K, T> > >
class unordered_multimap;
template <class K, class T, class H = boost::hash<K>,
class P = std::equal_to<K>,
class A = std::allocator<std::pair<const K, T> > >
class unordered_multimap;
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_multimap<K, T, H, P, A> const&,
unordered_multimap<K, T, H, P, A> const&);
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_multimap<K, T, H, P, A> const&,
unordered_multimap<K, T, H, P, A> const&);
template <class K, class T, class H, class P, class A>
inline void swap(unordered_multimap<K, T, H, P, A>&,
unordered_multimap<K, T, H, P, A>&);
}
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_multimap<K, T, H, P, A> const&,
unordered_multimap<K, T, H, P, A> const&);
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_multimap<K, T, H, P, A> const&,
unordered_multimap<K, T, H, P, A> const&);
template <class K, class T, class H, class P, class A>
inline void swap(
unordered_multimap<K, T, H, P, A>&, unordered_multimap<K, T, H, P, A>&);
}
using boost::unordered::unordered_map;
using boost::unordered::unordered_multimap;
using boost::unordered::swap;
using boost::unordered::operator==;
using boost::unordered::operator!=;
using boost::unordered::unordered_map;
using boost::unordered::unordered_multimap;
using boost::unordered::swap;
using boost::unordered::operator==;
using boost::unordered::operator!=;
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -11,53 +11,46 @@
#pragma once
#endif
#include <memory>
#include <functional>
#include <boost/functional/hash_fwd.hpp>
#include <boost/unordered/detail/fwd.hpp>
#include <functional>
#include <memory>
namespace boost
{
namespace unordered
{
template <class T,
class H = boost::hash<T>,
class P = std::equal_to<T>,
class A = std::allocator<T> >
class unordered_set;
namespace boost {
namespace unordered {
template <class T, class H = boost::hash<T>, class P = std::equal_to<T>,
class A = std::allocator<T> >
class unordered_set;
template <class T, class H, class P, class A>
inline bool operator==(unordered_set<T, H, P, A> const&,
unordered_set<T, H, P, A> const&);
template <class T, class H, class P, class A>
inline bool operator!=(unordered_set<T, H, P, A> const&,
unordered_set<T, H, P, A> const&);
template <class T, class H, class P, class A>
inline void swap(unordered_set<T, H, P, A> &m1,
unordered_set<T, H, P, A> &m2);
template <class T, class H, class P, class A>
inline bool operator==(
unordered_set<T, H, P, A> const&, unordered_set<T, H, P, A> const&);
template <class T, class H, class P, class A>
inline bool operator!=(
unordered_set<T, H, P, A> const&, unordered_set<T, H, P, A> const&);
template <class T, class H, class P, class A>
inline void swap(unordered_set<T, H, P, A>& m1, unordered_set<T, H, P, A>& m2);
template <class T,
class H = boost::hash<T>,
class P = std::equal_to<T>,
class A = std::allocator<T> >
class unordered_multiset;
template <class T, class H = boost::hash<T>, class P = std::equal_to<T>,
class A = std::allocator<T> >
class unordered_multiset;
template <class T, class H, class P, class A>
inline bool operator==(unordered_multiset<T, H, P, A> const&,
unordered_multiset<T, H, P, A> const&);
template <class T, class H, class P, class A>
inline bool operator!=(unordered_multiset<T, H, P, A> const&,
unordered_multiset<T, H, P, A> const&);
template <class T, class H, class P, class A>
inline void swap(unordered_multiset<T, H, P, A> &m1,
unordered_multiset<T, H, P, A> &m2);
}
template <class T, class H, class P, class A>
inline bool operator==(unordered_multiset<T, H, P, A> const&,
unordered_multiset<T, H, P, A> const&);
template <class T, class H, class P, class A>
inline bool operator!=(unordered_multiset<T, H, P, A> const&,
unordered_multiset<T, H, P, A> const&);
template <class T, class H, class P, class A>
inline void swap(
unordered_multiset<T, H, P, A>& m1, unordered_multiset<T, H, P, A>& m2);
}
using boost::unordered::unordered_set;
using boost::unordered::unordered_multiset;
using boost::unordered::swap;
using boost::unordered::operator==;
using boost::unordered::operator!=;
using boost::unordered::unordered_set;
using boost::unordered::unordered_multiset;
using boost::unordered::swap;
using boost::unordered::operator==;
using boost::unordered::operator!=;
}
#endif

View File

@ -5,17 +5,16 @@
#include "./containers.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
#if defined(BOOST_MSVC)
#pragma warning(disable:4512) // assignment operator could not be generated
#pragma warning(disable : 4512) // assignment operator could not be generated
#endif
test::seed_t initialize_seed(12847);
template <class T>
struct self_assign_base : public test::exception_base
template <class T> struct self_assign_base : public test::exception_base
{
test::random_values<T> values;
self_assign_base(std::size_t count = 0) : values(count) {}
@ -24,33 +23,33 @@ struct self_assign_base : public test::exception_base
T init() const { return T(values.begin(), values.end()); }
void run(T& x) const { x = x; }
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const
{ test::check_equivalent_keys(x); }
{
test::check_equivalent_keys(x);
}
};
template <class T>
struct self_assign_test1 : self_assign_base<T> {};
template <class T> struct self_assign_test1 : self_assign_base<T>
{
};
template <class T>
struct self_assign_test2 : self_assign_base<T>
template <class T> struct self_assign_test2 : self_assign_base<T>
{
self_assign_test2() : self_assign_base<T>(100) {}
};
template <class T>
struct assign_base : public test::exception_base
template <class T> struct assign_base : public test::exception_base
{
test::random_values<T> x_values, y_values;
T x,y;
T x, y;
typedef BOOST_DEDUCED_TYPENAME T::hasher hasher;
typedef BOOST_DEDUCED_TYPENAME T::key_equal key_equal;
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
assign_base(int tag1, int tag2, float mlf1 = 1.0, float mlf2 = 1.0) :
x_values(),
y_values(),
x(0, hasher(tag1), key_equal(tag1), allocator_type(tag1)),
y(0, hasher(tag2), key_equal(tag2), allocator_type(tag2))
assign_base(int tag1, int tag2, float mlf1 = 1.0, float mlf2 = 1.0)
: x_values(), y_values(),
x(0, hasher(tag1), key_equal(tag1), allocator_type(tag1)),
y(0, hasher(tag2), key_equal(tag2), allocator_type(tag2))
{
x.max_load_factor(mlf1);
y.max_load_factor(mlf2);
@ -74,12 +73,11 @@ struct assign_base : public test::exception_base
}
};
template <class T>
struct assign_values : assign_base<T>
template <class T> struct assign_values : assign_base<T>
{
assign_values(unsigned int count1, unsigned int count2,
int tag1, int tag2, float mlf1 = 1.0, float mlf2 = 1.0) :
assign_base<T>(tag1, tag2, mlf1, mlf2)
assign_values(unsigned int count1, unsigned int count2, int tag1, int tag2,
float mlf1 = 1.0, float mlf2 = 1.0)
: assign_base<T>(tag1, tag2, mlf1, mlf2)
{
this->x_values.fill(count1);
this->y_values.fill(count2);
@ -88,47 +86,39 @@ struct assign_values : assign_base<T>
}
};
template <class T>
struct assign_test1 : assign_values<T>
template <class T> struct assign_test1 : assign_values<T>
{
assign_test1() : assign_values<T>(0, 0, 0, 0) {}
};
template <class T>
struct assign_test2 : assign_values<T>
template <class T> struct assign_test2 : assign_values<T>
{
assign_test2() : assign_values<T>(60, 0, 0, 0) {}
};
template <class T>
struct assign_test3 : assign_values<T>
template <class T> struct assign_test3 : assign_values<T>
{
assign_test3() : assign_values<T>(0, 60, 0, 0) {}
};
template <class T>
struct assign_test4 : assign_values<T>
template <class T> struct assign_test4 : assign_values<T>
{
assign_test4() : assign_values<T>(10, 10, 1, 2) {}
};
template <class T>
struct assign_test4a : assign_values<T>
template <class T> struct assign_test4a : assign_values<T>
{
assign_test4a() : assign_values<T>(10, 100, 1, 2) {}
};
template <class T>
struct assign_test5 : assign_values<T>
template <class T> struct assign_test5 : assign_values<T>
{
assign_test5() : assign_values<T>(5, 60, 0, 0, 1.0f, 0.1f) {}
};
template <class T>
struct equivalent_test1 : assign_base<T>
template <class T> struct equivalent_test1 : assign_base<T>
{
equivalent_test1() :
assign_base<T>(0, 0)
equivalent_test1() : assign_base<T>(0, 0)
{
test::random_values<T> x_values2(10);
this->x_values.insert(x_values2.begin(), x_values2.end());
@ -141,9 +131,8 @@ struct equivalent_test1 : assign_base<T>
}
};
EXCEPTION_TESTS(
(self_assign_test1)(self_assign_test2)
(assign_test1)(assign_test2)(assign_test3)(assign_test4)(assign_test4a)(assign_test5)
(equivalent_test1),
EXCEPTION_TESTS((self_assign_test1)(self_assign_test2)(assign_test1)(
assign_test2)(assign_test3)(assign_test4)(assign_test4a)(
assign_test5)(equivalent_test1),
CONTAINER_SEQ)
RUN_TESTS()

View File

@ -5,8 +5,8 @@
#include "./containers.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/input_iterator.hpp"
#include "../helpers/random_values.hpp"
template <typename T> inline void avoid_unused_warning(T const&) {}
@ -20,62 +20,61 @@ struct objects
test::exception::allocator<test::exception::object> allocator;
};
template <class T>
struct construct_test1 : public objects, test::exception_base
template <class T> struct construct_test1 : public objects, test::exception_base
{
void run() const {
void run() const
{
T x;
avoid_unused_warning(x);
}
};
template <class T>
struct construct_test2 : public objects, test::exception_base
template <class T> struct construct_test2 : public objects, test::exception_base
{
void run() const {
void run() const
{
T x(300);
avoid_unused_warning(x);
}
};
template <class T>
struct construct_test3 : public objects, test::exception_base
template <class T> struct construct_test3 : public objects, test::exception_base
{
void run() const {
void run() const
{
T x(0, hash);
avoid_unused_warning(x);
}
};
template <class T>
struct construct_test4 : public objects, test::exception_base
template <class T> struct construct_test4 : public objects, test::exception_base
{
void run() const {
void run() const
{
T x(0, hash, equal_to);
avoid_unused_warning(x);
}
};
template <class T>
struct construct_test5 : public objects, test::exception_base
template <class T> struct construct_test5 : public objects, test::exception_base
{
void run() const {
void run() const
{
T x(50, hash, equal_to, allocator);
avoid_unused_warning(x);
}
};
template <class T>
struct construct_test6 : public objects, test::exception_base
template <class T> struct construct_test6 : public objects, test::exception_base
{
void run() const {
void run() const
{
T x(allocator);
avoid_unused_warning(x);
}
};
template <class T>
struct range : public test::exception_base
template <class T> struct range : public test::exception_base
{
test::random_values<T> values;
@ -83,37 +82,37 @@ struct range : public test::exception_base
range(unsigned int count) : values(count) {}
};
template <class T>
struct range_construct_test1 : public range<T>, objects
template <class T> struct range_construct_test1 : public range<T>, objects
{
void run() const {
void run() const
{
T x(this->values.begin(), this->values.end());
avoid_unused_warning(x);
}
};
template <class T>
struct range_construct_test2 : public range<T>, objects
template <class T> struct range_construct_test2 : public range<T>, objects
{
void run() const {
void run() const
{
T x(this->values.begin(), this->values.end(), 0);
avoid_unused_warning(x);
}
};
template <class T>
struct range_construct_test3 : public range<T>, objects
template <class T> struct range_construct_test3 : public range<T>, objects
{
void run() const {
void run() const
{
T x(this->values.begin(), this->values.end(), 0, hash);
avoid_unused_warning(x);
}
};
template <class T>
struct range_construct_test4 : public range<T>, objects
template <class T> struct range_construct_test4 : public range<T>, objects
{
void run() const {
void run() const
{
T x(this->values.begin(), this->values.end(), 100, hash, equal_to);
avoid_unused_warning(x);
}
@ -121,58 +120,51 @@ struct range_construct_test4 : public range<T>, objects
// Need to run at least one test with a fairly large number
// of objects in case it triggers a rehash.
template <class T>
struct range_construct_test5 : public range<T>, objects
template <class T> struct range_construct_test5 : public range<T>, objects
{
range_construct_test5() : range<T>(60) {}
void run() const {
T x(this->values.begin(), this->values.end(), 0,
hash, equal_to, allocator);
void run() const
{
T x(this->values.begin(), this->values.end(), 0, hash, equal_to,
allocator);
avoid_unused_warning(x);
}
};
template <class T>
struct input_range_construct_test : public range<T>, objects
template <class T> struct input_range_construct_test : public range<T>, objects
{
input_range_construct_test() : range<T>(60) {}
void run() const {
void run() const
{
BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
begin = this->values.begin(), end = this->values.end();
T x(test::input_iterator(begin), test::input_iterator(end),
0, hash, equal_to, allocator);
begin = this->values.begin(),
end = this->values.end();
T x(test::input_iterator(begin), test::input_iterator(end), 0, hash,
equal_to, allocator);
avoid_unused_warning(x);
}
};
template <class T>
struct copy_range_construct_test : public range<T>, objects
template <class T> struct copy_range_construct_test : public range<T>, objects
{
copy_range_construct_test() : range<T>(60) {}
void run() const {
void run() const
{
T x(test::copy_iterator(this->values.begin()),
test::copy_iterator(this->values.end()),
0, hash, equal_to, allocator);
test::copy_iterator(this->values.end()), 0, hash, equal_to,
allocator);
avoid_unused_warning(x);
}
};
EXCEPTION_TESTS(
(construct_test1)
(construct_test2)
(construct_test3)
(construct_test4)
(construct_test5)
(construct_test6)
(range_construct_test1)
(range_construct_test2)
(range_construct_test3)
(range_construct_test4)
(range_construct_test5)
(input_range_construct_test)
(copy_range_construct_test),
(construct_test1)(construct_test2)(construct_test3)(construct_test4)(
construct_test5)(construct_test6)(range_construct_test1)(
range_construct_test2)(range_construct_test3)(range_construct_test4)(
range_construct_test5)(input_range_construct_test)(
copy_range_construct_test),
CONTAINER_SEQ)
RUN_TESTS()

View File

@ -12,39 +12,33 @@
#include "../objects/exception.hpp"
typedef boost::unordered_set<
test::exception::object,
test::exception::hash,
typedef boost::unordered_set<test::exception::object, test::exception::hash,
test::exception::equal_to,
test::exception::allocator<test::exception::object> > test_set;
typedef boost::unordered_multiset<
test::exception::object,
test::exception::hash,
test::exception::equal_to,
test::exception::allocator2<test::exception::object> > test_multiset;
typedef boost::unordered_map<
test::exception::object,
test::exception::object,
test::exception::hash,
test::exception::equal_to,
test::exception::allocator2<test::exception::object> > test_map;
typedef boost::unordered_multimap<
test::exception::object,
test::exception::object,
test::exception::hash,
test::exception::equal_to,
test::exception::allocator<test::exception::object> > test_multimap;
test::exception::allocator<test::exception::object> >
test_set;
typedef boost::unordered_multiset<test::exception::object,
test::exception::hash, test::exception::equal_to,
test::exception::allocator2<test::exception::object> >
test_multiset;
typedef boost::unordered_map<test::exception::object, test::exception::object,
test::exception::hash, test::exception::equal_to,
test::exception::allocator2<test::exception::object> >
test_map;
typedef boost::unordered_multimap<test::exception::object,
test::exception::object, test::exception::hash, test::exception::equal_to,
test::exception::allocator<test::exception::object> >
test_multimap;
typedef boost::unordered_set<
std::pair<test::exception::object, test::exception::object>,
test::exception::hash,
test::exception::equal_to,
test::exception::allocator<test::exception::object> > test_pair_set;
test::exception::hash, test::exception::equal_to,
test::exception::allocator<test::exception::object> >
test_pair_set;
typedef boost::unordered_multiset<
std::pair<test::exception::object, test::exception::object>,
test::exception::hash,
test::exception::equal_to,
test::exception::allocator2<test::exception::object> > test_pair_multiset;
test::exception::hash, test::exception::equal_to,
test::exception::allocator2<test::exception::object> >
test_pair_multiset;
#define CONTAINER_SEQ (test_set)(test_multiset)(test_map)(test_multimap)
#define CONTAINER_PAIR_SEQ (test_pair_set)(test_pair_multiset)(test_map)(test_multimap)
#define CONTAINER_PAIR_SEQ \
(test_pair_set)(test_pair_multiset)(test_map)(test_multimap)

View File

@ -11,47 +11,46 @@ template <typename T> inline void avoid_unused_warning(T const&) {}
test::seed_t initialize_seed(73041);
template <class T>
struct copy_test1 : public test::exception_base
template <class T> struct copy_test1 : public test::exception_base
{
T x;
void run() const {
void run() const
{
T y(x);
avoid_unused_warning(y);
}
};
template <class T>
struct copy_test2 : public test::exception_base
template <class T> struct copy_test2 : public test::exception_base
{
test::random_values<T> values;
T x;
copy_test2() : values(5), x(values.begin(), values.end()) {}
void run() const {
void run() const
{
T y(x);
avoid_unused_warning(y);
}
};
template <class T>
struct copy_test3 : public test::exception_base
template <class T> struct copy_test3 : public test::exception_base
{
test::random_values<T> values;
T x;
copy_test3() : values(100), x(values.begin(), values.end()) {}
void run() const {
void run() const
{
T y(x);
avoid_unused_warning(y);
}
};
template <class T>
struct copy_with_allocator_test : public test::exception_base
template <class T> struct copy_with_allocator_test : public test::exception_base
{
test::random_values<T> values;
T x;
@ -59,13 +58,13 @@ struct copy_with_allocator_test : public test::exception_base
copy_with_allocator_test() : values(100), x(values.begin(), values.end()) {}
void run() const {
void run() const
{
T y(x, allocator);
avoid_unused_warning(y);
}
};
EXCEPTION_TESTS(
(copy_test1)(copy_test2)(copy_test3)(copy_with_allocator_test),
EXCEPTION_TESTS((copy_test1)(copy_test2)(copy_test3)(copy_with_allocator_test),
CONTAINER_SEQ)
RUN_TESTS()

View File

@ -5,52 +5,46 @@
#include "./containers.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/helpers.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
test::seed_t initialize_seed(835193);
template <class T>
struct erase_test_base : public test::exception_base
template <class T> struct erase_test_base : public test::exception_base
{
test::random_values<T> values;
erase_test_base(unsigned int count = 5) : values(count) {}
typedef T data_type;
data_type init() const {
return T(values.begin(), values.end());
}
data_type init() const { return T(values.begin(), values.end()); }
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const {
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const
{
std::string scope(test::scope);
BOOST_TEST(scope.find("hash::") != std::string::npos ||
scope.find("equal_to::") != std::string::npos ||
scope == "operator==(object, object)");
scope.find("equal_to::") != std::string::npos ||
scope == "operator==(object, object)");
test::check_equivalent_keys(x);
}
};
template <class T>
struct erase_by_key_test1 : public erase_test_base<T>
template <class T> struct erase_by_key_test1 : public erase_test_base<T>
{
void run(T& x) const
{
typedef BOOST_DEDUCED_TYPENAME
test::random_values<T>::const_iterator iterator;
typedef BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
iterator;
for(iterator it = this->values.begin(), end = this->values.end();
it != end; ++it)
{
for (iterator it = this->values.begin(), end = this->values.end();
it != end; ++it) {
x.erase(test::get_key<T>(*it));
}
}
};
EXCEPTION_TESTS(
(erase_by_key_test1),
CONTAINER_SEQ)
EXCEPTION_TESTS((erase_by_key_test1), CONTAINER_SEQ)
RUN_TESTS()

View File

@ -5,51 +5,52 @@
#include "./containers.hpp"
#include <string>
#include "../helpers/random_values.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/strong.hpp"
#include "../helpers/helpers.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/strong.hpp"
#include <cmath>
#include <string>
test::seed_t initialize_seed(747373);
template <class T>
struct insert_test_base : public test::exception_base
template <class T> struct insert_test_base : public test::exception_base
{
test::random_values<T> values;
insert_test_base(unsigned int count = 5) : values(count, test::limited_range) {}
insert_test_base(unsigned int count = 5)
: values(count, test::limited_range)
{
}
typedef T data_type;
typedef test::strong<T> strong_type;
data_type init() const {
return T();
}
data_type init() const { return T(); }
void check BOOST_PREVENT_MACRO_SUBSTITUTION(
T const& x, strong_type const& strong) const
{
std::string scope(test::scope);
if(scope.find("hash::operator()") == std::string::npos)
if (scope.find("hash::operator()") == std::string::npos)
strong.test(x, test::detail::tracker.count_allocations);
test::check_equivalent_keys(x);
}
};
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && \
!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class T>
struct emplace_test1 : public insert_test_base<T>
template <class T> struct emplace_test1 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end();
it != end; ++it)
{
void run(T& x, strong_type& strong) const
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(),
end = this->values.end();
it != end; ++it) {
strong.store(x, test::detail::tracker.count_allocations);
x.emplace(*it);
}
@ -58,74 +59,72 @@ struct emplace_test1 : public insert_test_base<T>
#endif
template <class T>
struct insert_test1 : public insert_test_base<T>
template <class T> struct insert_test1 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end();
it != end; ++it)
{
void run(T& x, strong_type& strong) const
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(),
end = this->values.end();
it != end; ++it) {
strong.store(x, test::detail::tracker.count_allocations);
x.insert(*it);
}
}
};
template <class T>
struct insert_test2 : public insert_test_base<T>
template <class T> struct insert_test2 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end();
it != end; ++it)
{
void run(T& x, strong_type& strong) const
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(),
end = this->values.end();
it != end; ++it) {
strong.store(x, test::detail::tracker.count_allocations);
x.insert(x.begin(), *it);
}
}
};
template <class T>
struct insert_test3 : public insert_test_base<T>
template <class T> struct insert_test3 : public insert_test_base<T>
{
void run(T& x) const {
x.insert(this->values.begin(), this->values.end());
}
void run(T& x) const { x.insert(this->values.begin(), this->values.end()); }
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const {
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const
{
test::check_equivalent_keys(x);
}
};
template <class T>
struct insert_test4 : public insert_test_base<T>
template <class T> struct insert_test4 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end();
it != end; ++it)
{
void run(T& x, strong_type& strong) const
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(),
end = this->values.end();
it != end; ++it) {
strong.store(x, test::detail::tracker.count_allocations);
x.insert(it, test::next(it));
}
}
};
template <class T>
struct insert_test_rehash1 : public insert_test_base<T>
template <class T> struct insert_test_rehash1 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
insert_test_rehash1() : insert_test_base<T>(1000) {}
T init() const {
T init() const
{
using namespace std;
typedef BOOST_DEDUCED_TYPENAME T::size_type size_type;
@ -134,24 +133,24 @@ struct insert_test_rehash1 : public insert_test_base<T>
// TODO: This doesn't really work is bucket_count is 0
size_type bucket_count = x.bucket_count();
size_type initial_elements = static_cast<size_type>(
ceil((double) bucket_count * (double) x.max_load_factor()) - 1);
ceil((double)bucket_count * (double)x.max_load_factor()) - 1);
BOOST_TEST(initial_elements < this->values.size());
x.insert(this->values.begin(),
test::next(this->values.begin(), initial_elements));
test::next(this->values.begin(), initial_elements));
BOOST_TEST(bucket_count == x.bucket_count());
return x;
}
void run(T& x, strong_type& strong) const {
void run(T& x, strong_type& strong) const
{
BOOST_DEDUCED_TYPENAME T::size_type bucket_count = x.bucket_count();
int count = 0;
BOOST_DEDUCED_TYPENAME T::const_iterator pos = x.cbegin();
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = test::next(this->values.begin(), x.size()),
end = this->values.end();
it != end && count < 10; ++it, ++count)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = test::next(this->values.begin(), x.size()),
end = this->values.end();
it != end && count < 10; ++it, ++count) {
strong.store(x, test::detail::tracker.count_allocations);
pos = x.insert(pos, *it);
}
@ -162,20 +161,19 @@ struct insert_test_rehash1 : public insert_test_base<T>
}
};
template <class T>
struct insert_test_rehash2 : public insert_test_rehash1<T>
template <class T> struct insert_test_rehash2 : public insert_test_rehash1<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
void run(T& x, strong_type& strong) const
{
BOOST_DEDUCED_TYPENAME T::size_type bucket_count = x.bucket_count();
int count = 0;
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = test::next(this->values.begin(), x.size()),
end = this->values.end();
it != end && count < 10; ++it, ++count)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = test::next(this->values.begin(), x.size()),
end = this->values.end();
it != end && count < 10; ++it, ++count) {
strong.store(x, test::detail::tracker.count_allocations);
x.insert(*it);
}
@ -186,15 +184,15 @@ struct insert_test_rehash2 : public insert_test_rehash1<T>
}
};
template <class T>
struct insert_test_rehash3 : public insert_test_base<T>
template <class T> struct insert_test_rehash3 : public insert_test_base<T>
{
BOOST_DEDUCED_TYPENAME T::size_type mutable
rehash_bucket_count, original_bucket_count;
BOOST_DEDUCED_TYPENAME T::size_type mutable rehash_bucket_count,
original_bucket_count;
insert_test_rehash3() : insert_test_base<T>(1000) {}
T init() const {
T init() const
{
using namespace std;
typedef BOOST_DEDUCED_TYPENAME T::size_type size_type;
@ -202,78 +200,82 @@ struct insert_test_rehash3 : public insert_test_base<T>
x.max_load_factor(0.25);
original_bucket_count = x.bucket_count();
rehash_bucket_count = static_cast<size_type>(
ceil((double) original_bucket_count * (double) x.max_load_factor())) - 1;
rehash_bucket_count =
static_cast<size_type>(ceil(
(double)original_bucket_count * (double)x.max_load_factor())) -
1;
size_type initial_elements =
rehash_bucket_count > 5 ? rehash_bucket_count - 5 : 1;
BOOST_TEST(initial_elements < this->values.size());
x.insert(this->values.begin(),
test::next(this->values.begin(), initial_elements));
test::next(this->values.begin(), initial_elements));
BOOST_TEST(original_bucket_count == x.bucket_count());
return x;
}
void run(T& x) const {
void run(T& x) const
{
BOOST_DEDUCED_TYPENAME T::size_type bucket_count = x.bucket_count();
x.insert(test::next(this->values.begin(), x.size()),
test::next(this->values.begin(), x.size() + 20));
test::next(this->values.begin(), x.size() + 20));
// This isn't actually a failure, but it means the test isn't doing its
// job.
BOOST_TEST(x.bucket_count() != bucket_count);
}
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const {
if(x.size() < rehash_bucket_count) {
//BOOST_TEST(x.bucket_count() == original_bucket_count);
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const
{
if (x.size() < rehash_bucket_count) {
// BOOST_TEST(x.bucket_count() == original_bucket_count);
}
test::check_equivalent_keys(x);
}
};
#define BASIC_TESTS \
(insert_test1)(insert_test2)(insert_test3)(insert_test4) \
(insert_test_rehash1)(insert_test_rehash2)(insert_test_rehash3)
#define BASIC_TESTS \
(insert_test1)(insert_test2)(insert_test3)(insert_test4)( \
insert_test_rehash1)(insert_test_rehash2)(insert_test_rehash3)
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define ALL_TESTS (emplace_test1)BASIC_TESTS
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && \
!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define ALL_TESTS (emplace_test1) BASIC_TESTS
#else
#define ALL_TESTS BASIC_TESTS
#endif
EXCEPTION_TESTS(ALL_TESTS, CONTAINER_SEQ)
template <class T>
struct pair_emplace_test1 : public insert_test_base<T>
template <class T> struct pair_emplace_test1 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end();
it != end; ++it)
{
void run(T& x, strong_type& strong) const
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(),
end = this->values.end();
it != end; ++it) {
strong.store(x, test::detail::tracker.count_allocations);
x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(it->first),
boost::make_tuple(it->second));
boost::make_tuple(it->first), boost::make_tuple(it->second));
}
}
};
template <class T>
struct pair_emplace_test2 : public insert_test_base<T>
template <class T> struct pair_emplace_test2 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end();
it != end; ++it)
{
void run(T& x, strong_type& strong) const
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(),
end = this->values.end();
it != end; ++it) {
strong.store(x, test::detail::tracker.count_allocations);
x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(it->first),
@ -284,16 +286,16 @@ struct pair_emplace_test2 : public insert_test_base<T>
EXCEPTION_TESTS((pair_emplace_test1)(pair_emplace_test2), CONTAINER_PAIR_SEQ)
template <class T>
struct index_insert_test1 : public insert_test_base<T>
template <class T> struct index_insert_test1 : public insert_test_base<T>
{
typedef BOOST_DEDUCED_TYPENAME insert_test_base<T>::strong_type strong_type;
void run(T& x, strong_type& strong) const {
for(BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(), end = this->values.end();
it != end; ++it)
{
void run(T& x, strong_type& strong) const
{
for (BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
it = this->values.begin(),
end = this->values.end();
it != end; ++it) {
strong.store(x, test::detail::tracker.count_allocations);
x[it->first];
}

View File

@ -5,31 +5,30 @@
#include "./containers.hpp"
#include <iostream>
#include "../helpers/random_values.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
#include <iostream>
#if defined(BOOST_MSVC)
#pragma warning(disable:4512) // move_assignment operator could not be generated
#pragma warning( \
disable : 4512) // move_assignment operator could not be generated
#endif
test::seed_t initialize_seed(12847);
template <class T>
struct move_assign_base : public test::exception_base
template <class T> struct move_assign_base : public test::exception_base
{
test::random_values<T> x_values, y_values;
T x,y;
T x, y;
typedef BOOST_DEDUCED_TYPENAME T::hasher hasher;
typedef BOOST_DEDUCED_TYPENAME T::key_equal key_equal;
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
move_assign_base(int tag1, int tag2, float mlf1 = 1.0, float mlf2 = 1.0) :
x_values(),
y_values(),
x(0, hasher(tag1), key_equal(tag1), allocator_type(tag1)),
y(0, hasher(tag2), key_equal(tag2), allocator_type(tag2))
move_assign_base(int tag1, int tag2, float mlf1 = 1.0, float mlf2 = 1.0)
: x_values(), y_values(),
x(0, hasher(tag1), key_equal(tag1), allocator_type(tag1)),
y(0, hasher(tag2), key_equal(tag2), allocator_type(tag2))
{
x.max_load_factor(mlf1);
y.max_load_factor(mlf2);
@ -37,7 +36,8 @@ struct move_assign_base : public test::exception_base
typedef T data_type;
T init() const { return T(x); }
void run(T& x1) const {
void run(T& x1) const
{
test::exceptions_enable disable_exceptions(false);
T y1 = y;
disable_exceptions.release();
@ -58,12 +58,11 @@ struct move_assign_base : public test::exception_base
}
};
template <class T>
struct move_assign_values : move_assign_base<T>
template <class T> struct move_assign_values : move_assign_base<T>
{
move_assign_values(unsigned int count1, unsigned int count2,
int tag1, int tag2, float mlf1 = 1.0, float mlf2 = 1.0) :
move_assign_base<T>(tag1, tag2, mlf1, mlf2)
move_assign_values(unsigned int count1, unsigned int count2, int tag1,
int tag2, float mlf1 = 1.0, float mlf2 = 1.0)
: move_assign_base<T>(tag1, tag2, mlf1, mlf2)
{
this->x_values.fill(count1);
this->y_values.fill(count2);
@ -72,47 +71,39 @@ struct move_assign_values : move_assign_base<T>
}
};
template <class T>
struct move_assign_test1 : move_assign_values<T>
template <class T> struct move_assign_test1 : move_assign_values<T>
{
move_assign_test1() : move_assign_values<T>(0, 0, 0, 0) {}
};
template <class T>
struct move_assign_test2 : move_assign_values<T>
template <class T> struct move_assign_test2 : move_assign_values<T>
{
move_assign_test2() : move_assign_values<T>(60, 0, 0, 0) {}
};
template <class T>
struct move_assign_test3 : move_assign_values<T>
template <class T> struct move_assign_test3 : move_assign_values<T>
{
move_assign_test3() : move_assign_values<T>(0, 60, 0, 0) {}
};
template <class T>
struct move_assign_test4 : move_assign_values<T>
template <class T> struct move_assign_test4 : move_assign_values<T>
{
move_assign_test4() : move_assign_values<T>(10, 10, 1, 2) {}
};
template <class T>
struct move_assign_test4a : move_assign_values<T>
template <class T> struct move_assign_test4a : move_assign_values<T>
{
move_assign_test4a() : move_assign_values<T>(10, 100, 1, 2) {}
};
template <class T>
struct move_assign_test5 : move_assign_values<T>
template <class T> struct move_assign_test5 : move_assign_values<T>
{
move_assign_test5() : move_assign_values<T>(5, 60, 0, 0, 1.0f, 0.1f) {}
};
template <class T>
struct equivalent_test1 : move_assign_base<T>
template <class T> struct equivalent_test1 : move_assign_base<T>
{
equivalent_test1() :
move_assign_base<T>(0, 0)
equivalent_test1() : move_assign_base<T>(0, 0)
{
test::random_values<T> x_values2(10);
this->x_values.insert(x_values2.begin(), x_values2.end());
@ -125,8 +116,8 @@ struct equivalent_test1 : move_assign_base<T>
}
};
EXCEPTION_TESTS(
(move_assign_test1)(move_assign_test2)(move_assign_test3)(move_assign_test4)(move_assign_test4a)(move_assign_test5)
(equivalent_test1),
EXCEPTION_TESTS((move_assign_test1)(move_assign_test2)(move_assign_test3)(
move_assign_test4)(move_assign_test4a)(move_assign_test5)(
equivalent_test1),
CONTAINER_SEQ)
RUN_TESTS()

View File

@ -5,76 +5,72 @@
#include "./containers.hpp"
#include <string>
#include "../helpers/random_values.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/strong.hpp"
#include <string>
#include <iostream>
test::seed_t initialize_seed(3298597);
template <class T>
struct rehash_test_base : public test::exception_base
template <class T> struct rehash_test_base : public test::exception_base
{
test::random_values<T> values;
unsigned int n;
rehash_test_base(unsigned int count = 100, unsigned int n_ = 0)
: values(count), n(n_)
{}
{
}
typedef T data_type;
typedef test::strong<T> strong_type;
data_type init() const {
data_type init() const
{
T x(values.begin(), values.end(), n);
return x;
}
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x,
strong_type const& strong) const
void check BOOST_PREVENT_MACRO_SUBSTITUTION(
T const& x, strong_type const& strong) const
{
std::string scope(test::scope);
if(scope.find("hash::operator()") == std::string::npos &&
scope.find("equal_to::operator()") == std::string::npos &&
scope != "operator==(object, object)")
if (scope.find("hash::operator()") == std::string::npos &&
scope.find("equal_to::operator()") == std::string::npos &&
scope != "operator==(object, object)")
strong.test(x);
test::check_equivalent_keys(x);
}
};
template <class T>
struct rehash_test0 : rehash_test_base<T>
template <class T> struct rehash_test0 : rehash_test_base<T>
{
rehash_test0() : rehash_test_base<T>(0) {}
void run(T& x) const { x.rehash(0); }
};
template <class T>
struct rehash_test1 : rehash_test_base<T>
template <class T> struct rehash_test1 : rehash_test_base<T>
{
rehash_test1() : rehash_test_base<T>(0) {}
void run(T& x) const { x.rehash(200); }
};
template <class T>
struct rehash_test2 : rehash_test_base<T>
template <class T> struct rehash_test2 : rehash_test_base<T>
{
rehash_test2() : rehash_test_base<T>(0, 200) {}
void run(T& x) const { x.rehash(0); }
};
template <class T>
struct rehash_test3 : rehash_test_base<T>
template <class T> struct rehash_test3 : rehash_test_base<T>
{
rehash_test3() : rehash_test_base<T>(10, 0) {}
void run(T& x) const { x.rehash(200); }
};
template <class T>
struct rehash_test4 : rehash_test_base<T>
template <class T> struct rehash_test4 : rehash_test_base<T>
{
rehash_test4() : rehash_test_base<T>(10, 200) {}
void run(T& x) const { x.rehash(0); }

View File

@ -5,17 +5,16 @@
#include "./containers.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
#if defined(BOOST_MSVC)
#pragma warning(disable:4512) // assignment operator could not be generated
#pragma warning(disable : 4512) // assignment operator could not be generated
#endif
test::seed_t initialize_seed(9387);
template <class T>
struct self_swap_base : public test::exception_base
template <class T> struct self_swap_base : public test::exception_base
{
test::random_values<T> values;
self_swap_base(std::size_t count = 0) : values(count) {}
@ -23,31 +22,30 @@ struct self_swap_base : public test::exception_base
typedef T data_type;
T init() const { return T(values.begin(), values.end()); }
void run(T& x) const { x.swap(x); }
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const {
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const
{
std::string scope(test::scope);
// TODO: In C++11 exceptions are only allowed in the swap function.
BOOST_TEST(
scope == "hash::hash(hash)" ||
scope == "hash::operator=(hash)" ||
scope == "equal_to::equal_to(equal_to)" ||
scope == "equal_to::operator=(equal_to)");
BOOST_TEST(scope == "hash::hash(hash)" ||
scope == "hash::operator=(hash)" ||
scope == "equal_to::equal_to(equal_to)" ||
scope == "equal_to::operator=(equal_to)");
test::check_equivalent_keys(x);
}
};
template <class T>
struct self_swap_test1 : self_swap_base<T> {};
template <class T> struct self_swap_test1 : self_swap_base<T>
{
};
template <class T>
struct self_swap_test2 : self_swap_base<T>
template <class T> struct self_swap_test2 : self_swap_base<T>
{
self_swap_test2() : self_swap_base<T>(100) {}
};
template <class T>
struct swap_base : public test::exception_base
template <class T> struct swap_base : public test::exception_base
{
const test::random_values<T> x_values, y_values;
const T initial_x, initial_y;
@ -58,69 +56,69 @@ struct swap_base : public test::exception_base
swap_base(unsigned int count1, unsigned int count2, int tag1, int tag2)
: x_values(count1), y_values(count2),
initial_x(x_values.begin(), x_values.end(), 0, hasher(tag1),
key_equal(tag1), allocator_type(tag1)),
initial_y(y_values.begin(), y_values.end(), 0, hasher(tag2),
key_equal(tag2), allocator_type(
T::allocator_type::propagate_on_container_swap::value ?
tag2 : tag1))
{}
initial_x(x_values.begin(), x_values.end(), 0, hasher(tag1),
key_equal(tag1), allocator_type(tag1)),
initial_y(
y_values.begin(), y_values.end(), 0, hasher(tag2),
key_equal(tag2),
allocator_type(
T::allocator_type::propagate_on_container_swap::value ? tag2
: tag1))
{
}
struct data_type {
data_type(T const& x_, T const& y_)
: x(x_), y(y_) {}
struct data_type
{
data_type(T const& x_, T const& y_) : x(x_), y(y_) {}
T x, y;
};
data_type init() const { return data_type(initial_x, initial_y); }
void run(data_type& d) const {
void run(data_type& d) const
{
try {
d.x.swap(d.y);
} catch (std::runtime_error) {}
} catch (std::runtime_error) {
}
}
void check BOOST_PREVENT_MACRO_SUBSTITUTION(data_type const& d) const {
void check BOOST_PREVENT_MACRO_SUBSTITUTION(data_type const& d) const
{
std::string scope(test::scope);
// TODO: In C++11 exceptions are only allowed in the swap function.
BOOST_TEST(
scope == "hash::hash(hash)" ||
scope == "hash::operator=(hash)" ||
scope == "equal_to::equal_to(equal_to)" ||
scope == "equal_to::operator=(equal_to)");
BOOST_TEST(scope == "hash::hash(hash)" ||
scope == "hash::operator=(hash)" ||
scope == "equal_to::equal_to(equal_to)" ||
scope == "equal_to::operator=(equal_to)");
test::check_equivalent_keys(d.x);
test::check_equivalent_keys(d.y);
}
};
template <class T>
struct swap_test1 : swap_base<T>
template <class T> struct swap_test1 : swap_base<T>
{
swap_test1() : swap_base<T>(0, 0, 0, 0) {}
};
template <class T>
struct swap_test2 : swap_base<T>
template <class T> struct swap_test2 : swap_base<T>
{
swap_test2() : swap_base<T>(60, 0, 0, 0) {}
swap_test2() : swap_base<T>(60, 0, 0, 0) {}
};
template <class T>
struct swap_test3 : swap_base<T>
template <class T> struct swap_test3 : swap_base<T>
{
swap_test3() : swap_base<T>(0, 60, 0, 0) {}
swap_test3() : swap_base<T>(0, 60, 0, 0) {}
};
template <class T>
struct swap_test4 : swap_base<T>
template <class T> struct swap_test4 : swap_base<T>
{
swap_test4() : swap_base<T>(10, 10, 1, 2) {}
};
EXCEPTION_TESTS(
(self_swap_test1)(self_swap_test2)
(swap_test1)(swap_test2)(swap_test3)(swap_test4),
EXCEPTION_TESTS((self_swap_test1)(self_swap_test2)(swap_test1)(swap_test2)(
swap_test3)(swap_test4),
CONTAINER_SEQ)
RUN_TESTS()

View File

@ -7,32 +7,27 @@
#define BOOST_UNORDERED_TEST_HELPERS_CHECK_RETURN_TYPE_HEADER
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_same.hpp>
namespace test
namespace test {
template <class T1> struct check_return_type
{
template <class T1>
struct check_return_type
template <class T2> static void equals(T2)
{
template <class T2>
static void equals(T2)
{
BOOST_STATIC_ASSERT((boost::is_same<T1, T2>::value));
}
BOOST_STATIC_ASSERT((boost::is_same<T1, T2>::value));
}
template <class T2>
static void equals_ref(T2&)
{
BOOST_STATIC_ASSERT((boost::is_same<T1, T2>::value));
}
template <class T2> static void equals_ref(T2&)
{
BOOST_STATIC_ASSERT((boost::is_same<T1, T2>::value));
}
template <class T2>
static void convertible(T2)
{
BOOST_STATIC_ASSERT((boost::is_convertible<T2, T1>::value));
}
};
template <class T2> static void convertible(T2)
{
BOOST_STATIC_ASSERT((boost::is_convertible<T2, T1>::value));
}
};
}
#endif

View File

@ -10,77 +10,81 @@
#include <iostream>
namespace test {
struct object_count {
int instances;
int constructions;
struct object_count
{
int instances;
int constructions;
object_count() : instances(0), constructions(0) {}
void reset() { *this = object_count(); }
object_count() : instances(0), constructions(0) {}
void reset() { *this = object_count(); }
void construct() {
++instances;
++constructions;
}
void destruct() {
if(instances == 0) {
BOOST_ERROR("Unbalanced constructions.");
}
else {
--instances;
}
}
bool operator==(object_count const& x) const {
return instances == x.instances &&
constructions == x.constructions;
}
bool operator!=(object_count const& x) const {
return !(*this == x);
}
friend std::ostream& operator<<(std::ostream& out,
object_count const& c)
{
out
<< "[instances: "
<< c.instances
<< ", constructions: "
<< c.constructions
<< "]";
return out;
}
};
// This won't be a problem as I'm only using a single compile unit
// in each test (this is actually require by the minimal test
// framework).
//
// boostinspect:nounnamed
namespace {
object_count global_object_count;
}
struct counted_object
void construct()
{
counted_object() { global_object_count.construct(); }
counted_object(counted_object const&) { global_object_count.construct(); }
~counted_object() { global_object_count.destruct(); }
};
++instances;
++constructions;
}
struct check_instances {
int instances_;
int constructions_;
check_instances() :
instances_(global_object_count.instances),
constructions_(global_object_count.constructions) {}
~check_instances() { BOOST_TEST(global_object_count.instances == instances_); }
void destruct()
{
if (instances == 0) {
BOOST_ERROR("Unbalanced constructions.");
} else {
--instances;
}
}
int instances() const { return global_object_count.instances - instances_; }
int constructions() const { return global_object_count.constructions - constructions_; }
};
bool operator==(object_count const& x) const
{
return instances == x.instances && constructions == x.constructions;
}
bool operator!=(object_count const& x) const { return !(*this == x); }
friend std::ostream& operator<<(std::ostream& out, object_count const& c)
{
out << "[instances: " << c.instances
<< ", constructions: " << c.constructions << "]";
return out;
}
};
// This won't be a problem as I'm only using a single compile unit
// in each test (this is actually require by the minimal test
// framework).
//
// boostinspect:nounnamed
namespace {
object_count global_object_count;
}
struct counted_object
{
counted_object() { global_object_count.construct(); }
counted_object(counted_object const&) { global_object_count.construct(); }
~counted_object() { global_object_count.destruct(); }
};
struct check_instances
{
int instances_;
int constructions_;
check_instances()
: instances_(global_object_count.instances),
constructions_(global_object_count.constructions)
{
}
~check_instances()
{
BOOST_TEST(global_object_count.instances == instances_);
}
int instances() const { return global_object_count.instances - instances_; }
int constructions() const
{
return global_object_count.constructions - constructions_;
}
};
}
#endif

View File

@ -6,88 +6,89 @@
#if !defined(BOOST_UNORDERED_TESTS_EQUIVALENT_HEADER)
#define BOOST_UNORDERED_TESTS_EQUIVALENT_HEADER
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
#include <algorithm>
#include "./metafunctions.hpp"
#include "./fwd.hpp"
#include "./list.hpp"
#include "./metafunctions.hpp"
#include <algorithm>
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
namespace test
namespace test {
template <class T1, class T2>
bool equivalent_impl(T1 const& x, T2 const& y, base_type)
{
return x == y;
}
template <class T>
bool equivalent_impl(boost::hash<T> const&, boost::hash<T> const&, derived_type)
{
return true;
}
template <class T>
bool equivalent_impl(
std::equal_to<T> const&, std::equal_to<T> const&, derived_type)
{
return true;
}
template <class T1, class T2, class T3, class T4>
bool equivalent_impl(
std::pair<T1, T2> const& x1, std::pair<T3, T4> const& x2, derived_type)
{
return equivalent_impl(x1.first, x2.first, derived) &&
equivalent_impl(x1.second, x2.second, derived);
}
struct equivalent_type
{
equivalent_type() {}
template <class T1, class T2>
bool equivalent_impl(T1 const& x, T2 const& y, base_type) {
return x == y;
}
template <class T>
bool equivalent_impl(boost::hash<T> const&, boost::hash<T> const&,
derived_type)
bool operator()(T1 const& x, T2 const& y) const
{
return true;
return equivalent_impl(x, y, derived);
}
};
template <class T>
bool equivalent_impl(std::equal_to<T> const&, std::equal_to<T> const&,
derived_type)
const equivalent_type equivalent;
template <class Container> class unordered_equivalence_tester
{
BOOST_DEDUCED_TYPENAME Container::size_type size_;
BOOST_DEDUCED_TYPENAME Container::hasher hasher_;
BOOST_DEDUCED_TYPENAME Container::key_equal key_equal_;
float max_load_factor_;
typedef test::list<BOOST_DEDUCED_TYPENAME Container::value_type> value_list;
value_list values_;
public:
unordered_equivalence_tester(Container const& x)
: size_(x.size()), hasher_(x.hash_function()), key_equal_(x.key_eq()),
max_load_factor_(x.max_load_factor()), values_(x.begin(), x.end())
{
return true;
values_.sort();
}
template <class T1, class T2, class T3, class T4>
bool equivalent_impl(std::pair<T1, T2> const& x1,
std::pair<T3, T4> const& x2, derived_type) {
return equivalent_impl(x1.first, x2.first, derived) &&
equivalent_impl(x1.second, x2.second, derived);
}
struct equivalent_type {
equivalent_type() {}
template <class T1, class T2>
bool operator()(T1 const& x, T2 const& y) const {
return equivalent_impl(x, y, derived);
}
};
const equivalent_type equivalent;
template <class Container>
class unordered_equivalence_tester
bool operator()(Container const& x) const
{
BOOST_DEDUCED_TYPENAME Container::size_type size_;
BOOST_DEDUCED_TYPENAME Container::hasher hasher_;
BOOST_DEDUCED_TYPENAME Container::key_equal key_equal_;
float max_load_factor_;
typedef test::list<BOOST_DEDUCED_TYPENAME Container::value_type>
value_list;
value_list values_;
public:
unordered_equivalence_tester(Container const &x)
: size_(x.size()),
hasher_(x.hash_function()), key_equal_(x.key_eq()),
max_load_factor_(x.max_load_factor()),
values_(x.begin(), x.end())
{
values_.sort();
}
bool operator()(Container const& x) const
{
if(!((size_ == x.size()) &&
if (!((size_ == x.size()) &&
(test::equivalent(hasher_, x.hash_function())) &&
(test::equivalent(key_equal_, x.key_eq())) &&
(max_load_factor_ == x.max_load_factor()) &&
(values_.size() == x.size()))) return false;
(values_.size() == x.size())))
return false;
value_list copy(x.begin(), x.end());
copy.sort();
return values_ == copy;
}
private:
unordered_equivalence_tester();
};
value_list copy(x.begin(), x.end());
copy.sort();
return values_ == copy;
}
private:
unordered_equivalence_tester();
};
}
#endif

View File

@ -6,275 +6,266 @@
#if !defined(BOOST_UNORDERED_EXCEPTION_TEST_HEADER)
#define BOOST_UNORDERED_EXCEPTION_TEST_HEADER
#include "./test.hpp"
#include "./count.hpp"
#include "./test.hpp"
#include <boost/preprocessor/seq/for_each_product.hpp>
#include <boost/preprocessor/seq/elem.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/seq/elem.hpp>
#include <boost/preprocessor/seq/for_each_product.hpp>
# define UNORDERED_EXCEPTION_TEST_CASE(name, test_func, type) \
UNORDERED_AUTO_TEST(name) \
{ \
test_func< type > fixture; \
::test::lightweight::exception_safety( \
fixture, BOOST_STRINGIZE(test_func<type>)); \
} \
#define UNORDERED_EXCEPTION_TEST_CASE(name, test_func, type) \
UNORDERED_AUTO_TEST(name) \
{ \
test_func<type> fixture; \
::test::lightweight::exception_safety( \
fixture, BOOST_STRINGIZE(test_func<type>)); \
}
# define UNORDERED_EXCEPTION_TEST_CASE_REPEAT(name, test_func, n, type) \
UNORDERED_AUTO_TEST(name) \
{ \
for (unsigned i = 0; i < n; ++i) { \
test_func< type > fixture; \
::test::lightweight::exception_safety( \
fixture, BOOST_STRINGIZE(test_func<type>)); \
} \
} \
#define UNORDERED_EXCEPTION_TEST_CASE_REPEAT(name, test_func, n, type) \
UNORDERED_AUTO_TEST(name) \
{ \
for (unsigned i = 0; i < n; ++i) { \
test_func<type> fixture; \
::test::lightweight::exception_safety( \
fixture, BOOST_STRINGIZE(test_func<type>)); \
} \
}
# define UNORDERED_EPOINT_IMPL ::test::lightweight::epoint
#define UNORDERED_EPOINT_IMPL ::test::lightweight::epoint
#define UNORDERED_EXCEPTION_TEST_POSTFIX RUN_TESTS()
#define EXCEPTION_TESTS(test_seq, param_seq) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT(EXCEPTION_TESTS_OP, \
(test_seq)((1))(param_seq))
#define EXCEPTION_TESTS(test_seq, param_seq) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT( \
EXCEPTION_TESTS_OP, (test_seq)((1))(param_seq))
#define EXCEPTION_TESTS_REPEAT(n, test_seq, param_seq) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT(EXCEPTION_TESTS_OP, \
(test_seq)((n))(param_seq))
#define EXCEPTION_TESTS_REPEAT(n, test_seq, param_seq) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT( \
EXCEPTION_TESTS_OP, (test_seq)((n))(param_seq))
#define EXCEPTION_TESTS_OP(r, product) \
UNORDERED_EXCEPTION_TEST_CASE_REPEAT( \
BOOST_PP_CAT(BOOST_PP_SEQ_ELEM(0, product), \
BOOST_PP_CAT(_, BOOST_PP_SEQ_ELEM(2, product)) \
), \
BOOST_PP_SEQ_ELEM(0, product), \
BOOST_PP_SEQ_ELEM(1, product), \
BOOST_PP_SEQ_ELEM(2, product) \
) \
#define EXCEPTION_TESTS_OP(r, product) \
UNORDERED_EXCEPTION_TEST_CASE_REPEAT( \
BOOST_PP_CAT(BOOST_PP_SEQ_ELEM(0, product), \
BOOST_PP_CAT(_, BOOST_PP_SEQ_ELEM(2, product))), \
BOOST_PP_SEQ_ELEM(0, product), BOOST_PP_SEQ_ELEM(1, product), \
BOOST_PP_SEQ_ELEM(2, product))
#define UNORDERED_SCOPE(scope_name) \
for(::test::scope_guard unordered_test_guard( \
BOOST_STRINGIZE(scope_name)); \
!unordered_test_guard.dismissed(); \
unordered_test_guard.dismiss()) \
#define UNORDERED_SCOPE(scope_name) \
for (::test::scope_guard unordered_test_guard( \
BOOST_STRINGIZE(scope_name)); \
!unordered_test_guard.dismissed(); unordered_test_guard.dismiss())
#define UNORDERED_EPOINT(name) \
if(::test::exceptions_enabled) { \
UNORDERED_EPOINT_IMPL(name); \
} \
#define UNORDERED_EPOINT(name) \
if (::test::exceptions_enabled) { \
UNORDERED_EPOINT_IMPL(name); \
}
#define ENABLE_EXCEPTIONS \
::test::exceptions_enable BOOST_PP_CAT( \
ENABLE_EXCEPTIONS_, __LINE__)(true) \
#define ENABLE_EXCEPTIONS \
::test::exceptions_enable BOOST_PP_CAT(ENABLE_EXCEPTIONS_, __LINE__)(true)
#define DISABLE_EXCEPTIONS \
::test::exceptions_enable BOOST_PP_CAT( \
ENABLE_EXCEPTIONS_, __LINE__)(false) \
#define DISABLE_EXCEPTIONS \
::test::exceptions_enable BOOST_PP_CAT(ENABLE_EXCEPTIONS_, __LINE__)(false)
namespace test {
static char const* scope = "";
bool exceptions_enabled = false;
static char const* scope = "";
bool exceptions_enabled = false;
class scope_guard {
scope_guard& operator=(scope_guard const&);
scope_guard(scope_guard const&);
class scope_guard
{
scope_guard& operator=(scope_guard const&);
scope_guard(scope_guard const&);
char const* old_scope_;
char const* scope_;
bool dismissed_;
public:
scope_guard(char const* name)
: old_scope_(scope),
scope_(name),
dismissed_(false)
{
scope = scope_;
char const* old_scope_;
char const* scope_;
bool dismissed_;
public:
scope_guard(char const* name)
: old_scope_(scope), scope_(name), dismissed_(false)
{
scope = scope_;
}
~scope_guard()
{
if (dismissed_)
scope = old_scope_;
}
void dismiss() { dismissed_ = true; }
bool dismissed() const { return dismissed_; }
};
class exceptions_enable
{
exceptions_enable& operator=(exceptions_enable const&);
exceptions_enable(exceptions_enable const&);
bool old_value_;
bool released_;
public:
exceptions_enable(bool enable)
: old_value_(exceptions_enabled), released_(false)
{
exceptions_enabled = enable;
}
~exceptions_enable()
{
if (!released_) {
exceptions_enabled = old_value_;
released_ = true;
}
}
~scope_guard() {
if(dismissed_) scope = old_scope_;
void release()
{
if (!released_) {
exceptions_enabled = old_value_;
released_ = true;
}
}
};
void dismiss() {
dismissed_ = true;
}
bool dismissed() const {
return dismissed_;
}
struct exception_base
{
struct data_type
{
};
class exceptions_enable
struct strong_type
{
exceptions_enable& operator=(exceptions_enable const&);
exceptions_enable(exceptions_enable const&);
bool old_value_;
bool released_;
public:
exceptions_enable(bool enable)
: old_value_(exceptions_enabled), released_(false)
{
exceptions_enabled = enable;
}
~exceptions_enable()
{
if (!released_) {
exceptions_enabled = old_value_;
released_ = true;
}
}
void release()
{
if (!released_) {
exceptions_enabled = old_value_;
released_ = true;
}
}
template <class T> void store(T const&) {}
template <class T> void test(T const&) const {}
};
data_type init() const { return data_type(); }
void check BOOST_PREVENT_MACRO_SUBSTITUTION() const {}
};
struct exception_base {
struct data_type {};
struct strong_type {
template <class T> void store(T const&) {}
template <class T> void test(T const&) const {}
};
data_type init() const { return data_type(); }
void check BOOST_PREVENT_MACRO_SUBSTITUTION() const {}
};
template <class T, class P1, class P2, class T2>
inline void call_ignore_extra_parameters(
void (T::*fn)() const, T2 const& obj, P1&, P2&)
{
(obj.*fn)();
}
template <class T, class P1, class P2, class T2>
inline void call_ignore_extra_parameters(
void (T::*fn)() const, T2 const& obj,
P1&, P2&)
template <class T, class P1, class P2, class T2>
inline void call_ignore_extra_parameters(
void (T::*fn)(P1&) const, T2 const& obj, P1& p1, P2&)
{
(obj.*fn)(p1);
}
template <class T, class P1, class P2, class T2>
inline void call_ignore_extra_parameters(
void (T::*fn)(P1&, P2&) const, T2 const& obj, P1& p1, P2& p2)
{
(obj.*fn)(p1, p2);
}
template <class T> T const& constant(T const& x) { return x; }
template <class Test> class test_runner
{
Test const& test_;
bool exception_in_check_;
test_runner(test_runner const&);
test_runner& operator=(test_runner const&);
public:
test_runner(Test const& t) : test_(t), exception_in_check_(false) {}
void run()
{
(obj.*fn)();
}
template <class T, class P1, class P2, class T2>
inline void call_ignore_extra_parameters(
void (T::*fn)(P1&) const, T2 const& obj,
P1& p1, P2&)
{
(obj.*fn)(p1);
}
template <class T, class P1, class P2, class T2>
inline void call_ignore_extra_parameters(
void (T::*fn)(P1&, P2&) const, T2 const& obj,
P1& p1, P2& p2)
{
(obj.*fn)(p1, p2);
}
template <class T>
T const& constant(T const& x) {
return x;
}
template <class Test>
class test_runner
{
Test const& test_;
bool exception_in_check_;
test_runner(test_runner const&);
test_runner& operator=(test_runner const&);
public:
test_runner(Test const& t) : test_(t), exception_in_check_(false) {}
void run() {
DISABLE_EXCEPTIONS;
test::check_instances check;
test::scope = "";
BOOST_DEDUCED_TYPENAME Test::data_type x(test_.init());
BOOST_DEDUCED_TYPENAME Test::strong_type strong;
strong.store(x);
DISABLE_EXCEPTIONS;
test::check_instances check;
test::scope = "";
BOOST_DEDUCED_TYPENAME Test::data_type x(test_.init());
BOOST_DEDUCED_TYPENAME Test::strong_type strong;
strong.store(x);
try {
ENABLE_EXCEPTIONS;
call_ignore_extra_parameters<Test,
BOOST_DEDUCED_TYPENAME Test::data_type,
BOOST_DEDUCED_TYPENAME Test::strong_type>(
&Test::run, test_, x, strong);
} catch (...) {
try {
ENABLE_EXCEPTIONS;
call_ignore_extra_parameters<
Test,
BOOST_DEDUCED_TYPENAME Test::data_type,
BOOST_DEDUCED_TYPENAME Test::strong_type
>(&Test::run, test_, x, strong);
}
catch(...) {
try {
DISABLE_EXCEPTIONS;
call_ignore_extra_parameters<
Test,
BOOST_DEDUCED_TYPENAME Test::data_type const,
BOOST_DEDUCED_TYPENAME Test::strong_type const
>(&Test::check, test_, constant(x), constant(strong));
} catch(...) {
exception_in_check_ = true;
}
throw;
DISABLE_EXCEPTIONS;
call_ignore_extra_parameters<Test,
BOOST_DEDUCED_TYPENAME Test::data_type const,
BOOST_DEDUCED_TYPENAME Test::strong_type const>(
&Test::check, test_, constant(x), constant(strong));
} catch (...) {
exception_in_check_ = true;
}
throw;
}
void end() {
if (exception_in_check_) {
BOOST_ERROR("Unexcpected exception in test_runner check call.");
}
}
void end()
{
if (exception_in_check_) {
BOOST_ERROR("Unexcpected exception in test_runner check call.");
}
};
}
};
// Quick exception testing based on lightweight test
// Quick exception testing based on lightweight test
namespace lightweight {
static int iteration;
static int count;
namespace lightweight {
static int iteration;
static int count;
struct test_exception {
char const* name;
test_exception(char const* n) : name(n) {}
};
struct test_exception
{
char const* name;
test_exception(char const* n) : name(n) {}
};
struct test_failure {
};
struct test_failure
{
};
void epoint(char const* name) {
++count;
if(count == iteration) {
throw test_exception(name);
}
}
template <class Test>
void exception_safety(Test const& f, char const* /*name*/) {
test_runner<Test> runner(f);
iteration = 0;
bool success = false;
char const* error_msg = 0;
do {
++iteration;
count = 0;
try {
runner.run();
success = true;
}
catch(test_failure) {
error_msg = "test_failure caught.";
break;
}
catch(test_exception) {
continue;
}
catch(...) {
error_msg = "Unexpected exception.";
break;
}
} while(!success);
if (error_msg) { BOOST_ERROR(error_msg); }
runner.end();
}
void epoint(char const* name)
{
++count;
if (count == iteration) {
throw test_exception(name);
}
}
template <class Test> void exception_safety(Test const& f, char const* /*name*/)
{
test_runner<Test> runner(f);
iteration = 0;
bool success = false;
char const* error_msg = 0;
do {
++iteration;
count = 0;
try {
runner.run();
success = true;
} catch (test_failure) {
error_msg = "test_failure caught.";
break;
} catch (test_exception) {
continue;
} catch (...) {
error_msg = "Unexpected exception.";
break;
}
} while (!success);
if (error_msg) {
BOOST_ERROR(error_msg);
}
runner.end();
}
}
}
#endif

View File

@ -8,23 +8,25 @@
#include <string>
namespace test
namespace test {
typedef enum {
default_generator,
generate_collisions,
limited_range
} random_generator;
int generate(int const*, random_generator);
char generate(char const*, random_generator);
signed char generate(signed char const*, random_generator);
std::string generate(std::string const*, random_generator);
float generate(float const*, random_generator);
struct base_type
{
typedef enum {
default_generator,
generate_collisions,
limited_range
} random_generator;
int generate(int const*, random_generator);
char generate(char const*, random_generator);
signed char generate(signed char const*, random_generator);
std::string generate(std::string const*, random_generator);
float generate(float const*, random_generator);
struct base_type {} base;
struct derived_type : base_type {} derived;
} base;
struct derived_type : base_type
{
} derived;
}
#endif

View File

@ -11,80 +11,84 @@
#if !defined(BOOST_UNORDERED_TEST_HELPERS_GENERATORS_HEADER)
#define BOOST_UNORDERED_TEST_HELPERS_GENERATORS_HEADER
#include "./fwd.hpp"
#include <boost/type_traits/add_const.hpp>
#include <cstdlib>
#include <stdexcept>
#include <string>
#include <utility>
#include <stdexcept>
#include <cstdlib>
#include <boost/type_traits/add_const.hpp>
#include "./fwd.hpp"
namespace test
namespace test {
struct seed_t
{
struct seed_t {
seed_t(unsigned int x) {
using namespace std;
srand(x);
seed_t(unsigned int x)
{
using namespace std;
srand(x);
}
};
std::size_t random_value(std::size_t max)
{
using namespace std;
return static_cast<std::size_t>(rand()) % max;
}
inline int generate(int const*, random_generator g)
{
using namespace std;
int value = rand();
if (g == limited_range) {
value = value % 100;
}
return value;
}
inline char generate(char const*, random_generator)
{
using namespace std;
return static_cast<char>((rand() >> 1) % (128 - 32) + 32);
}
inline signed char generate(signed char const*, random_generator)
{
using namespace std;
return static_cast<signed char>(rand());
}
inline std::string generate(std::string const*, random_generator g)
{
using namespace std;
char* char_ptr = 0;
std::string result;
if (g == limited_range) {
std::size_t length = test::random_value(2) + 2;
char const* strings[] = {"'vZh(3~ms", "%m", "_Y%U", "N'Y", "4,J_J"};
for (std::size_t i = 0; i < length; ++i) {
result +=
strings[random_value(sizeof(strings) / sizeof(strings[0]))];
}
};
std::size_t random_value(std::size_t max) {
using namespace std;
return static_cast<std::size_t>(rand()) % max;
}
inline int generate(int const*, random_generator g)
{
using namespace std;
int value = rand();
if (g == limited_range) { value = value % 100; }
return value;
}
inline char generate(char const*, random_generator)
{
using namespace std;
return static_cast<char>((rand() >> 1) % (128-32) + 32);
}
inline signed char generate(signed char const*, random_generator)
{
using namespace std;
return static_cast<signed char>(rand());
}
inline std::string generate(std::string const*, random_generator g)
{
using namespace std;
char* char_ptr = 0;
std::string result;
if (g == limited_range) {
std::size_t length = test::random_value(2) + 2;
char const* strings[] = { "'vZh(3~ms", "%m", "_Y%U", "N'Y", "4,J_J" };
for (std::size_t i = 0; i < length; ++i) {
result += strings[random_value(sizeof(strings) / sizeof(strings[0]))];
}
} else {
std::size_t length = test::random_value(10) + 1;
for (std::size_t i = 0; i < length; ++i) {
result += generate(char_ptr, g);
}
else {
std::size_t length = test::random_value(10) + 1;
for (std::size_t i = 0; i < length; ++i) {
result += generate(char_ptr, g);
}
}
return result;
}
float generate(float const*, random_generator g)
{
using namespace std;
int x = 0;
int value = generate(&x, g);
return (float) value / (float) RAND_MAX;
}
return result;
}
float generate(float const*, random_generator g)
{
using namespace std;
int x = 0;
int value = generate(&x, g);
return (float)value / (float)RAND_MAX;
}
}
#endif

View File

@ -6,58 +6,48 @@
#if !defined(BOOST_UNORDERED_TEST_HELPERS_HEADER)
#define BOOST_UNORDERED_TEST_HELPERS_HEADER
namespace test
namespace test {
template <class Container> struct get_key_impl
{
template <class Container>
struct get_key_impl
typedef BOOST_DEDUCED_TYPENAME Container::key_type key_type;
static key_type const& get_key(key_type const& x) { return x; }
template <class T>
static key_type const& get_key(std::pair<key_type, T> const& x, char = 0)
{
typedef BOOST_DEDUCED_TYPENAME Container::key_type key_type;
static key_type const& get_key(key_type const& x)
{
return x;
}
template <class T>
static key_type const& get_key(
std::pair<key_type, T> const& x, char = 0)
{
return x.first;
}
template <class T>
static key_type const& get_key(std::pair<key_type const, T> const& x,
unsigned char = 0)
{
return x.first;
}
};
template <class Container, class T>
inline BOOST_DEDUCED_TYPENAME Container::key_type const& get_key(T const& x)
{
return get_key_impl<Container>::get_key(x);
return x.first;
}
// test::next
//
// Increments an iterator by 1 or a given value.
// Like boost::next, but simpler and slower.
template <typename Iterator>
Iterator next(Iterator it)
template <class T>
static key_type const& get_key(
std::pair<key_type const, T> const& x, unsigned char = 0)
{
return ++it;
return x.first;
}
};
template <typename Iterator, typename IntType>
Iterator next(Iterator it, IntType x)
{
for(; x > 0; --x) {
++it;
}
return it;
template <class Container, class T>
inline BOOST_DEDUCED_TYPENAME Container::key_type const& get_key(T const& x)
{
return get_key_impl<Container>::get_key(x);
}
// test::next
//
// Increments an iterator by 1 or a given value.
// Like boost::next, but simpler and slower.
template <typename Iterator> Iterator next(Iterator it) { return ++it; }
template <typename Iterator, typename IntType>
Iterator next(Iterator it, IntType x)
{
for (; x > 0; --x) {
++it;
}
return it;
}
}
#endif

View File

@ -10,156 +10,164 @@
#include <boost/iterator/iterator_traits.hpp>
#include <iterator>
namespace test
namespace test {
template <class Iterator> struct proxy
{
template <class Iterator>
struct proxy
{
typedef BOOST_DEDUCED_TYPENAME Iterator::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME Iterator::value_type value_type;
explicit proxy(value_type const& v) : v_(v) {}
proxy(proxy const& x) : v_(x.v_) {}
operator value_type const&() const { return v_; }
value_type v_;
private:
proxy& operator=(proxy const&);
};
explicit proxy(value_type const& v) : v_(v) {}
proxy(proxy const& x) : v_(x.v_) {}
operator value_type const&() const { return v_; }
template <class Iterator>
struct input_iterator_adaptor
: public std::iterator<
std::input_iterator_tag,
BOOST_DEDUCED_TYPENAME boost::iterator_value<Iterator>::type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME boost::iterator_pointer<Iterator>::type,
proxy<Iterator>
>
{
typedef BOOST_DEDUCED_TYPENAME boost::iterator_value<Iterator>::type
value_type;
input_iterator_adaptor()
: base_() {}
explicit input_iterator_adaptor(Iterator& it)
: base_(&it) {}
proxy<Iterator> operator*() const {
return proxy<Iterator>(**base_);
}
value_type* operator->() const {
return &**base_;
}
input_iterator_adaptor& operator++() {
++*base_; return *this;
}
//input_iterator_adaptor operator++(int) {
//}
bool operator==(input_iterator_adaptor const& x) const {
return *base_ == *x.base_;
}
bool operator!=(input_iterator_adaptor const& x) const {
return *base_ != *x.base_;
}
private:
Iterator* base_;
};
value_type v_;
template <class Iterator>
input_iterator_adaptor<Iterator> input_iterator(Iterator& it)
private:
proxy& operator=(proxy const&);
};
template <class Iterator>
struct input_iterator_adaptor
: public std::iterator<std::input_iterator_tag,
BOOST_DEDUCED_TYPENAME boost::iterator_value<Iterator>::type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME boost::iterator_pointer<Iterator>::type,
proxy<Iterator> >
{
typedef BOOST_DEDUCED_TYPENAME boost::iterator_value<Iterator>::type
value_type;
input_iterator_adaptor() : base_() {}
explicit input_iterator_adaptor(Iterator& it) : base_(&it) {}
proxy<Iterator> operator*() const { return proxy<Iterator>(**base_); }
value_type* operator->() const { return &**base_; }
input_iterator_adaptor& operator++()
{
return input_iterator_adaptor<Iterator>(it);
++*base_;
return *this;
}
// input_iterator_adaptor operator++(int) {
//}
bool operator==(input_iterator_adaptor const& x) const
{
return *base_ == *x.base_;
}
bool operator!=(input_iterator_adaptor const& x) const
{
return *base_ != *x.base_;
}
template <class Iterator>
struct copy_iterator_adaptor
: public std::iterator<
BOOST_DEDUCED_TYPENAME boost::iterator_category<Iterator>::type,
BOOST_DEDUCED_TYPENAME boost::iterator_value<Iterator>::type,
BOOST_DEDUCED_TYPENAME boost::iterator_difference<Iterator>::type,
BOOST_DEDUCED_TYPENAME boost::iterator_pointer<Iterator>::type,
proxy<Iterator>
>
{
typedef BOOST_DEDUCED_TYPENAME boost::iterator_value<Iterator>::type
value_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<Iterator>::type
difference_type;
copy_iterator_adaptor()
: base_() {}
explicit copy_iterator_adaptor(Iterator const& it)
: base_(it) {}
value_type operator*() const {
return *base_;
}
value_type* operator->() const {
return &*base_;
}
value_type operator[](difference_type d) {
return base_[d];
}
copy_iterator_adaptor& operator++() {
++base_; return *this;
}
copy_iterator_adaptor operator++(int) {
copy_iterator_adaptor tmp(*this); ++base_; return tmp;
}
copy_iterator_adaptor& operator--() {
--base_; return *this;
}
copy_iterator_adaptor operator--(int) {
copy_iterator_adaptor tmp(*this); --base_; return tmp;
}
copy_iterator_adaptor operator+=(difference_type x) {
base_ += x;
return *this;
}
copy_iterator_adaptor operator-=(difference_type x) {
base_ -= x;
return *this;
}
copy_iterator_adaptor operator+(difference_type n) {
return copy_iterator_adaptor(base_+n);
}
copy_iterator_adaptor operator-(difference_type n) {
return copy_iterator_adaptor(base_-n);
}
friend copy_iterator_adaptor operator+(
difference_type n, copy_iterator_adaptor x) {
return x+n;
}
difference_type operator-(copy_iterator_adaptor const& other) {
return base_-other.base_;
}
bool operator==(copy_iterator_adaptor const& x) const {
return base_ == x.base_;
}
bool operator!=(copy_iterator_adaptor const& x) const {
return base_ != x.base_;
}
bool operator<(copy_iterator_adaptor const& x) const {
return base_ < x.base_;
}
bool operator>(copy_iterator_adaptor const& x) const {
return base_ > x.base_;
}
bool operator<=(copy_iterator_adaptor const& x) const {
return base_ <= x.base_;
}
bool operator>=(copy_iterator_adaptor const& x) const {
return base_ >= x.base_;
}
private:
Iterator base_;
};
private:
Iterator* base_;
};
template <class Iterator>
copy_iterator_adaptor<Iterator> copy_iterator(Iterator const& it)
template <class Iterator>
input_iterator_adaptor<Iterator> input_iterator(Iterator& it)
{
return input_iterator_adaptor<Iterator>(it);
}
template <class Iterator>
struct copy_iterator_adaptor
: public std::iterator<
BOOST_DEDUCED_TYPENAME boost::iterator_category<Iterator>::type,
BOOST_DEDUCED_TYPENAME boost::iterator_value<Iterator>::type,
BOOST_DEDUCED_TYPENAME boost::iterator_difference<Iterator>::type,
BOOST_DEDUCED_TYPENAME boost::iterator_pointer<Iterator>::type,
proxy<Iterator> >
{
typedef BOOST_DEDUCED_TYPENAME boost::iterator_value<Iterator>::type
value_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<Iterator>::type
difference_type;
copy_iterator_adaptor() : base_() {}
explicit copy_iterator_adaptor(Iterator const& it) : base_(it) {}
value_type operator*() const { return *base_; }
value_type* operator->() const { return &*base_; }
value_type operator[](difference_type d) { return base_[d]; }
copy_iterator_adaptor& operator++()
{
return copy_iterator_adaptor<Iterator>(it);
++base_;
return *this;
}
copy_iterator_adaptor operator++(int)
{
copy_iterator_adaptor tmp(*this);
++base_;
return tmp;
}
copy_iterator_adaptor& operator--()
{
--base_;
return *this;
}
copy_iterator_adaptor operator--(int)
{
copy_iterator_adaptor tmp(*this);
--base_;
return tmp;
}
copy_iterator_adaptor operator+=(difference_type x)
{
base_ += x;
return *this;
}
copy_iterator_adaptor operator-=(difference_type x)
{
base_ -= x;
return *this;
}
copy_iterator_adaptor operator+(difference_type n)
{
return copy_iterator_adaptor(base_ + n);
}
copy_iterator_adaptor operator-(difference_type n)
{
return copy_iterator_adaptor(base_ - n);
}
friend copy_iterator_adaptor operator+(
difference_type n, copy_iterator_adaptor x)
{
return x + n;
}
difference_type operator-(copy_iterator_adaptor const& other)
{
return base_ - other.base_;
}
bool operator==(copy_iterator_adaptor const& x) const
{
return base_ == x.base_;
}
bool operator!=(copy_iterator_adaptor const& x) const
{
return base_ != x.base_;
}
bool operator<(copy_iterator_adaptor const& x) const
{
return base_ < x.base_;
}
bool operator>(copy_iterator_adaptor const& x) const
{
return base_ > x.base_;
}
bool operator<=(copy_iterator_adaptor const& x) const
{
return base_ <= x.base_;
}
bool operator>=(copy_iterator_adaptor const& x) const
{
return base_ >= x.base_;
}
private:
Iterator base_;
};
template <class Iterator>
copy_iterator_adaptor<Iterator> copy_iterator(Iterator const& it)
{
return copy_iterator_adaptor<Iterator>(it);
}
}
#endif

View File

@ -9,114 +9,113 @@
#if !defined(BOOST_UNORDERED_TEST_HELPERS_INVARIANT_HEADER)
#define BOOST_UNORDERED_TEST_HELPERS_INVARIANT_HEADER
#include <set>
#include <cmath>
#include "./metafunctions.hpp"
#include "./helpers.hpp"
#include "./metafunctions.hpp"
#include <cmath>
#include <set>
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4127) // conditional expression is constant
#pragma warning(disable:4267) // conversion from 'size_t' to 'unsigned int',
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4267) // conversion from 'size_t' to 'unsigned int',
// possible loss of data
#endif
namespace test
namespace test {
template <class X> void check_equivalent_keys(X const& x1)
{
template <class X>
void check_equivalent_keys(X const& x1)
{
BOOST_DEDUCED_TYPENAME X::key_equal eq = x1.key_eq();
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
std::set<key_type, std::less<key_type> > found_;
BOOST_DEDUCED_TYPENAME X::key_equal eq = x1.key_eq();
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
std::set<key_type, std::less<key_type> > found_;
BOOST_DEDUCED_TYPENAME X::const_iterator
it = x1.begin(), end = x1.end();
BOOST_DEDUCED_TYPENAME X::size_type size = 0;
while(it != end) {
// First test that the current key has not occurred before, required
// to test either that keys are unique or that equivalent keys are
// adjacent. (6.3.1/6)
key_type key = get_key<X>(*it);
if(!found_.insert(key).second)
BOOST_ERROR("Elements with equivalent keys aren't adjacent.");
BOOST_DEDUCED_TYPENAME X::const_iterator it = x1.begin(), end = x1.end();
BOOST_DEDUCED_TYPENAME X::size_type size = 0;
while (it != end) {
// First test that the current key has not occurred before, required
// to test either that keys are unique or that equivalent keys are
// adjacent. (6.3.1/6)
key_type key = get_key<X>(*it);
if (!found_.insert(key).second)
BOOST_ERROR("Elements with equivalent keys aren't adjacent.");
// Iterate over equivalent keys, counting them.
unsigned int count = 0;
do {
++it;
++count;
++size;
} while(it != end && eq(get_key<X>(*it), key));
// Iterate over equivalent keys, counting them.
unsigned int count = 0;
do {
++it;
++count;
++size;
} while (it != end && eq(get_key<X>(*it), key));
// If the container has unique keys, test that there's only one.
// Since the previous test makes sure that all equivalent keys are
// adjacent, this is all the equivalent keys - so the test is
// sufficient. (6.3.1/6 again).
if(test::has_unique_keys<X>::value && count != 1)
BOOST_ERROR("Non-unique key.");
// If the container has unique keys, test that there's only one.
// Since the previous test makes sure that all equivalent keys are
// adjacent, this is all the equivalent keys - so the test is
// sufficient. (6.3.1/6 again).
if (test::has_unique_keys<X>::value && count != 1)
BOOST_ERROR("Non-unique key.");
if(x1.count(key) != count) {
BOOST_ERROR("Incorrect output of count.");
std::cerr<<x1.count(key)<<","<<count<<"\n";
}
// Check that the keys are in the correct bucket and are
// adjacent in the bucket.
BOOST_DEDUCED_TYPENAME X::size_type bucket = x1.bucket(key);
BOOST_DEDUCED_TYPENAME X::const_local_iterator
lit = x1.begin(bucket), lend = x1.end(bucket);
for(; lit != lend && !eq(get_key<X>(*lit), key); ++lit) continue;
if(lit == lend)
BOOST_ERROR("Unable to find element with a local_iterator");
unsigned int count2 = 0;
for(; lit != lend && eq(get_key<X>(*lit), key); ++lit) ++count2;
if(count != count2)
BOOST_ERROR("Element count doesn't match local_iterator.");
for(; lit != lend; ++lit) {
if(eq(get_key<X>(*lit), key)) {
BOOST_ERROR("Non-adjacent element with equivalent key "
"in bucket.");
break;
}
}
};
// Check that size matches up.
if(x1.size() != size) {
BOOST_ERROR("x1.size() doesn't match actual size.");
std::cout<<x1.size()<<"/"<<size<<std::endl;
if (x1.count(key) != count) {
BOOST_ERROR("Incorrect output of count.");
std::cerr << x1.count(key) << "," << count << "\n";
}
// Check the load factor.
float load_factor = size == 0 ? 0 :
static_cast<float>(size) / static_cast<float>(x1.bucket_count());
using namespace std;
if(fabs(x1.load_factor() - load_factor) > x1.load_factor() / 64)
BOOST_ERROR("x1.load_factor() doesn't match actual load_factor.");
// Check that size in the buckets matches up.
BOOST_DEDUCED_TYPENAME X::size_type bucket_size = 0;
for (BOOST_DEDUCED_TYPENAME X::size_type
i = 0; i < x1.bucket_count(); ++i)
{
for (BOOST_DEDUCED_TYPENAME X::const_local_iterator
begin2 = x1.begin(i), end2 = x1.end(i);
begin2 != end2; ++begin2)
{
++bucket_size;
// Check that the keys are in the correct bucket and are
// adjacent in the bucket.
BOOST_DEDUCED_TYPENAME X::size_type bucket = x1.bucket(key);
BOOST_DEDUCED_TYPENAME X::const_local_iterator lit = x1.begin(bucket),
lend = x1.end(bucket);
for (; lit != lend && !eq(get_key<X>(*lit), key); ++lit)
continue;
if (lit == lend)
BOOST_ERROR("Unable to find element with a local_iterator");
unsigned int count2 = 0;
for (; lit != lend && eq(get_key<X>(*lit), key); ++lit)
++count2;
if (count != count2)
BOOST_ERROR("Element count doesn't match local_iterator.");
for (; lit != lend; ++lit) {
if (eq(get_key<X>(*lit), key)) {
BOOST_ERROR("Non-adjacent element with equivalent key "
"in bucket.");
break;
}
}
};
if(x1.size() != bucket_size) {
BOOST_ERROR("x1.size() doesn't match bucket size.");
std::cout<<x1.size()<<"/"<<bucket_size<<std::endl;
// Check that size matches up.
if (x1.size() != size) {
BOOST_ERROR("x1.size() doesn't match actual size.");
std::cout << x1.size() << "/" << size << std::endl;
}
// Check the load factor.
float load_factor =
size == 0 ? 0 : static_cast<float>(size) /
static_cast<float>(x1.bucket_count());
using namespace std;
if (fabs(x1.load_factor() - load_factor) > x1.load_factor() / 64)
BOOST_ERROR("x1.load_factor() doesn't match actual load_factor.");
// Check that size in the buckets matches up.
BOOST_DEDUCED_TYPENAME X::size_type bucket_size = 0;
for (BOOST_DEDUCED_TYPENAME X::size_type i = 0; i < x1.bucket_count();
++i) {
for (BOOST_DEDUCED_TYPENAME X::const_local_iterator
begin2 = x1.begin(i),
end2 = x1.end(i);
begin2 != end2; ++begin2) {
++bucket_size;
}
}
if (x1.size() != bucket_size) {
BOOST_ERROR("x1.size() doesn't match bucket size.");
std::cout << x1.size() << "/" << bucket_size << std::endl;
}
}
}
#if defined(BOOST_MSVC)
@ -124,4 +123,3 @@ namespace test
#endif
#endif

View File

@ -12,307 +12,309 @@
#define UNORDERED_TEST_LIST_HEADER
#include <boost/limits.hpp>
#include <iterator>
#include <functional>
#include <iterator>
namespace test
namespace test {
template <typename It1, typename It2>
bool equal(It1 begin, It1 end, It2 compare)
{
template <typename It1, typename It2>
bool equal(It1 begin, It1 end, It2 compare)
for (; begin != end; ++begin, ++compare)
if (*begin != *compare)
return false;
return true;
}
template <typename It1, typename It2, typename Pred>
bool equal(It1 begin, It1 end, It2 compare, Pred predicate)
{
for (; begin != end; ++begin, ++compare)
if (!predicate(*begin, *compare))
return false;
return true;
}
template <typename T> class list;
namespace test_detail {
template <typename T> class list_node;
template <typename T> class list_data;
template <typename T> class list_iterator;
template <typename T> class list_const_iterator;
template <typename T> class list_node
{
list_node(list_node const&);
list_node& operator=(list_node const&);
public:
T value_;
list_node* next_;
list_node(T const& v) : value_(v), next_(0) {}
list_node(T const& v, list_node* n) : value_(v), next_(n) {}
};
template <typename T> class list_data
{
public:
typedef list_node<T> node;
typedef unsigned int size_type;
node* first_;
node** last_ptr_;
size_type size_;
list_data() : first_(0), last_ptr_(&first_), size_(0) {}
~list_data()
{
for(;begin != end; ++begin, ++compare)
if(*begin != *compare) return false;
return true;
while (first_) {
node* tmp = first_;
first_ = first_->next_;
delete tmp;
}
}
template <typename It1, typename It2, typename Pred>
bool equal(It1 begin, It1 end, It2 compare, Pred predicate)
private:
list_data(list_data const&);
list_data& operator=(list_data const&);
};
template <typename T>
class list_iterator
: public std::iterator<std::forward_iterator_tag, T, int, T*, T&>
{
friend class list_const_iterator<T>;
friend class test::list<T>;
typedef list_node<T> node;
typedef list_const_iterator<T> const_iterator;
node* ptr_;
public:
list_iterator() : ptr_(0) {}
explicit list_iterator(node* x) : ptr_(x) {}
T& operator*() const { return ptr_->value_; }
T* operator->() const { return &ptr_->value_; }
list_iterator& operator++()
{
for(;begin != end; ++begin, ++compare)
if(!predicate(*begin, *compare)) return false;
return true;
ptr_ = ptr_->next_;
return *this;
}
list_iterator operator++(int)
{
list_iterator tmp = *this;
ptr_ = ptr_->next_;
return tmp;
}
bool operator==(const_iterator y) const { return ptr_ == y.ptr_; }
bool operator!=(const_iterator y) const { return ptr_ != y.ptr_; }
};
template <typename T>
class list_const_iterator : public std::iterator<std::forward_iterator_tag, T,
int, T const*, T const&>
{
friend class list_iterator<T>;
friend class test::list<T>;
typedef list_node<T> node;
typedef list_iterator<T> iterator;
typedef list_const_iterator<T> const_iterator;
node* ptr_;
public:
list_const_iterator() : ptr_(0) {}
list_const_iterator(list_iterator<T> const& x) : ptr_(x.ptr_) {}
T const& operator*() const { return ptr_->value_; }
T const* operator->() const { return &ptr_->value_; }
list_const_iterator& operator++()
{
ptr_ = ptr_->next_;
return *this;
}
template <typename T> class list;
namespace test_detail
list_const_iterator operator++(int)
{
template <typename T> class list_node;
template <typename T> class list_data;
template <typename T> class list_iterator;
template <typename T> class list_const_iterator;
template <typename T>
class list_node
{
list_node(list_node const&);
list_node& operator=(list_node const&);
public:
T value_;
list_node* next_;
list_node(T const& v) : value_(v), next_(0) {}
list_node(T const& v, list_node* n) : value_(v), next_(n) {}
};
template <typename T>
class list_data
{
public:
typedef list_node<T> node;
typedef unsigned int size_type;
node* first_;
node** last_ptr_;
size_type size_;
list_data() : first_(0), last_ptr_(&first_), size_(0) {}
~list_data() {
while(first_) {
node* tmp = first_;
first_ = first_->next_;
delete tmp;
}
}
private:
list_data(list_data const&);
list_data& operator=(list_data const&);
};
template <typename T>
class list_iterator
: public std::iterator<
std::forward_iterator_tag, T,
int, T*, T&>
{
friend class list_const_iterator<T>;
friend class test::list<T>;
typedef list_node<T> node;
typedef list_const_iterator<T> const_iterator;
node* ptr_;
public:
list_iterator() : ptr_(0) {}
explicit list_iterator(node* x) : ptr_(x) {}
T& operator*() const { return ptr_->value_; }
T* operator->() const { return &ptr_->value_; }
list_iterator& operator++() {
ptr_ = ptr_->next_; return *this; }
list_iterator operator++(int) {
list_iterator tmp = *this; ptr_ = ptr_->next_; return tmp; }
bool operator==(const_iterator y) const { return ptr_ == y.ptr_; }
bool operator!=(const_iterator y) const { return ptr_ != y.ptr_; }
};
template <typename T>
class list_const_iterator
: public std::iterator<
std::forward_iterator_tag, T,
int, T const*, T const&>
{
friend class list_iterator<T>;
friend class test::list<T>;
typedef list_node<T> node;
typedef list_iterator<T> iterator;
typedef list_const_iterator<T> const_iterator;
node* ptr_;
public:
list_const_iterator() : ptr_(0) {}
list_const_iterator(list_iterator<T> const& x) : ptr_(x.ptr_) {}
T const& operator*() const { return ptr_->value_; }
T const* operator->() const { return &ptr_->value_; }
list_const_iterator& operator++()
{
ptr_ = ptr_->next_;
return *this;
}
list_const_iterator operator++(int)
{
list_const_iterator tmp = *this;
ptr_ = ptr_->next_;
return tmp;
}
bool operator==(const_iterator y) const
{
return ptr_ == y.ptr_;
}
bool operator!=(const_iterator y) const
{
return ptr_ != y.ptr_;
}
};
list_const_iterator tmp = *this;
ptr_ = ptr_->next_;
return tmp;
}
template <typename T>
class list
bool operator==(const_iterator y) const { return ptr_ == y.ptr_; }
bool operator!=(const_iterator y) const { return ptr_ != y.ptr_; }
};
}
template <typename T> class list
{
typedef test::test_detail::list_data<T> data;
typedef test::test_detail::list_node<T> node;
data data_;
public:
typedef T value_type;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef unsigned int size_type;
typedef test::test_detail::list_iterator<T> iterator;
typedef test::test_detail::list_const_iterator<T> const_iterator;
list() : data_() {}
list(list const& other) : data_() { insert(other.begin(), other.end()); }
template <class InputIterator>
list(InputIterator i, InputIterator j) : data_()
{
typedef test::test_detail::list_data<T> data;
typedef test::test_detail::list_node<T> node;
data data_;
public:
typedef T value_type;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef unsigned int size_type;
insert(i, j);
}
typedef test::test_detail::list_iterator<T> iterator;
typedef test::test_detail::list_const_iterator<T> const_iterator;
list& operator=(list const& other)
{
clear();
insert(other.begin(), other.end());
return *this;
}
list() : data_() {}
iterator begin() { return iterator(data_.first_); }
iterator end() { return iterator(); }
const_iterator begin() const { return iterator(data_.first_); }
const_iterator end() const { return iterator(); }
const_iterator cbegin() const { return iterator(data_.first_); }
const_iterator cend() const { return iterator(); }
list(list const& other) : data_() {
insert(other.begin(), other.end());
}
template <class InputIterator> void insert(InputIterator i, InputIterator j)
{
for (; i != j; ++i)
push_back(*i);
}
template <class InputIterator>
list(InputIterator i, InputIterator j) : data_() {
insert(i, j);
}
list& operator=(list const& other) {
clear();
insert(other.begin(), other.end());
return *this;
}
iterator begin() { return iterator(data_.first_); }
iterator end() { return iterator(); }
const_iterator begin() const { return iterator(data_.first_); }
const_iterator end() const { return iterator(); }
const_iterator cbegin() const { return iterator(data_.first_); }
const_iterator cend() const { return iterator(); }
template <class InputIterator>
void insert(InputIterator i, InputIterator j) {
for(; i != j; ++i)
push_back(*i);
}
void push_front(value_type const& v) {
data_.first_ = new node(v, data_.first_);
if(!data_.size_) data_.last_ptr_ = &(*data_.last_ptr_)->next_;
++data_.size_;
}
void push_back(value_type const& v) {
*data_.last_ptr_ = new node(v);
void push_front(value_type const& v)
{
data_.first_ = new node(v, data_.first_);
if (!data_.size_)
data_.last_ptr_ = &(*data_.last_ptr_)->next_;
++data_.size_;
++data_.size_;
}
void push_back(value_type const& v)
{
*data_.last_ptr_ = new node(v);
data_.last_ptr_ = &(*data_.last_ptr_)->next_;
++data_.size_;
}
void clear()
{
while (data_.first_) {
node* tmp = data_.first_;
data_.first_ = data_.first_->next_;
--data_.size_;
delete tmp;
}
void clear() {
while(data_.first_) {
node* tmp = data_.first_;
data_.first_ = data_.first_->next_;
--data_.size_;
delete tmp;
}
data_.last_ptr_ = &data_.first_;
data_.last_ptr_ = &data_.first_;
}
void erase(const_iterator i, const_iterator j)
{
node** ptr = &data_.first_;
while (*ptr != i.ptr_) {
ptr = &(*ptr)->next_;
}
void erase(const_iterator i, const_iterator j) {
node** ptr = &data_.first_;
while(*ptr != i.ptr_) {
ptr = &(*ptr)->next_;
}
while(*ptr != j.ptr_) {
node* to_delete = *ptr;
*ptr = (*ptr)->next_;
--data_.size_;
delete to_delete;
}
if(!*ptr) data_.last_ptr_ = ptr;
while (*ptr != j.ptr_) {
node* to_delete = *ptr;
*ptr = (*ptr)->next_;
--data_.size_;
delete to_delete;
}
bool empty() const {
return !data_.size_;
if (!*ptr)
data_.last_ptr_ = ptr;
}
bool empty() const { return !data_.size_; }
size_type size() const { return data_.size_; }
void sort() { sort(std::less<T>()); }
template <typename Less> void sort(Less less = Less())
{
if (!empty())
merge_sort(
&data_.first_, (std::numeric_limits<size_type>::max)(), less);
}
bool operator==(list const& y) const
{
return size() == y.size() && test::equal(begin(), end(), y.begin());
}
bool operator!=(list const& y) const { return !(*this == y); }
private:
template <typename Less>
node** merge_sort(node** l, size_type recurse_limit, Less less)
{
node** ptr = &(*l)->next_;
for (size_type count = 0; count < recurse_limit && *ptr; ++count) {
ptr = merge_adjacent_ranges(
l, ptr, merge_sort(ptr, count, less), less);
}
return ptr;
}
size_type size() const {
return data_.size_;
}
void sort() {
sort(std::less<T>());
}
template <typename Less>
void sort(Less less = Less()) {
if(!empty()) merge_sort(&data_.first_,
(std::numeric_limits<size_type>::max)(), less);
}
bool operator==(list const& y) const {
return size() == y.size() &&
test::equal(begin(), end(), y.begin());
}
bool operator!=(list const& y) const {
return !(*this == y);
}
private:
template <typename Less>
node** merge_sort(node** l, size_type recurse_limit, Less less)
{
node** ptr = &(*l)->next_;
for(size_type count = 0; count < recurse_limit && *ptr; ++count)
{
ptr = merge_adjacent_ranges(l, ptr,
merge_sort(ptr, count, less), less);
}
return ptr;
}
template <typename Less>
node** merge_adjacent_ranges(node** first, node** second,
node** third, Less less)
{
for(;;) {
for(;;) {
if(first == second) return third;
if(less((*second)->value_, (*first)->value_)) break;
first = &(*first)->next_;
}
swap_adjacent_ranges(first, second, third);
first = &(*first)->next_;
// Since the two ranges we just swapped, the order is now:
// first...third...second
for(;;) {
if(first == third) return second;
if(!less((*first)->value_, (*third)->value_)) break;
first = &(*first)->next_;
}
swap_adjacent_ranges(first, third, second);
template <typename Less>
node** merge_adjacent_ranges(
node** first, node** second, node** third, Less less)
{
for (;;) {
for (;;) {
if (first == second)
return third;
if (less((*second)->value_, (*first)->value_))
break;
first = &(*first)->next_;
}
swap_adjacent_ranges(first, second, third);
first = &(*first)->next_;
// Since the two ranges we just swapped, the order is now:
// first...third...second
for (;;) {
if (first == third)
return second;
if (!less((*first)->value_, (*third)->value_))
break;
first = &(*first)->next_;
}
swap_adjacent_ranges(first, third, second);
first = &(*first)->next_;
}
void swap_adjacent_ranges(node** first, node** second, node** third)
{
node* tmp = *first;
*first = *second;
*second = *third;
*third = tmp;
if(!*second) data_.last_ptr_ = second;
}
};
}
void swap_adjacent_ranges(node** first, node** second, node** third)
{
node* tmp = *first;
*first = *second;
*second = *third;
*third = tmp;
if (!*second)
data_.last_ptr_ = second;
}
};
}
#endif

View File

@ -6,158 +6,153 @@
#if !defined(BOOST_UNORDERED_TEST_MEMORY_HEADER)
#define BOOST_UNORDERED_TEST_MEMORY_HEADER
#include <memory>
#include <map>
#include "../helpers/test.hpp"
#include <boost/assert.hpp>
#include <boost/unordered/detail/implementation.hpp>
#include "../helpers/test.hpp"
#include <map>
#include <memory>
namespace test
namespace test {
namespace detail {
struct memory_area
{
namespace detail
void const* start;
void const* end;
memory_area(void const* s, void const* e) : start(s), end(e)
{
struct memory_area {
void const* start;
void const* end;
BOOST_ASSERT(start != end);
}
};
memory_area(void const* s, void const* e)
: start(s), end(e)
{
BOOST_ASSERT(start != end);
}
};
struct memory_track
{
explicit memory_track(int tag = -1) : constructed_(0), tag_(tag) {}
struct memory_track {
explicit memory_track(int tag = -1) :
constructed_(0),
tag_(tag) {}
int constructed_;
int tag_;
};
int constructed_;
int tag_;
};
// This is a bit dodgy as it defines overlapping
// areas as 'equal', so this isn't a total ordering.
// But it is for non-overlapping memory regions - which
// is what'll be stored.
//
// All searches will be for areas entirely contained by
// a member of the set - so it should find the area that contains
// the region that is searched for.
// This is a bit dodgy as it defines overlapping
// areas as 'equal', so this isn't a total ordering.
// But it is for non-overlapping memory regions - which
// is what'll be stored.
//
// All searches will be for areas entirely contained by
// a member of the set - so it should find the area that contains
// the region that is searched for.
struct memory_area_compare
{
bool operator()(memory_area const& x, memory_area const& y) const
{
return x.end <= y.start;
}
};
struct memory_area_compare {
bool operator()(memory_area const& x, memory_area const& y) const {
return x.end <= y.start;
}
};
struct memory_tracker
{
typedef std::map<memory_area, memory_track, memory_area_compare,
std::allocator<std::pair<memory_area const, memory_track> > >
allocated_memory_type;
struct memory_tracker {
typedef std::map<memory_area, memory_track, memory_area_compare,
std::allocator<std::pair<memory_area const, memory_track> >
> allocated_memory_type;
allocated_memory_type allocated_memory;
unsigned int count_allocators;
unsigned int count_allocations;
unsigned int count_constructions;
allocated_memory_type allocated_memory;
unsigned int count_allocators;
unsigned int count_allocations;
unsigned int count_constructions;
memory_tracker() :
count_allocators(0), count_allocations(0),
count_constructions(0)
{}
void allocator_ref()
{
if(count_allocators == 0) {
count_allocations = 0;
count_constructions = 0;
allocated_memory.clear();
}
++count_allocators;
}
void allocator_unref()
{
BOOST_TEST(count_allocators > 0);
if(count_allocators > 0) {
--count_allocators;
if(count_allocators == 0) {
bool no_allocations_left = (count_allocations == 0);
bool no_constructions_left = (count_constructions == 0);
bool allocated_memory_empty = allocated_memory.empty();
// Clearing the data before the checks terminate the
// tests.
count_allocations = 0;
count_constructions = 0;
allocated_memory.clear();
BOOST_TEST(no_allocations_left);
BOOST_TEST(no_constructions_left);
BOOST_TEST(allocated_memory_empty);
}
}
}
void track_allocate(void *ptr, std::size_t n, std::size_t size,
int tag)
{
if(n == 0) {
BOOST_ERROR("Allocating 0 length array.");
}
else {
++count_allocations;
allocated_memory.insert(
std::pair<memory_area const, memory_track>(
memory_area(ptr, (char*) ptr + n * size),
memory_track(tag)));
}
}
void track_deallocate(void* ptr, std::size_t n, std::size_t size,
int tag, bool check_tag_ = true)
{
allocated_memory_type::iterator pos =
allocated_memory.find(
memory_area(ptr, (char*) ptr + n * size));
if(pos == allocated_memory.end()) {
BOOST_ERROR("Deallocating unknown pointer.");
} else {
BOOST_TEST(pos->first.start == ptr);
BOOST_TEST(pos->first.end == (char*) ptr + n * size);
if (check_tag_) BOOST_TEST(pos->second.tag_ == tag);
allocated_memory.erase(pos);
}
BOOST_TEST(count_allocations > 0);
if(count_allocations > 0) --count_allocations;
}
void track_construct(void* /*ptr*/, std::size_t /*size*/,
int /*tag*/)
{
++count_constructions;
}
void track_destroy(void* /*ptr*/, std::size_t /*size*/,
int /*tag*/)
{
BOOST_TEST(count_constructions > 0);
if(count_constructions > 0) --count_constructions;
}
};
memory_tracker()
: count_allocators(0), count_allocations(0), count_constructions(0)
{
}
namespace detail
void allocator_ref()
{
// This won't be a problem as I'm only using a single compile unit
// in each test (this is actually required by the minimal test
// framework).
//
// boostinspect:nounnamed
namespace {
test::detail::memory_tracker tracker;
if (count_allocators == 0) {
count_allocations = 0;
count_constructions = 0;
allocated_memory.clear();
}
++count_allocators;
}
void allocator_unref()
{
BOOST_TEST(count_allocators > 0);
if (count_allocators > 0) {
--count_allocators;
if (count_allocators == 0) {
bool no_allocations_left = (count_allocations == 0);
bool no_constructions_left = (count_constructions == 0);
bool allocated_memory_empty = allocated_memory.empty();
// Clearing the data before the checks terminate the
// tests.
count_allocations = 0;
count_constructions = 0;
allocated_memory.clear();
BOOST_TEST(no_allocations_left);
BOOST_TEST(no_constructions_left);
BOOST_TEST(allocated_memory_empty);
}
}
}
void track_allocate(void* ptr, std::size_t n, std::size_t size, int tag)
{
if (n == 0) {
BOOST_ERROR("Allocating 0 length array.");
} else {
++count_allocations;
allocated_memory.insert(std::pair<memory_area const, memory_track>(
memory_area(ptr, (char*)ptr + n * size), memory_track(tag)));
}
}
void track_deallocate(void* ptr, std::size_t n, std::size_t size, int tag,
bool check_tag_ = true)
{
allocated_memory_type::iterator pos =
allocated_memory.find(memory_area(ptr, (char*)ptr + n * size));
if (pos == allocated_memory.end()) {
BOOST_ERROR("Deallocating unknown pointer.");
} else {
BOOST_TEST(pos->first.start == ptr);
BOOST_TEST(pos->first.end == (char*)ptr + n * size);
if (check_tag_)
BOOST_TEST(pos->second.tag_ == tag);
allocated_memory.erase(pos);
}
BOOST_TEST(count_allocations > 0);
if (count_allocations > 0)
--count_allocations;
}
void track_construct(void* /*ptr*/, std::size_t /*size*/, int /*tag*/)
{
++count_constructions;
}
void track_destroy(void* /*ptr*/, std::size_t /*size*/, int /*tag*/)
{
BOOST_TEST(count_constructions > 0);
if (count_constructions > 0)
--count_constructions;
}
};
}
namespace detail {
// This won't be a problem as I'm only using a single compile unit
// in each test (this is actually required by the minimal test
// framework).
//
// boostinspect:nounnamed
namespace {
test::detail::memory_tracker tracker;
}
}
}
#endif

View File

@ -9,24 +9,26 @@
#include <boost/config.hpp>
#include <boost/type_traits/is_same.hpp>
namespace test
namespace test {
template <class Container>
struct is_set
: public boost::is_same<BOOST_DEDUCED_TYPENAME Container::key_type,
BOOST_DEDUCED_TYPENAME Container::value_type>
{
template <class Container>
struct is_set
: public boost::is_same<
BOOST_DEDUCED_TYPENAME Container::key_type,
BOOST_DEDUCED_TYPENAME Container::value_type> {};
};
template <class Container>
struct has_unique_keys
{
static char flip(BOOST_DEDUCED_TYPENAME Container::iterator const&);
static long flip(std::pair<BOOST_DEDUCED_TYPENAME Container::iterator, bool> const&);
BOOST_STATIC_CONSTANT(bool, value = sizeof(long) == sizeof(
flip(((Container*) 0)->insert(*(BOOST_DEDUCED_TYPENAME Container::value_type*) 0))
));
};
template <class Container> struct has_unique_keys
{
static char flip(BOOST_DEDUCED_TYPENAME Container::iterator const&);
static long flip(
std::pair<BOOST_DEDUCED_TYPENAME Container::iterator, bool> const&);
BOOST_STATIC_CONSTANT(bool,
value = sizeof(long) ==
sizeof(flip(
((Container*)0)
->insert(*(
BOOST_DEDUCED_TYPENAME Container::value_type*)0))));
};
}
#endif

View File

@ -6,6 +6,6 @@
#if defined(_WIN32_WCE)
// The standard windows mobile headers trigger this warning so I disable it
// before doing anything else.
#pragma warning(disable:4201) // nonstandard extension used :
#pragma warning(disable : 4201) // nonstandard extension used :
// nameless struct/union
#endif

View File

@ -6,111 +6,104 @@
#if !defined(BOOST_UNORDERED_TEST_HELPERS_RANDOM_VALUES_HEADER)
#define BOOST_UNORDERED_TEST_HELPERS_RANDOM_VALUES_HEADER
#include "./generators.hpp"
#include "./list.hpp"
#include "./metafunctions.hpp"
#include <algorithm>
#include <boost/detail/select_type.hpp>
#include "./generators.hpp"
#include "./metafunctions.hpp"
namespace test
namespace test {
template <class X> struct unordered_generator_set
{
template <class X>
struct unordered_generator_set
typedef BOOST_DEDUCED_TYPENAME X::value_type value_type;
random_generator type_;
unordered_generator_set(random_generator type) : type_(type) {}
template <class T> void fill(T& x, std::size_t len)
{
typedef BOOST_DEDUCED_TYPENAME X::value_type value_type;
value_type* value_ptr = 0;
len += x.size();
random_generator type_;
for (std::size_t i = 0; i < len; ++i) {
value_type value = generate(value_ptr, type_);
unordered_generator_set(random_generator type)
: type_(type) {}
std::size_t count =
type_ == generate_collisions ? random_value(5) + 1 : 1;
template <class T>
void fill(T& x, std::size_t len) {
value_type* value_ptr = 0;
len += x.size();
for (std::size_t i = 0; i < len; ++i) {
value_type value = generate(value_ptr, type_);
std::size_t count = type_ == generate_collisions ?
random_value(5) + 1 : 1;
for(std::size_t j = 0; j < count; ++j) {
x.push_back(value);
}
for (std::size_t j = 0; j < count; ++j) {
x.push_back(value);
}
}
};
}
};
template <class X>
struct unordered_generator_map
template <class X> struct unordered_generator_map
{
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
typedef BOOST_DEDUCED_TYPENAME X::mapped_type mapped_type;
random_generator type_;
unordered_generator_map(random_generator type) : type_(type) {}
template <class T> void fill(T& x, std::size_t len)
{
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
typedef BOOST_DEDUCED_TYPENAME X::mapped_type mapped_type;
key_type* key_ptr = 0;
mapped_type* mapped_ptr = 0;
random_generator type_;
for (std::size_t i = 0; i < len; ++i) {
key_type key = generate(key_ptr, type_);
unordered_generator_map(random_generator type)
: type_(type) {}
std::size_t count =
type_ == generate_collisions ? random_value(5) + 1 : 1;
template <class T>
void fill(T& x, std::size_t len) {
key_type* key_ptr = 0;
mapped_type* mapped_ptr = 0;
for (std::size_t i = 0; i < len; ++i) {
key_type key = generate(key_ptr, type_);
std::size_t count = type_ == generate_collisions ?
random_value(5) + 1 : 1;
for(std::size_t j = 0; j < count; ++j) {
x.push_back(std::pair<key_type const, mapped_type>(
key, generate(mapped_ptr, type_)));
}
for (std::size_t j = 0; j < count; ++j) {
x.push_back(std::pair<key_type const, mapped_type>(
key, generate(mapped_ptr, type_)));
}
}
};
}
};
template <class X>
struct unordered_generator_base
: public boost::detail::if_true<
test::is_set<X>::value
>::BOOST_NESTED_TEMPLATE then<
test::unordered_generator_set<X>,
test::unordered_generator_map<X>
>
template <class X>
struct unordered_generator_base
: public boost::detail::if_true<test::is_set<X>::value>::
BOOST_NESTED_TEMPLATE then<test::unordered_generator_set<X>,
test::unordered_generator_map<X> >
{
};
template <class X>
struct unordered_generator : public unordered_generator_base<X>::type
{
typedef BOOST_DEDUCED_TYPENAME unordered_generator_base<X>::type base;
unordered_generator(random_generator const& type = default_generator)
: base(type)
{
};
}
};
template <class X>
struct unordered_generator : public unordered_generator_base<X>::type
template <class X>
struct random_values : public test::list<BOOST_DEDUCED_TYPENAME X::value_type>
{
random_values() {}
explicit random_values(std::size_t count,
test::random_generator const& generator = test::default_generator)
{
typedef BOOST_DEDUCED_TYPENAME unordered_generator_base<X>::type base;
fill(count, generator);
}
unordered_generator(random_generator const& type = default_generator)
: base(type) {}
};
template <class X>
struct random_values
: public test::list<BOOST_DEDUCED_TYPENAME X::value_type>
void fill(std::size_t count,
test::random_generator const& generator = test::default_generator)
{
random_values() {}
explicit random_values(std::size_t count, test::random_generator const& generator =
test::default_generator)
{
fill(count, generator);
}
void fill(std::size_t count, test::random_generator const& generator =
test::default_generator)
{
test::unordered_generator<X> gen(generator);
gen.fill(*this, count);
}
};
test::unordered_generator<X> gen(generator);
gen.fill(*this, count);
}
};
}
#endif

View File

@ -6,37 +6,38 @@
#if !defined(BOOST_UNORDERED_TEST_HELPERS_STRONG_HEADER)
#define BOOST_UNORDERED_TEST_HELPERS_STRONG_HEADER
#include "./equivalent.hpp"
#include "./exception_test.hpp"
#include "./list.hpp"
#include <boost/config.hpp>
#include <iterator>
#include "./equivalent.hpp"
#include "./list.hpp"
#include "./exception_test.hpp"
namespace test
namespace test {
template <class X> class strong
{
template <class X>
class strong
{
typedef test::list<BOOST_DEDUCED_TYPENAME X::value_type> values_type;
values_type values_;
unsigned int allocations_;
public:
void store(X const& x, unsigned int allocations = 0) {
DISABLE_EXCEPTIONS;
values_.clear();
values_.insert(x.cbegin(), x.cend());
allocations_ = allocations;
}
typedef test::list<BOOST_DEDUCED_TYPENAME X::value_type> values_type;
values_type values_;
unsigned int allocations_;
void test(X const& x, unsigned int allocations = 0) const {
if(!(x.size() == values_.size() &&
test::equal(x.cbegin(), x.cend(), values_.begin(),
test::equivalent)))
BOOST_ERROR("Strong exception safety failure.");
if(allocations != allocations_)
BOOST_ERROR("Strong exception failure: extra allocations.");
}
};
public:
void store(X const& x, unsigned int allocations = 0)
{
DISABLE_EXCEPTIONS;
values_.clear();
values_.insert(x.cbegin(), x.cend());
allocations_ = allocations;
}
void test(X const& x, unsigned int allocations = 0) const
{
if (!(x.size() == values_.size() &&
test::equal(
x.cbegin(), x.cend(), values_.begin(), test::equivalent)))
BOOST_ERROR("Strong exception safety failure.");
if (allocations != allocations_)
BOOST_ERROR("Strong exception failure: extra allocations.");
}
};
}
#endif

View File

@ -11,113 +11,115 @@
#include <boost/preprocessor/stringize.hpp>
#include <iostream>
#define UNORDERED_AUTO_TEST(x) \
struct BOOST_PP_CAT(x, _type) : public ::test::registered_test_base { \
BOOST_PP_CAT(x, _type)() \
: ::test::registered_test_base(BOOST_PP_STRINGIZE(x)) \
{ \
::test::test_list::add_test(this); \
} \
void run(); \
}; \
BOOST_PP_CAT(x, _type) x; \
void BOOST_PP_CAT(x, _type)::run() \
#define UNORDERED_AUTO_TEST(x) \
struct BOOST_PP_CAT(x, _type) : public ::test::registered_test_base \
{ \
BOOST_PP_CAT(x, _type) \
() : ::test::registered_test_base(BOOST_PP_STRINGIZE(x)) \
{ \
::test::test_list::add_test(this); \
} \
void run(); \
}; \
BOOST_PP_CAT(x, _type) x; \
void BOOST_PP_CAT(x, _type)::run()
#define RUN_TESTS() int main(int, char**) \
{ \
::test::write_compiler_info(); \
::test::test_list::run_tests(); \
return boost::report_errors(); \
#define RUN_TESTS() \
int main(int, char**) \
{ \
::test::write_compiler_info(); \
::test::test_list::run_tests(); \
return boost::report_errors(); \
}
namespace test {
struct registered_test_base {
registered_test_base* next;
char const* name;
explicit registered_test_base(char const* n) : name(n) {}
virtual void run() = 0;
virtual ~registered_test_base() {}
};
struct registered_test_base
{
registered_test_base* next;
char const* name;
explicit registered_test_base(char const* n) : name(n) {}
virtual void run() = 0;
virtual ~registered_test_base() {}
};
namespace test_list {
static inline registered_test_base*& first() {
static registered_test_base* ptr = 0;
return ptr;
}
static inline registered_test_base*& last() {
static registered_test_base* ptr = 0;
return ptr;
}
static inline void add_test(registered_test_base* test) {
if(last()) {
last()->next = test;
}
else {
first() = test;
}
last() = test;
}
static inline void run_tests() {
for(registered_test_base* i = first(); i; i = i->next) {
std::cout<<"Running "<<i->name<<"\n"<<std::flush;
i->run();
std::cerr<<std::flush;
std::cout<<std::flush;
}
}
}
inline void write_compiler_info() {
#if defined(BOOST_GCC_CXX11)
char const* cpp11 = "true";
#else
char const* cpp11 = "false";
#endif
std::cout
<< "Compiler: " << BOOST_COMPILER << "\n"
<< "Library: " << BOOST_STDLIB << "\n"
<< "C++11: " << cpp11 << "\n"
<< "\n"
<< std::flush;
}
namespace test_list {
static inline registered_test_base*& first()
{
static registered_test_base* ptr = 0;
return ptr;
}
static inline registered_test_base*& last()
{
static registered_test_base* ptr = 0;
return ptr;
}
static inline void add_test(registered_test_base* test)
{
if (last()) {
last()->next = test;
} else {
first() = test;
}
last() = test;
}
static inline void run_tests()
{
for (registered_test_base* i = first(); i; i = i->next) {
std::cout << "Running " << i->name << "\n" << std::flush;
i->run();
std::cerr << std::flush;
std::cout << std::flush;
}
}
}
inline void write_compiler_info()
{
#if defined(BOOST_GCC_CXX11)
char const* cpp11 = "true";
#else
char const* cpp11 = "false";
#endif
std::cout << "Compiler: " << BOOST_COMPILER << "\n"
<< "Library: " << BOOST_STDLIB << "\n"
<< "C++11: " << cpp11 << "\n"
<< "\n"
<< std::flush;
}
}
#include <boost/preprocessor/seq/for_each_product.hpp>
#include <boost/preprocessor/seq/fold_left.hpp>
#include <boost/preprocessor/seq/to_tuple.hpp>
#include <boost/preprocessor/seq/seq.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/seq/fold_left.hpp>
#include <boost/preprocessor/seq/for_each_product.hpp>
#include <boost/preprocessor/seq/seq.hpp>
#include <boost/preprocessor/seq/to_tuple.hpp>
// Run test with every combination of the parameters (a sequence of sequences)
#define UNORDERED_TEST(name, parameters) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT(UNORDERED_TEST_OP, \
((name))((1)) parameters) \
#define UNORDERED_TEST(name, parameters) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT(UNORDERED_TEST_OP, ((name))((1))parameters)
#define UNORDERED_TEST_REPEAT(name, n, parameters) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT(UNORDERED_TEST_OP, \
((name))((n)) parameters) \
#define UNORDERED_TEST_REPEAT(name, n, parameters) \
BOOST_PP_SEQ_FOR_EACH_PRODUCT(UNORDERED_TEST_OP, ((name))((n))parameters)
#define UNORDERED_TEST_OP(r, product) \
UNORDERED_TEST_OP2( \
BOOST_PP_SEQ_ELEM(0, product), \
BOOST_PP_SEQ_ELEM(1, product), \
BOOST_PP_SEQ_TAIL(BOOST_PP_SEQ_TAIL(product))) \
#define UNORDERED_TEST_OP(r, product) \
UNORDERED_TEST_OP2(BOOST_PP_SEQ_ELEM(0, product), \
BOOST_PP_SEQ_ELEM(1, product), \
BOOST_PP_SEQ_TAIL(BOOST_PP_SEQ_TAIL(product)))
#define UNORDERED_TEST_OP2(name, n, params) \
UNORDERED_AUTO_TEST( \
BOOST_PP_SEQ_FOLD_LEFT(UNORDERED_TEST_OP_JOIN, name, params)) \
{ \
for (int i = 0; i < n; ++i) \
name BOOST_PP_SEQ_TO_TUPLE(params); \
} \
#define UNORDERED_TEST_OP_JOIN(s, state, elem) \
BOOST_PP_CAT(state, BOOST_PP_CAT(_, elem)) \
#define UNORDERED_TEST_OP2(name, n, params) \
UNORDERED_AUTO_TEST( \
BOOST_PP_SEQ_FOLD_LEFT(UNORDERED_TEST_OP_JOIN, name, params)) \
{ \
for (int i = 0; i < n; ++i) \
name BOOST_PP_SEQ_TO_TUPLE(params); \
}
#define UNORDERED_TEST_OP_JOIN(s, state, elem) \
BOOST_PP_CAT(state, BOOST_PP_CAT(_, elem))
#endif

View File

@ -9,159 +9,139 @@
#if !defined(BOOST_UNORDERED_TEST_HELPERS_TRACKER_HEADER)
#define BOOST_UNORDERED_TEST_HELPERS_TRACKER_HEADER
#include <set>
#include <map>
#include <iterator>
#include <algorithm>
#include "../objects/fwd.hpp"
#include "./metafunctions.hpp"
#include "./helpers.hpp"
#include "./equivalent.hpp"
#include "./helpers.hpp"
#include "./list.hpp"
#include "./metafunctions.hpp"
#include <algorithm>
#include <iterator>
#include <map>
#include <set>
namespace test
namespace test {
template <typename X> struct equals_to_compare
{
template <typename X>
struct equals_to_compare
{
typedef std::less<BOOST_DEDUCED_TYPENAME X::first_argument_type>
type;
};
typedef std::less<BOOST_DEDUCED_TYPENAME X::first_argument_type> type;
};
template <>
struct equals_to_compare<test::equal_to>
{
typedef test::less type;
};
template <> struct equals_to_compare<test::equal_to>
{
typedef test::less type;
};
template <class X1, class X2>
void compare_range(X1 const& x1, X2 const& x2)
template <class X1, class X2> void compare_range(X1 const& x1, X2 const& x2)
{
typedef test::list<BOOST_DEDUCED_TYPENAME X1::value_type> value_list;
value_list values1(x1.begin(), x1.end());
value_list values2(x2.begin(), x2.end());
values1.sort();
values2.sort();
BOOST_TEST(values1.size() == values2.size() &&
test::equal(values1.begin(), values1.end(), values2.begin(),
test::equivalent));
}
template <class X1, class X2, class T>
void compare_pairs(X1 const& x1, X2 const& x2, T*)
{
test::list<T> values1(x1.first, x1.second);
test::list<T> values2(x2.first, x2.second);
values1.sort();
values2.sort();
BOOST_TEST(values1.size() == values2.size() &&
test::equal(values1.begin(), values1.end(), values2.begin(),
test::equivalent));
}
template <typename X, bool is_set = test::is_set<X>::value,
bool has_unique_keys = test::has_unique_keys<X>::value>
struct ordered_base;
template <typename X> struct ordered_base<X, true, true>
{
typedef std::set<BOOST_DEDUCED_TYPENAME X::value_type,
BOOST_DEDUCED_TYPENAME
equals_to_compare<BOOST_DEDUCED_TYPENAME X::key_equal>::type>
type;
};
template <typename X> struct ordered_base<X, true, false>
{
typedef std::multiset<BOOST_DEDUCED_TYPENAME X::value_type,
BOOST_DEDUCED_TYPENAME
equals_to_compare<BOOST_DEDUCED_TYPENAME X::key_equal>::type>
type;
};
template <typename X> struct ordered_base<X, false, true>
{
typedef std::map<BOOST_DEDUCED_TYPENAME X::key_type,
BOOST_DEDUCED_TYPENAME X::mapped_type,
BOOST_DEDUCED_TYPENAME
equals_to_compare<BOOST_DEDUCED_TYPENAME X::key_equal>::type>
type;
};
template <typename X> struct ordered_base<X, false, false>
{
typedef std::multimap<BOOST_DEDUCED_TYPENAME X::key_type,
BOOST_DEDUCED_TYPENAME X::mapped_type,
BOOST_DEDUCED_TYPENAME
equals_to_compare<BOOST_DEDUCED_TYPENAME X::key_equal>::type>
type;
};
template <class X> class ordered : public ordered_base<X>::type
{
typedef BOOST_DEDUCED_TYPENAME ordered_base<X>::type base;
public:
typedef BOOST_DEDUCED_TYPENAME base::key_compare key_compare;
ordered() : base() {}
explicit ordered(key_compare const& kc) : base(kc) {}
void compare(X const& x) { compare_range(x, *this); }
void compare_key(
X const& x, BOOST_DEDUCED_TYPENAME X::value_type const& val)
{
typedef test::list<BOOST_DEDUCED_TYPENAME X1::value_type> value_list;
value_list values1(x1.begin(), x1.end());
value_list values2(x2.begin(), x2.end());
values1.sort();
values2.sort();
BOOST_TEST(values1.size() == values2.size() &&
test::equal(values1.begin(), values1.end(), values2.begin(),
test::equivalent));
compare_pairs(x.equal_range(get_key<X>(val)),
this->equal_range(get_key<X>(val)),
(BOOST_DEDUCED_TYPENAME X::value_type*)0);
}
template <class X1, class X2, class T>
void compare_pairs(X1 const& x1, X2 const& x2, T*)
template <class It> void insert_range(It b, It e)
{
test::list<T> values1(x1.first, x1.second);
test::list<T> values2(x2.first, x2.second);
values1.sort();
values2.sort();
BOOST_TEST(values1.size() == values2.size() &&
test::equal(values1.begin(), values1.end(),
values2.begin(), test::equivalent));
}
template <typename X,
bool is_set = test::is_set<X>::value,
bool has_unique_keys = test::has_unique_keys<X>::value>
struct ordered_base;
template <typename X>
struct ordered_base<X, true, true>
{
typedef std::set<
BOOST_DEDUCED_TYPENAME X::value_type,
BOOST_DEDUCED_TYPENAME equals_to_compare<BOOST_DEDUCED_TYPENAME X::key_equal>::type>
type;
};
template <typename X>
struct ordered_base<X, true, false>
{
typedef std::multiset<
BOOST_DEDUCED_TYPENAME X::value_type,
BOOST_DEDUCED_TYPENAME equals_to_compare<BOOST_DEDUCED_TYPENAME X::key_equal>::type>
type;
};
template <typename X>
struct ordered_base<X, false, true>
{
typedef std::map<
BOOST_DEDUCED_TYPENAME X::key_type,
BOOST_DEDUCED_TYPENAME X::mapped_type,
BOOST_DEDUCED_TYPENAME equals_to_compare<BOOST_DEDUCED_TYPENAME X::key_equal>::type>
type;
};
template <typename X>
struct ordered_base<X, false, false>
{
typedef std::multimap<
BOOST_DEDUCED_TYPENAME X::key_type,
BOOST_DEDUCED_TYPENAME X::mapped_type,
BOOST_DEDUCED_TYPENAME equals_to_compare<BOOST_DEDUCED_TYPENAME X::key_equal>::type>
type;
};
template <class X>
class ordered : public ordered_base<X>::type
{
typedef BOOST_DEDUCED_TYPENAME ordered_base<X>::type base;
public:
typedef BOOST_DEDUCED_TYPENAME base::key_compare key_compare;
ordered()
: base()
{}
explicit ordered(key_compare const& kc)
: base(kc)
{}
void compare(X const& x)
{
compare_range(x, *this);
while (b != e) {
this->insert(*b);
++b;
}
void compare_key(X const& x,
BOOST_DEDUCED_TYPENAME X::value_type const& val)
{
compare_pairs(
x.equal_range(get_key<X>(val)),
this->equal_range(get_key<X>(val)),
(BOOST_DEDUCED_TYPENAME X::value_type*) 0);
}
template <class It>
void insert_range(It b, It e) {
while(b != e) {
this->insert(*b);
++b;
}
}
};
template <class Equals>
BOOST_DEDUCED_TYPENAME
equals_to_compare<Equals>::type create_compare(Equals const&)
{
BOOST_DEDUCED_TYPENAME equals_to_compare<Equals>::type x;
return x;
}
};
template <class X>
ordered<X> create_ordered(X const& container)
{
return ordered<X>(create_compare(container.key_eq()));
}
template <class Equals>
BOOST_DEDUCED_TYPENAME equals_to_compare<Equals>::type create_compare(
Equals const&)
{
BOOST_DEDUCED_TYPENAME equals_to_compare<Equals>::type x;
return x;
}
template <class X1, class X2>
void check_container(X1 const& container, X2 const& values)
{
ordered<X1> tracker = create_ordered(container);
tracker.insert_range(values.begin(), values.end());
tracker.compare(container);
}
template <class X> ordered<X> create_ordered(X const& container)
{
return ordered<X>(create_compare(container.key_eq()));
}
template <class X1, class X2>
void check_container(X1 const& container, X2 const& values)
{
ordered<X1> tracker = create_ordered(container);
tracker.insert_range(values.begin(), values.end());
tracker.compare(container);
}
}
#endif

View File

@ -13,309 +13,332 @@
#include "../helpers/fwd.hpp"
#include "../helpers/memory.hpp"
namespace test
namespace test {
struct allocator_false
{
struct allocator_false
enum
{
enum {
is_select_on_copy = 0,
is_propagate_on_swap = 0,
is_propagate_on_assign = 0,
is_propagate_on_move = 0,
cxx11_construct = 0
is_select_on_copy = 0,
is_propagate_on_swap = 0,
is_propagate_on_assign = 0,
is_propagate_on_move = 0,
cxx11_construct = 0
};
};
struct allocator_flags_all
{
enum
{
is_select_on_copy = 1,
is_propagate_on_swap = 1,
is_propagate_on_assign = 1,
is_propagate_on_move = 1,
cxx11_construct = 1
};
};
struct select_copy : allocator_false
{
enum
{
is_select_on_copy = 1
};
};
struct propagate_swap : allocator_false
{
enum
{
is_propagate_on_swap = 1
};
};
struct propagate_assign : allocator_false
{
enum
{
is_propagate_on_assign = 1
};
};
struct propagate_move : allocator_false
{
enum
{
is_propagate_on_move = 1
};
};
struct no_select_copy : allocator_flags_all
{
enum
{
is_select_on_copy = 0
};
};
struct no_propagate_swap : allocator_flags_all
{
enum
{
is_propagate_on_swap = 0
};
};
struct no_propagate_assign : allocator_flags_all
{
enum
{
is_propagate_on_assign = 0
};
};
struct no_propagate_move : allocator_flags_all
{
enum
{
is_propagate_on_move = 0
};
};
template <typename Flag> struct swap_allocator_base
{
struct propagate_on_container_swap
{
enum
{
value = Flag::is_propagate_on_swap
};
};
};
struct allocator_flags_all
template <typename Flag> struct assign_allocator_base
{
struct propagate_on_container_copy_assignment
{
enum {
is_select_on_copy = 1,
is_propagate_on_swap = 1,
is_propagate_on_assign = 1,
is_propagate_on_move = 1,
cxx11_construct = 1
enum
{
value = Flag::is_propagate_on_assign
};
};
struct select_copy : allocator_false
{ enum { is_select_on_copy = 1 }; };
struct propagate_swap : allocator_false
{ enum { is_propagate_on_swap = 1 }; };
struct propagate_assign : allocator_false
{ enum { is_propagate_on_assign = 1 }; };
struct propagate_move : allocator_false
{ enum { is_propagate_on_move = 1 }; };
};
struct no_select_copy : allocator_flags_all
{ enum { is_select_on_copy = 0 }; };
struct no_propagate_swap : allocator_flags_all
{ enum { is_propagate_on_swap = 0 }; };
struct no_propagate_assign : allocator_flags_all
{ enum { is_propagate_on_assign = 0 }; };
struct no_propagate_move : allocator_flags_all
{ enum { is_propagate_on_move = 0 }; };
template <typename Flag>
struct swap_allocator_base
template <typename Flag> struct move_allocator_base
{
struct propagate_on_container_move_assignment
{
struct propagate_on_container_swap {
enum { value = Flag::is_propagate_on_swap }; };
enum
{
value = Flag::is_propagate_on_move
};
};
};
template <typename Flag>
struct assign_allocator_base
{
struct propagate_on_container_copy_assignment {
enum { value = Flag::is_propagate_on_assign }; };
};
namespace {
// boostinspect:nounnamed
bool force_equal_allocator_value = false;
}
template <typename Flag>
struct move_allocator_base
{
struct propagate_on_container_move_assignment {
enum { value = Flag::is_propagate_on_move }; };
};
struct force_equal_allocator
{
bool old_value_;
namespace
explicit force_equal_allocator(bool value)
: old_value_(force_equal_allocator_value)
{
// boostinspect:nounnamed
bool force_equal_allocator_value = false;
force_equal_allocator_value = value;
}
struct force_equal_allocator
~force_equal_allocator() { force_equal_allocator_value = old_value_; }
};
template <typename T> struct cxx11_allocator_base
{
int tag_;
int selected_;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
explicit cxx11_allocator_base(int t) : tag_(t), selected_(0)
{
bool old_value_;
explicit force_equal_allocator(bool value)
: old_value_(force_equal_allocator_value)
{ force_equal_allocator_value = value; }
~force_equal_allocator()
{ force_equal_allocator_value = old_value_; }
};
detail::tracker.allocator_ref();
}
template <typename T>
struct cxx11_allocator_base
template <typename Y>
cxx11_allocator_base(cxx11_allocator_base<Y> const& x)
: tag_(x.tag_), selected_(x.selected_)
{
int tag_;
int selected_;
detail::tracker.allocator_ref();
}
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
cxx11_allocator_base(cxx11_allocator_base const& x)
: tag_(x.tag_), selected_(x.selected_)
{
detail::tracker.allocator_ref();
}
explicit cxx11_allocator_base(int t)
: tag_(t), selected_(0)
{
detail::tracker.allocator_ref();
}
template <typename Y> cxx11_allocator_base(
cxx11_allocator_base<Y> const& x)
: tag_(x.tag_), selected_(x.selected_)
{
detail::tracker.allocator_ref();
}
~cxx11_allocator_base() { detail::tracker.allocator_unref(); }
cxx11_allocator_base(cxx11_allocator_base const& x)
: tag_(x.tag_), selected_(x.selected_)
{
detail::tracker.allocator_ref();
}
pointer address(reference r) { return pointer(&r); }
~cxx11_allocator_base()
{
detail::tracker.allocator_unref();
}
const_pointer address(const_reference r) { return const_pointer(&r); }
pointer address(reference r)
{
return pointer(&r);
}
pointer allocate(size_type n)
{
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*)ptr, n, sizeof(T), tag_);
return ptr;
}
const_pointer address(const_reference r)
{
return const_pointer(&r);
}
pointer allocate(size_type n, void const*)
{
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*)ptr, n, sizeof(T), tag_);
return ptr;
}
pointer allocate(size_type n) {
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*) ptr, n, sizeof(T), tag_);
return ptr;
}
void deallocate(pointer p, size_type n)
{
// Only checking tags when propagating swap.
// Note that tags will be tested
// properly in the normal allocator.
detail::tracker.track_deallocate(
(void*)p, n, sizeof(T), tag_, !force_equal_allocator_value);
::operator delete((void*)p);
}
pointer allocate(size_type n, void const*)
{
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*) ptr, n, sizeof(T), tag_);
return ptr;
}
void deallocate(pointer p, size_type n)
{
// Only checking tags when propagating swap.
// Note that tags will be tested
// properly in the normal allocator.
detail::tracker.track_deallocate((void*) p, n, sizeof(T), tag_,
!force_equal_allocator_value);
::operator delete((void*) p);
}
void construct(T* p, T const& t) {
detail::tracker.track_construct((void*) p, sizeof(T), tag_);
new(p) T(t);
}
void construct(T* p, T const& t)
{
detail::tracker.track_construct((void*)p, sizeof(T), tag_);
new (p) T(t);
}
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template<typename... Args> void construct(T* p, BOOST_FWD_REF(Args)... args) {
detail::tracker.track_construct((void*) p, sizeof(T), tag_);
new(p) T(boost::forward<Args>(args)...);
}
template <typename... Args>
void construct(T* p, BOOST_FWD_REF(Args)... args)
{
detail::tracker.track_construct((void*)p, sizeof(T), tag_);
new (p) T(boost::forward<Args>(args)...);
}
#endif
void destroy(T* p) {
detail::tracker.track_destroy((void*) p, sizeof(T), tag_);
p->~T();
}
size_type max_size() const {
return (std::numeric_limits<size_type>::max)();
}
};
template <typename T, typename Flags = propagate_swap,
typename Enable = void>
struct cxx11_allocator;
template <typename T, typename Flags>
struct cxx11_allocator<
T, Flags,
typename boost::disable_if_c<Flags::is_select_on_copy>::type
> : public cxx11_allocator_base<T>,
public swap_allocator_base<Flags>,
public assign_allocator_base<Flags>,
public move_allocator_base<Flags>,
Flags
void destroy(T* p)
{
detail::tracker.track_destroy((void*)p, sizeof(T), tag_);
p->~T();
}
size_type max_size() const
{
return (std::numeric_limits<size_type>::max)();
}
};
template <typename T, typename Flags = propagate_swap, typename Enable = void>
struct cxx11_allocator;
template <typename T, typename Flags>
struct cxx11_allocator<T, Flags,
typename boost::disable_if_c<Flags::is_select_on_copy>::type>
: public cxx11_allocator_base<T>,
public swap_allocator_base<Flags>,
public assign_allocator_base<Flags>,
public move_allocator_base<Flags>,
Flags
{
#if BOOST_WORKAROUND(BOOST_GCC_VERSION, < 402000)
template <typename U> struct rebind {
typedef cxx11_allocator<U, Flags> other;
};
template <typename U> struct rebind
{
typedef cxx11_allocator<U, Flags> other;
};
#endif
explicit cxx11_allocator(int t = 0)
: cxx11_allocator_base<T>(t)
{
}
template <typename Y> cxx11_allocator(
cxx11_allocator<Y, Flags> const& x)
: cxx11_allocator_base<T>(x)
{
}
explicit cxx11_allocator(int t = 0) : cxx11_allocator_base<T>(t) {}
cxx11_allocator(cxx11_allocator const& x)
: cxx11_allocator_base<T>(x)
{
}
// When not propagating swap, allocators are always equal
// to avoid undefined behaviour.
bool operator==(cxx11_allocator const& x) const
{
return force_equal_allocator_value || (this->tag_ == x.tag_);
}
bool operator!=(cxx11_allocator const& x) const
{
return !(*this == x);
}
};
template <typename T, typename Flags>
struct cxx11_allocator<
T, Flags,
typename boost::enable_if_c<Flags::is_select_on_copy>::type
> : public cxx11_allocator_base<T>,
public swap_allocator_base<Flags>,
public assign_allocator_base<Flags>,
public move_allocator_base<Flags>,
Flags
template <typename Y>
cxx11_allocator(cxx11_allocator<Y, Flags> const& x)
: cxx11_allocator_base<T>(x)
{
cxx11_allocator select_on_container_copy_construction() const
{
cxx11_allocator tmp(*this);
++tmp.selected_;
return tmp;
}
}
cxx11_allocator(cxx11_allocator const& x) : cxx11_allocator_base<T>(x) {}
// When not propagating swap, allocators are always equal
// to avoid undefined behaviour.
bool operator==(cxx11_allocator const& x) const
{
return force_equal_allocator_value || (this->tag_ == x.tag_);
}
bool operator!=(cxx11_allocator const& x) const { return !(*this == x); }
};
template <typename T, typename Flags>
struct cxx11_allocator<T, Flags,
typename boost::enable_if_c<Flags::is_select_on_copy>::type>
: public cxx11_allocator_base<T>,
public swap_allocator_base<Flags>,
public assign_allocator_base<Flags>,
public move_allocator_base<Flags>,
Flags
{
cxx11_allocator select_on_container_copy_construction() const
{
cxx11_allocator tmp(*this);
++tmp.selected_;
return tmp;
}
#if BOOST_WORKAROUND(BOOST_GCC_VERSION, < 402000)
template <typename U> struct rebind {
typedef cxx11_allocator<U, Flags> other;
};
template <typename U> struct rebind
{
typedef cxx11_allocator<U, Flags> other;
};
#endif
explicit cxx11_allocator(int t = 0)
: cxx11_allocator_base<T>(t)
{
}
template <typename Y> cxx11_allocator(
cxx11_allocator<Y, Flags> const& x)
: cxx11_allocator_base<T>(x)
{
}
explicit cxx11_allocator(int t = 0) : cxx11_allocator_base<T>(t) {}
cxx11_allocator(cxx11_allocator const& x)
: cxx11_allocator_base<T>(x)
{
}
// When not propagating swap, allocators are always equal
// to avoid undefined behaviour.
bool operator==(cxx11_allocator const& x) const
{
return force_equal_allocator_value || (this->tag_ == x.tag_);
}
bool operator!=(cxx11_allocator const& x) const
{
return !(*this == x);
}
};
template <typename T, typename Flags>
bool equivalent_impl(
cxx11_allocator<T, Flags> const& x,
cxx11_allocator<T, Flags> const& y,
test::derived_type)
template <typename Y>
cxx11_allocator(cxx11_allocator<Y, Flags> const& x)
: cxx11_allocator_base<T>(x)
{
return x.tag_ == y.tag_;
}
// Function to check how many times an allocator has been selected,
// return 0 for other allocators.
cxx11_allocator(cxx11_allocator const& x) : cxx11_allocator_base<T>(x) {}
struct convert_from_anything
// When not propagating swap, allocators are always equal
// to avoid undefined behaviour.
bool operator==(cxx11_allocator const& x) const
{
template <typename T>
convert_from_anything(T const&) {}
};
inline int selected_count(convert_from_anything)
{
return 0;
return force_equal_allocator_value || (this->tag_ == x.tag_);
}
template <typename T, typename Flags>
int selected_count(cxx11_allocator<T, Flags> const& x)
{
return x.selected_;
}
bool operator!=(cxx11_allocator const& x) const { return !(*this == x); }
};
template <typename T, typename Flags>
bool equivalent_impl(cxx11_allocator<T, Flags> const& x,
cxx11_allocator<T, Flags> const& y, test::derived_type)
{
return x.tag_ == y.tag_;
}
// Function to check how many times an allocator has been selected,
// return 0 for other allocators.
struct convert_from_anything
{
template <typename T> convert_from_anything(T const&) {}
};
inline int selected_count(convert_from_anything) { return 0; }
template <typename T, typename Flags>
int selected_count(cxx11_allocator<T, Flags> const& x)
{
return x.selected_;
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -6,13 +6,12 @@
#if !defined(BOOST_UNORDERED_TEST_OBJECTS_FWD_HEADER)
#define BOOST_UNORDERED_TEST_OBJECTS_FWD_HEADER
namespace test
{
class object;
class hash;
class less;
class equal_to;
template <class T> class allocator;
namespace test {
class object;
class hash;
class less;
class equal_to;
template <class T> class allocator;
}
#endif

View File

@ -10,13 +10,13 @@
#if !defined(BOOST_UNORDERED_OBJECTS_MINIMAL_HEADER)
#define BOOST_UNORDERED_OBJECTS_MINIMAL_HEADER
#include <cstddef>
#include <boost/move/move.hpp>
#include <cstddef>
#include <utility>
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4100) // unreferenced formal parameter
#pragma warning(disable : 4100) // unreferenced formal parameter
#endif
#if !BOOST_WORKAROUND(BOOST_MSVC, == 1500)
@ -25,480 +25,494 @@
#define BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED 0
#endif
namespace test
namespace test {
namespace minimal {
class destructible;
class copy_constructible;
class copy_constructible_equality_comparable;
class default_assignable;
class assignable;
struct ampersand_operator_used
{
namespace minimal
ampersand_operator_used() { BOOST_TEST(false); }
};
template <class T> class hash;
template <class T> class equal_to;
template <class T> class ptr;
template <class T> class const_ptr;
template <class T> class allocator;
template <class T> class cxx11_allocator;
struct constructor_param
{
class destructible;
class copy_constructible;
class copy_constructible_equality_comparable;
class default_assignable;
class assignable;
operator int() const { return 0; }
};
struct ampersand_operator_used {
ampersand_operator_used() { BOOST_TEST(false); }
};
class destructible
{
public:
destructible(constructor_param const&) {}
~destructible() {}
void dummy_member() const {}
private:
destructible(destructible const&);
destructible& operator=(destructible const&);
};
template <class T> class hash;
template <class T> class equal_to;
template <class T> class ptr;
template <class T> class const_ptr;
template <class T> class allocator;
template <class T> class cxx11_allocator;
class copy_constructible
{
public:
copy_constructible(constructor_param const&) {}
copy_constructible(copy_constructible const&) {}
~copy_constructible() {}
void dummy_member() const {}
private:
copy_constructible& operator=(copy_constructible const&);
copy_constructible() {}
};
struct constructor_param
class copy_constructible_equality_comparable
{
public:
copy_constructible_equality_comparable(constructor_param const&) {}
copy_constructible_equality_comparable(
copy_constructible_equality_comparable const&)
{
operator int() const { return 0; }
};
class destructible
{
public:
destructible(constructor_param const&) {}
~destructible() {}
void dummy_member() const {}
private:
destructible(destructible const&);
destructible& operator=(destructible const&);
};
class copy_constructible
{
public:
copy_constructible(constructor_param const&) {}
copy_constructible(copy_constructible const&) {}
~copy_constructible() {}
void dummy_member() const {}
private:
copy_constructible& operator=(copy_constructible const&);
copy_constructible() {}
};
class copy_constructible_equality_comparable
{
public:
copy_constructible_equality_comparable(constructor_param const&) {}
copy_constructible_equality_comparable(
copy_constructible_equality_comparable const&)
{
}
~copy_constructible_equality_comparable()
{
}
void dummy_member() const {}
private:
copy_constructible_equality_comparable& operator=(
copy_constructible_equality_comparable const&);
copy_constructible_equality_comparable() {}
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
#endif
};
bool operator==(
copy_constructible_equality_comparable,
copy_constructible_equality_comparable)
{
return true;
}
bool operator!=(
copy_constructible_equality_comparable,
copy_constructible_equality_comparable)
~copy_constructible_equality_comparable() {}
void dummy_member() const {}
private:
copy_constructible_equality_comparable& operator=(
copy_constructible_equality_comparable const&);
copy_constructible_equality_comparable() {}
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const
{
return false;
return ampersand_operator_used();
}
#endif
};
class default_assignable
{
public:
default_assignable(constructor_param const&) {}
bool operator==(copy_constructible_equality_comparable,
copy_constructible_equality_comparable)
{
return true;
}
default_assignable()
{
}
bool operator!=(copy_constructible_equality_comparable,
copy_constructible_equality_comparable)
{
return false;
}
default_assignable(default_assignable const&)
{
}
class default_assignable
{
public:
default_assignable(constructor_param const&) {}
default_assignable& operator=(default_assignable const&)
{
return *this;
}
default_assignable() {}
~default_assignable()
{
}
default_assignable(default_assignable const&) {}
void dummy_member() const {}
default_assignable& operator=(default_assignable const&) { return *this; }
~default_assignable() {}
void dummy_member() const {}
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
#endif
};
class assignable
ampersand_operator_used operator&() const
{
public:
assignable(constructor_param const&) {}
assignable(assignable const&) {}
assignable& operator=(assignable const&) { return *this; }
~assignable() {}
void dummy_member() const {}
private:
assignable() {}
return ampersand_operator_used();
}
#endif
};
class assignable
{
public:
assignable(constructor_param const&) {}
assignable(assignable const&) {}
assignable& operator=(assignable const&) { return *this; }
~assignable() {}
void dummy_member() const {}
private:
assignable() {}
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
#endif
};
struct movable_init {};
class movable1
ampersand_operator_used operator&() const
{
BOOST_MOVABLE_BUT_NOT_COPYABLE(movable1)
return ampersand_operator_used();
}
#endif
};
public:
movable1(constructor_param const&) {}
movable1() {}
explicit movable1(movable_init) {}
movable1(BOOST_RV_REF(movable1)) {}
movable1& operator=(BOOST_RV_REF(movable1)) { return *this; }
~movable1() {}
void dummy_member() const {}
};
struct movable_init
{
};
class movable1
{
BOOST_MOVABLE_BUT_NOT_COPYABLE(movable1)
public:
movable1(constructor_param const&) {}
movable1() {}
explicit movable1(movable_init) {}
movable1(BOOST_RV_REF(movable1)) {}
movable1& operator=(BOOST_RV_REF(movable1)) { return *this; }
~movable1() {}
void dummy_member() const {}
};
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
class movable2
{
public:
movable2(constructor_param const&) {}
explicit movable2(movable_init) {}
movable2(movable2&&) {}
~movable2() {}
movable2& operator=(movable2&&) { return *this; }
void dummy_member() const {}
private:
movable2() {}
movable2(movable2 const&);
movable2& operator=(movable2 const&);
};
class movable2
{
public:
movable2(constructor_param const&) {}
explicit movable2(movable_init) {}
movable2(movable2&&) {}
~movable2() {}
movable2& operator=(movable2&&) { return *this; }
void dummy_member() const {}
private:
movable2() {}
movable2(movable2 const&);
movable2& operator=(movable2 const&);
};
#else
typedef movable1 movable2;
typedef movable1 movable2;
#endif
template <class T>
class hash
{
public:
hash(constructor_param const&) {}
hash() {}
hash(hash const&) {}
hash& operator=(hash const&) { return *this; }
~hash() {}
template <class T> class hash
{
public:
hash(constructor_param const&) {}
hash() {}
hash(hash const&) {}
hash& operator=(hash const&) { return *this; }
~hash() {}
std::size_t operator()(T const&) const { return 0; }
std::size_t operator()(T const&) const { return 0; }
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
#endif
};
template <class T>
class equal_to
ampersand_operator_used operator&() const
{
public:
equal_to(constructor_param const&) {}
equal_to() {}
equal_to(equal_to const&) {}
equal_to& operator=(equal_to const&) { return *this; }
~equal_to() {}
return ampersand_operator_used();
}
#endif
};
bool operator()(T const&, T const&) const { return true; }
template <class T> class equal_to
{
public:
equal_to(constructor_param const&) {}
equal_to() {}
equal_to(equal_to const&) {}
equal_to& operator=(equal_to const&) { return *this; }
~equal_to() {}
bool operator()(T const&, T const&) const { return true; }
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
#endif
};
template <class T> class ptr;
template <class T> class const_ptr;
struct void_ptr
ampersand_operator_used operator&() const
{
return ampersand_operator_used();
}
#endif
};
template <class T> class ptr;
template <class T> class const_ptr;
struct void_ptr
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename T>
friend class ptr;
private:
template <typename T> friend class ptr;
private:
#endif
void* ptr_;
void* ptr_;
public:
void_ptr() : ptr_(0) {}
public:
void_ptr() : ptr_(0) {}
template <typename T>
explicit void_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
template <typename T> explicit void_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_ptr const& x) const { return ptr_ != x.ptr_; }
};
bool operator==(void_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_ptr const& x) const { return ptr_ != x.ptr_; }
};
class void_const_ptr
{
class void_const_ptr
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename T>
friend class const_ptr;
private:
template <typename T> friend class const_ptr;
private:
#endif
void* ptr_;
void* ptr_;
public:
void_const_ptr() : ptr_(0) {}
public:
void_const_ptr() : ptr_(0) {}
template <typename T>
explicit void_const_ptr(const_ptr<T> const& x) : ptr_(x.ptr_) {}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_const_ptr const& x) const { return ptr_ != x.ptr_; }
};
template <class T>
class ptr
template <typename T>
explicit void_const_ptr(const_ptr<T> const& x) : ptr_(x.ptr_)
{
friend class allocator<T>;
friend class const_ptr<T>;
friend struct void_ptr;
}
T* ptr_;
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
ptr(T* x) : ptr_(x) {}
public:
ptr() : ptr_(0) {}
explicit ptr(void_ptr const& x) : ptr_((T*) x.ptr_) {}
bool operator==(void_const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_const_ptr const& x) const { return ptr_ != x.ptr_; }
};
T& operator*() const { return *ptr_; }
T* operator->() const { return ptr_; }
ptr& operator++() { ++ptr_; return *this; }
ptr operator++(int) { ptr tmp(*this); ++ptr_; return tmp; }
ptr operator+(std::ptrdiff_t s) const { return ptr<T>(ptr_ + s); }
friend ptr operator+(std::ptrdiff_t s, ptr p)
{ return ptr<T>(s + p.ptr_); }
T& operator[](std::ptrdiff_t s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
template <class T> class ptr
{
friend class allocator<T>;
friend class const_ptr<T>;
friend struct void_ptr;
bool operator==(ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(ptr const& x) const { return ptr_ >= x.ptr_; }
T* ptr_;
ptr(T* x) : ptr_(x) {}
public:
ptr() : ptr_(0) {}
explicit ptr(void_ptr const& x) : ptr_((T*)x.ptr_) {}
T& operator*() const { return *ptr_; }
T* operator->() const { return ptr_; }
ptr& operator++()
{
++ptr_;
return *this;
}
ptr operator++(int)
{
ptr tmp(*this);
++ptr_;
return tmp;
}
ptr operator+(std::ptrdiff_t s) const { return ptr<T>(ptr_ + s); }
friend ptr operator+(std::ptrdiff_t s, ptr p) { return ptr<T>(s + p.ptr_); }
T& operator[](std::ptrdiff_t s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(ptr const& x) const { return ptr_ >= x.ptr_; }
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
#endif
};
template <class T>
class const_ptr
ampersand_operator_used operator&() const
{
friend class allocator<T>;
friend struct const_void_ptr;
return ampersand_operator_used();
}
#endif
};
T const* ptr_;
template <class T> class const_ptr
{
friend class allocator<T>;
friend struct const_void_ptr;
const_ptr(T const* ptr) : ptr_(ptr) {}
public:
const_ptr() : ptr_(0) {}
const_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
explicit const_ptr(void_const_ptr const& x) : ptr_((T const*) x.ptr_) {}
T const* ptr_;
T const& operator*() const { return *ptr_; }
T const* operator->() const { return ptr_; }
const_ptr& operator++() { ++ptr_; return *this; }
const_ptr operator++(int) { const_ptr tmp(*this); ++ptr_; return tmp; }
const_ptr operator+(std::ptrdiff_t s) const
{ return const_ptr(ptr_ + s); }
friend const_ptr operator+(std::ptrdiff_t s, const_ptr p)
{ return ptr<T>(s + p.ptr_); }
T const& operator[](int s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
operator bool() const { return !!ptr_; }
const_ptr(T const* ptr) : ptr_(ptr) {}
public:
const_ptr() : ptr_(0) {}
const_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
explicit const_ptr(void_const_ptr const& x) : ptr_((T const*)x.ptr_) {}
bool operator==(const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(const_ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(const_ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(const_ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(const_ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(const_ptr const& x) const { return ptr_ >= x.ptr_; }
T const& operator*() const { return *ptr_; }
T const* operator->() const { return ptr_; }
const_ptr& operator++()
{
++ptr_;
return *this;
}
const_ptr operator++(int)
{
const_ptr tmp(*this);
++ptr_;
return tmp;
}
const_ptr operator+(std::ptrdiff_t s) const { return const_ptr(ptr_ + s); }
friend const_ptr operator+(std::ptrdiff_t s, const_ptr p)
{
return ptr<T>(s + p.ptr_);
}
T const& operator[](int s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
operator bool() const { return !!ptr_; }
bool operator==(const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(const_ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(const_ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(const_ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(const_ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(const_ptr const& x) const { return ptr_ >= x.ptr_; }
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
ampersand_operator_used operator&() const
{
return ampersand_operator_used();
}
#endif
};
template <class T> class allocator
{
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef void_ptr void_pointer;
typedef void_const_ptr const_void_pointer;
typedef ptr<T> pointer;
typedef const_ptr<T> const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
template <class U> struct rebind
{
typedef allocator<U> other;
};
template <class T>
class allocator
allocator() {}
template <class Y> allocator(allocator<Y> const&) {}
allocator(allocator const&) {}
~allocator() {}
pointer address(reference r) { return pointer(&r); }
const_pointer address(const_reference r) { return const_pointer(&r); }
pointer allocate(size_type n)
{
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef void_ptr void_pointer;
typedef void_const_ptr const_void_pointer;
typedef ptr<T> pointer;
typedef const_ptr<T> const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
template <class U> struct rebind { typedef allocator<U> other; };
template <class Y> pointer allocate(size_type n, const_ptr<Y>)
{
return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
allocator() {}
template <class Y> allocator(allocator<Y> const&) {}
allocator(allocator const&) {}
~allocator() {}
void deallocate(pointer p, size_type) { ::operator delete((void*)p.ptr_); }
pointer address(reference r) { return pointer(&r); }
const_pointer address(const_reference r) { return const_pointer(&r); }
pointer allocate(size_type n) {
return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
template <class Y>
pointer allocate(size_type n, const_ptr<Y>)
{
return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
void deallocate(pointer p, size_type)
{
::operator delete((void*) p.ptr_);
}
void construct(T* p, T const& t) { new((void*)p) T(t); }
void construct(T* p, T const& t) { new ((void*)p) T(t); }
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template<class... Args> void construct(T* p, BOOST_FWD_REF(Args)... args) {
new((void*)p) T(boost::forward<Args>(args)...);
}
template <class... Args> void construct(T* p, BOOST_FWD_REF(Args)... args)
{
new ((void*)p) T(boost::forward<Args>(args)...);
}
#endif
void destroy(T* p) { p->~T(); }
void destroy(T* p) { p->~T(); }
size_type max_size() const { return 1000; }
size_type max_size() const { return 1000; }
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP) || \
BOOST_WORKAROUND(BOOST_MSVC, <= 1300)
public: allocator& operator=(allocator const&) { return *this;}
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP) || \
BOOST_WORKAROUND(BOOST_MSVC, <= 1300)
public:
allocator& operator=(allocator const&) { return *this; }
#else
private: allocator& operator=(allocator const&);
private:
allocator& operator=(allocator const&);
#endif
#if BOOST_UNORDERED_CHECK_ADDR_OPERATOR_NOT_USED
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
ampersand_operator_used operator&() const
{
return ampersand_operator_used();
}
#endif
};
};
template <class T>
inline bool operator==(allocator<T> const&, allocator<T> const&)
template <class T>
inline bool operator==(allocator<T> const&, allocator<T> const&)
{
return true;
}
template <class T>
inline bool operator!=(allocator<T> const&, allocator<T> const&)
{
return false;
}
template <class T> void swap(allocator<T>&, allocator<T>&) {}
// C++11 allocator
//
// Not a fully minimal C++11 allocator, just what I support. Hopefully will
// cut down further in the future.
template <class T> class cxx11_allocator
{
public:
typedef T value_type;
// template <class U> struct rebind { typedef cxx11_allocator<U> other; };
cxx11_allocator() {}
template <class Y> cxx11_allocator(cxx11_allocator<Y> const&) {}
cxx11_allocator(cxx11_allocator const&) {}
~cxx11_allocator() {}
T* address(T& r) { return &r; }
T const* address(T const& r) { return &r; }
T* allocate(std::size_t n)
{
return true;
return static_cast<T*>(::operator new(n * sizeof(T)));
}
template <class T>
inline bool operator!=(allocator<T> const&, allocator<T> const&)
template <class Y> T* allocate(std::size_t n, const_ptr<Y>)
{
return false;
return static_cast<T*>(::operator new(n * sizeof(T)));
}
template <class T>
void swap(allocator<T>&, allocator<T>&)
{
}
void deallocate(T* p, std::size_t) { ::operator delete((void*)p); }
// C++11 allocator
//
// Not a fully minimal C++11 allocator, just what I support. Hopefully will
// cut down further in the future.
template <class T>
class cxx11_allocator
{
public:
typedef T value_type;
//template <class U> struct rebind { typedef cxx11_allocator<U> other; };
cxx11_allocator() {}
template <class Y> cxx11_allocator(cxx11_allocator<Y> const&) {}
cxx11_allocator(cxx11_allocator const&) {}
~cxx11_allocator() {}
T* address(T& r) { return &r; }
T const* address(T const& r) { return &r; }
T* allocate(std::size_t n) {
return static_cast<T*>(::operator new(n * sizeof(T)));
}
template <class Y>
T* allocate(std::size_t n, const_ptr<Y>) {
return static_cast<T*>(::operator new(n * sizeof(T)));
}
void deallocate(T* p, std::size_t) {
::operator delete((void*) p);
}
void construct(T* p, T const& t) { new((void*)p) T(t); }
void construct(T* p, T const& t) { new ((void*)p) T(t); }
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template<class... Args> void construct(T* p, BOOST_FWD_REF(Args)... args) {
new((void*)p) T(boost::forward<Args>(args)...);
}
template <class... Args> void construct(T* p, BOOST_FWD_REF(Args)... args)
{
new ((void*)p) T(boost::forward<Args>(args)...);
}
#endif
void destroy(T* p) { p->~T(); }
void destroy(T* p) { p->~T(); }
std::size_t max_size() const { return 1000u; }
};
std::size_t max_size() const { return 1000u; }
};
template <class T>
inline bool operator==(cxx11_allocator<T> const&, cxx11_allocator<T> const&)
{
return true;
}
template <class T>
inline bool operator==(cxx11_allocator<T> const&, cxx11_allocator<T> const&)
{
return true;
}
template <class T>
inline bool operator!=(cxx11_allocator<T> const&, cxx11_allocator<T> const&)
{
return false;
}
template <class T>
inline bool operator!=(cxx11_allocator<T> const&, cxx11_allocator<T> const&)
{
return false;
}
template <class T>
void swap(cxx11_allocator<T>&, cxx11_allocator<T>&)
{
}
template <class T> void swap(cxx11_allocator<T>&, cxx11_allocator<T>&) {}
}
}
@ -508,18 +522,17 @@ namespace boost {
namespace test {
namespace minimal {
#endif
std::size_t hash_value(
test::minimal::copy_constructible_equality_comparable)
{
return 1;
}
std::size_t hash_value(test::minimal::copy_constructible_equality_comparable)
{
return 1;
}
#if !defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
}}
}
}
#else
}
#endif
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif

File diff suppressed because it is too large Load Diff

View File

@ -3,71 +3,93 @@
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/unordered/detail/implementation.hpp>
#include <boost/detail/lightweight_test.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/static_assert.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/unordered/detail/implementation.hpp>
// Boilerplate
#define ALLOCATOR_METHODS(name) \
template <typename U> struct rebind { \
typedef name<U> other; \
}; \
\
name() {} \
template <typename Y> name(name<Y> const&) {} \
T* address(T& r) { return &r;} \
T const* address(T const& r) { return &r; } \
T* allocate(std::size_t n) \
{ return static_cast<T*>(::operator new(n * sizeof(T))); } \
T* allocate(std::size_t n, void const*) \
{ return static_cast<T*>(::operator new(n * sizeof(T))); } \
void deallocate(T* p, std::size_t) { ::operator delete((void*) p); } \
void construct(T* p, T const& t) { new(p) T(t); } \
void destroy(T* p) { p->~T(); } \
std::size_t max_size() const \
{ return (std::numeric_limits<std::size_t>::max)(); } \
bool operator==(name<T> const&) { return true; } \
bool operator!=(name<T> const&) { return false; } \
#define ALLOCATOR_METHODS(name) \
template <typename U> struct rebind \
{ \
typedef name<U> other; \
}; \
\
name() {} \
template <typename Y> name(name<Y> const&) {} \
T* address(T& r) { return &r; } \
T const* address(T const& r) { return &r; } \
T* allocate(std::size_t n) \
{ \
return static_cast<T*>(::operator new(n * sizeof(T))); \
} \
T* allocate(std::size_t n, void const*) \
{ \
return static_cast<T*>(::operator new(n * sizeof(T))); \
} \
void deallocate(T* p, std::size_t) { ::operator delete((void*)p); } \
void construct(T* p, T const& t) { new (p) T(t); } \
void destroy(T* p) { p->~T(); } \
std::size_t max_size() const \
{ \
return (std::numeric_limits<std::size_t>::max)(); \
} \
bool operator==(name<T> const&) { return true; } \
bool operator!=(name<T> const&) { return false; } \
/**/
#define ALLOCATOR_METHODS_TYPEDEFS(name) \
template <typename U> struct rebind { \
typedef name<U> other; \
}; \
\
name() {} \
template <typename Y> name(name<Y> const&) {} \
pointer address(T& r) { return &r;} \
const_pointer address(T const& r) { return &r; } \
pointer allocate(std::size_t n) \
{ return pointer(::operator new(n * sizeof(T))); } \
pointer allocate(std::size_t n, void const*) \
{ return pointer(::operator new(n * sizeof(T))); } \
void deallocate(pointer p, std::size_t) \
{ ::operator delete((void*) p); } \
void construct(T* p, T const& t) { new(p) T(t); } \
void destroy(T* p) { p->~T(); } \
size_type max_size() const \
{ return (std::numeric_limits<size_type>::max)(); } \
bool operator==(name<T> const&) { return true; } \
bool operator!=(name<T> const&) { return false; } \
#define ALLOCATOR_METHODS_TYPEDEFS(name) \
template <typename U> struct rebind \
{ \
typedef name<U> other; \
}; \
\
name() {} \
template <typename Y> name(name<Y> const&) {} \
pointer address(T& r) { return &r; } \
const_pointer address(T const& r) { return &r; } \
pointer allocate(std::size_t n) \
{ \
return pointer(::operator new(n * sizeof(T))); \
} \
pointer allocate(std::size_t n, void const*) \
{ \
return pointer(::operator new(n * sizeof(T))); \
} \
void deallocate(pointer p, std::size_t) { ::operator delete((void*)p); } \
void construct(T* p, T const& t) { new (p) T(t); } \
void destroy(T* p) { p->~T(); } \
size_type max_size() const \
{ \
return (std::numeric_limits<size_type>::max)(); \
} \
bool operator==(name<T> const&) { return true; } \
bool operator!=(name<T> const&) { return false; } \
/**/
struct yes_type { enum { value = true }; };
struct no_type { enum { value = false }; };
struct yes_type
{
enum
{
value = true
};
};
struct no_type
{
enum
{
value = false
};
};
// For tracking calls...
static int selected;
void reset() {
selected = 0;
}
void reset() { selected = 0; }
template <typename Allocator>
int call_select()
template <typename Allocator> int call_select()
{
typedef boost::unordered::detail::allocator_traits<Allocator> traits;
Allocator a;
@ -79,8 +101,7 @@ int call_select()
// Empty allocator test
template <typename T>
struct empty_allocator
template <typename T> struct empty_allocator
{
typedef T value_type;
ALLOCATOR_METHODS(empty_allocator)
@ -94,11 +115,14 @@ void test_empty_allocator()
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type,
std::make_unsigned<std::ptrdiff_t>::type>::value));
#else
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type, std::size_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::size_type, std::size_t>::value));
#endif
BOOST_STATIC_ASSERT((boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::pointer, int*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::value_type, int>::value));
BOOST_TEST(!traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(!traits::propagate_on_container_move_assignment::value);
@ -108,17 +132,17 @@ void test_empty_allocator()
// allocator 1
template <typename T>
struct allocator1
template <typename T> struct allocator1
{
typedef T value_type;
ALLOCATOR_METHODS(allocator1)
typedef yes_type propagate_on_container_copy_assignment;
typedef yes_type propagate_on_container_move_assignment;
typedef yes_type propagate_on_container_swap;
allocator1<T> select_on_container_copy_construction() const {
allocator1<T> select_on_container_copy_construction() const
{
++selected;
return allocator1<T>();
}
@ -132,11 +156,14 @@ void test_allocator1()
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type,
std::make_unsigned<std::ptrdiff_t>::type>::value));
#else
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type, std::size_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::size_type, std::size_t>::value));
#endif
BOOST_STATIC_ASSERT((boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::pointer, int*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::value_type, int>::value));
BOOST_TEST(traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(traits::propagate_on_container_move_assignment::value);
@ -146,25 +173,24 @@ void test_allocator1()
// allocator 2
template <typename Alloc>
struct allocator2_base
template <typename Alloc> struct allocator2_base
{
Alloc select_on_container_copy_construction() const {
Alloc select_on_container_copy_construction() const
{
++selected;
return Alloc();
}
};
template <typename T>
struct allocator2 : allocator2_base<allocator2<T> >
template <typename T> struct allocator2 : allocator2_base<allocator2<T> >
{
typedef T value_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef std::size_t size_type;
ALLOCATOR_METHODS(allocator2)
typedef no_type propagate_on_container_copy_assignment;
typedef no_type propagate_on_container_move_assignment;
typedef no_type propagate_on_container_swap;
@ -174,10 +200,13 @@ void test_allocator2()
{
typedef allocator2<int> allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type, std::size_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::size_type, std::size_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::pointer, int*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::value_type, int>::value));
BOOST_TEST(!traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(!traits::propagate_on_container_move_assignment::value);
@ -187,31 +216,27 @@ void test_allocator2()
// allocator 3
template <typename T>
struct ptr
template <typename T> struct ptr
{
T* value_;
ptr(void* v) : value_((T*) v) {}
ptr(void* v) : value_((T*)v) {}
T& operator*() const { return *value_; }
};
template <>
struct ptr<void>
template <> struct ptr<void>
{
void* value_;
ptr(void* v) : value_(v) {}
};
template <>
struct ptr<const void>
template <> struct ptr<const void>
{
void const* value_;
ptr(void const* v) : value_(v) {}
};
template <typename T>
struct allocator3
template <typename T> struct allocator3
{
typedef T value_type;
typedef ptr<T> pointer;
@ -219,11 +244,12 @@ struct allocator3
typedef unsigned short size_type;
ALLOCATOR_METHODS_TYPEDEFS(allocator3)
typedef yes_type propagate_on_container_copy_assignment;
typedef no_type propagate_on_container_move_assignment;
allocator3<T> select_on_container_copy_construction() const {
allocator3<T> select_on_container_copy_construction() const
{
++selected;
return allocator3<T>();
}
@ -233,10 +259,13 @@ void test_allocator3()
{
typedef allocator3<int> allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type, unsigned short>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::size_type, unsigned short>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::pointer, ptr<int> >::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::const_pointer, ptr<int const> >::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::const_pointer, ptr<int const> >::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::value_type, int>::value));
BOOST_TEST(traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(!traits::propagate_on_container_move_assignment::value);

View File

@ -20,20 +20,19 @@
#include <iostream>
#if defined(BOOST_MSVC)
#pragma warning(disable:4127) // conditional expression is constant
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace assign_tests {
test::seed_t initialize_seed(96785);
template <class T>
void assign_tests1(T*, test::random_generator generator)
template <class T> void assign_tests1(T*, test::random_generator generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
std::cerr<<"assign_tests1.1\n";
std::cerr << "assign_tests1.1\n";
{
test::check_instances check_;
@ -44,7 +43,7 @@ void assign_tests1(T*, test::random_generator generator)
BOOST_TEST(test::equivalent(x.key_eq(), eq));
}
std::cerr<<"assign_tests1.2\n";
std::cerr << "assign_tests1.2\n";
{
test::check_instances check_;
@ -69,8 +68,7 @@ void assign_tests1(T*, test::random_generator generator)
}
}
template <class T>
void assign_tests2(T*, test::random_generator generator)
template <class T> void assign_tests2(T*, test::random_generator generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf1(1);
BOOST_DEDUCED_TYPENAME T::hasher hf2(2);
@ -78,10 +76,10 @@ void assign_tests2(T*, test::random_generator generator)
BOOST_DEDUCED_TYPENAME T::key_equal eq2(2);
BOOST_DEDUCED_TYPENAME T::allocator_type al1(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
std::cerr<<"assign_tests2.0 - empty container\n";
std::cerr << "assign_tests2.0 - empty container\n";
{
test::check_instances check_;
@ -95,7 +93,7 @@ void assign_tests2(T*, test::random_generator generator)
test::check_container(x1, x2);
}
std::cerr<<"assign_tests2.1\n";
std::cerr << "assign_tests2.1\n";
{
test::check_instances check_;
@ -112,7 +110,7 @@ void assign_tests2(T*, test::random_generator generator)
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
std::cerr<<"assign_tests2.1a\n";
std::cerr << "assign_tests2.1a\n";
{
test::check_instances check_;
@ -130,7 +128,7 @@ void assign_tests2(T*, test::random_generator generator)
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
std::cerr<<"assign_tests2.2\n";
std::cerr << "assign_tests2.2\n";
{
test::check_instances check_;
@ -143,8 +141,7 @@ void assign_tests2(T*, test::random_generator generator)
if (allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(x2.get_allocator(), al1));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al2));
}
else {
} else {
BOOST_TEST(test::equivalent(x2.get_allocator(), al2));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al1));
}
@ -153,7 +150,7 @@ void assign_tests2(T*, test::random_generator generator)
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
std::cerr<<"assign_tests2.3\n";
std::cerr << "assign_tests2.3\n";
{
test::check_instances check_;
@ -166,8 +163,7 @@ void assign_tests2(T*, test::random_generator generator)
if (allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(x2.get_allocator(), al1));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al2));
}
else {
} else {
BOOST_TEST(test::equivalent(x2.get_allocator(), al2));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al1));
}
@ -176,7 +172,7 @@ void assign_tests2(T*, test::random_generator generator)
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
std::cerr<<"assign_tests2.4\n";
std::cerr << "assign_tests2.4\n";
{
test::check_instances check_;
@ -189,8 +185,7 @@ void assign_tests2(T*, test::random_generator generator)
if (allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(x2.get_allocator(), al1));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al2));
}
else {
} else {
BOOST_TEST(test::equivalent(x2.get_allocator(), al2));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al1));
}
@ -200,63 +195,51 @@ void assign_tests2(T*, test::random_generator generator)
}
}
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_set<test::object,
test::hash, test::equal_to,
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_multimap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator1<test::object> >* test_multimap;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
test_set_prop_assign;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
test_multiset_prop_assign;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
test_map_prop_assign;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
test_multimap_prop_assign;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
test_set_no_prop_assign;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
test_multiset_no_prop_assign;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
test_map_no_prop_assign;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
test_multimap_no_prop_assign;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
template <typename T>
bool is_propagate(T*)
template <typename T> bool is_propagate(T*)
{
return T::allocator_type::is_propagate_on_assign;
}
@ -268,27 +251,27 @@ UNORDERED_AUTO_TEST(check_traits)
BOOST_TEST(!is_propagate(test_set_no_prop_assign));
}
UNORDERED_TEST(assign_tests1, (
(test_map_std_alloc)
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_prop_assign)(test_multiset_prop_assign)(test_map_prop_assign)(test_multimap_prop_assign)
(test_set_no_prop_assign)(test_multiset_no_prop_assign)(test_map_no_prop_assign)(test_multimap_no_prop_assign)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(assign_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_assign)(test_multiset_prop_assign)(test_map_prop_assign)(
test_multimap_prop_assign)(test_set_no_prop_assign)(
test_multiset_no_prop_assign)(test_map_no_prop_assign)(
test_multimap_no_prop_assign))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(assign_tests2, (
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_prop_assign)(test_multiset_prop_assign)(test_map_prop_assign)(test_multimap_prop_assign)
(test_set_no_prop_assign)(test_multiset_no_prop_assign)(test_map_no_prop_assign)(test_multimap_no_prop_assign)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(
assign_tests2, ((test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_assign)(test_multiset_prop_assign)(
test_map_prop_assign)(test_multimap_prop_assign)(
test_set_no_prop_assign)(test_multiset_no_prop_assign)(
test_map_no_prop_assign)(test_multimap_no_prop_assign))(
(default_generator)(generate_collisions)(limited_range)))
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
UNORDERED_AUTO_TEST(assign_default_initializer_list) {
std::cerr<<"Initializer List Tests\n";
UNORDERED_AUTO_TEST(assign_default_initializer_list)
{
std::cerr << "Initializer List Tests\n";
std::initializer_list<std::pair<int const, int> > init;
boost::unordered_map<int, int> x1;
x1[25] = 3;
@ -303,18 +286,17 @@ UNORDERED_AUTO_TEST(assign_default_initializer_list) {
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
UNORDERED_AUTO_TEST(assign_initializer_list)
{
std::cerr<<"Initializer List Tests\n";
std::cerr << "Initializer List Tests\n";
boost::unordered_set<int> x;
x.insert(10);
x.insert(20);
x = { 1, 2, -10 };
x = {1, 2, -10};
BOOST_TEST(x.find(10) == x.end());
BOOST_TEST(x.find(-10) != x.end());
}
#endif
}
RUN_TESTS()

View File

@ -14,7 +14,8 @@
namespace at_tests {
UNORDERED_AUTO_TEST(at_tests) {
UNORDERED_AUTO_TEST(at_tests)
{
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Create Map" << std::endl;
boost::unordered_map<std::string, int> x;
@ -34,13 +35,11 @@ UNORDERED_AUTO_TEST(at_tests) {
try {
x.at("three");
BOOST_ERROR("Should have thrown.");
}
catch(std::out_of_range) {
} catch (std::out_of_range) {
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Finished" << std::endl;
}
}
RUN_TESTS()

View File

@ -17,16 +17,15 @@
#include "../helpers/helpers.hpp"
#if BOOST_WORKAROUND(BOOST_MSVC, < 1400)
#pragma warning(disable:4267) // conversion from 'size_t' to 'unsigned int',
// possible loss of data.
#pragma warning(disable : 4267) // conversion from 'size_t' to 'unsigned int',
// possible loss of data.
#endif
namespace bucket_tests {
test::seed_t initialize_seed(54635);
template <class X>
void tests(X*, test::random_generator generator)
template <class X> void tests(X*, test::random_generator generator)
{
test::check_instances check_;
@ -38,66 +37,59 @@ void tests(X*, test::random_generator generator)
BOOST_TEST(x.bucket_count() <= x.max_bucket_count());
if (!(x.bucket_count() <= x.max_bucket_count())) {
std::cerr<<x.bucket_count()<<"<="<<x.max_bucket_count()<<"\n";
std::cerr << x.bucket_count() << "<=" << x.max_bucket_count() << "\n";
}
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
it = v.begin(), end = v.end(); it != end; ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
it = v.begin(),
end = v.end();
it != end; ++it) {
size_type bucket = x.bucket(test::get_key<X>(*it));
BOOST_TEST(bucket < x.bucket_count());
if(bucket < x.bucket_count()) {
if (bucket < x.bucket_count()) {
// lit? lend?? I need a new naming scheme.
const_local_iterator lit = x.begin(bucket), lend = x.end(bucket);
while(lit != lend
&& test::get_key<X>(*it) != test::get_key<X>(*lit))
{
while (lit != lend &&
test::get_key<X>(*it) != test::get_key<X>(*lit)) {
++lit;
}
BOOST_TEST(lit != lend);
}
}
for(size_type i = 0; i < x.bucket_count(); ++i) {
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(
std::distance(x.begin(i), x.end(i))));
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(
std::distance(x.cbegin(i), x.cend(i))));
for (size_type i = 0; i < x.bucket_count(); ++i) {
BOOST_TEST(x.bucket_size(i) ==
static_cast<size_type>(std::distance(x.begin(i), x.end(i))));
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(std::distance(
x.cbegin(i), x.cend(i))));
X const& x_ref = x;
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(
std::distance(x_ref.begin(i), x_ref.end(i))));
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(
std::distance(x_ref.cbegin(i), x_ref.cend(i))));
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(std::distance(
x_ref.begin(i), x_ref.end(i))));
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(std::distance(
x_ref.cbegin(i), x_ref.cend(i))));
}
}
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
std::allocator<test::object> >* test_multimap_std_alloc;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, std::allocator<test::object> >* test_multimap_std_alloc;
boost::unordered_set<test::object,
test::hash, test::equal_to,
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator2<test::object> >* test_multimap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(tests,
((test_multimap_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(tests, ((test_multimap_std_alloc)(test_set)(test_multiset)(
test_map)(test_multimap))((default_generator)(
generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@ -19,29 +19,18 @@
// Explicit instantiation to catch compile-time errors
template class boost::unordered_map<
int,
int,
boost::hash<int>,
std::equal_to<int>,
test::minimal::allocator<std::pair<int const, int> > >;
template class boost::unordered_multimap<
int const,
int const,
boost::hash<int>,
std::equal_to<int>,
test::minimal::allocator<std::pair<int const, int> > >;
template class boost::unordered_map<int, int, boost::hash<int>,
std::equal_to<int>, test::minimal::allocator<std::pair<int const, int> > >;
template class boost::unordered_multimap<int const, int const, boost::hash<int>,
std::equal_to<int>, test::minimal::allocator<std::pair<int const, int> > >;
template class boost::unordered_map<
test::minimal::assignable const,
template class boost::unordered_map<test::minimal::assignable const,
test::minimal::default_assignable const,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> >;
template class boost::unordered_multimap<
test::minimal::assignable,
test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
template class boost::unordered_multimap<test::minimal::assignable,
test::minimal::assignable, test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> >;
@ -50,68 +39,70 @@ UNORDERED_AUTO_TEST(test0)
test::minimal::constructor_param x;
typedef std::pair<test::minimal::assignable const,
test::minimal::assignable> value_type;
test::minimal::assignable>
value_type;
value_type value(x, x);
std::cout<<"Test unordered_map.\n";
std::cout << "Test unordered_map.\n";
boost::unordered_map<int, int> int_map;
boost::unordered_map<int, int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> >
> int_map2;
boost::unordered_map<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
int_map2;
boost::unordered_map<
test::minimal::assignable,
test::minimal::assignable,
boost::unordered_map<test::minimal::assignable, test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<value_type> > map;
test::minimal::allocator<value_type> >
map;
container_test(int_map, std::pair<int const, int>(0, 0));
container_test(int_map2, std::pair<int const, int>(0, 0));
container_test(map, value);
std::cout<<"Test unordered_multimap.\n";
std::cout << "Test unordered_multimap.\n";
boost::unordered_multimap<int, int> int_multimap;
boost::unordered_multimap<int, int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> >
> int_multimap2;
boost::unordered_multimap<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
int_multimap2;
boost::unordered_multimap<
test::minimal::assignable,
boost::unordered_multimap<test::minimal::assignable,
test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<value_type> > multimap;
test::minimal::allocator<value_type> >
multimap;
container_test(int_multimap, std::pair<int const, int>(0, 0));
container_test(int_multimap2, std::pair<int const, int>(0, 0));
container_test(multimap, value);
}
UNORDERED_AUTO_TEST(equality_tests) {
UNORDERED_AUTO_TEST(equality_tests)
{
typedef std::pair<
test::minimal::copy_constructible_equality_comparable const,
test::minimal::copy_constructible_equality_comparable> value_type;
test::minimal::copy_constructible_equality_comparable const,
test::minimal::copy_constructible_equality_comparable>
value_type;
boost::unordered_map<int, int> int_map;
boost::unordered_map<int, int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> >
> int_map2;
boost::unordered_map<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
int_map2;
boost::unordered_map<
test::minimal::copy_constructible_equality_comparable,
test::minimal::copy_constructible_equality_comparable,
test::minimal::hash<test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> > map;
test::minimal::hash<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> >
map;
equality_test(int_map);
equality_test(int_map2);
@ -119,37 +110,39 @@ UNORDERED_AUTO_TEST(equality_tests) {
boost::unordered_multimap<int, int> int_multimap;
boost::unordered_multimap<int, int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> >
> int_multimap2;
boost::unordered_multimap<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
int_multimap2;
boost::unordered_multimap<
test::minimal::copy_constructible_equality_comparable,
test::minimal::copy_constructible_equality_comparable,
test::minimal::hash<test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> > multimap;
test::minimal::hash<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> >
multimap;
equality_test(int_multimap);
equality_test(int_multimap2);
equality_test(multimap);
}
UNORDERED_AUTO_TEST(test1) {
UNORDERED_AUTO_TEST(test1)
{
boost::hash<int> hash;
std::equal_to<int> equal_to;
int value = 0;
std::pair<int const, int> map_value(0, 0);
std::cout<<"Test unordered_map.\n";
std::cout << "Test unordered_map.\n";
boost::unordered_map<int, int> map;
boost::unordered_map<int, int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> >
> map2;
boost::unordered_map<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
map2;
unordered_unique_test(map, map_value);
unordered_map_test(map, value, value);
@ -161,14 +154,13 @@ UNORDERED_AUTO_TEST(test1) {
unordered_copyable_test(map2, value, map_value, hash, equal_to);
unordered_map_functions(map2, value, value);
std::cout<<"Test unordered_multimap.\n";
std::cout << "Test unordered_multimap.\n";
boost::unordered_multimap<int, int> multimap;
boost::unordered_multimap<int, int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> >
> multimap2;
boost::unordered_multimap<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
multimap2;
unordered_equivalent_test(multimap, map_value);
unordered_map_test(multimap, value, value);
@ -189,42 +181,42 @@ UNORDERED_AUTO_TEST(test2)
test::minimal::equal_to<test::minimal::assignable> equal_to(x);
typedef std::pair<test::minimal::assignable const,
test::minimal::assignable> map_value_type;
test::minimal::assignable>
map_value_type;
map_value_type map_value(assignable, assignable);
std::cout<<"Test unordered_map.\n";
std::cout << "Test unordered_map.\n";
boost::unordered_map<
test::minimal::assignable,
test::minimal::assignable,
boost::unordered_map<test::minimal::assignable, test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<map_value_type> > map;
test::minimal::allocator<map_value_type> >
map;
unordered_unique_test(map, map_value);
unordered_map_test(map, assignable, assignable);
unordered_copyable_test(map, assignable, map_value, hash, equal_to);
unordered_map_member_test(map, map_value);
boost::unordered_map<
test::minimal::assignable,
boost::unordered_map<test::minimal::assignable,
test::minimal::default_assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<map_value_type> > map2;
test::minimal::allocator<map_value_type> >
map2;
test::minimal::default_assignable default_assignable;
unordered_map_functions(map2, assignable, default_assignable);
std::cout<<"Test unordered_multimap.\n";
std::cout << "Test unordered_multimap.\n";
boost::unordered_multimap<
test::minimal::assignable,
boost::unordered_multimap<test::minimal::assignable,
test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<map_value_type> > multimap;
test::minimal::allocator<map_value_type> >
multimap;
unordered_equivalent_test(multimap, map_value);
unordered_map_test(multimap, assignable, assignable);

View File

@ -19,24 +19,16 @@
// Explicit instantiation to catch compile-time errors
template class boost::unordered_set<
int,
boost::hash<int>,
std::equal_to<int>,
test::minimal::allocator<int> >;
template class boost::unordered_multiset<
int const,
boost::hash<int>,
std::equal_to<int>,
template class boost::unordered_set<int, boost::hash<int>, std::equal_to<int>,
test::minimal::allocator<int> >;
template class boost::unordered_multiset<int const, boost::hash<int>,
std::equal_to<int>, test::minimal::allocator<int> >;
template class boost::unordered_set<
test::minimal::assignable const,
template class boost::unordered_set<test::minimal::assignable const,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> >;
template class boost::unordered_multiset<
test::minimal::assignable,
template class boost::unordered_multiset<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> >;
@ -47,60 +39,61 @@ UNORDERED_AUTO_TEST(test0)
test::minimal::assignable assignable(x);
std::cout<<"Test unordered_set.\n";
std::cout << "Test unordered_set.\n";
boost::unordered_set<int> int_set;
boost::unordered_set<int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int>
> int_set2;
boost::unordered_set<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
int_set2;
boost::unordered_set<
test::minimal::assignable,
boost::unordered_set<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> > set;
test::minimal::allocator<test::minimal::assignable> >
set;
container_test(int_set, 0);
container_test(int_set2, 0);
container_test(set, assignable);
std::cout<<"Test unordered_multiset.\n";
std::cout << "Test unordered_multiset.\n";
boost::unordered_multiset<int> int_multiset;
boost::unordered_multiset<int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int>
> int_multiset2;
boost::unordered_multiset<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
int_multiset2;
boost::unordered_multiset<
test::minimal::assignable,
boost::unordered_multiset<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> > multiset;
test::minimal::allocator<test::minimal::assignable> >
multiset;
container_test(int_multiset, 0);
container_test(int_multiset2, 0);
container_test(multiset, assignable);
}
UNORDERED_AUTO_TEST(equality_tests) {
UNORDERED_AUTO_TEST(equality_tests)
{
typedef test::minimal::copy_constructible_equality_comparable value_type;
boost::unordered_set<int> int_set;
boost::unordered_set<int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int>
> int_set2;
boost::unordered_set<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
int_set2;
boost::unordered_set<
test::minimal::copy_constructible_equality_comparable,
test::minimal::hash<test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> > set;
test::minimal::hash<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> >
set;
equality_test(int_set);
equality_test(int_set2);
@ -108,16 +101,18 @@ UNORDERED_AUTO_TEST(equality_tests) {
boost::unordered_multiset<int> int_multiset;
boost::unordered_multiset<int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int>
> int_multiset2;
boost::unordered_multiset<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
int_multiset2;
boost::unordered_multiset<
test::minimal::copy_constructible_equality_comparable,
test::minimal::hash<test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> > multiset;
test::minimal::hash<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> >
multiset;
equality_test(int_multiset);
equality_test(int_multiset2);
@ -130,14 +125,13 @@ UNORDERED_AUTO_TEST(test1)
std::equal_to<int> equal_to;
int value = 0;
std::cout<<"Test unordered_set." << std::endl;
std::cout << "Test unordered_set." << std::endl;
boost::unordered_set<int> set;
boost::unordered_set<int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int>
> set2;
boost::unordered_set<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
set2;
unordered_unique_test(set, value);
unordered_set_test(set, value);
@ -147,14 +141,13 @@ UNORDERED_AUTO_TEST(test1)
unordered_set_test(set2, value);
unordered_copyable_test(set2, value, value, hash, equal_to);
std::cout<<"Test unordered_multiset." << std::endl;
std::cout << "Test unordered_multiset." << std::endl;
boost::unordered_multiset<int> multiset;
boost::unordered_multiset<int,
boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int>
> multiset2;
boost::unordered_multiset<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
multiset2;
unordered_equivalent_test(multiset, value);
unordered_set_test(multiset, value);
@ -168,32 +161,32 @@ UNORDERED_AUTO_TEST(test1)
UNORDERED_AUTO_TEST(test2)
{
test::minimal::constructor_param x;
test::minimal::assignable assignable(x);
test::minimal::copy_constructible copy_constructible(x);
test::minimal::hash<test::minimal::assignable> hash(x);
test::minimal::equal_to<test::minimal::assignable> equal_to(x);
std::cout<<"Test unordered_set.\n";
std::cout << "Test unordered_set.\n";
boost::unordered_set<
test::minimal::assignable,
boost::unordered_set<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> > set;
test::minimal::allocator<test::minimal::assignable> >
set;
unordered_unique_test(set, assignable);
unordered_set_test(set, assignable);
unordered_copyable_test(set, assignable, assignable, hash, equal_to);
unordered_set_member_test(set, assignable);
std::cout<<"Test unordered_multiset.\n";
std::cout << "Test unordered_multiset.\n";
boost::unordered_multiset<
test::minimal::assignable,
boost::unordered_multiset<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> > multiset;
test::minimal::allocator<test::minimal::assignable> >
multiset;
unordered_equivalent_test(multiset, assignable);
unordered_set_test(multiset, assignable);
@ -209,27 +202,27 @@ UNORDERED_AUTO_TEST(movable1_tests)
test::minimal::hash<test::minimal::movable1> hash(x);
test::minimal::equal_to<test::minimal::movable1> equal_to(x);
std::cout<<"Test unordered_set.\n";
std::cout << "Test unordered_set.\n";
boost::unordered_set<
test::minimal::movable1,
boost::unordered_set<test::minimal::movable1,
test::minimal::hash<test::minimal::movable1>,
test::minimal::equal_to<test::minimal::movable1>,
test::minimal::allocator<test::minimal::movable1> > set;
test::minimal::allocator<test::minimal::movable1> >
set;
//unordered_unique_test(set, movable1);
// unordered_unique_test(set, movable1);
unordered_set_test(set, movable1);
unordered_movable_test(set, movable1, movable1, hash, equal_to);
std::cout<<"Test unordered_multiset.\n";
std::cout << "Test unordered_multiset.\n";
boost::unordered_multiset<
test::minimal::movable1,
boost::unordered_multiset<test::minimal::movable1,
test::minimal::hash<test::minimal::movable1>,
test::minimal::equal_to<test::minimal::movable1>,
test::minimal::allocator<test::minimal::movable1> > multiset;
test::minimal::allocator<test::minimal::movable1> >
multiset;
//unordered_equivalent_test(multiset, movable1);
// unordered_equivalent_test(multiset, movable1);
unordered_set_test(multiset, movable1);
unordered_movable_test(multiset, movable1, movable1, hash, equal_to);
}
@ -242,27 +235,27 @@ UNORDERED_AUTO_TEST(movable2_tests)
test::minimal::hash<test::minimal::movable2> hash(x);
test::minimal::equal_to<test::minimal::movable2> equal_to(x);
std::cout<<"Test unordered_set.\n";
std::cout << "Test unordered_set.\n";
boost::unordered_set<
test::minimal::movable2,
boost::unordered_set<test::minimal::movable2,
test::minimal::hash<test::minimal::movable2>,
test::minimal::equal_to<test::minimal::movable2>,
test::minimal::allocator<test::minimal::movable2> > set;
test::minimal::allocator<test::minimal::movable2> >
set;
//unordered_unique_test(set, movable2);
// unordered_unique_test(set, movable2);
unordered_set_test(set, movable2);
unordered_movable_test(set, movable2, movable2, hash, equal_to);
std::cout<<"Test unordered_multiset.\n";
std::cout << "Test unordered_multiset.\n";
boost::unordered_multiset<
test::minimal::movable2,
boost::unordered_multiset<test::minimal::movable2,
test::minimal::hash<test::minimal::movable2>,
test::minimal::equal_to<test::minimal::movable2>,
test::minimal::allocator<test::minimal::movable2> > multiset;
test::minimal::allocator<test::minimal::movable2> >
multiset;
//unordered_equivalent_test(multiset, movable2);
// unordered_equivalent_test(multiset, movable2);
unordered_set_test(multiset, movable2);
unordered_movable_test(multiset, movable2, movable2, hash, equal_to);
}
@ -275,21 +268,21 @@ UNORDERED_AUTO_TEST(destructible_tests)
test::minimal::hash<test::minimal::destructible> hash(x);
test::minimal::equal_to<test::minimal::destructible> equal_to(x);
std::cout<<"Test unordered_set.\n";
std::cout << "Test unordered_set.\n";
boost::unordered_set<
test::minimal::destructible,
boost::unordered_set<test::minimal::destructible,
test::minimal::hash<test::minimal::destructible>,
test::minimal::equal_to<test::minimal::destructible> > set;
test::minimal::equal_to<test::minimal::destructible> >
set;
unordered_destructible_test(set);
std::cout<<"Test unordered_multiset.\n";
std::cout << "Test unordered_multiset.\n";
boost::unordered_multiset<
test::minimal::destructible,
boost::unordered_multiset<test::minimal::destructible,
test::minimal::hash<test::minimal::destructible>,
test::minimal::equal_to<test::minimal::destructible> > multiset;
test::minimal::equal_to<test::minimal::destructible> >
multiset;
unordered_destructible_test(multiset);
}

View File

@ -5,9 +5,9 @@
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4100) // unreferenced formal parameter
#pragma warning(disable:4610) // class can never be instantiated
#pragma warning(disable:4510) // default constructor could not be generated
#pragma warning(disable : 4100) // unreferenced formal parameter
#pragma warning(disable : 4610) // class can never be instantiated
#pragma warning(disable : 4510) // default constructor could not be generated
#endif
#include <boost/concept_check.hpp>
@ -16,13 +16,13 @@
#pragma warning(pop)
#endif
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include "../helpers/check_return_type.hpp"
#include <boost/iterator/iterator_traits.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/utility/swap.hpp>
#include "../helpers/check_return_type.hpp"
typedef long double comparison_type;
@ -30,23 +30,21 @@ template <class T> void sink(T const&) {}
template <class T> T rvalue(T const& v) { return v; }
template <class T> T rvalue_default() { return T(); }
template <class X, class T>
void container_test(X& r, T const&)
template <class X, class T> void container_test(X& r, T const&)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::difference_type difference_type;
typedef BOOST_DEDUCED_TYPENAME X::size_type size_type;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_value<iterator>::type iterator_value_type;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_value<const_iterator>::type const_iterator_value_type;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_difference<iterator>::type iterator_difference_type;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_difference<const_iterator>::type
const_iterator_difference_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_value<iterator>::type
iterator_value_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_value<const_iterator>::type
const_iterator_value_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<iterator>::type
iterator_difference_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<
const_iterator>::type const_iterator_difference_type;
typedef BOOST_DEDUCED_TYPENAME X::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME X::reference reference;
@ -66,7 +64,8 @@ void container_test(X& r, T const&)
boost::function_requires<boost::InputIteratorConcept<iterator> >();
BOOST_STATIC_ASSERT((boost::is_same<T, iterator_value_type>::value));
BOOST_STATIC_ASSERT((boost::is_convertible<iterator, const_iterator>::value));
BOOST_STATIC_ASSERT(
(boost::is_convertible<iterator, const_iterator>::value));
// const_iterator
@ -77,10 +76,10 @@ void container_test(X& r, T const&)
BOOST_STATIC_ASSERT(std::numeric_limits<difference_type>::is_signed);
BOOST_STATIC_ASSERT(std::numeric_limits<difference_type>::is_integer);
BOOST_STATIC_ASSERT(
(boost::is_same<difference_type, iterator_difference_type>::value));
BOOST_STATIC_ASSERT((boost::is_same<difference_type,
iterator_difference_type>::value));
BOOST_STATIC_ASSERT((boost::is_same<difference_type,
const_iterator_difference_type>::value));
const_iterator_difference_type>::value));
// size_type
@ -89,21 +88,19 @@ void container_test(X& r, T const&)
// size_type can represent any non-negative value type of difference_type
// I'm not sure about either of these tests...
size_type max_diff = static_cast<size_type>(
(std::numeric_limits<difference_type>::max)());
size_type max_diff =
static_cast<size_type>((std::numeric_limits<difference_type>::max)());
difference_type converted_diff(static_cast<difference_type>(max_diff));
BOOST_TEST((std::numeric_limits<difference_type>::max)()
== converted_diff);
BOOST_TEST((std::numeric_limits<difference_type>::max)() == converted_diff);
BOOST_TEST(
static_cast<comparison_type>(
(std::numeric_limits<size_type>::max)()) >
static_cast<comparison_type>((std::numeric_limits<size_type>::max)()) >
static_cast<comparison_type>(
(std::numeric_limits<difference_type>::max)()));
// Constructors
// Constructors
// I don't test the runtime post-conditions here.
// I don't test the runtime post-conditions here.
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
// It isn't specified in the container requirements that the no argument
@ -117,7 +114,7 @@ void container_test(X& r, T const&)
BOOST_TEST(u.size() == 0);
BOOST_TEST(X().size() == 0);
X a,b;
X a, b;
X a_const;
sink(X(a));
@ -142,7 +139,7 @@ void container_test(X& r, T const&)
X c2(a_const, m);
sink(X(rvalue(a_const), m));
X c3(rvalue(a_const), m);
// Avoid unused variable warnings:
sink(u);
@ -155,8 +152,7 @@ void container_test(X& r, T const&)
sink(c3);
}
template <class X>
void unordered_destructible_test(X&)
template <class X> void unordered_destructible_test(X&)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
@ -167,9 +163,9 @@ void unordered_destructible_test(X&)
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
X x2(rvalue_default<X>());
X x3 = rvalue_default<X>();
// This can only be done if propagate_on_container_move_assignment::value
// is true.
// x2 = rvalue_default<X>();
// This can only be done if propagate_on_container_move_assignment::value
// is true.
// x2 = rvalue_default<X>();
#endif
X* ptr = new X();
@ -177,7 +173,7 @@ void unordered_destructible_test(X&)
(&a1)->~X();
::operator delete((void*)(&a1));
X a,b;
X a, b;
X const a_const;
test::check_return_type<iterator>::equals(a.begin());
test::check_return_type<const_iterator>::equals(a_const.begin());
@ -190,7 +186,7 @@ void unordered_destructible_test(X&)
a.swap(b);
boost::swap(a, b);
test::check_return_type<size_type>::equals(a.size());
test::check_return_type<size_type>::equals(a.max_size());
test::check_return_type<bool>::convertible(a.empty());
@ -201,8 +197,7 @@ void unordered_destructible_test(X&)
test::check_return_type<allocator_type>::equals(a_const.get_allocator());
}
template <class X, class Key>
void unordered_set_test(X&, Key const&)
template <class X, class Key> void unordered_set_test(X&, Key const&)
{
typedef BOOST_DEDUCED_TYPENAME X::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
@ -215,21 +210,23 @@ void unordered_set_test(X&, Key const&)
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_local_iterator const_local_iterator;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<iterator>::type iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<const_iterator>::type
const_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<local_iterator>::type local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<const_local_iterator>::type
const_local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<iterator>::type
iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<const_iterator>::type
const_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<local_iterator>::type
local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<
const_local_iterator>::type const_local_iterator_pointer;
BOOST_STATIC_ASSERT((boost::is_same<value_type const*, iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<value_type const*, const_iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<value_type const*, local_iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<value_type const*, const_local_iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, const_iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, local_iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<value_type const*,
const_local_iterator_pointer>::value));
}
template <class X, class Key, class T>
@ -238,8 +235,8 @@ void unordered_map_test(X& r, Key const& k, T const& v)
typedef BOOST_DEDUCED_TYPENAME X::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
BOOST_STATIC_ASSERT((
boost::is_same<value_type, std::pair<key_type const, T> >::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type, std::pair<key_type const, T> >::value));
// iterator pointer / const_pointer_type
@ -247,21 +244,22 @@ void unordered_map_test(X& r, Key const& k, T const& v)
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_local_iterator const_local_iterator;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<iterator>::type iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<const_iterator>::type
const_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<local_iterator>::type local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<const_local_iterator>::type
const_local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<iterator>::type
iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<const_iterator>::type
const_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<local_iterator>::type
local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<
const_local_iterator>::type const_local_iterator_pointer;
BOOST_STATIC_ASSERT((boost::is_same<value_type*, iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<value_type const*, const_iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<value_type*, local_iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<value_type const*, const_local_iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, const_iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type*, local_iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<value_type const*,
const_local_iterator_pointer>::value));
// Calling functions
@ -274,12 +272,11 @@ void unordered_map_test(X& r, Key const& k, T const& v)
r.emplace(k_lvalue, v_lvalue);
r.emplace(rvalue(k), rvalue(v));
r.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(k), boost::make_tuple(v));
r.emplace(boost::unordered::piecewise_construct, boost::make_tuple(k),
boost::make_tuple(v));
}
template <class X>
void equality_test(X& r)
template <class X> void equality_test(X& r)
{
X const a = r, b = r;
@ -289,16 +286,14 @@ void equality_test(X& r)
test::check_return_type<bool>::equals(boost::operator!=(a, b));
}
template <class X, class T>
void unordered_unique_test(X& r, T const& t)
template <class X, class T> void unordered_unique_test(X& r, T const& t)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
test::check_return_type<std::pair<iterator, bool> >::equals(r.insert(t));
test::check_return_type<std::pair<iterator, bool> >::equals(r.emplace(t));
}
template <class X, class T>
void unordered_equivalent_test(X& r, T const& t)
template <class X, class T> void unordered_equivalent_test(X& r, T const& t)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
test::check_return_type<iterator>::equals(r.insert(t));
@ -334,61 +329,45 @@ void unordered_test(X& x, Key& k, Hash& hf, Pred& eq)
typedef BOOST_DEDUCED_TYPENAME X::const_local_iterator const_local_iterator;
typedef BOOST_DEDUCED_TYPENAME
boost::BOOST_ITERATOR_CATEGORY<iterator>::type
iterator_category;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_difference<iterator>::type
boost::BOOST_ITERATOR_CATEGORY<iterator>::type iterator_category;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<iterator>::type
iterator_difference;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<iterator>::type
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<iterator>::type
iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_reference<iterator>::type
typedef BOOST_DEDUCED_TYPENAME boost::iterator_reference<iterator>::type
iterator_reference;
typedef BOOST_DEDUCED_TYPENAME
boost::BOOST_ITERATOR_CATEGORY<local_iterator>::type
local_iterator_category;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_difference<local_iterator>::type
local_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<local_iterator>::type
typedef BOOST_DEDUCED_TYPENAME boost::BOOST_ITERATOR_CATEGORY<
local_iterator>::type local_iterator_category;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<
local_iterator>::type local_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<local_iterator>::type
local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_reference<local_iterator>::type
local_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_reference<
local_iterator>::type local_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME
boost::BOOST_ITERATOR_CATEGORY<const_iterator>::type
const_iterator_category;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_difference<const_iterator>::type
const_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<const_iterator>::type
typedef BOOST_DEDUCED_TYPENAME boost::BOOST_ITERATOR_CATEGORY<
const_iterator>::type const_iterator_category;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<
const_iterator>::type const_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<const_iterator>::type
const_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_reference<const_iterator>::type
const_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_reference<
const_iterator>::type const_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME
boost::BOOST_ITERATOR_CATEGORY<const_local_iterator>::type
const_local_iterator_category;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_difference<const_local_iterator>::type
const_local_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_pointer<const_local_iterator>::type
const_local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_reference<const_local_iterator>::type
const_local_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME boost::BOOST_ITERATOR_CATEGORY<
const_local_iterator>::type const_local_iterator_category;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<
const_local_iterator>::type const_local_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<
const_local_iterator>::type const_local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_reference<
const_local_iterator>::type const_local_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME X::allocator_type allocator_type;
BOOST_STATIC_ASSERT((boost::is_same<Key, key_type>::value));
//boost::function_requires<boost::CopyConstructibleConcept<key_type> >();
//boost::function_requires<boost::AssignableConcept<key_type> >();
// boost::function_requires<boost::CopyConstructibleConcept<key_type> >();
// boost::function_requires<boost::AssignableConcept<key_type> >();
BOOST_STATIC_ASSERT((boost::is_same<Hash, hasher>::value));
test::check_return_type<std::size_t>::equals(hf(k));
@ -397,14 +376,14 @@ void unordered_test(X& x, Key& k, Hash& hf, Pred& eq)
test::check_return_type<bool>::convertible(eq(k, k));
boost::function_requires<boost::InputIteratorConcept<local_iterator> >();
BOOST_STATIC_ASSERT((boost::is_same<local_iterator_category,
iterator_category>::value));
BOOST_STATIC_ASSERT((boost::is_same<local_iterator_difference,
iterator_difference>::value));
BOOST_STATIC_ASSERT((boost::is_same<local_iterator_pointer,
iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<local_iterator_reference,
iterator_reference>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<local_iterator_category, iterator_category>::value));
BOOST_STATIC_ASSERT((
boost::is_same<local_iterator_difference, iterator_difference>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<local_iterator_pointer, iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<local_iterator_reference, iterator_reference>::value));
boost::function_requires<
boost::InputIteratorConcept<const_local_iterator> >();
@ -456,9 +435,9 @@ void unordered_test(X& x, Key& k, Hash& hf, Pred& eq)
test::check_return_type<const_iterator>::equals(b.find(k));
test::check_return_type<size_type>::equals(b.count(k));
test::check_return_type<std::pair<iterator, iterator> >::equals(
a.equal_range(k));
a.equal_range(k));
test::check_return_type<std::pair<const_iterator, const_iterator> >::equals(
b.equal_range(k));
b.equal_range(k));
test::check_return_type<size_type>::equals(b.bucket_count());
test::check_return_type<size_type>::equals(b.max_bucket_count());
test::check_return_type<size_type>::equals(b.bucket(k));
@ -476,9 +455,9 @@ void unordered_test(X& x, Key& k, Hash& hf, Pred& eq)
test::check_return_type<float>::equals(b.load_factor());
test::check_return_type<float>::equals(b.max_load_factor());
a.max_load_factor((float) 2.0);
a.max_load_factor((float)2.0);
a.rehash(100);
// Avoid unused variable warnings:
sink(a);
@ -525,10 +504,10 @@ void unordered_copyable_test(X& x, Key& k, T& t, Hash& hf, Pred& eq)
X(i, j, 10, m);
X a7a(i, j, 10, m);
// Not specified for some reason (maybe ambiguity with another constructor?)
//X(i, j, m);
//X a8a(i, j, m);
//sink(a8a);
// Not specified for some reason (maybe ambiguity with another constructor?)
// X(i, j, m);
// X a8a(i, j, m);
// sink(a8a);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
std::size_t min_buckets = 10;
@ -536,7 +515,7 @@ void unordered_copyable_test(X& x, Key& k, T& t, Hash& hf, Pred& eq)
X({t}, min_buckets);
X({t}, min_buckets, hf);
X({t}, min_buckets, hf, eq);
//X({t}, m);
// X({t}, m);
X({t}, min_buckets, m);
X({t}, min_buckets, hf, m);
X({t}, min_buckets, hf, eq, m);
@ -559,12 +538,12 @@ void unordered_copyable_test(X& x, Key& k, T& t, Hash& hf, Pred& eq)
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
std::initializer_list<T> list = {t};
a.insert(list);
a.insert({t,t,t});
a.insert({t, t, t});
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1900)
a.insert({});
a.insert({t});
a.insert({t,t});
a.insert({t, t});
#endif
#endif
@ -606,7 +585,7 @@ void unordered_movable_test(X& x, Key& k, T& /* t */, Hash& hf, Pred& eq)
X a;
allocator_type m = a.get_allocator();
test::minimal::constructor_param* i = 0;
test::minimal::constructor_param* i = 0;
test::minimal::constructor_param* j = 0;
// Constructors
@ -628,9 +607,9 @@ void unordered_movable_test(X& x, Key& k, T& /* t */, Hash& hf, Pred& eq)
X a7a(i, j, 10, m);
// Not specified for some reason (maybe ambiguity with another constructor?)
//X(i, j, m);
//X a8a(i, j, m);
//sink(a8a);
// X(i, j, m);
// X a8a(i, j, m);
// sink(a8a);
const_iterator q = a.cbegin();
@ -644,10 +623,9 @@ void unordered_movable_test(X& x, Key& k, T& /* t */, Hash& hf, Pred& eq)
a.insert(boost::move(v2));
T v3(v);
test::check_return_type<iterator>::equals(
a.emplace_hint(q, boost::move(v3)));
a.emplace_hint(q, boost::move(v3)));
T v4(v);
test::check_return_type<iterator>::equals(
a.insert(q, boost::move(v4)));
test::check_return_type<iterator>::equals(a.insert(q, boost::move(v4)));
a.insert(i, j);
@ -670,8 +648,7 @@ void unordered_movable_test(X& x, Key& k, T& /* t */, Hash& hf, Pred& eq)
sink(a10);
}
template <class X, class T>
void unordered_set_member_test(X& x, T& t)
template <class X, class T> void unordered_set_member_test(X& x, T& t)
{
X x1(x);
x1.insert(t);
@ -679,8 +656,7 @@ void unordered_set_member_test(X& x, T& t)
x1.cbegin()->dummy_member();
}
template <class X, class T>
void unordered_map_member_test(X& x, T& t)
template <class X, class T> void unordered_map_member_test(X& x, T& t)
{
X x1(x);
x1.insert(t);

View File

@ -22,14 +22,13 @@ namespace constructor_tests {
test::seed_t initialize_seed(356730);
template <class T>
void constructor_tests1(T*, test::random_generator generator)
template <class T> void constructor_tests1(T*, test::random_generator generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_DEDUCED_TYPENAME T::allocator_type al;
std::cerr<<"Construct 1\n";
std::cerr << "Construct 1\n";
{
test::check_instances check_;
@ -41,7 +40,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 2\n";
std::cerr << "Construct 2\n";
{
test::check_instances check_;
@ -54,7 +53,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 3\n";
std::cerr << "Construct 3\n";
{
test::check_instances check_;
@ -67,7 +66,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 4\n";
std::cerr << "Construct 4\n";
{
test::check_instances check_;
@ -79,7 +78,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 5\n";
std::cerr << "Construct 5\n";
{
test::check_instances check_;
@ -93,7 +92,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 6\n";
std::cerr << "Construct 6\n";
{
test::check_instances check_;
@ -107,7 +106,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 7\n";
std::cerr << "Construct 7\n";
{
test::check_instances check_;
@ -121,7 +120,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 8\n";
std::cerr << "Construct 8\n";
{
test::check_instances check_;
@ -134,7 +133,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 9\n";
std::cerr << "Construct 9\n";
{
test::check_instances check_;
@ -146,7 +145,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 10\n";
std::cerr << "Construct 10\n";
{
test::check_instances check_;
@ -160,7 +159,7 @@ void constructor_tests1(T*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 11\n";
std::cerr << "Construct 11\n";
{
test::check_instances check_;
@ -186,7 +185,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
BOOST_DEDUCED_TYPENAME T::allocator_type al1(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
std::cerr<<"Construct 1\n";
std::cerr << "Construct 1\n";
{
test::check_instances check_;
T x(10000, hf1, eq1);
@ -197,7 +196,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 2\n";
std::cerr << "Construct 2\n";
{
test::check_instances check_;
T x(100, hf1);
@ -209,7 +208,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 3\n";
std::cerr << "Construct 3\n";
{
test::check_instances check_;
test::random_values<T> v(100, generator);
@ -221,7 +220,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 4\n";
std::cerr << "Construct 4\n";
{
test::check_instances check_;
test::random_values<T> v(5, generator);
@ -234,8 +233,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
test::check_equivalent_keys(x);
}
std::cerr<<"Construct 5\n";
std::cerr << "Construct 5\n";
{
test::check_instances check_;
test::random_values<T> v(100, generator);
@ -247,7 +245,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
test::check_equivalent_keys(y);
}
std::cerr<<"Construct 6\n";
std::cerr << "Construct 6\n";
{
test::check_instances check_;
test::random_values<T> v(100, generator);
@ -259,7 +257,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
test::check_equivalent_keys(y);
}
std::cerr<<"Construct 7\n";
std::cerr << "Construct 7\n";
{
test::check_instances check_;
test::random_values<T> v(100, generator);
@ -271,39 +269,40 @@ void constructor_tests2(T*, test::random_generator const& generator)
test::check_equivalent_keys(y);
}
std::cerr<<"Construct 8 - from input iterator\n";
std::cerr << "Construct 8 - from input iterator\n";
{
test::check_instances check_;
test::random_values<T> v(100, generator);
BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator
v_begin = v.begin(), v_end = v.end();
T x(test::input_iterator(v_begin),
test::input_iterator(v_end), 0, hf1, eq1);
BOOST_DEDUCED_TYPENAME T::const_iterator
x_begin = x.begin(), x_end = x.end();
T y(test::input_iterator(x_begin),
test::input_iterator(x_end), 0, hf2, eq2);
v_begin = v.begin(),
v_end = v.end();
T x(test::input_iterator(v_begin), test::input_iterator(v_end), 0, hf1,
eq1);
BOOST_DEDUCED_TYPENAME T::const_iterator x_begin = x.begin(),
x_end = x.end();
T y(test::input_iterator(x_begin), test::input_iterator(x_end), 0, hf2,
eq2);
test::check_container(x, v);
test::check_container(y, x);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
std::cerr<<"Construct 8.5 - from copy iterator\n";
std::cerr << "Construct 8.5 - from copy iterator\n";
{
test::check_instances check_;
test::random_values<T> v(100, generator);
T x(test::copy_iterator(v.begin()),
test::copy_iterator(v.end()), 0, hf1, eq1);
T y(test::copy_iterator(x.begin()),
test::copy_iterator(x.end()), 0, hf2, eq2);
T x(test::copy_iterator(v.begin()), test::copy_iterator(v.end()), 0,
hf1, eq1);
T y(test::copy_iterator(x.begin()), test::copy_iterator(x.end()), 0,
hf2, eq2);
test::check_container(x, v);
test::check_container(y, x);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
std::cerr<<"Construct 9\n";
std::cerr << "Construct 9\n";
{
test::check_instances check_;
@ -320,8 +319,8 @@ void constructor_tests2(T*, test::random_generator const& generator)
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
std::initializer_list<BOOST_DEDUCED_TYPENAME T::value_type> list;
std::cerr<<"Initializer list construct 1\n";
std::cerr << "Initializer list construct 1\n";
{
test::check_instances check_;
@ -332,7 +331,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
BOOST_TEST(test::equivalent(x.get_allocator(), al));
}
std::cerr<<"Initializer list construct 2\n";
std::cerr << "Initializer list construct 2\n";
{
test::check_instances check_;
@ -344,7 +343,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
BOOST_TEST(test::equivalent(x.get_allocator(), al));
}
std::cerr<<"Initializer list construct 3\n";
std::cerr << "Initializer list construct 3\n";
{
test::check_instances check_;
@ -356,7 +355,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
BOOST_TEST(test::equivalent(x.get_allocator(), al));
}
std::cerr<<"Initializer list construct 4\n";
std::cerr << "Initializer list construct 4\n";
{
test::check_instances check_;
@ -368,7 +367,7 @@ void constructor_tests2(T*, test::random_generator const& generator)
BOOST_TEST(test::equivalent(x.get_allocator(), al));
}
std::cerr<<"Initializer list construct 5\n";
std::cerr << "Initializer list construct 5\n";
{
test::check_instances check_;
@ -385,14 +384,11 @@ void constructor_tests2(T*, test::random_generator const& generator)
template <class T>
void map_constructor_test(T*, test::random_generator const& generator)
{
std::cerr<<"map_constructor_test\n";
std::cerr << "map_constructor_test\n";
typedef test::list<
std::pair<
BOOST_DEDUCED_TYPENAME T::key_type,
BOOST_DEDUCED_TYPENAME T::mapped_type
>
> list;
typedef test::list<std::pair<BOOST_DEDUCED_TYPENAME T::key_type,
BOOST_DEDUCED_TYPENAME T::mapped_type> >
list;
test::random_values<T> v(1000, generator);
list l(v.begin(), v.end());
T x(l.begin(), l.end());
@ -401,46 +397,39 @@ void map_constructor_test(T*, test::random_generator const& generator)
test::check_equivalent_keys(x);
}
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_set<test::object,
test::hash, test::equal_to,
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_multimap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator1<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(constructor_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(constructor_tests2,
((test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(map_constructor_test,
((test_map_std_alloc)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_map_std_alloc)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
UNORDERED_AUTO_TEST(test_default_initializer_list) {
std::cerr<<"Initializer List Tests\n";
UNORDERED_AUTO_TEST(test_default_initializer_list)
{
std::cerr << "Initializer List Tests\n";
std::initializer_list<int> init;
boost::unordered_set<int> x1 = init;
BOOST_TEST(x1.empty());
@ -450,15 +439,15 @@ UNORDERED_AUTO_TEST(test_default_initializer_list) {
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
UNORDERED_AUTO_TEST(test_initializer_list) {
std::cerr<<"Initializer List Tests\n";
boost::unordered_set<int> x1 = { 2, 10, 45, -5 };
UNORDERED_AUTO_TEST(test_initializer_list)
{
std::cerr << "Initializer List Tests\n";
boost::unordered_set<int> x1 = {2, 10, 45, -5};
BOOST_TEST(x1.find(10) != x1.end());
BOOST_TEST(x1.find(46) == x1.end());
}
#endif
}
RUN_TESTS()

View File

@ -20,8 +20,7 @@
test::seed_t initialize_seed(9063);
namespace copy_tests
{
namespace copy_tests {
template <class T>
void copy_construct_tests1(T*, test::random_generator const& generator)
@ -30,7 +29,7 @@ void copy_construct_tests1(T*, test::random_generator const& generator)
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_DEDUCED_TYPENAME T::allocator_type al;
BOOST_DEDUCED_TYPENAME T::allocator_type al;
{
test::check_instances check_;
@ -43,7 +42,7 @@ void copy_construct_tests1(T*, test::random_generator const& generator)
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(x.max_load_factor() == y.max_load_factor());
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
(allocator_type::is_select_on_copy));
test::check_equivalent_keys(y);
}
@ -57,7 +56,7 @@ void copy_construct_tests1(T*, test::random_generator const& generator)
test::unordered_equivalence_tester<T> equivalent(x);
BOOST_TEST(equivalent(y));
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
(allocator_type::is_select_on_copy));
test::check_equivalent_keys(y);
}
@ -77,7 +76,7 @@ void copy_construct_tests1(T*, test::random_generator const& generator)
// This isn't guaranteed:
BOOST_TEST(y.load_factor() < y.max_load_factor());
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
(allocator_type::is_select_on_copy));
test::check_equivalent_keys(y);
}
}
@ -89,7 +88,7 @@ void copy_construct_tests2(T*, test::random_generator const& generator)
BOOST_DEDUCED_TYPENAME T::key_equal eq(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
{
@ -103,7 +102,7 @@ void copy_construct_tests2(T*, test::random_generator const& generator)
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(x.max_load_factor() == y.max_load_factor());
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
(allocator_type::is_select_on_copy));
test::check_equivalent_keys(y);
}
@ -132,7 +131,7 @@ void copy_construct_tests2(T*, test::random_generator const& generator)
BOOST_TEST(equivalent(y));
test::check_equivalent_keys(y);
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
(allocator_type::is_select_on_copy));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
}
@ -151,73 +150,60 @@ void copy_construct_tests2(T*, test::random_generator const& generator)
}
}
boost::unordered_set<test::object,
test::hash, test::equal_to,
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator2<test::object> >* test_multimap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
test_set_select_copy;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
test_multiset_select_copy;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
test_map_select_copy;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::cxx11_allocator<test::object, test::select_copy> >*
test_multimap_select_copy;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
test_set_no_select_copy;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
test_multiset_no_select_copy;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
test_map_no_select_copy;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::cxx11_allocator<test::object, test::no_select_copy> >*
test_multimap_no_select_copy;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(copy_construct_tests1, (
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_select_copy)(test_multiset_select_copy)(test_map_select_copy)(test_multimap_select_copy)
(test_set_no_select_copy)(test_multiset_no_select_copy)(test_map_no_select_copy)(test_multimap_no_select_copy)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(copy_construct_tests2, (
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_select_copy)(test_multiset_select_copy)(test_map_select_copy)(test_multimap_select_copy)
(test_set_no_select_copy)(test_multiset_no_select_copy)(test_map_no_select_copy)(test_multimap_no_select_copy)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(copy_construct_tests1,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_select_copy)(
test_multiset_select_copy)(test_map_select_copy)(
test_multimap_select_copy)(test_set_no_select_copy)(
test_multiset_no_select_copy)(test_map_no_select_copy)(
test_multimap_no_select_copy))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(copy_construct_tests2,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_select_copy)(
test_multiset_select_copy)(test_map_select_copy)(
test_multimap_select_copy)(test_set_no_select_copy)(
test_multiset_no_select_copy)(test_map_no_select_copy)(
test_multimap_no_select_copy))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@ -15,424 +15,456 @@
#include "../helpers/count.hpp"
#include <string>
// Test that various emplace methods work with different numbers of
// arguments.
namespace emplace_tests {
// Constructible with 2 to 10 arguments
struct emplace_value : private test::counted_object {
typedef int A0;
typedef std::string A1;
typedef char A2;
typedef int A3;
typedef int A4;
typedef int A5;
typedef int A6;
typedef int A7;
typedef int A8;
typedef int A9;
// Constructible with 2 to 10 arguments
struct emplace_value : private test::counted_object
{
typedef int A0;
typedef std::string A1;
typedef char A2;
typedef int A3;
typedef int A4;
typedef int A5;
typedef int A6;
typedef int A7;
typedef int A8;
typedef int A9;
int arg_count;
int arg_count;
A0 a0;
A1 a1;
A2 a2;
A3 a3;
A4 a4;
A5 a5;
A6 a6;
A7 a7;
A8 a8;
A9 a9;
A0 a0;
A1 a1;
A2 a2;
A3 a3;
A4 a4;
A5 a5;
A6 a6;
A7 a7;
A8 a8;
A9 a9;
emplace_value(
A0 const& b0, A1 const& b1) :
arg_count(2),
a0(b0), a1(b1) {}
emplace_value(A0 const& b0, A1 const& b1) : arg_count(2), a0(b0), a1(b1) {}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2) :
arg_count(3),
a0(b0), a1(b1), a2(b2) {}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2)
: arg_count(3), a0(b0), a1(b1), a2(b2)
{
}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3) :
arg_count(4),
a0(b0), a1(b1), a2(b2), a3(b3) {}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3)
: arg_count(4), a0(b0), a1(b1), a2(b2), a3(b3)
{
}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4) :
arg_count(5),
a0(b0), a1(b1), a2(b2), a3(b3), a4(b4) {}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3, A4 const& b4)
: arg_count(5), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4)
{
}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5) :
arg_count(6),
a0(b0), a1(b1), a2(b2), a3(b3), a4(b4),
a5(b5) {}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5)
: arg_count(6), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5)
{
}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6) :
arg_count(7),
a0(b0), a1(b1), a2(b2), a3(b3), a4(b4),
a5(b5), a6(b6) {}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6)
: arg_count(7), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5), a6(b6)
{
}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7) :
arg_count(8),
a0(b0), a1(b1), a2(b2), a3(b3), a4(b4),
a5(b5), a6(b6), a7(b7) {}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7)
: arg_count(8), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5), a6(b6),
a7(b7)
{
}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7,
A8 const& b8) :
arg_count(9),
a0(b0), a1(b1), a2(b2), a3(b3), a4(b4),
a5(b5), a6(b6), a7(b7), a8(b8) {}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7, A8 const& b8)
: arg_count(9), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5), a6(b6),
a7(b7), a8(b8)
{
}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7,
A8 const& b8, A9 const& b9) :
arg_count(10),
a0(b0), a1(b1), a2(b2), a3(b3), a4(b4),
a5(b5), a6(b6), a7(b7), a8(b8), a9(b9) {}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7, A8 const& b8,
A9 const& b9)
: arg_count(10), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5), a6(b6),
a7(b7), a8(b8), a9(b9)
{
}
friend std::size_t hash_value(emplace_value const& x)
{
std::size_t r1 = 23894278u;
if (x.arg_count >= 1)
boost::hash_combine(r1, x.a0);
if (x.arg_count >= 2)
boost::hash_combine(r1, x.a1);
if (x.arg_count >= 3)
boost::hash_combine(r1, x.a2);
if (x.arg_count >= 4)
boost::hash_combine(r1, x.a3);
if (x.arg_count >= 5)
boost::hash_combine(r1, x.a4);
if (x.arg_count >= 6)
boost::hash_combine(r1, x.a5);
if (x.arg_count >= 7)
boost::hash_combine(r1, x.a6);
if (x.arg_count >= 8)
boost::hash_combine(r1, x.a7);
if (x.arg_count >= 9)
boost::hash_combine(r1, x.a8);
if (x.arg_count >= 10)
boost::hash_combine(r1, x.a9);
return r1;
}
friend std::size_t hash_value(emplace_value const& x) {
std::size_t r1 = 23894278u;
if (x.arg_count >= 1) boost::hash_combine(r1, x.a0);
if (x.arg_count >= 2) boost::hash_combine(r1, x.a1);
if (x.arg_count >= 3) boost::hash_combine(r1, x.a2);
if (x.arg_count >= 4) boost::hash_combine(r1, x.a3);
if (x.arg_count >= 5) boost::hash_combine(r1, x.a4);
if (x.arg_count >= 6) boost::hash_combine(r1, x.a5);
if (x.arg_count >= 7) boost::hash_combine(r1, x.a6);
if (x.arg_count >= 8) boost::hash_combine(r1, x.a7);
if (x.arg_count >= 9) boost::hash_combine(r1, x.a8);
if (x.arg_count >= 10) boost::hash_combine(r1, x.a9);
return r1;
friend bool operator==(emplace_value const& x, emplace_value const& y)
{
if (x.arg_count != y.arg_count) {
return false;
}
friend bool operator==(emplace_value const& x, emplace_value const& y) {
if (x.arg_count != y.arg_count) { return false; }
if (x.arg_count >= 1 && x.a0 != y.a0) { return false; }
if (x.arg_count >= 2 && x.a1 != y.a1) { return false; }
if (x.arg_count >= 3 && x.a2 != y.a2) { return false; }
if (x.arg_count >= 4 && x.a3 != y.a3) { return false; }
if (x.arg_count >= 5 && x.a4 != y.a4) { return false; }
if (x.arg_count >= 6 && x.a5 != y.a5) { return false; }
if (x.arg_count >= 7 && x.a6 != y.a6) { return false; }
if (x.arg_count >= 8 && x.a7 != y.a7) { return false; }
if (x.arg_count >= 9 && x.a8 != y.a8) { return false; }
if (x.arg_count >= 10 && x.a9 != y.a9) { return false; }
return true;
if (x.arg_count >= 1 && x.a0 != y.a0) {
return false;
}
private:
emplace_value();
emplace_value(emplace_value const&);
};
UNORDERED_AUTO_TEST(emplace_set) {
test::check_instances check_;
typedef boost::unordered_set<emplace_value,
boost::hash<emplace_value> > container;
typedef container::iterator iterator;
typedef std::pair<iterator, bool> return_type;
container x(10);
iterator i1;
return_type r1,r2;
// 2 args
emplace_value v1(10, "x");
r1 = x.emplace(10, std::string("x"));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v1);
BOOST_TEST(r1.first == x.find(v1));
BOOST_TEST_EQ(check_.instances(), 2);
BOOST_TEST_EQ(check_.constructions(), 2);
// 3 args
emplace_value v2(3, "foo", 'a');
r1 = x.emplace(3, "foo", 'a');
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v2);
BOOST_TEST(r1.first == x.find(v2));
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
// 7 args with hint + duplicate
emplace_value v3(25, "something", 'z', 4, 5, 6, 7);
i1 = x.emplace_hint(r1.first, 25, "something", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(*i1 == v3);
BOOST_TEST(i1 == x.find(v3));
BOOST_TEST_EQ(check_.instances(), 6);
BOOST_TEST_EQ(check_.constructions(), 6);
r2 = x.emplace(25, "something", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(!r2.second);
BOOST_TEST(i1 == r2.first);
// The container has to construct an object in order to check
// whether it can emplace, so there's an extra cosntruction
// here.
BOOST_TEST_EQ(check_.instances(), 6);
BOOST_TEST_EQ(check_.constructions(), 7);
// 10 args + hint duplicate
std::string s1;
emplace_value v4(10, s1, 'a', 4, 5, 6, 7, 8, 9, 10);
r1 = x.emplace(10, s1, 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v4);
BOOST_TEST(r1.first == x.find(v4));
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 9);
BOOST_TEST(r1.first ==
x.emplace_hint(r1.first, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST(r1.first ==
x.emplace_hint(r2.first, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST(r1.first ==
x.emplace_hint(x.end(), 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 12);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST(x.count(v1) == 1);
BOOST_TEST(x.count(v2) == 1);
BOOST_TEST(x.count(v3) == 1);
BOOST_TEST(x.count(v4) == 1);
if (x.arg_count >= 2 && x.a1 != y.a1) {
return false;
}
if (x.arg_count >= 3 && x.a2 != y.a2) {
return false;
}
if (x.arg_count >= 4 && x.a3 != y.a3) {
return false;
}
if (x.arg_count >= 5 && x.a4 != y.a4) {
return false;
}
if (x.arg_count >= 6 && x.a5 != y.a5) {
return false;
}
if (x.arg_count >= 7 && x.a6 != y.a6) {
return false;
}
if (x.arg_count >= 8 && x.a7 != y.a7) {
return false;
}
if (x.arg_count >= 9 && x.a8 != y.a8) {
return false;
}
if (x.arg_count >= 10 && x.a9 != y.a9) {
return false;
}
return true;
}
UNORDERED_AUTO_TEST(emplace_multiset) {
test::check_instances check_;
private:
emplace_value();
emplace_value(emplace_value const&);
};
typedef boost::unordered_multiset<emplace_value,
boost::hash<emplace_value> > container;
typedef container::iterator iterator;
container x(10);
iterator i1, i2;
UNORDERED_AUTO_TEST(emplace_set)
{
test::check_instances check_;
// 2 args.
typedef boost::unordered_set<emplace_value, boost::hash<emplace_value> >
container;
typedef container::iterator iterator;
typedef std::pair<iterator, bool> return_type;
container x(10);
iterator i1;
return_type r1, r2;
emplace_value v1(10, "x");
i1 = x.emplace(10, std::string("x"));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(i1 == x.find(v1));
BOOST_TEST_EQ(check_.instances(), 2);
BOOST_TEST_EQ(check_.constructions(), 2);
// 2 args
// 4 args + duplicate
emplace_value v1(10, "x");
r1 = x.emplace(10, std::string("x"));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v1);
BOOST_TEST(r1.first == x.find(v1));
BOOST_TEST_EQ(check_.instances(), 2);
BOOST_TEST_EQ(check_.constructions(), 2);
emplace_value v2(4, "foo", 'a', 15);
i1 = x.emplace(4, "foo", 'a', 15);
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(i1 == x.find(v2));
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
// 3 args
i2 = x.emplace(4, "foo", 'a', 15);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(i1 != i2);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 5);
BOOST_TEST_EQ(check_.constructions(), 5);
emplace_value v2(3, "foo", 'a');
r1 = x.emplace(3, "foo", 'a');
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v2);
BOOST_TEST(r1.first == x.find(v2));
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
// 7 args + duplicate using hint.
// 7 args with hint + duplicate
emplace_value v3(7, "", 'z', 4, 5, 6, 7);
i1 = x.emplace(7, "", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST_EQ(i1->a2, 'z');
BOOST_TEST(x.count(*i1) == 1);
BOOST_TEST(i1 == x.find(v3));
BOOST_TEST_EQ(check_.instances(), 7);
BOOST_TEST_EQ(check_.constructions(), 7);
emplace_value v3(25, "something", 'z', 4, 5, 6, 7);
i1 = x.emplace_hint(r1.first, 25, "something", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(*i1 == v3);
BOOST_TEST(i1 == x.find(v3));
BOOST_TEST_EQ(check_.instances(), 6);
BOOST_TEST_EQ(check_.constructions(), 6);
i2 = x.emplace_hint(i1, 7, "", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 5u);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(i1 != i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 8);
r2 = x.emplace(25, "something", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(!r2.second);
BOOST_TEST(i1 == r2.first);
// The container has to construct an object in order to check
// whether it can emplace, so there's an extra cosntruction
// here.
BOOST_TEST_EQ(check_.instances(), 6);
BOOST_TEST_EQ(check_.constructions(), 7);
// 10 args with bad hint + duplicate
// 10 args + hint duplicate
emplace_value v4(10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
i1 = x.emplace_hint(i2, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 6u);
BOOST_TEST_EQ(i1->arg_count, 10);
BOOST_TEST(i1 == x.find(v4));
BOOST_TEST_EQ(check_.instances(), 10);
BOOST_TEST_EQ(check_.constructions(), 10);
std::string s1;
emplace_value v4(10, s1, 'a', 4, 5, 6, 7, 8, 9, 10);
r1 = x.emplace(10, s1, 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v4);
BOOST_TEST(r1.first == x.find(v4));
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 9);
i2 = x.emplace_hint(x.end(), 10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 7u);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(i1 != i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 11);
BOOST_TEST_EQ(check_.constructions(), 11);
BOOST_TEST(r1.first ==
x.emplace_hint(r1.first, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST(r1.first ==
x.emplace_hint(r2.first, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST(
r1.first == x.emplace_hint(x.end(), 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 12);
BOOST_TEST_EQ(x.count(v1), 1u);
BOOST_TEST_EQ(x.count(v2), 2u);
BOOST_TEST_EQ(x.count(v3), 2u);
}
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST(x.count(v1) == 1);
BOOST_TEST(x.count(v2) == 1);
BOOST_TEST(x.count(v3) == 1);
BOOST_TEST(x.count(v4) == 1);
}
UNORDERED_AUTO_TEST(emplace_map) {
test::check_instances check_;
UNORDERED_AUTO_TEST(emplace_multiset)
{
test::check_instances check_;
typedef boost::unordered_map<emplace_value, emplace_value,
boost::hash<emplace_value> > container;
typedef container::iterator iterator;
typedef std::pair<iterator, bool> return_type;
container x(10);
return_type r1, r2;
typedef boost::unordered_multiset<emplace_value,
boost::hash<emplace_value> >
container;
typedef container::iterator iterator;
container x(10);
iterator i1, i2;
// 5/8 args + duplicate
// 2 args.
emplace_value k1(5, "", 'b', 4, 5);
emplace_value m1(8, "xxx", 'z', 4, 5, 6, 7, 8);
r1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(r1.second);
BOOST_TEST(x.find(k1) == r1.first);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
emplace_value v1(10, "x");
i1 = x.emplace(10, std::string("x"));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(i1 == x.find(v1));
BOOST_TEST_EQ(check_.instances(), 2);
BOOST_TEST_EQ(check_.constructions(), 2);
r2 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(!r2.second);
BOOST_TEST(r1.first == r2.first);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
// constructions could possibly be 5 if the implementation only
// constructed the key.
BOOST_TEST_EQ(check_.constructions(), 6);
// 4 args + duplicate
// 9/3 args + duplicates with hints, different mapped value.
emplace_value v2(4, "foo", 'a', 15);
i1 = x.emplace(4, "foo", 'a', 15);
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(i1 == x.find(v2));
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
emplace_value k2(9, "", 'b', 4, 5, 6, 7, 8, 9);
emplace_value m2(3, "aaa", 'm');
r1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(3, "aaa", 'm'));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(r1.second);
BOOST_TEST(r1.first->first.arg_count == 9);
BOOST_TEST(r1.first->second.arg_count == 3);
BOOST_TEST(x.find(k2) == r1.first);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 10);
i2 = x.emplace(4, "foo", 'a', 15);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(i1 != i2);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 5);
BOOST_TEST_EQ(check_.constructions(), 5);
BOOST_TEST(r1.first == x.emplace_hint(r1.first,
boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(15, "jkjk")));
BOOST_TEST(r1.first == x.emplace_hint(r2.first,
boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(275, "xxx", 'm', 6)));
BOOST_TEST(r1.first == x.emplace_hint(x.end(),
boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(-10, "blah blah", '\0')));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 16);
}
// 7 args + duplicate using hint.
UNORDERED_AUTO_TEST(emplace_multimap) {
test::check_instances check_;
emplace_value v3(7, "", 'z', 4, 5, 6, 7);
i1 = x.emplace(7, "", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST_EQ(i1->a2, 'z');
BOOST_TEST(x.count(*i1) == 1);
BOOST_TEST(i1 == x.find(v3));
BOOST_TEST_EQ(check_.instances(), 7);
BOOST_TEST_EQ(check_.constructions(), 7);
typedef boost::unordered_multimap<emplace_value, emplace_value,
boost::hash<emplace_value> > container;
typedef container::iterator iterator;
container x(10);
iterator i1, i2, i3, i4;
i2 = x.emplace_hint(i1, 7, "", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 5u);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(i1 != i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 8);
// 5/8 args + duplicate
// 10 args with bad hint + duplicate
emplace_value k1(5, "", 'b', 4, 5);
emplace_value m1(8, "xxx", 'z', 4, 5, 6, 7, 8);
i1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(x.find(k1) == i1);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
emplace_value v4(10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
i1 = x.emplace_hint(i2, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 6u);
BOOST_TEST_EQ(i1->arg_count, 10);
BOOST_TEST(i1 == x.find(v4));
BOOST_TEST_EQ(check_.instances(), 10);
BOOST_TEST_EQ(check_.constructions(), 10);
emplace_value m1a(8, "xxx", 'z', 4, 5, 6, 7, 8);
i2 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(i1 != i2);
BOOST_TEST(i1->second == m1);
BOOST_TEST(i2->second == m1a);
BOOST_TEST_EQ(check_.instances(), 7);
BOOST_TEST_EQ(check_.constructions(), 7);
i2 = x.emplace_hint(x.end(), 10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 7u);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(i1 != i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 11);
BOOST_TEST_EQ(check_.constructions(), 11);
// 9/3 args + duplicates with hints, different mapped value.
BOOST_TEST_EQ(x.count(v1), 1u);
BOOST_TEST_EQ(x.count(v2), 2u);
BOOST_TEST_EQ(x.count(v3), 2u);
}
emplace_value k2(9, "", 'b', 4, 5, 6, 7, 8, 9);
emplace_value m2(3, "aaa", 'm');
i1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(3, "aaa", 'm'));
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(i1->first.arg_count == 9);
BOOST_TEST(i1->second.arg_count == 3);
BOOST_TEST_EQ(check_.instances(), 11);
BOOST_TEST_EQ(check_.constructions(), 11);
UNORDERED_AUTO_TEST(emplace_map)
{
test::check_instances check_;
emplace_value m2a(15, "jkjk");
i2 = x.emplace_hint(i2,
boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(15, "jkjk"));
emplace_value m2b(275, "xxx", 'm', 6);
i3 = x.emplace_hint(i1,
boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(275, "xxx", 'm', 6));
emplace_value m2c(-10, "blah blah", '\0');
i4 = x.emplace_hint(x.end(),
boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(-10, "blah blah", '\0'));
BOOST_TEST_EQ(x.size(), 6u);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 20);
BOOST_TEST_EQ(check_.constructions(), 20);
}
typedef boost::unordered_map<emplace_value, emplace_value,
boost::hash<emplace_value> >
container;
typedef container::iterator iterator;
typedef std::pair<iterator, bool> return_type;
container x(10);
return_type r1, r2;
// 5/8 args + duplicate
emplace_value k1(5, "", 'b', 4, 5);
emplace_value m1(8, "xxx", 'z', 4, 5, 6, 7, 8);
r1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(r1.second);
BOOST_TEST(x.find(k1) == r1.first);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
r2 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(!r2.second);
BOOST_TEST(r1.first == r2.first);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
// constructions could possibly be 5 if the implementation only
// constructed the key.
BOOST_TEST_EQ(check_.constructions(), 6);
// 9/3 args + duplicates with hints, different mapped value.
emplace_value k2(9, "", 'b', 4, 5, 6, 7, 8, 9);
emplace_value m2(3, "aaa", 'm');
r1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(3, "aaa", 'm'));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(r1.second);
BOOST_TEST(r1.first->first.arg_count == 9);
BOOST_TEST(r1.first->second.arg_count == 3);
BOOST_TEST(x.find(k2) == r1.first);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 10);
BOOST_TEST(r1.first ==
x.emplace_hint(r1.first, boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(15, "jkjk")));
BOOST_TEST(r1.first ==
x.emplace_hint(r2.first, boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(275, "xxx", 'm', 6)));
BOOST_TEST(r1.first ==
x.emplace_hint(x.end(), boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(-10, "blah blah", '\0')));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 16);
}
UNORDERED_AUTO_TEST(emplace_multimap)
{
test::check_instances check_;
typedef boost::unordered_multimap<emplace_value, emplace_value,
boost::hash<emplace_value> >
container;
typedef container::iterator iterator;
container x(10);
iterator i1, i2, i3, i4;
// 5/8 args + duplicate
emplace_value k1(5, "", 'b', 4, 5);
emplace_value m1(8, "xxx", 'z', 4, 5, 6, 7, 8);
i1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(x.find(k1) == i1);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
emplace_value m1a(8, "xxx", 'z', 4, 5, 6, 7, 8);
i2 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(i1 != i2);
BOOST_TEST(i1->second == m1);
BOOST_TEST(i2->second == m1a);
BOOST_TEST_EQ(check_.instances(), 7);
BOOST_TEST_EQ(check_.constructions(), 7);
// 9/3 args + duplicates with hints, different mapped value.
emplace_value k2(9, "", 'b', 4, 5, 6, 7, 8, 9);
emplace_value m2(3, "aaa", 'm');
i1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(3, "aaa", 'm'));
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(i1->first.arg_count == 9);
BOOST_TEST(i1->second.arg_count == 3);
BOOST_TEST_EQ(check_.instances(), 11);
BOOST_TEST_EQ(check_.constructions(), 11);
emplace_value m2a(15, "jkjk");
i2 = x.emplace_hint(i2, boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(15, "jkjk"));
emplace_value m2b(275, "xxx", 'm', 6);
i3 = x.emplace_hint(i1, boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(275, "xxx", 'm', 6));
emplace_value m2c(-10, "blah blah", '\0');
i4 = x.emplace_hint(x.end(), boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(-10, "blah blah", '\0'));
BOOST_TEST_EQ(x.size(), 6u);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 20);
BOOST_TEST_EQ(check_.constructions(), 20);
}
}
RUN_TESTS()

View File

@ -14,172 +14,152 @@
#include <list>
#include "../helpers/test.hpp"
namespace equality_tests
namespace equality_tests {
struct mod_compare
{
struct mod_compare
bool alt_hash_;
explicit mod_compare(bool alt_hash = false) : alt_hash_(alt_hash) {}
bool operator()(int x, int y) const { return x % 1000 == y % 1000; }
std::size_t operator()(int x) const
{
bool alt_hash_;
return alt_hash_ ? static_cast<std::size_t>(x % 250)
: static_cast<std::size_t>((x + 5) % 250);
}
};
explicit mod_compare(bool alt_hash = false) : alt_hash_(alt_hash) {}
bool operator()(int x, int y) const
{
return x % 1000 == y % 1000;
}
std::size_t operator()(int x) const
{
return alt_hash_ ?
static_cast<std::size_t>(x % 250) :
static_cast<std::size_t>((x + 5) % 250);
}
};
#define UNORDERED_EQUALITY_SET_TEST(seq1, op, seq2) \
{ \
boost::unordered_set<int, mod_compare, mod_compare> set1, set2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set2, seq2) \
BOOST_TEST(set1 op set2); \
#define UNORDERED_EQUALITY_SET_TEST(seq1, op, seq2) \
{ \
boost::unordered_set<int, mod_compare, mod_compare> set1, set2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set2, seq2) \
BOOST_TEST(set1 op set2); \
}
#define UNORDERED_EQUALITY_MULTISET_TEST(seq1, op, seq2) \
{ \
boost::unordered_multiset<int, mod_compare, mod_compare> \
set1, set2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set2, seq2) \
BOOST_TEST(set1 op set2); \
#define UNORDERED_EQUALITY_MULTISET_TEST(seq1, op, seq2) \
{ \
boost::unordered_multiset<int, mod_compare, mod_compare> set1, set2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set2, seq2) \
BOOST_TEST(set1 op set2); \
}
#define UNORDERED_EQUALITY_MAP_TEST(seq1, op, seq2) \
{ \
boost::unordered_map<int, int, mod_compare, mod_compare> \
map1, map2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map2, seq2) \
BOOST_TEST(map1 op map2); \
#define UNORDERED_EQUALITY_MAP_TEST(seq1, op, seq2) \
{ \
boost::unordered_map<int, int, mod_compare, mod_compare> map1, map2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map2, seq2) \
BOOST_TEST(map1 op map2); \
}
#define UNORDERED_EQUALITY_MULTIMAP_TEST(seq1, op, seq2) \
{ \
boost::unordered_multimap<int, int, mod_compare, mod_compare> \
map1, map2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map2, seq2) \
BOOST_TEST(map1 op map2); \
#define UNORDERED_EQUALITY_MULTIMAP_TEST(seq1, op, seq2) \
{ \
boost::unordered_multimap<int, int, mod_compare, mod_compare> map1, \
map2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map2, seq2) \
BOOST_TEST(map1 op map2); \
}
#define UNORDERED_SET_INSERT(r, set, item) set.insert(item);
#define UNORDERED_MAP_INSERT(r, map, item) \
#define UNORDERED_MAP_INSERT(r, map, item) \
map.insert(std::pair<int const, int> BOOST_PP_SEQ_TO_TUPLE(item));
UNORDERED_AUTO_TEST(equality_size_tests)
{
boost::unordered_set<int> x1, x2;
BOOST_TEST(x1 == x2);
BOOST_TEST(!(x1 != x2));
UNORDERED_AUTO_TEST(equality_size_tests)
{
boost::unordered_set<int> x1, x2;
BOOST_TEST(x1 == x2);
BOOST_TEST(!(x1 != x2));
x1.insert(1);
BOOST_TEST(x1 != x2);
BOOST_TEST(!(x1 == x2));
BOOST_TEST(x2 != x1);
BOOST_TEST(!(x2 == x1));
x2.insert(1);
BOOST_TEST(x1 == x2);
BOOST_TEST(!(x1 != x2));
x2.insert(2);
BOOST_TEST(x1 != x2);
BOOST_TEST(!(x1 == x2));
BOOST_TEST(x2 != x1);
BOOST_TEST(!(x2 == x1));
}
UNORDERED_AUTO_TEST(equality_key_value_tests)
{
UNORDERED_EQUALITY_MULTISET_TEST((1), !=, (2))
UNORDERED_EQUALITY_SET_TEST((2), ==, (2))
UNORDERED_EQUALITY_MAP_TEST(((1)(1))((2)(1)), !=, ((1)(1))((3)(1)))
}
UNORDERED_AUTO_TEST(equality_collision_test)
{
UNORDERED_EQUALITY_MULTISET_TEST(
(1), !=, (501))
UNORDERED_EQUALITY_MULTISET_TEST(
(1)(251), !=, (1)(501))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((251)(1))((1)(1)), !=, ((501)(1))((1)(1)))
UNORDERED_EQUALITY_MULTISET_TEST(
(1)(501), ==, (1)(501))
UNORDERED_EQUALITY_SET_TEST(
(1)(501), ==, (501)(1))
}
x1.insert(1);
BOOST_TEST(x1 != x2);
BOOST_TEST(!(x1 == x2));
BOOST_TEST(x2 != x1);
BOOST_TEST(!(x2 == x1));
UNORDERED_AUTO_TEST(equality_group_size_test)
{
UNORDERED_EQUALITY_MULTISET_TEST(
(10)(20)(20), !=, (10)(10)(20))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((10)(1))((20)(1))((20)(1)), !=,
((10)(1))((20)(1))((10)(1)))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((20)(1))((10)(1))((10)(1)), ==,
((10)(1))((20)(1))((10)(1)))
}
UNORDERED_AUTO_TEST(equality_map_value_test)
{
UNORDERED_EQUALITY_MAP_TEST(
((1)(1)), !=, ((1)(2)))
UNORDERED_EQUALITY_MAP_TEST(
((1)(1)), ==, ((1)(1)))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((1)(1)), !=, ((1)(2)))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((1)(1))((1)(1)), !=, ((1)(1))((1)(2)))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((1)(2))((1)(1)), ==, ((1)(1))((1)(2)))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((1)(2))((1)(1)), !=, ((1)(1))((1)(3)))
}
x2.insert(1);
BOOST_TEST(x1 == x2);
BOOST_TEST(!(x1 != x2));
UNORDERED_AUTO_TEST(equality_predicate_test)
{
UNORDERED_EQUALITY_SET_TEST(
(1), !=, (1001))
UNORDERED_EQUALITY_MAP_TEST(
((1)(2))((1001)(1)), !=, ((1001)(2))((1)(1)))
}
x2.insert(2);
BOOST_TEST(x1 != x2);
BOOST_TEST(!(x1 == x2));
BOOST_TEST(x2 != x1);
BOOST_TEST(!(x2 == x1));
}
UNORDERED_AUTO_TEST(equality_multiple_group_test)
{
UNORDERED_EQUALITY_MULTISET_TEST(
(1)(1)(1)(1001)(2001)(2001)(2)(1002)(3)(1003)(2003), ==,
(3)(1003)(2003)(1002)(2)(2001)(2001)(1)(1001)(1)(1)
);
}
UNORDERED_AUTO_TEST(equality_key_value_tests)
{
UNORDERED_EQUALITY_MULTISET_TEST((1), !=, (2))
UNORDERED_EQUALITY_SET_TEST((2), ==, (2))
UNORDERED_EQUALITY_MAP_TEST(((1)(1))((2)(1)), !=, ((1)(1))((3)(1)))
}
// Test that equality still works when the two containers have
// different hash functions but the same equality predicate.
UNORDERED_AUTO_TEST(equality_collision_test)
{
UNORDERED_EQUALITY_MULTISET_TEST((1), !=, (501))
UNORDERED_EQUALITY_MULTISET_TEST((1)(251), !=, (1)(501))
UNORDERED_EQUALITY_MULTIMAP_TEST(((251)(1))((1)(1)), !=, ((501)(1))((1)(1)))
UNORDERED_EQUALITY_MULTISET_TEST((1)(501), ==, (1)(501))
UNORDERED_EQUALITY_SET_TEST((1)(501), ==, (501)(1))
}
UNORDERED_AUTO_TEST(equality_different_hash_test)
{
typedef boost::unordered_set<int, mod_compare, mod_compare> set;
set set1(0, mod_compare(false), mod_compare(false));
set set2(0, mod_compare(true), mod_compare(true));
BOOST_TEST(set1 == set2);
set1.insert(1); set2.insert(2);
BOOST_TEST(set1 != set2);
set1.insert(2); set2.insert(1);
BOOST_TEST(set1 == set2);
set1.insert(10); set2.insert(20);
BOOST_TEST(set1 != set2);
set1.insert(20); set2.insert(10);
BOOST_TEST(set1 == set2);
}
UNORDERED_AUTO_TEST(equality_group_size_test)
{
UNORDERED_EQUALITY_MULTISET_TEST((10)(20)(20), !=, (10)(10)(20))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((10)(1))((20)(1))((20)(1)), !=, ((10)(1))((20)(1))((10)(1)))
UNORDERED_EQUALITY_MULTIMAP_TEST(
((20)(1))((10)(1))((10)(1)), ==, ((10)(1))((20)(1))((10)(1)))
}
UNORDERED_AUTO_TEST(equality_map_value_test)
{
UNORDERED_EQUALITY_MAP_TEST(((1)(1)), !=, ((1)(2)))
UNORDERED_EQUALITY_MAP_TEST(((1)(1)), ==, ((1)(1)))
UNORDERED_EQUALITY_MULTIMAP_TEST(((1)(1)), !=, ((1)(2)))
UNORDERED_EQUALITY_MULTIMAP_TEST(((1)(1))((1)(1)), !=, ((1)(1))((1)(2)))
UNORDERED_EQUALITY_MULTIMAP_TEST(((1)(2))((1)(1)), ==, ((1)(1))((1)(2)))
UNORDERED_EQUALITY_MULTIMAP_TEST(((1)(2))((1)(1)), !=, ((1)(1))((1)(3)))
}
UNORDERED_AUTO_TEST(equality_predicate_test)
{
UNORDERED_EQUALITY_SET_TEST((1), !=, (1001))
UNORDERED_EQUALITY_MAP_TEST(((1)(2))((1001)(1)), !=, ((1001)(2))((1)(1)))
}
UNORDERED_AUTO_TEST(equality_multiple_group_test)
{
UNORDERED_EQUALITY_MULTISET_TEST(
(1)(1)(1)(1001)(2001)(2001)(2)(1002)(3)(1003)(2003), ==,
(3)(1003)(2003)(1002)(2)(2001)(2001)(1)(1001)(1)(1));
}
// Test that equality still works when the two containers have
// different hash functions but the same equality predicate.
UNORDERED_AUTO_TEST(equality_different_hash_test)
{
typedef boost::unordered_set<int, mod_compare, mod_compare> set;
set set1(0, mod_compare(false), mod_compare(false));
set set2(0, mod_compare(true), mod_compare(true));
BOOST_TEST(set1 == set2);
set1.insert(1);
set2.insert(2);
BOOST_TEST(set1 != set2);
set1.insert(2);
set2.insert(1);
BOOST_TEST(set1 == set2);
set1.insert(10);
set2.insert(20);
BOOST_TEST(set1 != set2);
set1.insert(20);
set2.insert(10);
BOOST_TEST(set1 == set2);
}
}
RUN_TESTS()

View File

@ -27,7 +27,7 @@ void test_equal_insertion(Iterator begin, Iterator end)
Container x1;
tracker x2 = test::create_ordered(x1);
for(Iterator it = begin; it != end; ++it) {
for (Iterator it = begin; it != end; ++it) {
x1.insert(*it);
x2.insert(*it);
x2.compare_key(x1, *it);
@ -39,13 +39,7 @@ void test_equal_insertion(Iterator begin, Iterator end)
UNORDERED_AUTO_TEST(set_tests)
{
int values[][5] = {
{1},
{54, 23},
{-13, 65},
{77, 77},
{986, 25, 986}
};
int values[][5] = {{1}, {54, 23}, {-13, 65}, {77, 77}, {986, 25, 986}};
typedef boost::unordered_set<int> set;
typedef boost::unordered_multiset<int> multiset;
@ -67,19 +61,19 @@ UNORDERED_AUTO_TEST(map_tests)
{
typedef test::list<std::pair<int const, int> > values_type;
values_type v[5];
v[0].push_back(std::pair<int const, int>(1,1));
v[1].push_back(std::pair<int const, int>(28,34));
v[1].push_back(std::pair<int const, int>(16,58));
v[0].push_back(std::pair<int const, int>(1, 1));
v[1].push_back(std::pair<int const, int>(28, 34));
v[1].push_back(std::pair<int const, int>(16, 58));
v[1].push_back(std::pair<int const, int>(-124, 62));
v[2].push_back(std::pair<int const, int>(432,12));
v[2].push_back(std::pair<int const, int>(9,13));
v[2].push_back(std::pair<int const, int>(432,24));
v[2].push_back(std::pair<int const, int>(432, 12));
v[2].push_back(std::pair<int const, int>(9, 13));
v[2].push_back(std::pair<int const, int>(432, 24));
for(int i = 0; i < 5; ++i)
for (int i = 0; i < 5; ++i)
test_equal_insertion<boost::unordered_map<int, int> >(
v[i].begin(), v[i].end());
for(int i2 = 0; i2 < 5; ++i2)
for (int i2 = 0; i2 < 5; ++i2)
test_equal_insertion<boost::unordered_multimap<int, int> >(
v[i2].begin(), v[i2].end());
}

View File

@ -22,8 +22,8 @@
#include "../objects/test.hpp"
#if BOOST_WORKAROUND(BOOST_MSVC, < 1400)
#pragma warning(disable:4267) // conversion from 'size_t' to 'unsigned int',
// possible loss of data.
#pragma warning(disable : 4267) // conversion from 'size_t' to 'unsigned int',
// possible loss of data.
#endif
struct write_pair_type
@ -31,15 +31,14 @@ struct write_pair_type
template <class X1, class X2>
void operator()(std::pair<X1, X2> const& x) const
{
std::cout<<"("<<x.first<<","<<x.second<<")";
std::cout << "(" << x.first << "," << x.second << ")";
}
} write_pair;
template <class Container>
void write_container(Container const& x)
template <class Container> void write_container(Container const& x)
{
std::for_each(x.begin(), x.end(), write_pair);
std::cout<<"\n";
std::cout << "\n";
}
// Make everything collide - for testing erase in a single bucket.
@ -51,7 +50,10 @@ struct collision_hash
// For testing erase in 2 buckets.
struct collision2_hash
{
std::size_t operator()(int x) const { return static_cast<std::size_t>(x & 1); }
std::size_t operator()(int x) const
{
return static_cast<std::size_t>(x & 1);
}
};
// For testing erase in lots of buckets.
@ -60,15 +62,15 @@ struct collision3_hash
std::size_t operator()(int x) const { return static_cast<std::size_t>(x); }
};
typedef boost::unordered_multimap<int, int,
collision_hash, std::equal_to<int>,
test::allocator1<std::pair<int const, int> > > collide_map;
typedef boost::unordered_multimap<int, int,
collision2_hash, std::equal_to<int>,
test::allocator2<std::pair<int const, int> > > collide_map2;
typedef boost::unordered_multimap<int, int,
collision3_hash, std::equal_to<int>,
test::allocator2<std::pair<int const, int> > > collide_map3;
typedef boost::unordered_multimap<int, int, collision_hash, std::equal_to<int>,
test::allocator1<std::pair<int const, int> > >
collide_map;
typedef boost::unordered_multimap<int, int, collision2_hash, std::equal_to<int>,
test::allocator2<std::pair<int const, int> > >
collide_map2;
typedef boost::unordered_multimap<int, int, collision3_hash, std::equal_to<int>,
test::allocator2<std::pair<int const, int> > >
collide_map3;
typedef collide_map::value_type collide_value;
typedef test::list<collide_value> collide_list;
@ -84,7 +86,7 @@ UNORDERED_AUTO_TEST(empty_range_tests)
UNORDERED_AUTO_TEST(single_item_tests)
{
collide_list init;
init.push_back(collide_value(1,1));
init.push_back(collide_value(1, 1));
collide_map x(init.begin(), init.end());
x.erase(x.begin(), x.begin());
@ -101,8 +103,8 @@ UNORDERED_AUTO_TEST(single_item_tests)
UNORDERED_AUTO_TEST(two_equivalent_item_tests)
{
collide_list init;
init.push_back(collide_value(1,1));
init.push_back(collide_value(1,2));
init.push_back(collide_value(1, 1));
init.push_back(collide_value(1, 2));
{
collide_map x(init.begin(), init.end());
@ -115,8 +117,8 @@ UNORDERED_AUTO_TEST(two_equivalent_item_tests)
collide_map x(init.begin(), init.end());
int value = test::next(x.begin())->second;
x.erase(x.begin(), test::next(x.begin()));
BOOST_TEST(x.count(1) == 1 && x.size() == 1 &&
x.begin()->first == 1 && x.begin()->second == value);
BOOST_TEST(x.count(1) == 1 && x.size() == 1 && x.begin()->first == 1 &&
x.begin()->second == value);
test::check_equivalent_keys(x);
}
@ -124,15 +126,15 @@ UNORDERED_AUTO_TEST(two_equivalent_item_tests)
collide_map x(init.begin(), init.end());
int value = x.begin()->second;
x.erase(test::next(x.begin()), x.end());
BOOST_TEST(x.count(1) == 1 && x.size() == 1 &&
x.begin()->first == 1 && x.begin()->second == value);
BOOST_TEST(x.count(1) == 1 && x.size() == 1 && x.begin()->first == 1 &&
x.begin()->second == value);
test::check_equivalent_keys(x);
}
}
// More automated tests...
template<class Range1, class Range2>
template <class Range1, class Range2>
bool compare(Range1 const& x, Range2 const& y)
{
collide_list a(x.begin(), x.end());
@ -154,17 +156,17 @@ bool general_erase_range_test(Container& x, std::size_t start, std::size_t end)
return compare(l, x);
}
template <class Container>
void erase_subrange_tests(Container const& x)
template <class Container> void erase_subrange_tests(Container const& x)
{
for(std::size_t length = 0; length < x.size(); ++length) {
for(std::size_t position = 0; position < x.size() - length; ++position)
{
for (std::size_t length = 0; length < x.size(); ++length) {
for (std::size_t position = 0; position < x.size() - length;
++position) {
Container y(x);
collide_list init(y.begin(), y.end());
if(!general_erase_range_test(y, position, position + length)) {
if (!general_erase_range_test(y, position, position + length)) {
BOOST_ERROR("general_erase_range_test failed.");
std::cout<<"Erase: ["<<position<<","<<position + length<<")\n";
std::cout << "Erase: [" << position << "," << position + length
<< ")\n";
write_container(init);
write_container(y);
}
@ -177,47 +179,46 @@ void x_by_y_erase_range_tests(Container*, int values, int duplicates)
{
Container y;
for(int i = 0; i < values; ++i) {
for(int j = 0; j < duplicates; ++j) {
for (int i = 0; i < values; ++i) {
for (int j = 0; j < duplicates; ++j) {
y.insert(collide_value(i, j));
}
}
std::cout<<"Values: "<<values<<", Duplicates: "<<duplicates<<"\n";
std::cout << "Values: " << values << ", Duplicates: " << duplicates << "\n";
erase_subrange_tests(y);
}
template <class Container>
void exhaustive_erase_tests(Container* x, int num_values,
int num_duplicated)
void exhaustive_erase_tests(Container* x, int num_values, int num_duplicated)
{
for(int i = 0; i < num_values; ++i) {
for(int j = 0; j < num_duplicated; ++j) {
for (int i = 0; i < num_values; ++i) {
for (int j = 0; j < num_duplicated; ++j) {
x_by_y_erase_range_tests(x, i, j);
}
}
}
UNORDERED_AUTO_TEST(exhaustive_collide_tests)
UNORDERED_AUTO_TEST(exhaustive_collide_tests)
{
std::cout<<"exhaustive_collide_tests:\n";
std::cout << "exhaustive_collide_tests:\n";
collide_map m;
exhaustive_erase_tests((collide_map*) 0, 4, 4);
std::cout<<"\n";
exhaustive_erase_tests((collide_map*)0, 4, 4);
std::cout << "\n";
}
UNORDERED_AUTO_TEST(exhaustive_collide2_tests)
{
std::cout<<"exhaustive_collide2_tests:\n";
exhaustive_erase_tests((collide_map2*) 0, 8, 4);
std::cout<<"\n";
std::cout << "exhaustive_collide2_tests:\n";
exhaustive_erase_tests((collide_map2*)0, 8, 4);
std::cout << "\n";
}
UNORDERED_AUTO_TEST(exhaustive_collide3_tests)
{
std::cout<<"exhaustive_collide3_tests:\n";
exhaustive_erase_tests((collide_map3*) 0, 8, 4);
std::cout<<"\n";
std::cout << "exhaustive_collide3_tests:\n";
exhaustive_erase_tests((collide_map3*)0, 8, 4);
std::cout << "\n";
}
RUN_TESTS()

View File

@ -21,8 +21,7 @@
#include <iostream>
#include <cstdlib>
namespace erase_tests
{
namespace erase_tests {
test::seed_t initialize_seed(85638);
@ -32,27 +31,28 @@ void erase_tests1(Container*, test::random_generator generator)
typedef BOOST_DEDUCED_TYPENAME Container::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME Container::const_iterator c_iterator;
std::cerr<<"Erase by key.\n";
std::cerr << "Erase by key.\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
int iterations = 0;
for(BOOST_DEDUCED_TYPENAME test::random_values<Container>::iterator
it = v.begin(); it != v.end(); ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<Container>::iterator
it = v.begin();
it != v.end(); ++it) {
std::size_t count = x.count(test::get_key<Container>(*it));
std::size_t old_size = x.size();
BOOST_TEST(count == x.erase(test::get_key<Container>(*it)));
BOOST_TEST(x.size() == old_size - count);
BOOST_TEST(x.count(test::get_key<Container>(*it)) == 0);
BOOST_TEST(x.find(test::get_key<Container>(*it)) == x.end());
if (++iterations % 20 == 0) test::check_equivalent_keys(x);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
}
std::cerr<<"erase(begin()).\n";
std::cerr << "erase(begin()).\n";
{
test::check_instances check_;
@ -60,22 +60,22 @@ void erase_tests1(Container*, test::random_generator generator)
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while(size > 0 && !x.empty())
{
BOOST_DEDUCED_TYPENAME Container::key_type
key = test::get_key<Container>(*x.begin());
while (size > 0 && !x.empty()) {
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*x.begin());
std::size_t count = x.count(key);
iterator pos = x.erase(x.begin());
--size;
BOOST_TEST(pos == x.begin());
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0) test::check_equivalent_keys(x);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
std::cerr<<"erase(random position).\n";
std::cerr << "erase(random position).\n";
{
test::check_instances check_;
@ -83,38 +83,37 @@ void erase_tests1(Container*, test::random_generator generator)
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while(size > 0 && !x.empty())
{
while (size > 0 && !x.empty()) {
std::size_t index = test::random_value(x.size());
c_iterator prev, pos, next;
if(index == 0) {
if (index == 0) {
prev = pos = x.begin();
}
else {
} else {
prev = test::next(x.begin(), index - 1);
pos = test::next(prev);
}
next = test::next(pos);
BOOST_DEDUCED_TYPENAME Container::key_type
key = test::get_key<Container>(*pos);
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*pos);
std::size_t count = x.count(key);
BOOST_TEST(count > 0);
BOOST_TEST(next == x.erase(pos));
--size;
if(size > 0)
BOOST_TEST(index == 0 ? next == x.begin() :
next == test::next(prev));
if (size > 0)
BOOST_TEST(
index == 0 ? next == x.begin() : next == test::next(prev));
BOOST_TEST(x.count(key) == count - 1);
if (x.count(key) != count - 1) {
std::cerr << count << " => " << x.count(key) << std::endl;
}
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0) test::check_equivalent_keys(x);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
std::cerr<<"erase(ranges).\n";
std::cerr << "erase(ranges).\n";
{
test::check_instances check_;
@ -141,7 +140,7 @@ void erase_tests1(Container*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"erase(random ranges).\n";
std::cerr << "erase(random ranges).\n";
{
test::check_instances check_;
Container x;
@ -152,23 +151,23 @@ void erase_tests1(Container*, test::random_generator generator)
// Note that erase only invalidates the erased iterators.
std::vector<c_iterator> iterators;
for(c_iterator it = x.cbegin(); it != x.cend(); ++it) {
for (c_iterator it = x.cbegin(); it != x.cend(); ++it) {
iterators.push_back(it);
}
iterators.push_back(x.cend());
while(iterators.size() > 1) {
while (iterators.size() > 1) {
std::size_t start = test::random_value(iterators.size());
std::size_t length = test::random_value(iterators.size() - start);
std::size_t length =
test::random_value(iterators.size() - start);
x.erase(iterators[start], iterators[start + length]);
iterators.erase(
test::next(iterators.begin(), start),
test::next(iterators.begin(), start + length));
iterators.erase(test::next(iterators.begin(), start),
test::next(iterators.begin(), start + length));
BOOST_TEST(x.size() == iterators.size() - 1);
BOOST_DEDUCED_TYPENAME std::vector<c_iterator>::const_iterator
i2 = iterators.begin();
for(c_iterator i1 = x.cbegin(); i1 != x.cend(); ++i1) {
for (c_iterator i1 = x.cbegin(); i1 != x.cend(); ++i1) {
BOOST_TEST(i1 == *i2);
++i2;
}
@ -180,7 +179,7 @@ void erase_tests1(Container*, test::random_generator generator)
}
}
std::cerr<<"quick_erase(begin()).\n";
std::cerr << "quick_erase(begin()).\n";
{
test::check_instances check_;
@ -188,21 +187,21 @@ void erase_tests1(Container*, test::random_generator generator)
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while(size > 0 && !x.empty())
{
BOOST_DEDUCED_TYPENAME Container::key_type
key = test::get_key<Container>(*x.begin());
while (size > 0 && !x.empty()) {
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*x.begin());
std::size_t count = x.count(key);
x.quick_erase(x.begin());
--size;
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0) test::check_equivalent_keys(x);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
std::cerr<<"quick_erase(random position).\n";
std::cerr << "quick_erase(random position).\n";
{
test::check_instances check_;
@ -210,39 +209,37 @@ void erase_tests1(Container*, test::random_generator generator)
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while(size > 0 && !x.empty())
{
while (size > 0 && !x.empty()) {
std::size_t index = test::random_value(x.size());
BOOST_DEDUCED_TYPENAME Container::const_iterator prev, pos, next;
if(index == 0) {
if (index == 0) {
prev = pos = x.begin();
}
else {
} else {
prev = test::next(x.begin(), index - 1);
pos = test::next(prev);
}
next = test::next(pos);
BOOST_DEDUCED_TYPENAME Container::key_type
key = test::get_key<Container>(*pos);
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*pos);
std::size_t count = x.count(key);
BOOST_TEST(count > 0);
x.quick_erase(pos);
--size;
if(size > 0)
BOOST_TEST(index == 0 ? next == x.begin() :
next == test::next(prev));
if (size > 0)
BOOST_TEST(
index == 0 ? next == x.begin() : next == test::next(prev));
BOOST_TEST(x.count(key) == count - 1);
if (x.count(key) != count - 1) {
std::cerr << count << " => " << x.count(key) << std::endl;
}
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0) test::check_equivalent_keys(x);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
std::cerr<<"clear().\n";
std::cerr << "clear().\n";
{
test::check_instances check_;
@ -253,31 +250,25 @@ void erase_tests1(Container*, test::random_generator generator)
BOOST_TEST(x.begin() == x.end());
}
std::cerr<<"\n";
std::cerr << "\n";
}
boost::unordered_set<test::object,
test::hash, test::equal_to,
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator2<test::object> >* test_multimap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(erase_tests1,
((test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(
erase_tests1, ((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@ -16,13 +16,11 @@
#include "../helpers/tracker.hpp"
#include "../helpers/helpers.hpp"
namespace find_tests
{
namespace find_tests {
test::seed_t initialize_seed(78937);
template <class X>
void find_tests1(X*, test::random_generator generator)
template <class X> void find_tests1(X*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
@ -35,37 +33,35 @@ void find_tests1(X*, test::random_generator generator)
test::ordered<X> tracker = test::create_ordered(x);
tracker.insert_range(v.begin(), v.end());
for(BOOST_DEDUCED_TYPENAME test::ordered<X>::const_iterator it1 =
tracker.begin(); it1 != tracker.end(); ++it1)
{
for (BOOST_DEDUCED_TYPENAME test::ordered<X>::const_iterator it1 =
tracker.begin();
it1 != tracker.end(); ++it1) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it1);
BOOST_DEDUCED_TYPENAME X::const_iterator
const_pos = x_const.find(key);
BOOST_DEDUCED_TYPENAME X::const_iterator const_pos =
x_const.find(key);
iterator pos = x.find(key);
BOOST_TEST(const_pos != x_const.end());
BOOST_TEST(const_pos != x_const.end() &&
x_const.key_eq()(key, test::get_key<X>(*const_pos)));
x_const.key_eq()(key, test::get_key<X>(*const_pos)));
BOOST_TEST(pos != x.end());
BOOST_TEST(pos != x.end() &&
x.key_eq()(key, test::get_key<X>(*pos)));
BOOST_TEST(
pos != x.end() && x.key_eq()(key, test::get_key<X>(*pos)));
BOOST_TEST(x.count(key) == tracker.count(key));
test::compare_pairs(x.equal_range(key),
tracker.equal_range(key),
(BOOST_DEDUCED_TYPENAME X::value_type*) 0);
test::compare_pairs(x.equal_range(key), tracker.equal_range(key),
(BOOST_DEDUCED_TYPENAME X::value_type*)0);
test::compare_pairs(x_const.equal_range(key),
tracker.equal_range(key),
(BOOST_DEDUCED_TYPENAME X::value_type*) 0);
tracker.equal_range(key),
(BOOST_DEDUCED_TYPENAME X::value_type*)0);
}
test::random_values<X> v2(500, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator it2 =
v2.begin(); it2 != v2.end(); ++it2)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator it2 =
v2.begin();
it2 != v2.end(); ++it2) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it2);
if(tracker.find(test::get_key<X>(key)) == tracker.end())
{
if (tracker.find(test::get_key<X>(key)) == tracker.end()) {
BOOST_TEST(x.find(key) == x.end());
BOOST_TEST(x_const.find(key) == x_const.end());
BOOST_TEST(x.count(key) == 0);
@ -81,9 +77,9 @@ void find_tests1(X*, test::random_generator generator)
X x;
test::random_values<X> v2(5, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator it3 =
v2.begin(); it3 != v2.end(); ++it3)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator it3 =
v2.begin();
it3 != v2.end(); ++it3) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it3);
BOOST_TEST(x.find(key) == x.end());
BOOST_TEST(x.count(key) == 0);
@ -96,7 +92,7 @@ void find_tests1(X*, test::random_generator generator)
struct compatible_key
{
test::object o_;
compatible_key(test::object const& o) : o_(o) {}
};
@ -104,7 +100,8 @@ struct compatible_hash
{
test::hash hash_;
std::size_t operator()(compatible_key const& k) const {
std::size_t operator()(compatible_key const& k) const
{
return hash_(k.o_);
}
};
@ -113,7 +110,8 @@ struct compatible_predicate
{
test::equal_to equal_;
bool operator()(compatible_key const& k1, compatible_key const& k2) const {
bool operator()(compatible_key const& k1, compatible_key const& k2) const
{
return equal_(k1.o_, k2.o_);
}
};
@ -125,49 +123,42 @@ void find_compatible_keys_test(X*, test::random_generator generator)
value_iterator;
test::random_values<X> v(500, generator);
X x(v.begin(), v.end());
compatible_hash h;
compatible_predicate eq;
for(value_iterator it = v.begin(), end = v.end(); it != end; ++it) {
for (value_iterator it = v.begin(), end = v.end(); it != end; ++it) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it);
BOOST_TEST(x.find(key) == x.find(compatible_key(key), h, eq));
}
test::random_values<X> v2(20, generator);
for(value_iterator it = v2.begin(), end = v2.end(); it != end; ++it) {
for (value_iterator it = v2.begin(), end = v2.end(); it != end; ++it) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it);
BOOST_TEST(x.find(key) == x.find(compatible_key(key), h, eq));
}
}
boost::unordered_set<test::object,
test::hash, test::equal_to,
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_multimap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator1<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(find_tests1,
((test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(
find_tests1, ((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(find_compatible_keys_test,
((test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@ -10,43 +10,41 @@
// clang-format on
template <typename T>
void call_swap(boost::unordered_map<T,T>& x,
boost::unordered_map<T,T>& y)
void call_swap(boost::unordered_map<T, T>& x, boost::unordered_map<T, T>& y)
{
swap(x,y);
swap(x, y);
}
template <typename T>
bool call_equals(boost::unordered_map<T,T>& x,
boost::unordered_map<T,T>& y)
bool call_equals(boost::unordered_map<T, T>& x, boost::unordered_map<T, T>& y)
{
return x == y;
}
template <typename T>
bool call_not_equals(boost::unordered_map<T,T>& x,
boost::unordered_map<T,T>& y)
bool call_not_equals(
boost::unordered_map<T, T>& x, boost::unordered_map<T, T>& y)
{
return x != y;
}
template <typename T>
void call_swap(boost::unordered_multimap<T,T>& x,
boost::unordered_multimap<T,T>& y)
void call_swap(
boost::unordered_multimap<T, T>& x, boost::unordered_multimap<T, T>& y)
{
swap(x,y);
swap(x, y);
}
template <typename T>
bool call_equals(boost::unordered_multimap<T,T>& x,
boost::unordered_multimap<T,T>& y)
bool call_equals(
boost::unordered_multimap<T, T>& x, boost::unordered_multimap<T, T>& y)
{
return x == y;
}
template <typename T>
bool call_not_equals(boost::unordered_multimap<T,T>& x,
boost::unordered_multimap<T,T>& y)
bool call_not_equals(
boost::unordered_multimap<T, T>& x, boost::unordered_multimap<T, T>& y)
{
return x != y;
}
@ -57,7 +55,8 @@ bool call_not_equals(boost::unordered_multimap<T,T>& x,
typedef boost::unordered_map<int, int> int_map;
typedef boost::unordered_multimap<int, int> int_multimap;
UNORDERED_AUTO_TEST(use_map_fwd_declared_function) {
UNORDERED_AUTO_TEST(use_map_fwd_declared_function)
{
int_map x, y;
x[1] = 2;
y[2] = 1;
@ -73,7 +72,8 @@ UNORDERED_AUTO_TEST(use_map_fwd_declared_function) {
BOOST_TEST(call_not_equals(x, y));
}
UNORDERED_AUTO_TEST(use_multimap_fwd_declared_function) {
UNORDERED_AUTO_TEST(use_multimap_fwd_declared_function)
{
int_multimap x, y;
call_swap(x, y);
BOOST_TEST(call_equals(x, y));

View File

@ -9,53 +9,55 @@
#include "../helpers/postfix.hpp"
// clang-format on
struct true_type { char x[100]; };
struct false_type { char x; };
struct true_type
{
char x[100];
};
struct false_type
{
char x;
};
false_type is_unordered_set_impl(void*);
template <class Value, class Hash, class Pred, class Alloc>
true_type is_unordered_set_impl(
boost::unordered_set<Value, Hash, Pred, Alloc>*);
boost::unordered_set<Value, Hash, Pred, Alloc>*);
template<typename T>
void call_swap(boost::unordered_set<T>& x,
boost::unordered_set<T>& y)
template <typename T>
void call_swap(boost::unordered_set<T>& x, boost::unordered_set<T>& y)
{
swap(x,y);
swap(x, y);
}
template<typename T>
bool call_equals(boost::unordered_set<T>& x,
boost::unordered_set<T>& y)
template <typename T>
bool call_equals(boost::unordered_set<T>& x, boost::unordered_set<T>& y)
{
return x == y;
}
template<typename T>
bool call_not_equals(boost::unordered_set<T>& x,
boost::unordered_set<T>& y)
template <typename T>
bool call_not_equals(boost::unordered_set<T>& x, boost::unordered_set<T>& y)
{
return x != y;
}
template<typename T>
void call_swap(boost::unordered_multiset<T>& x,
boost::unordered_multiset<T>& y)
template <typename T>
void call_swap(boost::unordered_multiset<T>& x, boost::unordered_multiset<T>& y)
{
swap(x,y);
swap(x, y);
}
template<typename T>
bool call_equals(boost::unordered_multiset<T>& x,
boost::unordered_multiset<T>& y)
template <typename T>
bool call_equals(
boost::unordered_multiset<T>& x, boost::unordered_multiset<T>& y)
{
return x == y;
}
template<typename T>
bool call_not_equals(boost::unordered_multiset<T>& x,
boost::unordered_multiset<T>& y)
template <typename T>
bool call_not_equals(
boost::unordered_multiset<T>& x, boost::unordered_multiset<T>& y)
{
return x != y;
}
@ -65,21 +67,23 @@ bool call_not_equals(boost::unordered_multiset<T>& x,
typedef boost::unordered_set<int> int_set;
typedef boost::unordered_multiset<int> int_multiset;
UNORDERED_AUTO_TEST(use_fwd_declared_trait_without_definition) {
BOOST_TEST(sizeof(is_unordered_set_impl((int_set*) 0))
== sizeof(true_type));
UNORDERED_AUTO_TEST(use_fwd_declared_trait_without_definition)
{
BOOST_TEST(sizeof(is_unordered_set_impl((int_set*)0)) == sizeof(true_type));
}
#include <boost/unordered_set.hpp>
UNORDERED_AUTO_TEST(use_fwd_declared_trait) {
UNORDERED_AUTO_TEST(use_fwd_declared_trait)
{
boost::unordered_set<int> x;
BOOST_TEST(sizeof(is_unordered_set_impl(&x)) == sizeof(true_type));
BOOST_TEST(sizeof(is_unordered_set_impl((int*) 0)) == sizeof(false_type));
BOOST_TEST(sizeof(is_unordered_set_impl((int*)0)) == sizeof(false_type));
}
UNORDERED_AUTO_TEST(use_set_fwd_declared_function) {
UNORDERED_AUTO_TEST(use_set_fwd_declared_function)
{
int_set x, y;
x.insert(1);
y.insert(2);
@ -95,7 +99,8 @@ UNORDERED_AUTO_TEST(use_set_fwd_declared_function) {
BOOST_TEST(call_not_equals(x, y));
}
UNORDERED_AUTO_TEST(use_multiset_fwd_declared_function) {
UNORDERED_AUTO_TEST(use_multiset_fwd_declared_function)
{
int_multiset x, y;
call_swap(x, y);
BOOST_TEST(call_equals(x, y));

View File

@ -12,142 +12,155 @@
#include <utility>
namespace x
namespace x {
struct D
{
struct D { boost::unordered_map<D, D> x; };
boost::unordered_map<D, D> x;
};
}
namespace incomplete_test
namespace incomplete_test {
// Declare, but don't define some types.
struct value;
struct hash;
struct equals;
template <class T> struct allocator;
// Declare some instances
typedef boost::unordered_map<value, value, hash, equals,
allocator<std::pair<value const, value> > >
map;
typedef boost::unordered_multimap<value, value, hash, equals,
allocator<std::pair<value const, value> > >
multimap;
typedef boost::unordered_set<value, hash, equals, allocator<value> > set;
typedef boost::unordered_multiset<value, hash, equals, allocator<value> >
multiset;
// Now define the types which are stored as members, as they are needed for
// declaring struct members.
struct hash
{
// Declare, but don't define some types.
template <typename T> std::size_t operator()(T const&) const { return 0; }
};
struct value;
struct hash;
struct equals;
template <class T> struct allocator;
// Declare some instances
typedef boost::unordered_map<value, value, hash, equals,
allocator<std::pair<value const, value> > > map;
typedef boost::unordered_multimap<value, value, hash, equals,
allocator<std::pair<value const, value> > > multimap;
typedef boost::unordered_set<value, hash, equals,
allocator<value> > set;
typedef boost::unordered_multiset<value, hash, equals,
allocator<value> > multiset;
// Now define the types which are stored as members, as they are needed for
// declaring struct members.
struct hash {
template <typename T>
std::size_t operator()(T const&) const { return 0; }
};
struct equals {
template <typename T>
bool operator()(T const&, T const&) const { return true; }
};
// This is a dubious way to implement an allocator, but good enough
// for this test.
template <typename T>
struct allocator : std::allocator<T> {
allocator() {}
template <typename T2>
allocator(const allocator<T2>& other) :
std::allocator<T>(other) {}
};
// Declare some members of a structs.
//
// Incomplete hash, equals and allocator aren't here supported at the
// moment.
struct struct1 {
boost::unordered_map<struct1, struct1, hash, equals,
allocator<std::pair<struct1 const, struct1> > > x;
};
struct struct2 {
boost::unordered_multimap<struct2, struct2, hash, equals,
allocator<std::pair<struct2 const, struct2> > > x;
};
struct struct3 {
boost::unordered_set<struct3, hash, equals,
allocator<struct3> > x;
};
struct struct4 {
boost::unordered_multiset<struct4, hash, equals,
allocator<struct4> > x;
};
// Now define the value type.
struct value {};
// Create some instances.
incomplete_test::map m1;
incomplete_test::multimap m2;
incomplete_test::set s1;
incomplete_test::multiset s2;
incomplete_test::struct1 c1;
incomplete_test::struct2 c2;
incomplete_test::struct3 c3;
incomplete_test::struct4 c4;
// Now declare, but don't define, the operators required for comparing
// elements.
std::size_t hash_value(value const&);
bool operator==(value const&, value const&);
std::size_t hash_value(struct1 const&);
std::size_t hash_value(struct2 const&);
std::size_t hash_value(struct3 const&);
std::size_t hash_value(struct4 const&);
bool operator==(struct1 const&, struct1 const&);
bool operator==(struct2 const&, struct2 const&);
bool operator==(struct3 const&, struct3 const&);
bool operator==(struct4 const&, struct4 const&);
// And finally use these
void use_types()
struct equals
{
template <typename T> bool operator()(T const&, T const&) const
{
incomplete_test::value x;
m1[x] = x;
m2.insert(std::make_pair(x, x));
s1.insert(x);
s2.insert(x);
c1.x.insert(std::make_pair(c1, c1));
c2.x.insert(std::make_pair(c2, c2));
c3.x.insert(c3);
c4.x.insert(c4);
return true;
}
};
// And finally define the operators required for comparing elements.
// This is a dubious way to implement an allocator, but good enough
// for this test.
template <typename T> struct allocator : std::allocator<T>
{
allocator() {}
std::size_t hash_value(value const&) { return 0; }
bool operator==(value const&, value const&) { return true; }
template <typename T2>
allocator(const allocator<T2>& other) : std::allocator<T>(other)
{
}
};
std::size_t hash_value(struct1 const&) { return 0; }
std::size_t hash_value(struct2 const&) { return 0; }
std::size_t hash_value(struct3 const&) { return 0; }
std::size_t hash_value(struct4 const&) { return 0; }
bool operator==(struct1 const&, struct1 const&) { return true; }
bool operator==(struct2 const&, struct2 const&) { return true; }
bool operator==(struct3 const&, struct3 const&) { return true; }
bool operator==(struct4 const&, struct4 const&) { return true; }
// Declare some members of a structs.
//
// Incomplete hash, equals and allocator aren't here supported at the
// moment.
struct struct1
{
boost::unordered_map<struct1, struct1, hash, equals,
allocator<std::pair<struct1 const, struct1> > >
x;
};
struct struct2
{
boost::unordered_multimap<struct2, struct2, hash, equals,
allocator<std::pair<struct2 const, struct2> > >
x;
};
struct struct3
{
boost::unordered_set<struct3, hash, equals, allocator<struct3> > x;
};
struct struct4
{
boost::unordered_multiset<struct4, hash, equals, allocator<struct4> > x;
};
// Now define the value type.
struct value
{
};
// Create some instances.
incomplete_test::map m1;
incomplete_test::multimap m2;
incomplete_test::set s1;
incomplete_test::multiset s2;
incomplete_test::struct1 c1;
incomplete_test::struct2 c2;
incomplete_test::struct3 c3;
incomplete_test::struct4 c4;
// Now declare, but don't define, the operators required for comparing
// elements.
std::size_t hash_value(value const&);
bool operator==(value const&, value const&);
std::size_t hash_value(struct1 const&);
std::size_t hash_value(struct2 const&);
std::size_t hash_value(struct3 const&);
std::size_t hash_value(struct4 const&);
bool operator==(struct1 const&, struct1 const&);
bool operator==(struct2 const&, struct2 const&);
bool operator==(struct3 const&, struct3 const&);
bool operator==(struct4 const&, struct4 const&);
// And finally use these
void use_types()
{
incomplete_test::value x;
m1[x] = x;
m2.insert(std::make_pair(x, x));
s1.insert(x);
s2.insert(x);
c1.x.insert(std::make_pair(c1, c1));
c2.x.insert(std::make_pair(c2, c2));
c3.x.insert(c3);
c4.x.insert(c4);
}
int main() {
// And finally define the operators required for comparing elements.
std::size_t hash_value(value const&) { return 0; }
bool operator==(value const&, value const&) { return true; }
std::size_t hash_value(struct1 const&) { return 0; }
std::size_t hash_value(struct2 const&) { return 0; }
std::size_t hash_value(struct3 const&) { return 0; }
std::size_t hash_value(struct4 const&) { return 0; }
bool operator==(struct1 const&, struct1 const&) { return true; }
bool operator==(struct2 const&, struct2 const&) { return true; }
bool operator==(struct3 const&, struct3 const&) { return true; }
bool operator==(struct4 const&, struct4 const&) { return true; }
}
int main()
{
// This could just be a compile test, but I like to be able to run these
// things. It's probably irrational, but I find it reassuring.

View File

@ -17,9 +17,9 @@
#include <set>
#include <iostream>
namespace insert_hint
namespace insert_hint {
UNORDERED_AUTO_TEST(insert_hint_empty)
{
UNORDERED_AUTO_TEST(insert_hint_empty) {
typedef boost::unordered_multiset<int> container;
container x;
x.insert(x.cbegin(), 10);
@ -28,7 +28,8 @@ UNORDERED_AUTO_TEST(insert_hint_empty) {
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST(insert_hint_empty2) {
UNORDERED_AUTO_TEST(insert_hint_empty2)
{
typedef boost::unordered_multimap<std::string, int> container;
container x;
x.emplace_hint(x.cbegin(), "hello", 50);
@ -38,7 +39,8 @@ UNORDERED_AUTO_TEST(insert_hint_empty2) {
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST(insert_hint_single) {
UNORDERED_AUTO_TEST(insert_hint_single)
{
typedef boost::unordered_multiset<std::string> container;
container x;
x.insert("equal");
@ -48,7 +50,8 @@ UNORDERED_AUTO_TEST(insert_hint_single) {
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST(insert_hint_single2) {
UNORDERED_AUTO_TEST(insert_hint_single2)
{
typedef boost::unordered_multimap<int, std::string> container;
container x;
x.emplace(10, "one");
@ -67,18 +70,23 @@ UNORDERED_AUTO_TEST(insert_hint_single2) {
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST(insert_hint_multiple) {
UNORDERED_AUTO_TEST(insert_hint_multiple)
{
for (unsigned int size = 0; size < 10; ++size) {
for (unsigned int offset = 0; offset <= size; ++offset) {
for (unsigned int offset = 0; offset <= size; ++offset) {
typedef boost::unordered_multiset<std::string> container;
container x;
for (unsigned int i = 0; i < size; ++i) { x.insert("multiple"); }
for (unsigned int i = 0; i < size; ++i) {
x.insert("multiple");
}
BOOST_TEST_EQ(x.size(), size);
container::const_iterator position = x.cbegin();
for (unsigned int i = 0; i < offset; ++i) { ++position; }
for (unsigned int i = 0; i < offset; ++i) {
++position;
}
x.insert(position, "multiple");
@ -89,7 +97,8 @@ UNORDERED_AUTO_TEST(insert_hint_multiple) {
}
}
UNORDERED_AUTO_TEST(insert_hint_unique) {
UNORDERED_AUTO_TEST(insert_hint_unique)
{
typedef boost::unordered_set<int> container;
container x;
x.insert(x.cbegin(), 10);
@ -98,7 +107,8 @@ UNORDERED_AUTO_TEST(insert_hint_unique) {
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST(insert_hint_unique_single) {
UNORDERED_AUTO_TEST(insert_hint_unique_single)
{
typedef boost::unordered_set<int> container;
container x;
x.insert(10);
@ -114,7 +124,6 @@ UNORDERED_AUTO_TEST(insert_hint_unique_single) {
BOOST_TEST_EQ(x.count(20), 1u);
test::check_equivalent_keys(x);
}
}
RUN_TESTS()

View File

@ -14,23 +14,25 @@
#include <iostream>
namespace insert_stable
namespace insert_stable {
struct member
{
struct member {
int tag1_;
int tag2_;
member() : tag1_(0), tag2_(0) {}
member(int t1, int t2) : tag1_(t1), tag2_(t2) {}
friend bool operator==(member const& x, member const& y) {
return x.tag1_ == y.tag1_;
}
friend bool operator!=(member const& x, member const& y) {
return x.tag1_ != y.tag1_;
}
};
int tag1_;
int tag2_;
member() : tag1_(0), tag2_(0) {}
member(int t1, int t2) : tag1_(t1), tag2_(t2) {}
friend bool operator==(member const& x, member const& y)
{
return x.tag1_ == y.tag1_;
}
friend bool operator!=(member const& x, member const& y)
{
return x.tag1_ != y.tag1_;
}
};
}
#ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
@ -39,51 +41,72 @@ namespace boost
namespace insert_stable
#endif
{
std::size_t hash_value(insert_stable::member const& x) {
return static_cast<std::size_t>(x.tag1_);
}
std::size_t hash_value(insert_stable::member const& x)
{
return static_cast<std::size_t>(x.tag1_);
}
}
UNORDERED_AUTO_TEST(stable_insert_test1) {
UNORDERED_AUTO_TEST(stable_insert_test1)
{
boost::unordered_multiset<insert_stable::member> x;
x.insert(insert_stable::member(1,1));
x.insert(insert_stable::member(1,2));
x.insert(insert_stable::member(1,3));
x.insert(insert_stable::member(1, 1));
x.insert(insert_stable::member(1, 2));
x.insert(insert_stable::member(1, 3));
BOOST_TEST(x.count(insert_stable::member(1,4)) == 3);
BOOST_TEST(x.count(insert_stable::member(1, 4)) == 3);
boost::unordered_multiset<insert_stable::member>::const_iterator
it = x.begin(), end = x.end();
it = x.begin(),
end = x.end();
BOOST_TEST(it != end);
if(it != end) { BOOST_TEST(it->tag2_ == 1); ++it; }
if (it != end) {
BOOST_TEST(it->tag2_ == 1);
++it;
}
BOOST_TEST(it != end);
if(it != end) { BOOST_TEST(it->tag2_ == 2); ++it; }
if (it != end) {
BOOST_TEST(it->tag2_ == 2);
++it;
}
BOOST_TEST(it != end);
if(it != end) { BOOST_TEST(it->tag2_ == 3); ++it; }
if (it != end) {
BOOST_TEST(it->tag2_ == 3);
++it;
}
BOOST_TEST(it == end);
}
UNORDERED_AUTO_TEST(stable_insert_test2) {
UNORDERED_AUTO_TEST(stable_insert_test2)
{
boost::unordered_multimap<insert_stable::member, int> x;
typedef
boost::unordered_multimap<insert_stable::member, int>::const_iterator
iterator;
typedef boost::unordered_multimap<insert_stable::member,
int>::const_iterator iterator;
iterator it = x.emplace(insert_stable::member(1,1), 1);
it = x.emplace(insert_stable::member(1,2), 2);
it = x.emplace(insert_stable::member(1,3), 3);
iterator it = x.emplace(insert_stable::member(1, 1), 1);
it = x.emplace(insert_stable::member(1, 2), 2);
it = x.emplace(insert_stable::member(1, 3), 3);
BOOST_TEST(x.count(insert_stable::member(1,4)) == 3);
BOOST_TEST(x.count(insert_stable::member(1, 4)) == 3);
it = x.begin();
iterator end = x.end();
BOOST_TEST(it != end);
if(it != end) { BOOST_TEST(it->first.tag2_ == 1 && it->second == 1); ++it; }
if (it != end) {
BOOST_TEST(it->first.tag2_ == 1 && it->second == 1);
++it;
}
BOOST_TEST(it != end);
if(it != end) { BOOST_TEST(it->first.tag2_ == 2 && it->second == 2); ++it; }
if (it != end) {
BOOST_TEST(it->first.tag2_ == 2 && it->second == 2);
++it;
}
BOOST_TEST(it != end);
if(it != end) { BOOST_TEST(it->first.tag2_ == 3 && it->second == 3); ++it; }
if (it != end) {
BOOST_TEST(it->first.tag2_ == 3 && it->second == 3);
++it;
}
BOOST_TEST(it == end);
}

View File

@ -22,7 +22,7 @@
#include <iostream>
namespace insert_tests {
test::seed_t initialize_seed(243432);
template <class X>
@ -33,30 +33,30 @@ void unique_insert_tests1(X*, test::random_generator generator)
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef test::ordered<X> ordered;
std::cerr<<"insert(value) tests for containers with unique keys.\n";
std::cerr << "insert(value) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
std::pair<iterator, bool> r1 = x.insert(*it);
std::pair<BOOST_DEDUCED_TYPENAME ordered::iterator, bool>
r2 = tracker.insert(*it);
std::pair<BOOST_DEDUCED_TYPENAME ordered::iterator, bool> r2 =
tracker.insert(*it);
BOOST_TEST(r1.second == r2.second);
BOOST_TEST(*r1.first == *r2.first);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -66,45 +66,43 @@ void unique_insert_tests1(X*, test::random_generator generator)
template <class X>
void equivalent_insert_tests1(X*, test::random_generator generator)
{
std::cerr<<"insert(value) tests for containers with equivalent keys.\n";
std::cerr << "insert(value) tests for containers with equivalent keys.\n";
test::check_instances check_;
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
BOOST_DEDUCED_TYPENAME X::iterator r1 = x.insert(*it);
BOOST_DEDUCED_TYPENAME test::ordered<X>::iterator r2
= tracker.insert(*it);
BOOST_DEDUCED_TYPENAME test::ordered<X>::iterator r2 =
tracker.insert(*it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void insert_tests2(X*, test::random_generator generator)
template <class X> void insert_tests2(X*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME test::ordered<X> tracker_type;
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME tracker_type::iterator tracker_iterator;
std::cerr<<"insert(begin(), value) tests.\n";
std::cerr << "insert(begin(), value) tests.\n";
{
test::check_instances check_;
@ -113,11 +111,11 @@ void insert_tests2(X*, test::random_generator generator)
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it =
v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count =
x.bucket_count();
float b = x.max_load_factor();
iterator r1 = x.insert(x.begin(), *it);
@ -125,7 +123,8 @@ void insert_tests2(X*, test::random_generator generator)
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -133,7 +132,7 @@ void insert_tests2(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"insert(end(), value) tests.\n";
std::cerr << "insert(end(), value) tests.\n";
{
test::check_instances check_;
@ -143,11 +142,11 @@ void insert_tests2(X*, test::random_generator generator)
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(100, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it =
v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count =
x.bucket_count();
float b = x.max_load_factor();
const_iterator r1 = x.insert(x_const.end(), *it);
@ -155,7 +154,8 @@ void insert_tests2(X*, test::random_generator generator)
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -163,7 +163,7 @@ void insert_tests2(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"insert(pos, value) tests.\n";
std::cerr << "insert(pos, value) tests.\n";
{
test::check_instances check_;
@ -173,11 +173,11 @@ void insert_tests2(X*, test::random_generator generator)
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it =
v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count =
x.bucket_count();
float b = x.max_load_factor();
pos = x.insert(pos, *it);
@ -185,7 +185,8 @@ void insert_tests2(X*, test::random_generator generator)
BOOST_TEST(*pos == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -193,7 +194,7 @@ void insert_tests2(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"insert single item range tests.\n";
std::cerr << "insert single item range tests.\n";
{
test::check_instances check_;
@ -202,18 +203,19 @@ void insert_tests2(X*, test::random_generator generator)
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it =
v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count =
x.bucket_count();
float b = x.max_load_factor();
x.insert(it, test::next(it));
tracker.insert(*it);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -221,7 +223,7 @@ void insert_tests2(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"insert range tests.\n";
std::cerr << "insert range tests.\n";
{
test::check_instances check_;
@ -235,7 +237,7 @@ void insert_tests2(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"insert range with rehash tests.\n";
std::cerr << "insert range with rehash tests.\n";
{
test::check_instances check_;
@ -253,7 +255,7 @@ void insert_tests2(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"insert input iterator range tests.\n";
std::cerr << "insert input iterator range tests.\n";
{
test::check_instances check_;
@ -262,14 +264,15 @@ void insert_tests2(X*, test::random_generator generator)
test::random_values<X> v(1000, generator);
BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
begin = v.begin(), end = v.end();
begin = v.begin(),
end = v.end();
x.insert(test::input_iterator(begin), test::input_iterator(end));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert copy iterator range tests.\n";
std::cerr << "insert copy iterator range tests.\n";
{
test::check_instances check_;
@ -283,7 +286,7 @@ void insert_tests2(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"insert copy iterator range test 2.\n";
std::cerr << "insert copy iterator range test 2.\n";
{
test::check_instances check_;
@ -292,13 +295,15 @@ void insert_tests2(X*, test::random_generator generator)
test::random_values<X> v1(500, generator);
test::random_values<X> v2(500, generator);
x.insert(test::copy_iterator(v1.begin()), test::copy_iterator(v1.end()));
x.insert(test::copy_iterator(v2.begin()), test::copy_iterator(v2.end()));
x.insert(
test::copy_iterator(v1.begin()), test::copy_iterator(v1.end()));
x.insert(
test::copy_iterator(v2.begin()), test::copy_iterator(v2.end()));
test::check_equivalent_keys(x);
}
std::cerr<<"insert various ranges.\n";
std::cerr << "insert various ranges.\n";
{
for (int i = 0; i < 100; ++i) {
@ -307,17 +312,20 @@ void insert_tests2(X*, test::random_generator generator)
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end();)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it =
v.begin();
it != v.end();) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count =
x.bucket_count();
float b = x.max_load_factor();
BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
next = it;
BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator next =
it;
for (std::size_t j = test::random_value(20); j > 0; ++j) {
++next;
if (next == v.end()) { break; }
if (next == v.end()) {
break;
}
}
x.insert(it, next);
@ -326,7 +334,8 @@ void insert_tests2(X*, test::random_generator generator)
tracker.compare(x); // Slow, but I can't see any other way.
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -341,30 +350,30 @@ void unique_emplace_tests1(X*, test::random_generator generator)
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef test::ordered<X> ordered;
std::cerr<<"emplace(value) tests for containers with unique keys.\n";
std::cerr << "emplace(value) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
std::pair<iterator, bool> r1 = x.emplace(*it);
std::pair<BOOST_DEDUCED_TYPENAME ordered::iterator, bool>
r2 = tracker.insert(*it);
std::pair<BOOST_DEDUCED_TYPENAME ordered::iterator, bool> r2 =
tracker.insert(*it);
BOOST_TEST(r1.second == r2.second);
BOOST_TEST(*r1.first == *r2.first);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -375,27 +384,27 @@ void unique_emplace_tests1(X*, test::random_generator generator)
template <class X>
void equivalent_emplace_tests1(X*, test::random_generator generator)
{
std::cerr<<"emplace(value) tests for containers with equivalent keys.\n";
std::cerr << "emplace(value) tests for containers with equivalent keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
BOOST_DEDUCED_TYPENAME X::iterator r1 = x.emplace(*it);
BOOST_DEDUCED_TYPENAME test::ordered<X>::iterator
r2 = tracker.insert(*it);
BOOST_DEDUCED_TYPENAME test::ordered<X>::iterator r2 =
tracker.insert(*it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -403,19 +412,18 @@ void equivalent_emplace_tests1(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
template <class X>
void move_emplace_tests(X*, test::random_generator generator)
template <class X> void move_emplace_tests(X*, test::random_generator generator)
{
std::cerr<<"emplace(move(value)) tests for containers with unique keys.\n";
std::cerr
<< "emplace(move(value)) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
@ -425,7 +433,8 @@ void move_emplace_tests(X*, test::random_generator generator)
tracker.insert(*it);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
@ -433,11 +442,10 @@ void move_emplace_tests(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
template <class X>
void default_emplace_tests(X*, test::random_generator)
template <class X> void default_emplace_tests(X*, test::random_generator)
{
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
std::cerr<<"emplace() tests.\n";
std::cerr << "emplace() tests.\n";
bool is_unique = test::has_unique_keys<X>::value;
X x;
@ -448,7 +456,7 @@ void default_emplace_tests(X*, test::random_generator)
BOOST_TEST(x.size() == (is_unique ? 1u : 2u));
x.emplace();
BOOST_TEST(x.size() == (is_unique ? 1u : 3u));
typename X::value_type y;
BOOST_TEST(x.count(test::get_key<X>(y)) == (is_unique ? 1u : 3u));
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
@ -457,31 +465,29 @@ void default_emplace_tests(X*, test::random_generator)
BOOST_TEST(x.size() == (is_unique ? 1u : 4u));
BOOST_TEST(x.count(test::get_key<X>(y)) == (is_unique ? 1u : 4u));
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
x.clear();
BOOST_TEST(x.empty());
x.emplace(y);
BOOST_TEST(x.size() == 1);
x.emplace(y);
BOOST_TEST(x.size() == (is_unique ? 1u : 2u));
BOOST_TEST(x.count(test::get_key<X>(y)) == (is_unique ? 1u : 2u));
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
#endif
}
template <class X>
void map_tests(X*, test::random_generator generator)
template <class X> void map_tests(X*, test::random_generator generator)
{
std::cerr<<"map tests.\n";
std::cerr << "map tests.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
@ -490,12 +496,13 @@ void map_tests(X*, test::random_generator generator)
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(x.size()) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
tracker.compare(x);
test::check_equivalent_keys(x);
test::check_equivalent_keys(x);
}
// Some tests for when the range's value type doesn't match the container's
@ -504,20 +511,18 @@ void map_tests(X*, test::random_generator generator)
template <class X>
void map_insert_range_test1(X*, test::random_generator generator)
{
std::cerr<<"map_insert_range_test1\n";
std::cerr << "map_insert_range_test1\n";
test::check_instances check_;
typedef test::list<
std::pair<
BOOST_DEDUCED_TYPENAME X::key_type,
BOOST_DEDUCED_TYPENAME X::mapped_type
>
> list;
typedef test::list<std::pair<BOOST_DEDUCED_TYPENAME X::key_type,
BOOST_DEDUCED_TYPENAME X::mapped_type> >
list;
test::random_values<X> v(1000, generator);
list l(v.begin(), v.end());
X x; x.insert(l.begin(), l.end());
X x;
x.insert(l.begin(), l.end());
test::check_equivalent_keys(x);
}
@ -525,98 +530,83 @@ void map_insert_range_test1(X*, test::random_generator generator)
template <class X>
void map_insert_range_test2(X*, test::random_generator generator)
{
std::cerr<<"map_insert_range_test2\n";
std::cerr << "map_insert_range_test2\n";
test::check_instances check_;
typedef test::list<
std::pair<BOOST_DEDUCED_TYPENAME X::key_type const, test::implicitly_convertible>
> list;
test::random_values<
boost::unordered_map<BOOST_DEDUCED_TYPENAME X::key_type, test::implicitly_convertible>
> v(1000, generator);
typedef test::list<std::pair<BOOST_DEDUCED_TYPENAME X::key_type const,
test::implicitly_convertible> >
list;
test::random_values<boost::unordered_map<BOOST_DEDUCED_TYPENAME X::key_type,
test::implicitly_convertible> >
v(1000, generator);
list l(v.begin(), v.end());
X x; x.insert(l.begin(), l.end());
X x;
x.insert(l.begin(), l.end());
test::check_equivalent_keys(x);
}
boost::unordered_set<test::movable,
test::hash, test::equal_to,
boost::unordered_set<test::movable, test::hash, test::equal_to,
std::allocator<test::movable> >* test_set_std_alloc;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
std::allocator<test::object> >* test_multimap_std_alloc;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, std::allocator<test::object> >* test_multimap_std_alloc;
boost::unordered_set<test::object,
test::hash, test::equal_to,
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::movable,
test::hash, test::equal_to,
boost::unordered_multiset<test::movable, test::hash, test::equal_to,
test::allocator2<test::movable> >* test_multiset;
boost::unordered_map<test::movable, test::movable,
test::hash, test::equal_to,
boost::unordered_map<test::movable, test::movable, test::hash, test::equal_to,
test::allocator2<test::movable> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_multimap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator1<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(unique_insert_tests1,
((test_set_std_alloc)(test_set)(test_map))
((default_generator)(generate_collisions)(limited_range))
)
((test_set_std_alloc)(test_set)(test_map))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(equivalent_insert_tests1,
((test_multimap_std_alloc)(test_multiset)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_multimap_std_alloc)(test_multiset)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(insert_tests2,
((test_multimap_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(
insert_tests2, ((test_multimap_std_alloc)(test_set)(test_multiset)(
test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(unique_emplace_tests1,
((test_set_std_alloc)(test_set)(test_map))
((default_generator)(generate_collisions)(limited_range))
)
((test_set_std_alloc)(test_set)(test_map))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(equivalent_emplace_tests1,
((test_multimap_std_alloc)(test_multiset)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_multimap_std_alloc)(test_multiset)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(move_emplace_tests,
((test_set_std_alloc)(test_multimap_std_alloc)(test_set)(test_map)
(test_multiset)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_set_std_alloc)(test_multimap_std_alloc)(test_set)(test_map)(
test_multiset)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(default_emplace_tests,
((test_set_std_alloc)(test_multimap_std_alloc)(test_set)(test_map)
(test_multiset)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_set_std_alloc)(test_multimap_std_alloc)(test_set)(test_map)(
test_multiset)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(map_tests,
((test_map))
((default_generator)(generate_collisions)(limited_range))
)
((test_map))((default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(map_insert_range_test1,
((test_multimap_std_alloc)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_multimap_std_alloc)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(map_insert_range_test2,
((test_multimap_std_alloc)(test_map)(test_multimap))
((default_generator)(generate_collisions)(limited_range))
)
((test_multimap_std_alloc)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
@ -638,7 +628,7 @@ struct initialize_from_two_ints
UNORDERED_AUTO_TEST(insert_initializer_list_set)
{
boost::unordered_set<int> set;
set.insert({1,2,3,1});
set.insert({1, 2, 3, 1});
BOOST_TEST_EQ(set.size(), 3u);
BOOST_TEST(set.find(1) != set.end());
BOOST_TEST(set.find(4) == set.end());
@ -651,25 +641,25 @@ UNORDERED_AUTO_TEST(insert_initializer_list_set)
set2.insert({1, 2});
#endif
BOOST_TEST(set2.size() == 1);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({2,1}) == set2.end());
BOOST_TEST(set2.find({1, 2}) != set2.end());
BOOST_TEST(set2.find({2, 1}) == set2.end());
set2.insert({{3,4},{5,6},{7,8}});
set2.insert({{3, 4}, {5, 6}, {7, 8}});
BOOST_TEST(set2.size() == 4);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({3,4}) != set2.end());
BOOST_TEST(set2.find({5,6}) != set2.end());
BOOST_TEST(set2.find({7,8}) != set2.end());
BOOST_TEST(set2.find({8,7}) == set2.end());
BOOST_TEST(set2.find({1, 2}) != set2.end());
BOOST_TEST(set2.find({3, 4}) != set2.end());
BOOST_TEST(set2.find({5, 6}) != set2.end());
BOOST_TEST(set2.find({7, 8}) != set2.end());
BOOST_TEST(set2.find({8, 7}) == set2.end());
set2.insert({{2, 1}, {3,4}});
set2.insert({{2, 1}, {3, 4}});
BOOST_TEST(set2.size() == 5);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({2,1}) != set2.end());
BOOST_TEST(set2.find({3,4}) != set2.end());
BOOST_TEST(set2.find({5,6}) != set2.end());
BOOST_TEST(set2.find({7,8}) != set2.end());
BOOST_TEST(set2.find({8,7}) == set2.end());
BOOST_TEST(set2.find({1, 2}) != set2.end());
BOOST_TEST(set2.find({2, 1}) != set2.end());
BOOST_TEST(set2.find({3, 4}) != set2.end());
BOOST_TEST(set2.find({5, 6}) != set2.end());
BOOST_TEST(set2.find({7, 8}) != set2.end());
BOOST_TEST(set2.find({8, 7}) == set2.end());
}
#if !BOOST_WORKAROUND(BOOST_MSVC, == 1800)
@ -677,13 +667,13 @@ UNORDERED_AUTO_TEST(insert_initializer_list_set)
UNORDERED_AUTO_TEST(insert_initializer_list_multiset)
{
boost::unordered_multiset<std::string> multiset;
//multiset.insert({});
// multiset.insert({});
BOOST_TEST(multiset.empty());
multiset.insert({"a"});
BOOST_TEST_EQ(multiset.size(), 1u);
BOOST_TEST(multiset.find("a") != multiset.end());
BOOST_TEST(multiset.find("b") == multiset.end());
multiset.insert({"a","b"});
multiset.insert({"a", "b"});
BOOST_TEST(multiset.size() == 3);
BOOST_TEST_EQ(multiset.count("a"), 2u);
BOOST_TEST_EQ(multiset.count("b"), 1u);
@ -695,18 +685,18 @@ UNORDERED_AUTO_TEST(insert_initializer_list_multiset)
UNORDERED_AUTO_TEST(insert_initializer_list_map)
{
boost::unordered_map<std::string, std::string> map;
//map.insert({});
// map.insert({});
BOOST_TEST(map.empty());
map.insert({{"a", "b"},{"a", "b"},{"d", ""}});
map.insert({{"a", "b"}, {"a", "b"}, {"d", ""}});
BOOST_TEST_EQ(map.size(), 2u);
}
UNORDERED_AUTO_TEST(insert_initializer_list_multimap)
{
boost::unordered_multimap<std::string, std::string> multimap;
//multimap.insert({});
// multimap.insert({});
BOOST_TEST(multimap.empty());
multimap.insert({{"a", "b"},{"a", "b"},{"d", ""}});
multimap.insert({{"a", "b"}, {"a", "b"}, {"d", ""}});
BOOST_TEST_EQ(multimap.size(), 3u);
BOOST_TEST_EQ(multimap.count("a"), 2u);
}
@ -716,15 +706,17 @@ UNORDERED_AUTO_TEST(insert_initializer_list_multimap)
struct overloaded_constructor
{
overloaded_constructor(int x1_ = 1, int x2_ = 2, int x3_ = 3, int x4_ = 4)
: x1(x1_), x2(x2_), x3(x3_), x4(x4_) {}
: x1(x1_), x2(x2_), x3(x3_), x4(x4_)
{
}
int x1, x2, x3, x4;
bool operator==(overloaded_constructor const& rhs) const
{
return x1 == rhs.x1 && x2 == rhs.x2 && x3 == rhs.x3 && x4 == rhs.x4;
}
friend std::size_t hash_value(overloaded_constructor const& x)
{
std::size_t hash = 0;
@ -742,13 +734,13 @@ UNORDERED_AUTO_TEST(map_emplace_test)
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
x.emplace();
BOOST_TEST(x.find(0) != x.end() &&
x.find(0)->second == overloaded_constructor());
BOOST_TEST(
x.find(0) != x.end() && x.find(0)->second == overloaded_constructor());
#endif
x.emplace(2, 3);
BOOST_TEST(x.find(2) != x.end() &&
x.find(2)->second == overloaded_constructor(3));
BOOST_TEST(
x.find(2) != x.end() && x.find(2)->second == overloaded_constructor(3));
}
UNORDERED_AUTO_TEST(set_emplace_test)
@ -782,15 +774,20 @@ UNORDERED_AUTO_TEST(set_emplace_test)
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
}
struct derived_from_piecewise_construct_t :
boost::unordered::piecewise_construct_t {};
struct derived_from_piecewise_construct_t
: boost::unordered::piecewise_construct_t
{
};
derived_from_piecewise_construct_t piecewise_rvalue() {
derived_from_piecewise_construct_t piecewise_rvalue()
{
return derived_from_piecewise_construct_t();
}
struct convertible_to_piecewise {
operator boost::unordered::piecewise_construct_t() const {
struct convertible_to_piecewise
{
operator boost::unordered::piecewise_construct_t() const
{
return boost::unordered::piecewise_construct;
}
};
@ -799,38 +796,50 @@ UNORDERED_AUTO_TEST(map_emplace_test2)
{
boost::unordered_map<overloaded_constructor, overloaded_constructor> x;
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(), boost::make_tuple());
BOOST_TEST(x.find(overloaded_constructor()) != x.end() &&
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(),
boost::make_tuple());
BOOST_TEST(
x.find(overloaded_constructor()) != x.end() &&
x.find(overloaded_constructor())->second == overloaded_constructor());
x.emplace(convertible_to_piecewise(), boost::make_tuple(1), boost::make_tuple());
BOOST_TEST(x.find(overloaded_constructor(1)) != x.end() &&
x.emplace(
convertible_to_piecewise(), boost::make_tuple(1), boost::make_tuple());
BOOST_TEST(
x.find(overloaded_constructor(1)) != x.end() &&
x.find(overloaded_constructor(1))->second == overloaded_constructor());
x.emplace(piecewise_rvalue(), boost::make_tuple(2,3), boost::make_tuple(4,5,6));
BOOST_TEST(x.find(overloaded_constructor(2,3)) != x.end() &&
x.find(overloaded_constructor(2,3))->second == overloaded_constructor(4,5,6));
x.emplace(piecewise_rvalue(), boost::make_tuple(2, 3),
boost::make_tuple(4, 5, 6));
BOOST_TEST(x.find(overloaded_constructor(2, 3)) != x.end() &&
x.find(overloaded_constructor(2, 3))->second ==
overloaded_constructor(4, 5, 6));
derived_from_piecewise_construct_t d;
x.emplace(d, boost::make_tuple(9,3,1), boost::make_tuple(10));
BOOST_TEST(x.find(overloaded_constructor(9,3,1)) != x.end() &&
x.find(overloaded_constructor(9,3,1))->second == overloaded_constructor(10));
x.emplace(d, boost::make_tuple(9, 3, 1), boost::make_tuple(10));
BOOST_TEST(x.find(overloaded_constructor(9, 3, 1)) != x.end() &&
x.find(overloaded_constructor(9, 3, 1))->second ==
overloaded_constructor(10));
}
UNORDERED_AUTO_TEST(set_emplace_test2)
{
boost::unordered_set<std::pair<overloaded_constructor, overloaded_constructor> > x;
boost::unordered_set<
std::pair<overloaded_constructor, overloaded_constructor> >
x;
std::pair<overloaded_constructor, overloaded_constructor> check;
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(), boost::make_tuple());
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(),
boost::make_tuple());
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(1), boost::make_tuple(2,3));
check = std::make_pair(overloaded_constructor(1), overloaded_constructor(2, 3));;
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(1),
boost::make_tuple(2, 3));
check =
std::make_pair(overloaded_constructor(1), overloaded_constructor(2, 3));
;
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
}
}
RUN_TESTS()

View File

@ -10,10 +10,8 @@
#include "../helpers/postfix.hpp"
// clang-format on
void foo(boost::unordered_set<int>&,
boost::unordered_map<int, int>&,
boost::unordered_multiset<int>&,
boost::unordered_multimap<int, int>&);
void foo(boost::unordered_set<int>&, boost::unordered_map<int, int>&,
boost::unordered_multiset<int>&, boost::unordered_multimap<int, int>&);
int main()
{
@ -23,6 +21,6 @@ int main()
boost::unordered_multimap<int, int> x4;
foo(x1, x2, x3, x4);
return 0;
}

View File

@ -10,18 +10,17 @@
#include "../helpers/postfix.hpp"
// clang-format on
void foo(boost::unordered_set<int>& x1,
boost::unordered_map<int, int>& x2,
boost::unordered_multiset<int>& x3,
boost::unordered_multimap<int, int>& x4)
void foo(boost::unordered_set<int>& x1, boost::unordered_map<int, int>& x2,
boost::unordered_multiset<int>& x3, boost::unordered_multimap<int, int>& x4)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy {
boost::unordered_set<int> x1;
boost::unordered_map<int, int> x2;
boost::unordered_multiset<int> x3;
boost::unordered_multimap<int, int> x4;
};
struct dummy
{
boost::unordered_set<int> x1;
boost::unordered_map<int, int> x2;
boost::unordered_multiset<int> x3;
boost::unordered_multimap<int, int> x4;
};
#endif
x1.insert(1);

View File

@ -16,16 +16,14 @@
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4127) // conditional expression is constant
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace load_factor_tests
{
namespace load_factor_tests {
test::seed_t initialize_seed(783656);
template <class X>
void set_load_factor_tests(X*)
template <class X> void set_load_factor_tests(X*)
{
X x;
@ -34,8 +32,10 @@ void set_load_factor_tests(X*)
// A valid implementation could fail these tests, but I think they're
// reasonable.
x.max_load_factor(2.0); BOOST_TEST(x.max_load_factor() == 2.0);
x.max_load_factor(0.5); BOOST_TEST(x.max_load_factor() == 0.5);
x.max_load_factor(2.0);
BOOST_TEST(x.max_load_factor() == 2.0);
x.max_load_factor(0.5);
BOOST_TEST(x.max_load_factor() == 0.5);
}
template <class X>
@ -47,13 +47,15 @@ void insert_test(X*, float mlf, test::random_generator generator)
test::random_values<X> values(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
it = values.begin(), end = values.end(); it != end; ++it)
{
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
it = values.begin(),
end = values.end();
it != end; ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_size = x.size(),
old_bucket_count = x.bucket_count();
old_bucket_count = x.bucket_count();
x.insert(*it);
if(static_cast<double>(old_size + 1) <= b * static_cast<double>(old_bucket_count))
if (static_cast<double>(old_size + 1) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
}
@ -65,12 +67,10 @@ void load_factor_insert_tests(X* ptr, test::random_generator generator)
insert_test(ptr, 0.1f, generator);
insert_test(ptr, 100.0f, generator);
insert_test(ptr, (std::numeric_limits<float>::min)(),
generator);
insert_test(ptr, (std::numeric_limits<float>::min)(), generator);
if(std::numeric_limits<float>::has_infinity)
insert_test(ptr, std::numeric_limits<float>::infinity(),
generator);
if (std::numeric_limits<float>::has_infinity)
insert_test(ptr, std::numeric_limits<float>::infinity(), generator);
}
boost::unordered_set<int>* int_set_ptr;
@ -83,19 +83,16 @@ using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(set_load_factor_tests,
((int_set_ptr)(int_multiset_ptr)(int_map_ptr)(int_multimap_ptr))
)
((int_set_ptr)(int_multiset_ptr)(int_map_ptr)(int_multimap_ptr)))
UNORDERED_TEST(load_factor_insert_tests,
((int_set_ptr)(int_multiset_ptr)(int_map_ptr)(int_multimap_ptr))
((default_generator)(generate_collisions)(limited_range))
)
((int_set_ptr)(int_multiset_ptr)(int_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()
#if defined(BOOST_MSVC)
#pragma warning(pop)
#pragma warning(disable:4127) // conditional expression is constant
#pragma warning(disable : 4127) // conditional expression is constant
#endif

View File

@ -3,60 +3,58 @@
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/unordered/detail/implementation.hpp>
#include <boost/detail/lightweight_test.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/static_assert.hpp>
#include "../objects/test.hpp"
#include <boost/detail/lightweight_test.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/unordered/detail/implementation.hpp>
template <class Tp>
struct SimpleAllocator
{
template <class Tp> struct SimpleAllocator
{
typedef Tp value_type;
SimpleAllocator()
{
}
SimpleAllocator() {}
template <class T> SimpleAllocator(const SimpleAllocator<T>&)
{
}
template <class T> SimpleAllocator(const SimpleAllocator<T>&) {}
Tp *allocate(std::size_t n)
Tp* allocate(std::size_t n)
{
return static_cast<Tp*>(::operator new(n * sizeof(Tp)));
}
void deallocate(Tp* p, std::size_t)
{
::operator delete((void*) p);
}
void deallocate(Tp* p, std::size_t) { ::operator delete((void*)p); }
};
template <typename T>
void test_simple_allocator()
template <typename T> void test_simple_allocator()
{
test::check_instances check_;
typedef boost::unordered::detail::allocator_traits<
SimpleAllocator<T> > traits;
typedef boost::unordered::detail::allocator_traits<SimpleAllocator<T> >
traits;
BOOST_STATIC_ASSERT((boost::is_same<typename traits::allocator_type, SimpleAllocator<T> >::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::allocator_type,
SimpleAllocator<T> >::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::value_type, T>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<typename traits::value_type, T>::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::pointer, T* >::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::const_pointer, T const*>::value));
//BOOST_STATIC_ASSERT((boost::is_same<typename traits::void_pointer, void* >::value));
//BOOST_STATIC_ASSERT((boost::is_same<typename traits::const_void_pointer, void const*>::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::pointer, T*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<typename traits::const_pointer, T const*>::value));
// BOOST_STATIC_ASSERT((boost::is_same<typename traits::void_pointer, void*
// >::value));
// BOOST_STATIC_ASSERT((boost::is_same<typename traits::const_void_pointer,
// void const*>::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::difference_type,
std::ptrdiff_t>::value));
#if BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 1
BOOST_STATIC_ASSERT((boost::is_same<typename traits::size_type,
std::make_unsigned<std::ptrdiff_t>::type>::value));
#else
BOOST_STATIC_ASSERT((boost::is_same<typename traits::size_type, std::size_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<typename traits::size_type, std::size_t>::value));
#endif
BOOST_TEST(!traits::propagate_on_container_copy_assignment::value);
@ -69,18 +67,18 @@ void test_simple_allocator()
SimpleAllocator<T> a;
T* ptr1 = traits::allocate(a, 1);
//T* ptr2 = traits::allocate(a, 1, static_cast<void const*>(ptr1));
// T* ptr2 = traits::allocate(a, 1, static_cast<void const*>(ptr1));
traits::construct(a, ptr1, T(10));
//traits::construct(a, ptr2, T(30), ptr1);
// traits::construct(a, ptr2, T(30), ptr1);
BOOST_TEST(*ptr1 == T(10));
//BOOST_TEST(*ptr2 == T(30));
// BOOST_TEST(*ptr2 == T(30));
traits::destroy(a, ptr1);
//traits::destroy(a, ptr2);
// traits::destroy(a, ptr2);
//traits::deallocate(a, ptr2, 1);
// traits::deallocate(a, ptr2, 1);
traits::deallocate(a, ptr1, 1);
traits::max_size(a);

View File

@ -19,390 +19,357 @@
#include "../helpers/invariants.hpp"
#if defined(BOOST_MSVC)
#pragma warning(disable:4127) // conditional expression is constant
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace move_tests
{
test::seed_t initialize_seed(98624);
#if defined(BOOST_UNORDERED_USE_MOVE) || !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
namespace move_tests {
test::seed_t initialize_seed(98624);
#if defined(BOOST_UNORDERED_USE_MOVE) || \
!defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
#define BOOST_UNORDERED_TEST_MOVING 1
#else
#define BOOST_UNORDERED_TEST_MOVING 0
#endif
template<class T>
T empty(T*) {
return T();
}
template <class T> T empty(T*) { return T(); }
template<class T>
T create(test::random_values<T> const& v,
test::object_count& count) {
T x(v.begin(), v.end());
count = test::global_object_count;
return x;
}
template <class T>
T create(test::random_values<T> const& v, test::object_count& count)
{
T x(v.begin(), v.end());
count = test::global_object_count;
return x;
}
template<class T>
T create(test::random_values<T> const& v,
test::object_count& count,
BOOST_DEDUCED_TYPENAME T::hasher hf,
BOOST_DEDUCED_TYPENAME T::key_equal eq,
BOOST_DEDUCED_TYPENAME T::allocator_type al,
float mlf) {
T x(0, hf, eq, al);
x.max_load_factor(mlf);
x.insert(v.begin(), v.end());
count = test::global_object_count;
return x;
}
template <class T>
T create(test::random_values<T> const& v, test::object_count& count,
BOOST_DEDUCED_TYPENAME T::hasher hf, BOOST_DEDUCED_TYPENAME T::key_equal eq,
BOOST_DEDUCED_TYPENAME T::allocator_type al, float mlf)
{
T x(0, hf, eq, al);
x.max_load_factor(mlf);
x.insert(v.begin(), v.end());
count = test::global_object_count;
return x;
}
template <class T>
void move_construct_tests1(T* ptr, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_DEDUCED_TYPENAME T::allocator_type al;
template <class T>
void move_construct_tests1(T* ptr, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_DEDUCED_TYPENAME T::allocator_type al;
test::check_instances check_;
{
test::check_instances check_;
T y(empty(ptr));
BOOST_TEST(y.empty());
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 1.0);
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
test::random_values<T> v(1000, generator);
test::object_count count;
T y(create(v, count));
#if defined(BOOST_HAS_NRVO)
BOOST_TEST(count == test::global_object_count);
#endif
test::check_container(y, v);
test::check_equivalent_keys(y);
}
T y(empty(ptr));
BOOST_TEST(y.empty());
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 1.0);
test::check_equivalent_keys(y);
}
template <class T>
void move_assign_tests1(T*, test::random_generator const& generator)
{
{
test::check_instances check_;
test::random_values<T> v(500, generator);
test::object_count count;
T y;
y = create(v, count);
#if BOOST_UNORDERED_TEST_MOVING && defined(BOOST_HAS_NRVO)
BOOST_TEST(count == test::global_object_count);
#endif
test::check_container(y, v);
test::check_equivalent_keys(y);
}
}
template <class T>
void move_construct_tests2(T*, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
test::check_instances check_;
test::random_values<T> v(1000, generator);
test::object_count count;
{
test::check_instances check_;
test::random_values<T> v(500, generator);
T y(create(v, count, hf, eq, al, 0.5));
T y(create(v, count));
#if defined(BOOST_HAS_NRVO)
BOOST_TEST(count == test::global_object_count);
BOOST_TEST(count == test::global_object_count);
#endif
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 0.5); // Not necessarily required.
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
// TODO: To do this correctly requires the fancy new allocator
// stuff.
test::random_values<T> v(500, generator);
T y(create(v, count, hf, eq, al, 2.0), al2);
BOOST_TEST(count != test::global_object_count);
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
BOOST_TEST(y.max_load_factor() == 2.0); // Not necessarily required.
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
test::random_values<T> v(25, generator);
T y(create(v, count, hf, eq, al, 1.0), al);
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
BOOST_TEST(count == test::global_object_count);
#elif defined(BOOST_HAS_NRVO)
BOOST_TEST(
static_cast<std::size_t>(test::global_object_count.constructions
- count.constructions) <=
(test::is_set<T>::value ? 1 : 2) *
(test::has_unique_keys<T>::value ? 25 : v.size()));
BOOST_TEST(count.instances == test::global_object_count.instances);
#else
BOOST_TEST(
static_cast<std::size_t>(test::global_object_count.constructions
- count.constructions) <=
(test::is_set<T>::value ? 2 : 4) *
(test::has_unique_keys<T>::value ? 25 : v.size()));
BOOST_TEST(count.instances == test::global_object_count.instances);
#endif
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 1.0); // Not necessarily required.
test::check_equivalent_keys(y);
}
test::check_container(y, v);
test::check_equivalent_keys(y);
}
}
template <class T>
void move_assign_tests2(T*, test::random_generator const& generator)
template <class T>
void move_assign_tests1(T*, test::random_generator const& generator)
{
{
BOOST_DEDUCED_TYPENAME T::hasher hf(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al1(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
test::check_instances check_;
{
test::random_values<T> v(500, generator);
test::random_values<T> v2(0, generator);
T y(v.begin(), v.end(), 0, hf, eq, al1);
test::object_count count;
y = create(v2, count, hf, eq, al2, 2.0);
BOOST_TEST(y.empty());
test::check_container(y, v2);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 2.0);
test::random_values<T> v(500, generator);
test::object_count count;
T y;
y = create(v, count);
#if BOOST_UNORDERED_TEST_MOVING && defined(BOOST_HAS_NRVO)
BOOST_TEST(count == test::global_object_count);
#endif
test::check_container(y, v);
test::check_equivalent_keys(y);
}
}
template <class T>
void move_construct_tests2(T*, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
test::object_count count;
{
test::check_instances check_;
test::random_values<T> v(500, generator);
T y(create(v, count, hf, eq, al, 0.5));
#if defined(BOOST_HAS_NRVO)
BOOST_TEST(count == test::global_object_count);
#endif
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 0.5); // Not necessarily required.
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
// TODO: To do this correctly requires the fancy new allocator
// stuff.
test::random_values<T> v(500, generator);
T y(create(v, count, hf, eq, al, 2.0), al2);
BOOST_TEST(count != test::global_object_count);
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
BOOST_TEST(y.max_load_factor() == 2.0); // Not necessarily required.
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
test::random_values<T> v(25, generator);
T y(create(v, count, hf, eq, al, 1.0), al);
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
BOOST_TEST(count == test::global_object_count);
#elif defined(BOOST_HAS_NRVO)
BOOST_TEST(
static_cast<std::size_t>(test::global_object_count.constructions -
count.constructions) <=
(test::is_set<T>::value ? 1 : 2) *
(test::has_unique_keys<T>::value ? 25 : v.size()));
BOOST_TEST(count.instances == test::global_object_count.instances);
#else
BOOST_TEST(
static_cast<std::size_t>(test::global_object_count.constructions -
count.constructions) <=
(test::is_set<T>::value ? 2 : 4) *
(test::has_unique_keys<T>::value ? 25 : v.size()));
BOOST_TEST(count.instances == test::global_object_count.instances);
#endif
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 1.0); // Not necessarily required.
test::check_equivalent_keys(y);
}
}
template <class T>
void move_assign_tests2(T*, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al1(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
{
test::random_values<T> v(500, generator);
test::random_values<T> v2(0, generator);
T y(v.begin(), v.end(), 0, hf, eq, al1);
test::object_count count;
y = create(v2, count, hf, eq, al2, 2.0);
BOOST_TEST(y.empty());
test::check_container(y, v2);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 2.0);
#if defined(BOOST_HAS_NRVO)
if (BOOST_UNORDERED_TEST_MOVING ?
(bool) allocator_type::is_propagate_on_move :
(bool) allocator_type::is_propagate_on_assign)
{
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
}
else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
#endif
if (BOOST_UNORDERED_TEST_MOVING
? (bool)allocator_type::is_propagate_on_move
: (bool)allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
{
test::random_values<T> v(500, generator);
test::object_count count;
T y(0, hf, eq, al1);
y = create(v, count, hf, eq, al2, 0.5);
#if defined(BOOST_HAS_NRVO)
if (BOOST_UNORDERED_TEST_MOVING &&
allocator_type::is_propagate_on_move)
{
BOOST_TEST(count == test::global_object_count);
}
#endif
test::check_container(y, v);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.5);
}
{
test::random_values<T> v(500, generator);
test::object_count count;
T y(0, hf, eq, al1);
y = create(v, count, hf, eq, al2, 0.5);
#if defined(BOOST_HAS_NRVO)
if (BOOST_UNORDERED_TEST_MOVING &&
allocator_type::is_propagate_on_move) {
BOOST_TEST(count == test::global_object_count);
}
#endif
test::check_container(y, v);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.5);
#if defined(BOOST_HAS_NRVO)
if (BOOST_UNORDERED_TEST_MOVING ?
(bool) allocator_type::is_propagate_on_move :
(bool) allocator_type::is_propagate_on_assign)
{
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
}
else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
if (BOOST_UNORDERED_TEST_MOVING
? (bool)allocator_type::is_propagate_on_move
: (bool)allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
#endif
}
{
test::check_instances check_;
test::random_values<T> v(500, generator);
T y(0, hf, eq, al1);
T x(0, hf, eq, al2);
x.max_load_factor(0.25);
x.insert(v.begin(), v.end());
test::object_count count = test::global_object_count;
y = boost::move(x);
if (BOOST_UNORDERED_TEST_MOVING &&
allocator_type::is_propagate_on_move) {
BOOST_TEST(count == test::global_object_count);
}
test::check_container(y, v);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.25);
{
test::check_instances check_;
test::random_values<T> v(500, generator);
T y(0, hf, eq, al1);
T x(0, hf, eq, al2);
x.max_load_factor(0.25);
x.insert(v.begin(), v.end());
test::object_count count = test::global_object_count;
y = boost::move(x);
if (BOOST_UNORDERED_TEST_MOVING &&
allocator_type::is_propagate_on_move)
{
BOOST_TEST(count == test::global_object_count);
}
test::check_container(y, v);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.25);
if (BOOST_UNORDERED_TEST_MOVING ?
(bool) allocator_type::is_propagate_on_move :
(bool) allocator_type::is_propagate_on_assign)
{
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
}
else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
}
{
test::check_instances check_;
test::random_values<T> v1(1000, generator);
test::random_values<T> v2(200, generator);
T x(0, hf, eq, al2);
x.max_load_factor(0.5);
x.insert(v2.begin(), v2.end());
test::object_count count1 = test::global_object_count;
T y(v1.begin(), v1.end(), 0, hf, eq, al1);
y = boost::move(x);
test::object_count count2 = test::global_object_count;
if (BOOST_UNORDERED_TEST_MOVING &&
allocator_type::is_propagate_on_move)
{
BOOST_TEST(count1.instances ==
test::global_object_count.instances);
BOOST_TEST(count2.constructions ==
test::global_object_count.constructions);
}
test::check_container(y, v2);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.5);
if (BOOST_UNORDERED_TEST_MOVING ?
(bool) allocator_type::is_propagate_on_move :
(bool) allocator_type::is_propagate_on_assign)
{
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
}
else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
if (BOOST_UNORDERED_TEST_MOVING
? (bool)allocator_type::is_propagate_on_move
: (bool)allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
}
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
{
test::check_instances check_;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::allocator2<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator2<test::object> >* test_multimap;
test::random_values<T> v1(1000, generator);
test::random_values<T> v2(200, generator);
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
T x(0, hf, eq, al2);
x.max_load_factor(0.5);
x.insert(v2.begin(), v2.end());
test::object_count count1 = test::global_object_count;
T y(v1.begin(), v1.end(), 0, hf, eq, al1);
y = boost::move(x);
test::object_count count2 = test::global_object_count;
if (BOOST_UNORDERED_TEST_MOVING &&
allocator_type::is_propagate_on_move) {
BOOST_TEST(count1.instances == test::global_object_count.instances);
BOOST_TEST(count2.constructions ==
test::global_object_count.constructions);
}
test::check_container(y, v2);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.5);
if (BOOST_UNORDERED_TEST_MOVING
? (bool)allocator_type::is_propagate_on_move
: (bool)allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
}
}
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
test_set_prop_move;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
test_multiset_prop_move;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
test_map_prop_move;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::cxx11_allocator<test::object, test::propagate_move> >*
test_multimap_prop_move;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
test_set_no_prop_move;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
test_multiset_no_prop_move;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
test_map_no_prop_move;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
test_multimap_no_prop_move;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(move_construct_tests1, (
(test_map_std_alloc)
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_prop_move)(test_multiset_prop_move)(test_map_prop_move)(test_multimap_prop_move)
(test_set_no_prop_move)(test_multiset_no_prop_move)(test_map_no_prop_move)(test_multimap_no_prop_move)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(move_assign_tests1, (
(test_map_std_alloc)
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_prop_move)(test_multiset_prop_move)(test_map_prop_move)(test_multimap_prop_move)
(test_set_no_prop_move)(test_multiset_no_prop_move)(test_map_no_prop_move)(test_multimap_no_prop_move)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(move_construct_tests2, (
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_prop_move)(test_multiset_prop_move)(test_map_prop_move)(test_multimap_prop_move)
(test_set_no_prop_move)(test_multiset_no_prop_move)(test_map_no_prop_move)(test_multimap_no_prop_move)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(move_assign_tests2, (
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_prop_move)(test_multiset_prop_move)(test_map_prop_move)(test_multimap_prop_move)
(test_set_no_prop_move)(test_multiset_no_prop_move)(test_map_no_prop_move)(test_multimap_no_prop_move)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(move_construct_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_move)(test_multiset_prop_move)(test_map_prop_move)(
test_multimap_prop_move)(test_set_no_prop_move)(
test_multiset_no_prop_move)(test_map_no_prop_move)(
test_multimap_no_prop_move))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(move_assign_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_move)(test_multiset_prop_move)(test_map_prop_move)(
test_multimap_prop_move)(test_set_no_prop_move)(
test_multiset_no_prop_move)(test_map_no_prop_move)(
test_multimap_no_prop_move))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(move_construct_tests2,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_prop_move)(
test_multiset_prop_move)(test_map_prop_move)(test_multimap_prop_move)(
test_set_no_prop_move)(test_multiset_no_prop_move)(
test_map_no_prop_move)(test_multimap_no_prop_move))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(move_assign_tests2,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_prop_move)(
test_multiset_prop_move)(test_map_prop_move)(test_multimap_prop_move)(
test_set_no_prop_move)(test_multiset_no_prop_move)(
test_map_no_prop_move)(test_multimap_no_prop_move))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@ -12,139 +12,159 @@
#include "../helpers/test.hpp"
namespace noexcept_tests
namespace noexcept_tests {
// Test the noexcept is set correctly for the move constructor.
struct hash_possible_exception : boost::hash<int>
{
// Test the noexcept is set correctly for the move constructor.
struct hash_possible_exception : boost::hash<int>
{
hash_possible_exception(hash_possible_exception const&) {}
};
hash_possible_exception(hash_possible_exception const&) {}
};
struct equal_to_possible_exception : std::equal_to<int>
{
equal_to_possible_exception(equal_to_possible_exception const&) {}
};
struct equal_to_possible_exception : std::equal_to<int>
{
equal_to_possible_exception(equal_to_possible_exception const&) {}
};
// Test that the move constructor does actually move without throwing
// an exception when it claims to.
// Test that the move constructor does actually move without throwing
// an exception when it claims to.
struct test_exception {};
struct test_exception
{
};
bool throwing_test_exception = false;
void test_throw(char const* name) {
if (throwing_test_exception) {
std::cerr << "Throw exception in: " << name << std::endl;
throw test_exception();
}
}
class hash_nothrow_move : boost::hash<int>
{
BOOST_COPYABLE_AND_MOVABLE(hash_nothrow_move)
typedef boost::hash<int> base;
public:
hash_nothrow_move(BOOST_RV_REF(hash_nothrow_move))
BOOST_NOEXCEPT {}
hash_nothrow_move() { test_throw("Constructor"); }
hash_nothrow_move(hash_nothrow_move const&) { test_throw("Copy"); }
hash_nothrow_move& operator=(BOOST_COPY_ASSIGN_REF(hash_nothrow_move))
{ test_throw("Assign"); return *this; }
hash_nothrow_move& operator=(BOOST_RV_REF(hash_nothrow_move))
{ test_throw("Move Assign"); return *this; }
std::size_t operator()(int x) const
{ test_throw("Operator"); return static_cast<base const&>(*this)(x); }
};
class equal_to_nothrow_move : std::equal_to<int>
{
BOOST_COPYABLE_AND_MOVABLE(equal_to_nothrow_move)
typedef std::equal_to<int> base;
public:
equal_to_nothrow_move(BOOST_RV_REF(equal_to_nothrow_move))
BOOST_NOEXCEPT {}
equal_to_nothrow_move() { test_throw("Constructor"); }
equal_to_nothrow_move(equal_to_nothrow_move const&)
{ test_throw("Copy"); }
equal_to_nothrow_move& operator=(BOOST_COPY_ASSIGN_REF(equal_to_nothrow_move))
{ test_throw("Assign"); return *this; }
equal_to_nothrow_move& operator=(BOOST_RV_REF(equal_to_nothrow_move))
{ test_throw("Move Assign"); return *this; }
std::size_t operator()(int x, int y) const
{ test_throw("Operator"); return static_cast<base const&>(*this)(x, y); }
};
bool have_is_nothrow_move = false;
UNORDERED_AUTO_TEST(check_is_nothrow_move)
{
BOOST_TEST(!boost::is_nothrow_move_constructible<hash_possible_exception>::value);
have_is_nothrow_move = boost::is_nothrow_move_constructible<hash_nothrow_move>::value;
// Copied from boost::is_nothrow_move_constructible implementation
// to make sure this does actually detect it when expected.
//
// The type trait is also available when BOOST_IS_NOTHROW_MOVE_CONSTRUCT
// is defined (for some versions of Visual C++?) but detects 'throw()',
// not noexcept.
#if !defined(BOOST_NO_CXX11_NOEXCEPT) && !defined(BOOST_NO_SFINAE_EXPR) && !BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40800)
BOOST_TEST(have_is_nothrow_move);
#endif
}
UNORDERED_AUTO_TEST(test_noexcept)
{
if (have_is_nothrow_move) {
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_set<int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_multiset<int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_map<int, int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_multimap<int, int> >::value));
}
BOOST_TEST((!boost::is_nothrow_move_constructible<
boost::unordered_set<int, hash_possible_exception>
>::value));
BOOST_TEST((!boost::is_nothrow_move_constructible<
boost::unordered_multiset<int, boost::hash<int>,
equal_to_possible_exception>
>::value));
}
UNORDERED_AUTO_TEST(test_no_throw_when_noexcept)
{
typedef boost::unordered_set<int,
hash_nothrow_move, equal_to_nothrow_move> throwing_set;
if (have_is_nothrow_move)
{
BOOST_TEST(boost::is_nothrow_move_constructible<throwing_set>::value);
throwing_test_exception = false;
throwing_set x1;
x1.insert(10);
x1.insert(50);
try {
throwing_test_exception = true;
throwing_set x2 = boost::move(x1);
BOOST_TEST(x2.size() == 2);
BOOST_TEST(*x2.begin() == 10 || *x2.begin() == 50);
} catch(test_exception) {
BOOST_TEST(false);
}
throwing_test_exception = false;
}
bool throwing_test_exception = false;
void test_throw(char const* name)
{
if (throwing_test_exception) {
std::cerr << "Throw exception in: " << name << std::endl;
throw test_exception();
}
}
class hash_nothrow_move : boost::hash<int>
{
BOOST_COPYABLE_AND_MOVABLE(hash_nothrow_move)
typedef boost::hash<int> base;
public:
hash_nothrow_move(BOOST_RV_REF(hash_nothrow_move)) BOOST_NOEXCEPT {}
hash_nothrow_move() { test_throw("Constructor"); }
hash_nothrow_move(hash_nothrow_move const&) { test_throw("Copy"); }
hash_nothrow_move& operator=(BOOST_COPY_ASSIGN_REF(hash_nothrow_move))
{
test_throw("Assign");
return *this;
}
hash_nothrow_move& operator=(BOOST_RV_REF(hash_nothrow_move))
{
test_throw("Move Assign");
return *this;
}
std::size_t operator()(int x) const
{
test_throw("Operator");
return static_cast<base const&>(*this)(x);
}
};
class equal_to_nothrow_move : std::equal_to<int>
{
BOOST_COPYABLE_AND_MOVABLE(equal_to_nothrow_move)
typedef std::equal_to<int> base;
public:
equal_to_nothrow_move(BOOST_RV_REF(equal_to_nothrow_move)) BOOST_NOEXCEPT {}
equal_to_nothrow_move() { test_throw("Constructor"); }
equal_to_nothrow_move(equal_to_nothrow_move const&) { test_throw("Copy"); }
equal_to_nothrow_move& operator=(
BOOST_COPY_ASSIGN_REF(equal_to_nothrow_move))
{
test_throw("Assign");
return *this;
}
equal_to_nothrow_move& operator=(BOOST_RV_REF(equal_to_nothrow_move))
{
test_throw("Move Assign");
return *this;
}
std::size_t operator()(int x, int y) const
{
test_throw("Operator");
return static_cast<base const&>(*this)(x, y);
}
};
bool have_is_nothrow_move = false;
UNORDERED_AUTO_TEST(check_is_nothrow_move)
{
BOOST_TEST(
!boost::is_nothrow_move_constructible<hash_possible_exception>::value);
have_is_nothrow_move =
boost::is_nothrow_move_constructible<hash_nothrow_move>::value;
// Copied from boost::is_nothrow_move_constructible implementation
// to make sure this does actually detect it when expected.
//
// The type trait is also available when BOOST_IS_NOTHROW_MOVE_CONSTRUCT
// is defined (for some versions of Visual C++?) but detects 'throw()',
// not noexcept.
#if !defined(BOOST_NO_CXX11_NOEXCEPT) && !defined(BOOST_NO_SFINAE_EXPR) && \
!BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40800)
BOOST_TEST(have_is_nothrow_move);
#endif
}
UNORDERED_AUTO_TEST(test_noexcept)
{
if (have_is_nothrow_move) {
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_set<int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_multiset<int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_map<int, int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_multimap<int, int> >::value));
}
BOOST_TEST((!boost::is_nothrow_move_constructible<
boost::unordered_set<int, hash_possible_exception> >::value));
BOOST_TEST(
(!boost::is_nothrow_move_constructible<boost::unordered_multiset<int,
boost::hash<int>, equal_to_possible_exception> >::value));
}
UNORDERED_AUTO_TEST(test_no_throw_when_noexcept)
{
typedef boost::unordered_set<int, hash_nothrow_move, equal_to_nothrow_move>
throwing_set;
if (have_is_nothrow_move) {
BOOST_TEST(boost::is_nothrow_move_constructible<throwing_set>::value);
throwing_test_exception = false;
throwing_set x1;
x1.insert(10);
x1.insert(50);
try {
throwing_test_exception = true;
throwing_set x2 = boost::move(x1);
BOOST_TEST(x2.size() == 2);
BOOST_TEST(*x2.begin() == 10 || *x2.begin() == 50);
} catch (test_exception) {
BOOST_TEST(false);
}
throwing_test_exception = false;
}
}
}
RUN_TESTS()

View File

@ -16,8 +16,7 @@
#include "../helpers/metafunctions.hpp"
#include "../objects/test.hpp"
namespace rehash_tests
{
namespace rehash_tests {
test::seed_t initialize_seed(2974);
@ -25,12 +24,11 @@ template <class X>
bool postcondition(X const& x, BOOST_DEDUCED_TYPENAME X::size_type n)
{
return static_cast<double>(x.bucket_count()) >=
static_cast<double>(x.size()) / x.max_load_factor() &&
x.bucket_count() >= n;
static_cast<double>(x.size()) / x.max_load_factor() &&
x.bucket_count() >= n;
}
template <class X>
void rehash_empty_test1(X*)
template <class X> void rehash_empty_test1(X*)
{
X x;
@ -44,8 +42,7 @@ void rehash_empty_test1(X*)
BOOST_TEST(postcondition(x, 10000000));
}
template <class X>
void rehash_empty_test2(X*, test::random_generator generator)
template <class X> void rehash_empty_test2(X*, test::random_generator generator)
{
test::random_values<X> v(1000, generator);
test::ordered<X> tracker;
@ -60,14 +57,13 @@ void rehash_empty_test2(X*, test::random_generator generator)
tracker.compare(x);
BOOST_TEST(postcondition(x, 10000));
x.rehash(10000000);
tracker.compare(x);
BOOST_TEST(postcondition(x, 10000000));
}
template <class X>
void rehash_empty_test3(X*, test::random_generator generator)
template <class X> void rehash_empty_test3(X*, test::random_generator generator)
{
test::random_values<X> v(1000, generator);
test::ordered<X> tracker;
@ -84,31 +80,33 @@ void rehash_empty_test3(X*, test::random_generator generator)
BOOST_TEST(postcondition(x, 0));
}
template <class X>
void rehash_test1(X*, test::random_generator generator)
template <class X> void rehash_test1(X*, test::random_generator generator)
{
test::random_values<X> v(1000, generator);
test::ordered<X> tracker;
tracker.insert_range(v.begin(), v.end());
X x(v.begin(), v.end());
x.rehash(0); BOOST_TEST(postcondition(x, 0));
x.rehash(0);
BOOST_TEST(postcondition(x, 0));
tracker.compare(x);
x.max_load_factor(0.25);
x.rehash(0); BOOST_TEST(postcondition(x, 0));
x.rehash(0);
BOOST_TEST(postcondition(x, 0));
tracker.compare(x);
x.max_load_factor(50.0);
x.rehash(0); BOOST_TEST(postcondition(x, 0));
x.rehash(0);
BOOST_TEST(postcondition(x, 0));
tracker.compare(x);
x.rehash(1000); BOOST_TEST(postcondition(x, 1000));
x.rehash(1000);
BOOST_TEST(postcondition(x, 1000));
tracker.compare(x);
}
template <class X>
void reserve_empty_test1(X*)
template <class X> void reserve_empty_test1(X*)
{
X x;
@ -121,8 +119,7 @@ void reserve_empty_test1(X*)
BOOST_TEST(x.bucket_count() >= 10000000);
}
template <class X>
void reserve_empty_test2(X*)
template <class X> void reserve_empty_test2(X*)
{
X x;
x.max_load_factor(0.25);
@ -136,21 +133,20 @@ void reserve_empty_test2(X*)
BOOST_TEST(x.bucket_count() >= 40000000);
}
template <class X>
void reserve_test1(X*, test::random_generator generator)
template <class X> void reserve_test1(X*, test::random_generator generator)
{
for (int random_mlf = 0; random_mlf < 2; ++random_mlf)
{
for (std::size_t i = 1; i < 2000; i += i < 50 ? 1 : 13)
{
for (int random_mlf = 0; random_mlf < 2; ++random_mlf) {
for (std::size_t i = 1; i < 2000; i += i < 50 ? 1 : 13) {
test::random_values<X> v(i, generator);
test::ordered<X> tracker;
tracker.insert_range(v.begin(), v.end());
X x;
x.max_load_factor(random_mlf ?
static_cast<float>(std::rand() % 1000) / 500.0f + 0.5f : 1.0f);
x.max_load_factor(
random_mlf
? static_cast<float>(std::rand() % 1000) / 500.0f + 0.5f
: 1.0f);
x.reserve(test::has_unique_keys<X>::value ? i : v.size());
// Insert an element before the range insert, otherwise there are
@ -168,28 +164,26 @@ void reserve_test1(X*, test::random_generator generator)
}
}
template <class X>
void reserve_test2(X*, test::random_generator generator)
template <class X> void reserve_test2(X*, test::random_generator generator)
{
for (int random_mlf = 0; random_mlf < 2; ++random_mlf)
{
for (std::size_t i = 0; i < 2000; i += i < 50 ? 1 : 13)
{
for (int random_mlf = 0; random_mlf < 2; ++random_mlf) {
for (std::size_t i = 0; i < 2000; i += i < 50 ? 1 : 13) {
test::random_values<X> v(i, generator);
test::ordered<X> tracker;
tracker.insert_range(v.begin(), v.end());
X x;
x.max_load_factor(random_mlf ?
static_cast<float>(std::rand() % 1000) / 500.0f + 0.5f : 1.0f);
x.max_load_factor(
random_mlf
? static_cast<float>(std::rand() % 1000) / 500.0f + 0.5f
: 1.0f);
x.reserve(test::has_unique_keys<X>::value ? i : v.size());
std::size_t bucket_count = x.bucket_count();
for (typename test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
it != v.end(); ++it) {
x.insert(*it);
}
@ -200,11 +194,9 @@ void reserve_test2(X*, test::random_generator generator)
}
boost::unordered_set<int>* int_set_ptr;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset_ptr;
boost::unordered_map<test::movable, test::movable,
test::hash, test::equal_to,
boost::unordered_map<test::movable, test::movable, test::hash, test::equal_to,
test::allocator2<test::movable> >* test_map_ptr;
boost::unordered_multimap<int, int>* int_multimap_ptr;
@ -213,35 +205,26 @@ using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(rehash_empty_test1,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))
)
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr)))
UNORDERED_TEST(rehash_empty_test2,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))
((default_generator)(generate_collisions)(limited_range))
)
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(rehash_empty_test3,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))
((default_generator)(generate_collisions)(limited_range))
)
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(rehash_test1,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))
((default_generator)(generate_collisions)(limited_range))
)
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(reserve_empty_test1,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))
)
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr)))
UNORDERED_TEST(reserve_empty_test2,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))
)
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr)))
UNORDERED_TEST(reserve_test1,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))
((default_generator)(generate_collisions)(limited_range))
)
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(reserve_test2,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))
((default_generator)(generate_collisions)(limited_range))
)
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@ -17,8 +17,7 @@
#include <algorithm>
#include "../helpers/equivalent.hpp"
template <class X>
void simple_test(X const& a)
template <class X> void simple_test(X const& a)
{
test::unordered_equivalence_tester<X> equivalent(a);
@ -74,9 +73,8 @@ void simple_test(X const& a)
}
{
BOOST_TEST(a.size() ==
static_cast<BOOST_DEDUCED_TYPENAME X::size_type>(
std::distance(a.begin(), a.end())));
BOOST_TEST(a.size() == static_cast<BOOST_DEDUCED_TYPENAME X::size_type>(
std::distance(a.begin(), a.end())));
}
{
@ -95,38 +93,40 @@ UNORDERED_AUTO_TEST(simple_tests)
using namespace std;
srand(14878);
std::cout<<"Test unordered_set.\n";
std::cout << "Test unordered_set.\n";
boost::unordered_set<int> set;
simple_test(set);
set.insert(1); set.insert(2); set.insert(1456);
set.insert(1);
set.insert(2);
set.insert(1456);
simple_test(set);
std::cout<<"Test unordered_multiset.\n";
std::cout << "Test unordered_multiset.\n";
boost::unordered_multiset<int> multiset;
simple_test(multiset);
for(int i1 = 0; i1 < 1000; ++i1) {
for (int i1 = 0; i1 < 1000; ++i1) {
int count = rand() % 10, index = rand();
for(int j = 0; j < count; ++j)
for (int j = 0; j < count; ++j)
multiset.insert(index);
}
simple_test(multiset);
std::cout<<"Test unordered_map.\n";
std::cout << "Test unordered_map.\n";
boost::unordered_map<int, int> map;
for(int i2 = 0; i2 < 1000; ++i2) {
for (int i2 = 0; i2 < 1000; ++i2) {
map.insert(std::pair<const int, int>(rand(), rand()));
}
simple_test(map);
std::cout<<"Test unordered_multimap.\n";
std::cout << "Test unordered_multimap.\n";
boost::unordered_multimap<int, int> multimap;
for(int i3 = 0; i3 < 1000; ++i3) {
for (int i3 = 0; i3 < 1000; ++i3) {
int count = rand() % 10, index = rand();
for(int j = 0; j < count; ++j)
for (int j = 0; j < count; ++j)
multimap.insert(std::pair<const int, int>(index, rand()));
}
simple_test(multimap);

View File

@ -21,16 +21,14 @@
#include "../helpers/invariants.hpp"
#if defined(BOOST_MSVC)
#pragma warning(disable:4127) // conditional expression is constant
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace swap_tests
{
namespace swap_tests {
test::seed_t initialize_seed(783472);
template <class X>
void swap_test_impl(X& x1, X& x2)
template <class X> void swap_test_impl(X& x1, X& x2)
{
test::ordered<X> tracker1 = test::create_ordered(x1);
test::ordered<X> tracker2 = test::create_ordered(x2);
@ -41,8 +39,7 @@ void swap_test_impl(X& x1, X& x2)
tracker2.compare(x1);
}
template <class X>
void swap_tests1(X*, test::random_generator generator)
template <class X> void swap_tests1(X*, test::random_generator generator)
{
{
test::check_instances check_;
@ -54,7 +51,7 @@ void swap_tests1(X*, test::random_generator generator)
{
test::check_instances check_;
X x,y;
X x, y;
swap_test_impl(x, y);
}
@ -77,8 +74,7 @@ void swap_tests1(X*, test::random_generator generator)
}
}
template <class X>
void swap_tests2(X* ptr, test::random_generator generator)
template <class X> void swap_tests2(X* ptr, test::random_generator generator)
{
swap_tests1(ptr, generator);
@ -123,8 +119,7 @@ void swap_tests2(X* ptr, test::random_generator generator)
X y(vy.begin(), vy.end(), 0, hasher(), key_equal(), allocator_type(2));
if (allocator_type::is_propagate_on_swap ||
x.get_allocator() == y.get_allocator())
{
x.get_allocator() == y.get_allocator()) {
swap_test_impl(x, y);
}
}
@ -141,67 +136,53 @@ void swap_tests2(X* ptr, test::random_generator generator)
allocator_type(2));
if (allocator_type::is_propagate_on_swap ||
x.get_allocator() == y.get_allocator())
{
x.get_allocator() == y.get_allocator()) {
swap_test_impl(x, y);
swap_test_impl(x, y);
}
}
}
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator2<test::object> >* test_multimap;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
test_set_prop_swap;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
test_multiset_prop_swap;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
test_map_prop_swap;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::cxx11_allocator<test::object, test::propagate_swap> >*
test_multimap_prop_swap;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
test_set_no_prop_swap;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
test_multiset_no_prop_swap;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
test_map_no_prop_swap;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
test_multimap_no_prop_swap;
template <typename T>
bool is_propagate(T*)
template <typename T> bool is_propagate(T*)
{
return T::allocator_type::is_propagate_on_swap;
}
@ -217,22 +198,19 @@ UNORDERED_AUTO_TEST(check_traits)
BOOST_TEST(!is_propagate(test_set_no_prop_swap));
}
UNORDERED_TEST(swap_tests1, (
(test_map_std_alloc)
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_prop_swap)(test_multiset_prop_swap)(test_map_prop_swap)(test_multimap_prop_swap)
(test_set_no_prop_swap)(test_multiset_no_prop_swap)(test_map_no_prop_swap)(test_multimap_no_prop_swap)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(swap_tests2, (
(test_set)(test_multiset)(test_map)(test_multimap)
(test_set_prop_swap)(test_multiset_prop_swap)(test_map_prop_swap)(test_multimap_prop_swap)
(test_set_no_prop_swap)(test_multiset_no_prop_swap)(test_map_no_prop_swap)(test_multimap_no_prop_swap)
)
((default_generator)(generate_collisions)(limited_range))
)
UNORDERED_TEST(swap_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_swap)(test_multiset_prop_swap)(test_map_prop_swap)(
test_multimap_prop_swap)(test_set_no_prop_swap)(
test_multiset_no_prop_swap)(test_map_no_prop_swap)(
test_multimap_no_prop_swap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(swap_tests2,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_prop_swap)(
test_multiset_prop_swap)(test_map_prop_swap)(test_multimap_prop_swap)(
test_set_no_prop_swap)(test_multiset_no_prop_swap)(
test_map_no_prop_swap)(test_multimap_no_prop_swap))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@ -13,101 +13,100 @@
#include <iostream>
#include "../helpers/test.hpp"
namespace unnecessary_copy_tests
namespace unnecessary_copy_tests {
struct count_copies
{
struct count_copies
private:
BOOST_COPYABLE_AND_MOVABLE(count_copies)
public:
static int copies;
static int moves;
static int id_count;
count_copies() : tag_(0), id_(++id_count)
{
private:
BOOST_COPYABLE_AND_MOVABLE(count_copies)
public:
static int copies;
static int moves;
static int id_count;
count_copies() : tag_(0), id_(++id_count) {
++copies;
trace_op("Default construct");
}
explicit count_copies(int tag) : tag_(tag), id_(++id_count) {
++copies;
trace_op("Tag construct");
}
// This bizarre constructor is an attempt to confuse emplace.
//
// unordered_map<count_copies, count_copies> x:
// x.emplace(count_copies(1), count_copies(2));
// x.emplace(count_copies(1), count_copies(2), count_copies(3));
//
// The first emplace should use the single argument constructor twice.
// The second emplace should use the single argument contructor for
// the key, and this constructor for the value.
count_copies(count_copies const&, count_copies const& x)
: tag_(x.tag_), id_(++id_count)
{
++copies;
trace_op("Pair construct");
}
count_copies(count_copies const& x) : tag_(x.tag_), id_(++id_count)
{
++copies;
trace_op("Copy construct");
}
count_copies(BOOST_RV_REF(count_copies) x) :
tag_(x.tag_), id_(++id_count)
{
x.tag_ = -1; ++moves;
trace_op("Move construct");
}
count_copies& operator=(BOOST_COPY_ASSIGN_REF(count_copies) p) // Copy assignment
{
tag_ = p.tag_;
++copies;
trace_op("Copy assign");
return *this;
}
count_copies& operator=(BOOST_RV_REF(count_copies) p) //Move assignment
{
tag_ = p.tag_;
++moves;
trace_op("Move assign");
return *this;
}
~count_copies() {
trace_op("Destruct");
}
void trace_op(char const* str) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << str << ": " << tag_
<< " (#" << id_ << ")" <<std::endl;
}
int tag_;
int id_;
};
bool operator==(count_copies const& x, count_copies const& y) {
return x.tag_ == y.tag_;
++copies;
trace_op("Default construct");
}
template <class T>
T source() {
return T();
explicit count_copies(int tag) : tag_(tag), id_(++id_count)
{
++copies;
trace_op("Tag construct");
}
void reset() {
count_copies::copies = 0;
count_copies::moves = 0;
BOOST_LIGHTWEIGHT_TEST_OSTREAM
<< "\nReset\n" << std::endl;
// This bizarre constructor is an attempt to confuse emplace.
//
// unordered_map<count_copies, count_copies> x:
// x.emplace(count_copies(1), count_copies(2));
// x.emplace(count_copies(1), count_copies(2), count_copies(3));
//
// The first emplace should use the single argument constructor twice.
// The second emplace should use the single argument contructor for
// the key, and this constructor for the value.
count_copies(count_copies const&, count_copies const& x)
: tag_(x.tag_), id_(++id_count)
{
++copies;
trace_op("Pair construct");
}
count_copies(count_copies const& x) : tag_(x.tag_), id_(++id_count)
{
++copies;
trace_op("Copy construct");
}
count_copies(BOOST_RV_REF(count_copies) x) : tag_(x.tag_), id_(++id_count)
{
x.tag_ = -1;
++moves;
trace_op("Move construct");
}
count_copies& operator=(
BOOST_COPY_ASSIGN_REF(count_copies) p) // Copy assignment
{
tag_ = p.tag_;
++copies;
trace_op("Copy assign");
return *this;
}
count_copies& operator=(BOOST_RV_REF(count_copies) p) // Move assignment
{
tag_ = p.tag_;
++moves;
trace_op("Move assign");
return *this;
}
~count_copies() { trace_op("Destruct"); }
void trace_op(char const* str)
{
BOOST_LIGHTWEIGHT_TEST_OSTREAM << str << ": " << tag_ << " (#" << id_
<< ")" << std::endl;
}
int tag_;
int id_;
};
bool operator==(count_copies const& x, count_copies const& y)
{
return x.tag_ == y.tag_;
}
template <class T> T source() { return T(); }
void reset()
{
count_copies::copies = 0;
count_copies::moves = 0;
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "\nReset\n" << std::endl;
}
}
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
@ -116,9 +115,10 @@ namespace boost
namespace unnecessary_copy_tests
#endif
{
std::size_t hash_value(unnecessary_copy_tests::count_copies const& x) {
return static_cast<std::size_t>(x.tag_);
}
std::size_t hash_value(unnecessary_copy_tests::count_copies const& x)
{
return static_cast<std::size_t>(x.tag_);
}
}
// Boost.Move doesn't seem to work very well on this compiler.
@ -135,395 +135,408 @@ namespace unnecessary_copy_tests
#define EXTRA_CONSTRUCT_COST 0
#endif
#define COPY_COUNT(n) \
if(::unnecessary_copy_tests::count_copies::copies != n) { \
BOOST_ERROR("Wrong number of copies."); \
std::cerr \
<< "Number of copies: " \
<< ::unnecessary_copy_tests::count_copies::copies \
<< " expecting: " << n << std::endl; \
#define COPY_COUNT(n) \
if (::unnecessary_copy_tests::count_copies::copies != n) { \
BOOST_ERROR("Wrong number of copies."); \
std::cerr << "Number of copies: " \
<< ::unnecessary_copy_tests::count_copies::copies \
<< " expecting: " << n << std::endl; \
}
#define MOVE_COUNT(n) \
if(::unnecessary_copy_tests::count_copies::moves != n) { \
BOOST_ERROR("Wrong number of moves."); \
std::cerr \
<< "Number of moves: " \
<< ::unnecessary_copy_tests::count_copies::moves \
<< " expecting: " <<n << std::endl; \
#define MOVE_COUNT(n) \
if (::unnecessary_copy_tests::count_copies::moves != n) { \
BOOST_ERROR("Wrong number of moves."); \
std::cerr << "Number of moves: " \
<< ::unnecessary_copy_tests::count_copies::moves \
<< " expecting: " << n << std::endl; \
}
#define COPY_COUNT_RANGE(a, b) \
if(::unnecessary_copy_tests::count_copies::copies < a || \
::unnecessary_copy_tests::count_copies::copies > b) { \
BOOST_ERROR("Wrong number of copies."); \
std::cerr \
<< "Number of copies: " \
<< ::unnecessary_copy_tests::count_copies::copies \
<< " expecting: [" << a << ", " << b << "]" << std::endl; \
#define COPY_COUNT_RANGE(a, b) \
if (::unnecessary_copy_tests::count_copies::copies < a || \
::unnecessary_copy_tests::count_copies::copies > b) { \
BOOST_ERROR("Wrong number of copies."); \
std::cerr << "Number of copies: " \
<< ::unnecessary_copy_tests::count_copies::copies \
<< " expecting: [" << a << ", " << b << "]" << std::endl; \
}
#define MOVE_COUNT_RANGE(a, b) \
if(::unnecessary_copy_tests::count_copies::moves < a || \
::unnecessary_copy_tests::count_copies::moves > b) { \
BOOST_ERROR("Wrong number of moves."); \
std::cerr \
<< "Number of moves: " \
<< ::unnecessary_copy_tests::count_copies::moves \
<< " expecting: [" << a << ", " << b << "]" << std::endl; \
#define MOVE_COUNT_RANGE(a, b) \
if (::unnecessary_copy_tests::count_copies::moves < a || \
::unnecessary_copy_tests::count_copies::moves > b) { \
BOOST_ERROR("Wrong number of moves."); \
std::cerr << "Number of moves: " \
<< ::unnecessary_copy_tests::count_copies::moves \
<< " expecting: [" << a << ", " << b << "]" << std::endl; \
}
#define COPY_COUNT_EXTRA(a, b) \
COPY_COUNT_RANGE(a, a + b * EXTRA_CONSTRUCT_COST)
#define MOVE_COUNT_EXTRA(a, b) \
MOVE_COUNT_RANGE(a, a + b * EXTRA_CONSTRUCT_COST)
#define COPY_COUNT_EXTRA(a, b) COPY_COUNT_RANGE(a, a + b * EXTRA_CONSTRUCT_COST)
#define MOVE_COUNT_EXTRA(a, b) MOVE_COUNT_RANGE(a, a + b * EXTRA_CONSTRUCT_COST)
namespace unnecessary_copy_tests
namespace unnecessary_copy_tests {
int count_copies::copies;
int count_copies::moves;
int count_copies::id_count;
template <class T> void unnecessary_copy_insert_test(T*)
{
int count_copies::copies;
int count_copies::moves;
int count_copies::id_count;
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
reset();
x.insert(a);
COPY_COUNT(1);
}
template <class T>
void unnecessary_copy_insert_test(T*)
{
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
reset();
x.insert(a);
COPY_COUNT(1);
}
boost::unordered_set<count_copies>* set;
boost::unordered_multiset<count_copies>* multiset;
boost::unordered_map<int, count_copies>* map;
boost::unordered_multimap<int, count_copies>* multimap;
boost::unordered_set<count_copies>* set;
boost::unordered_multiset<count_copies>* multiset;
boost::unordered_map<int, count_copies>* map;
boost::unordered_multimap<int, count_copies>* multimap;
UNORDERED_TEST(unnecessary_copy_insert_test, ((set)(multiset)(map)(multimap)))
UNORDERED_TEST(unnecessary_copy_insert_test,
((set)(multiset)(map)(multimap)))
template <class T> void unnecessary_copy_emplace_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
x.emplace(a);
COPY_COUNT(2);
}
template <class T>
void unnecessary_copy_emplace_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
x.emplace(a);
COPY_COUNT(2);
}
template <class T>
void unnecessary_copy_emplace_rvalue_test(T*)
{
reset();
T x;
x.emplace(source<BOOST_DEDUCED_TYPENAME T::value_type>());
template <class T> void unnecessary_copy_emplace_rvalue_test(T*)
{
reset();
T x;
x.emplace(source<BOOST_DEDUCED_TYPENAME T::value_type>());
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT(1);
COPY_COUNT(1);
#else
COPY_COUNT(2);
COPY_COUNT(2);
#endif
}
}
UNORDERED_TEST(unnecessary_copy_emplace_test,
((set)(multiset)(map)(multimap)))
UNORDERED_TEST(unnecessary_copy_emplace_rvalue_test,
((set)(multiset)(map)(multimap)))
UNORDERED_TEST(unnecessary_copy_emplace_test, ((set)(multiset)(map)(multimap)))
UNORDERED_TEST(
unnecessary_copy_emplace_rvalue_test, ((set)(multiset)(map)(multimap)))
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class T>
void unnecessary_copy_emplace_std_move_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1); MOVE_COUNT(0);
x.emplace(std::move(a));
COPY_COUNT(1); MOVE_COUNT(1);
}
template <class T> void unnecessary_copy_emplace_std_move_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
MOVE_COUNT(0);
x.emplace(std::move(a));
COPY_COUNT(1);
MOVE_COUNT(1);
}
UNORDERED_TEST(unnecessary_copy_emplace_std_move_test,
((set)(multiset)(map)(multimap)))
UNORDERED_TEST(
unnecessary_copy_emplace_std_move_test, ((set)(multiset)(map)(multimap)))
#endif
template <class T>
void unnecessary_copy_emplace_boost_move_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1); MOVE_COUNT_EXTRA(0, 1);
x.emplace(boost::move(a));
template <class T> void unnecessary_copy_emplace_boost_move_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
MOVE_COUNT_EXTRA(0, 1);
x.emplace(boost::move(a));
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT(1); MOVE_COUNT(1);
COPY_COUNT(1);
MOVE_COUNT(1);
#else
// Since std::pair isn't movable, move only works for sets.
COPY_COUNT_RANGE(1, 2); MOVE_COUNT_RANGE(0, 1);
// Since std::pair isn't movable, move only works for sets.
COPY_COUNT_RANGE(1, 2);
MOVE_COUNT_RANGE(0, 1);
#endif
}
}
UNORDERED_TEST(unnecessary_copy_emplace_boost_move_test,
((set)(multiset)(map)(multimap)))
UNORDERED_TEST(
unnecessary_copy_emplace_boost_move_test, ((set)(multiset)(map)(multimap)))
template <class T>
void unnecessary_copy_emplace_boost_move_set_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1); MOVE_COUNT(0);
x.emplace(boost::move(a));
COPY_COUNT(1); MOVE_COUNT(1);
}
template <class T> void unnecessary_copy_emplace_boost_move_set_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
MOVE_COUNT(0);
x.emplace(boost::move(a));
COPY_COUNT(1);
MOVE_COUNT(1);
}
UNORDERED_TEST(unnecessary_copy_emplace_boost_move_set_test,
((set)(multiset)))
UNORDERED_TEST(unnecessary_copy_emplace_boost_move_set_test, ((set)(multiset)))
template <class T>
void unnecessary_copy_emplace_boost_move_map_test(T*)
{
reset();
T x;
COPY_COUNT(0); MOVE_COUNT(0);
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1); MOVE_COUNT_EXTRA(0, 1);
x.emplace(boost::move(a));
template <class T> void unnecessary_copy_emplace_boost_move_map_test(T*)
{
reset();
T x;
COPY_COUNT(0);
MOVE_COUNT(0);
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
MOVE_COUNT_EXTRA(0, 1);
x.emplace(boost::move(a));
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT(2); MOVE_COUNT_EXTRA(0, 1);
COPY_COUNT(2);
MOVE_COUNT_EXTRA(0, 1);
#else
COPY_COUNT(1); MOVE_COUNT(1);
COPY_COUNT(1);
MOVE_COUNT(1);
#endif
}
}
UNORDERED_TEST(unnecessary_copy_emplace_boost_move_map_test,
((map)(multimap)))
UNORDERED_TEST(unnecessary_copy_emplace_boost_move_map_test, ((map)(multimap)))
UNORDERED_AUTO_TEST(unnecessary_copy_emplace_set_test)
{
// When calling 'source' the object is moved on some compilers, but not
// others. So count that here to adjust later.
UNORDERED_AUTO_TEST(unnecessary_copy_emplace_set_test)
{
// When calling 'source' the object is moved on some compilers, but not
// others. So count that here to adjust later.
reset();
source<count_copies>();
int source_cost = ::unnecessary_copy_tests::count_copies::moves;
reset();
source<count_copies>();
int source_cost = ::unnecessary_copy_tests::count_copies::moves;
//
//
reset();
boost::unordered_set<count_copies> x;
count_copies a;
x.insert(a);
COPY_COUNT(2); MOVE_COUNT(0);
reset();
boost::unordered_set<count_copies> x;
count_copies a;
x.insert(a);
COPY_COUNT(2);
MOVE_COUNT(0);
//
// 0 arguments
//
//
// 0 arguments
//
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
// The container will have to create a copy in order to compare with
// the existing element.
reset();
x.emplace();
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || \
// The container will have to create a copy in order to compare with
// the existing element.
reset();
x.emplace();
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || \
!defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
// source_cost doesn't make much sense here, but it seems to fit.
COPY_COUNT(1); MOVE_COUNT(source_cost);
// source_cost doesn't make much sense here, but it seems to fit.
COPY_COUNT(1);
MOVE_COUNT(source_cost);
#else
COPY_COUNT(1); MOVE_COUNT(1 + source_cost);
COPY_COUNT(1);
MOVE_COUNT(1 + source_cost);
#endif
#endif
//
// 1 argument
//
//
// 1 argument
//
// Emplace should be able to tell that there already is an element
// without creating a new one.
reset();
x.emplace(a);
COPY_COUNT(0); MOVE_COUNT(0);
// Emplace should be able to tell that there already is an element
// without creating a new one.
reset();
x.emplace(a);
COPY_COUNT(0);
MOVE_COUNT(0);
// A new object is created by source, but it shouldn't be moved or
// copied.
reset();
x.emplace(source<count_copies>());
COPY_COUNT(1); MOVE_COUNT(source_cost);
// A new object is created by source, but it shouldn't be moved or
// copied.
reset();
x.emplace(source<count_copies>());
COPY_COUNT(1);
MOVE_COUNT(source_cost);
// No move should take place.
reset();
x.emplace(boost::move(a));
// No move should take place.
reset();
x.emplace(boost::move(a));
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT(0); MOVE_COUNT(0);
COPY_COUNT(0);
MOVE_COUNT(0);
#else
COPY_COUNT(0); MOVE_COUNT(1);
COPY_COUNT(0);
MOVE_COUNT(1);
#endif
// Use a new value for cases where a did get moved...
count_copies b;
// Use a new value for cases where a did get moved...
count_copies b;
// The container will have to create a copy in order to compare with
// the existing element.
reset();
x.emplace(b.tag_);
COPY_COUNT(1); MOVE_COUNT(0);
// The container will have to create a copy in order to compare with
// the existing element.
reset();
x.emplace(b.tag_);
COPY_COUNT(1);
MOVE_COUNT(0);
//
// 2 arguments
//
//
// 2 arguments
//
// The container will have to create b copy in order to compare with
// the existing element.
//
// Note to self: If copy_count == 0 it's an error not an optimization.
// TODO: Devise a better test.
// The container will have to create b copy in order to compare with
// the existing element.
//
// Note to self: If copy_count == 0 it's an error not an optimization.
// TODO: Devise a better test.
reset();
reset();
x.emplace(b, b);
COPY_COUNT(1); MOVE_COUNT(0);
}
x.emplace(b, b);
COPY_COUNT(1);
MOVE_COUNT(0);
}
UNORDERED_AUTO_TEST(unnecessary_copy_emplace_map_test)
{
// When calling 'source' the object is moved on some compilers, but not
// others. So count that here to adjust later.
UNORDERED_AUTO_TEST(unnecessary_copy_emplace_map_test)
{
// When calling 'source' the object is moved on some compilers, but not
// others. So count that here to adjust later.
reset();
source<count_copies>();
int source_cost = ::unnecessary_copy_tests::count_copies::moves;
reset();
source<count_copies>();
int source_cost = ::unnecessary_copy_tests::count_copies::moves;
reset();
source<std::pair<count_copies, count_copies> >();
int source_pair_cost = ::unnecessary_copy_tests::count_copies::moves;
reset();
source<std::pair<count_copies, count_copies> >();
int source_pair_cost = ::unnecessary_copy_tests::count_copies::moves;
//
//
reset();
boost::unordered_map<count_copies, count_copies> x;
// TODO: Run tests for pairs without const etc.
std::pair<count_copies const, count_copies> a;
x.emplace(a);
COPY_COUNT_EXTRA(4, 1); MOVE_COUNT_EXTRA(0, 1);
reset();
boost::unordered_map<count_copies, count_copies> x;
// TODO: Run tests for pairs without const etc.
std::pair<count_copies const, count_copies> a;
x.emplace(a);
COPY_COUNT_EXTRA(4, 1);
MOVE_COUNT_EXTRA(0, 1);
//
// 0 arguments
//
//
// 0 arguments
//
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
// COPY_COUNT(1) would be okay here.
reset();
x.emplace();
# if BOOST_WORKAROUND(BOOST_MSVC, == 1700)
// This is a little odd, Visual C++ 11 seems to move the pair, which
// results in one copy (for the const key) and one move (for the
// non-const mapped value). Since 'emplace(boost::move(a))' (see below)
// has the normal result, it must be some odd consequence of how
// Visual C++ 11 handles calling move for default arguments.
COPY_COUNT(3); MOVE_COUNT(1);
# else
COPY_COUNT_EXTRA(2, 1); MOVE_COUNT_EXTRA(0, 1);
# endif
// COPY_COUNT(1) would be okay here.
reset();
x.emplace();
#if BOOST_WORKAROUND(BOOST_MSVC, == 1700)
// This is a little odd, Visual C++ 11 seems to move the pair, which
// results in one copy (for the const key) and one move (for the
// non-const mapped value). Since 'emplace(boost::move(a))' (see below)
// has the normal result, it must be some odd consequence of how
// Visual C++ 11 handles calling move for default arguments.
COPY_COUNT(3);
MOVE_COUNT(1);
#else
COPY_COUNT_EXTRA(2, 1);
MOVE_COUNT_EXTRA(0, 1);
#endif
#endif
reset();
x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(),
boost::make_tuple());
COPY_COUNT(2); MOVE_COUNT(0);
reset();
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(),
boost::make_tuple());
COPY_COUNT(2);
MOVE_COUNT(0);
//
// 1 argument
//
//
// 1 argument
//
reset();
x.emplace(a);
COPY_COUNT(0);
MOVE_COUNT(0);
reset();
x.emplace(a);
COPY_COUNT(0); MOVE_COUNT(0);
// A new object is created by source, but it shouldn't be moved or
// copied.
reset();
x.emplace(source<std::pair<count_copies, count_copies> >());
COPY_COUNT(2);
MOVE_COUNT(source_pair_cost);
// A new object is created by source, but it shouldn't be moved or
// copied.
reset();
x.emplace(source<std::pair<count_copies, count_copies> >());
COPY_COUNT(2); MOVE_COUNT(source_pair_cost);
#if !(defined(__GNUC__) && __cplusplus < 199900L) && \
#if !(defined(__GNUC__) && __cplusplus < 199900L) && \
!(defined(_MSC_VER) && _MSC_VER < 1600)
count_copies part;
reset();
std::pair<count_copies const&, count_copies const&> a_ref(part, part);
x.emplace(a_ref);
COPY_COUNT(2); MOVE_COUNT(0);
count_copies part;
reset();
std::pair<count_copies const&, count_copies const&> a_ref(part, part);
x.emplace(a_ref);
COPY_COUNT(2);
MOVE_COUNT(0);
#endif
// No move should take place.
// (since a is already in the container)
reset();
x.emplace(boost::move(a));
COPY_COUNT(0); MOVE_COUNT(0);
// No move should take place.
// (since a is already in the container)
reset();
x.emplace(boost::move(a));
COPY_COUNT(0);
MOVE_COUNT(0);
//
// 2 arguments
//
//
// 2 arguments
//
std::pair<count_copies const, count_copies> b;
std::pair<count_copies const, count_copies> b;
reset();
x.emplace(b.first, b.second);
COPY_COUNT(0); MOVE_COUNT(0);
reset();
x.emplace(b.first, b.second);
COPY_COUNT(0);
MOVE_COUNT(0);
reset();
x.emplace(source<count_copies>(), source<count_copies>());
COPY_COUNT(2); MOVE_COUNT(source_cost * 2);
reset();
x.emplace(source<count_copies>(), source<count_copies>());
COPY_COUNT(2);
MOVE_COUNT(source_cost * 2);
// source<count_copies> creates a single copy.
reset();
x.emplace(b.first, source<count_copies>());
COPY_COUNT(1); MOVE_COUNT(source_cost);
// source<count_copies> creates a single copy.
reset();
x.emplace(b.first, source<count_copies>());
COPY_COUNT(1);
MOVE_COUNT(source_cost);
reset();
x.emplace(count_copies(b.first.tag_), count_copies(b.second.tag_));
COPY_COUNT(2); MOVE_COUNT(0);
reset();
x.emplace(count_copies(b.first.tag_), count_copies(b.second.tag_));
COPY_COUNT(2);
MOVE_COUNT(0);
reset();
x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(boost::ref(b.first)),
boost::make_tuple(boost::ref(b.second)));
COPY_COUNT(0);
MOVE_COUNT(0);
reset();
x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(boost::ref(b.first)),
boost::make_tuple(boost::ref(b.second)));
COPY_COUNT(0); MOVE_COUNT(0);
#if !defined(BOOST_NO_CXX11_HDR_TUPLE) || defined(BOOST_HAS_TR1_TUPLE)
reset();
x.emplace(boost::unordered::piecewise_construct,
std::make_tuple(std::ref(b.first)),
std::make_tuple(std::ref(b.second)));
COPY_COUNT(0); MOVE_COUNT(0);
reset();
x.emplace(boost::unordered::piecewise_construct,
std::make_tuple(std::ref(b.first)),
std::make_tuple(std::ref(b.second)));
COPY_COUNT(0);
MOVE_COUNT(0);
std::pair<count_copies const, count_copies> move_source_trial;
reset();
std::make_tuple(std::move(move_source_trial.first));
std::make_tuple(std::move(move_source_trial.second));
int tuple_move_cost = ::unnecessary_copy_tests::count_copies::moves;
int tuple_copy_cost = ::unnecessary_copy_tests::count_copies::copies;
std::pair<count_copies const, count_copies> move_source_trial;
reset();
std::make_tuple(std::move(move_source_trial.first));
std::make_tuple(std::move(move_source_trial.second));
int tuple_move_cost = ::unnecessary_copy_tests::count_copies::moves;
int tuple_copy_cost = ::unnecessary_copy_tests::count_copies::copies;
std::pair<count_copies const, count_copies> move_source;
reset();
x.emplace(boost::unordered::piecewise_construct,
std::make_tuple(std::move(move_source.first)),
std::make_tuple(std::move(move_source.second)));
COPY_COUNT(tuple_copy_cost);
MOVE_COUNT(tuple_move_cost);
std::pair<count_copies const, count_copies> move_source;
reset();
x.emplace(boost::unordered::piecewise_construct,
std::make_tuple(std::move(move_source.first)),
std::make_tuple(std::move(move_source.second)));
COPY_COUNT(tuple_copy_cost);
MOVE_COUNT(tuple_move_cost);
#if !defined(BOOST_NO_CXX11_HDR_TUPLE) && \
!(defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ < 6) && \
#if !defined(BOOST_NO_CXX11_HDR_TUPLE) && \
!(defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ < 6) && \
!(defined(BOOST_MSVC) && BOOST_MSVC < 1700)
reset();
x.emplace(boost::unordered::piecewise_construct,
std::forward_as_tuple(b.first),
std::forward_as_tuple(b.second));
COPY_COUNT(0); MOVE_COUNT(0);
reset();
x.emplace(boost::unordered::piecewise_construct,
std::forward_as_tuple(b.first), std::forward_as_tuple(b.second));
COPY_COUNT(0);
MOVE_COUNT(0);
#endif
#endif
}
}
}
RUN_TESTS()