[SVN r1400]
This commit is contained in:
Jaakko Järvi
2003-07-02 21:34:05 +00:00
parent b3462cfc91
commit 46f8fa5e6f

362
doc/enable_if.html Normal file
View File

@@ -0,0 +1,362 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD><TITLE>enable_if</TITLE>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="hevea 1.06">
</HEAD>
<BODY >
<!--HEVEA command line is: hevea -nosymb -noiso -pedantic -v enable_if_docs_for_boost.tex -->
<!--HTMLHEAD-->
<!--ENDHTML-->
<!--PREFIX <ARG ></ARG>-->
<!--CUT DEF section 1 -->
<BR>
<BR>
<h1>
<img border="0" src="c++boost.gif" align="center" width="277" height="86">enable_if</h1>
<BR>
<BR>
Copyright 2003 Jaakko J&auml;rvi, Jeremiah Willcock, Andrew Lumsdaine.<BR>
<BR>
<!--TOC section Introduction-->
<H2><A NAME="htoc1">1</A>&nbsp;&nbsp;Introduction</H2><!--SEC END -->
<A NAME="introduction"></A>
The <TT>enable_if</TT> template is a tool for selectively including
functions into the overload resolution set based on the properties of
the template arguments. For example, one can define function templates that
are only enabled for, and thus only match, an arbitrary set of types
defined by a traits class. The <TT>enable_if</TT> template can also be
applied to enable class template specializations. Applications of
<TT>enable_if</TT> are discussed in length
in&nbsp;[<A HREF="#jarvi:03:cuj_arbitrary_overloading"><CITE>1</CITE></A>] and&nbsp;[<A HREF="#jarvi:03:c++typeclasses"><CITE>2</CITE></A>].<BR>
<BR>
<!--TOC subsection Synopsis-->
<H3><A NAME="htoc2">1.1</A>&nbsp;&nbsp;Synopsis</H3><!--SEC END -->
<A NAME="sec:synopsis"></A>
<PRE>
namespace boost {
template &lt;bool B, class T = void&gt; struct enable_if;
template &lt;bool B, class T = void&gt; struct disable_if;
template &lt;bool B, class T&gt; struct enable_if_lazy;
template &lt;bool B, class T&gt; struct disable_if_lazy;
}
</PRE>
<!--TOC subsection Background-->
<H3><A NAME="htoc3">1.2</A>&nbsp;&nbsp;Background</H3><!--SEC END -->
<A NAME="sec:background"></A>
Sensible operation of template function overloading in C++ relies
on the <EM>SFINAE</EM> (substitution-failure-is-not-an-error)
principle&nbsp;[<A HREF="#vandevoorde2002:templates"><CITE>3</CITE></A>]: if an invalid argument
or return type is formed during the instantiation of a function
template, the instantiation is removed from the overload resolution
set instead of causing a compilation error. The following example,
taken from&nbsp;[<A HREF="#jarvi:03:cuj_arbitrary_overloading"><CITE>1</CITE></A>],
demonstrates why this is important:
<PRE>
int negate(int i) { return -i; }
template &lt;class F&gt;
typename F::result_type negate(const F&amp; f) { return -f(); }
</PRE>
Suppose the compiler encounters the call <TT>negate(1)</TT>. The first
definition is obviously a better match, but the compiler must
nevertheless consider (and instantiate the prototypes) of both
definitions to find this out. Instantiating the latter definition with
<TT>F</TT> as <TT>int</TT> would result in:
<PRE>
int::result_type negate(const int&amp;);
</PRE>
where the return type is invalid. If this was an error, adding an unrelated function template
(that was never called) could break otherwise valid code.
Due to the SFINAE principle the above example is not, however, erroneous.
The latter definition of <TT>negate</TT> is simply removed from the overload resolution set.<BR>
<BR>
The <TT>enable_if</TT> template is a tool for controlled creation of the SFINAE
conditions.<BR>
<BR>
<!--TOC section The <TT>enable_if</TT> template-->
<H2><A NAME="htoc4">2</A>&nbsp;&nbsp;The <TT>enable_if</TT> template</H2><!--SEC END -->
<A NAME="enable_if"></A>
The definition of <TT>enable_if</TT> is as follows:
<PRE>
template &lt;bool B, class T = void&gt;
struct enable_if {
typedef T type;
};
template &lt;class T&gt;
struct enable_if&lt;false, T&gt; {};
</PRE>
An instantiation of the <TT>enable_if</TT> template with the parameter
<TT>B</TT> as <TT>true</TT> contains a member type <TT>type</TT>, defined
to be <TT>T</TT>. If <TT>B</TT> is
false, no such member is defined. Thus
<TT>enable_if&lt;B, T&gt;::type</TT> is either a valid or an invalid type
expression, depending on the value of <TT>B</TT>.
When valid, <TT>enable_if&lt;B, T&gt;::type</TT> equals <TT>T</TT>.
The <TT>enable_if</TT> can thus be used for controlling when functions are considered for
overload resolution and when not.
For example, the following function is defined for all arithmetic types (according to the
classification of the <A HREF="http://www.boost.org/libs/type_traits">Boost type_traits library</A>):
<PRE>
template &lt;class T&gt;
typename enable_if&lt;boost::is_arithmetic&lt;T&gt;::value, T&gt;::type foo(T t) { return t; }
</PRE>
The <TT>disable_if</TT> template is provided as well, and has the
same functionality as <TT>enable_if</TT> except for the negated condition. The following
function is enabled for all non-arithmetic types.
<PRE>
template &lt;class T&gt;
typename disable_if&lt;boost::is_arithmetic&lt;T&gt;::value, T&gt;::type foo(T t) { return t; }
</PRE>
<!--TOC section Using <TT>enable_if</TT>-->
<H2><A NAME="htoc5">3</A>&nbsp;&nbsp;Using <TT>enable_if</TT></H2><!--SEC END -->
<A NAME="sec:using_enable_if"></A>
The <TT>enable_if</TT> templates are defined in
<TT>boost/utility/enable_if.hpp</TT>, which is included by <TT>boost/utility.hpp</TT>.<BR>
<BR>
The <TT>enable_if</TT> template can be used either as the return type, or as an
extra argument. For example, the <TT>foo</TT> function below could also be written
as:
<PRE>
template &lt;class T&gt;
typename T foo(T t, typename enable_if&lt;boost::is_arithmetic&lt;T&gt; &gt;::type* dummy = 0);
</PRE>Hence, an extra argument of type <TT>void*</TT> is added, but it is given
a default value to keep the argument hidden from the client code.
Note that the type parameter was not given to <TT>enable_if</TT>, the default
<TT>void</TT> gives the desired type.<BR>
<BR>
Whether to write the enabler as an argument or within the return type is
largely a matter of taste, but for certain functions, only one
alternative is possible:
<UL><LI>
Operators have a fixed number of arguments, thus <TT>enable_if</TT> must be used in the return type.
<LI>Constructors and destructors do not have a return type; an extra argument is the only option.
<LI>There does not seem to be a way to specify an enabler for a conversion operator. Converting constructors,
however, can have enablers as extra default arguments.
</UL>
<!--TOC subsection Enabling template class specializations-->
<H3><A NAME="htoc6">3.1</A>&nbsp;&nbsp;Enabling template class specializations</H3><!--SEC END -->
<A NAME="sec:enable_if_classes"></A>
Class template specializations can be enabled or disabled with <TT>enable_if</TT>.
One extra template parameter needs to be added for the enabler expressions.
This parameter has the default value <TT>void</TT>.
For example:
<PRE>
template &lt;class T, class Enable = void&gt;
class A { ... };
template &lt;class T&gt;
class A&lt;T, typename enable_if&lt;is_integral&lt;T&gt;::value&gt;::type&gt; { ... };
template &lt;class T&gt;
class A&lt;T, typename enable_if&lt;is_float&lt;T&gt;::value&gt;::type&gt; { ... };
</PRE>Instantiating <TT>A</TT> with any integral type matches the first specialization,
whereas any floating point type matches the second one. All other types
match the primary template.
The condition can be any compile-time boolean expression that depends on the
template arguments of the class.
Note that no type parameter is given to <TT>enable_if</TT>; the default (<TT>void</TT>)
is the correct value.<BR>
<BR>
<!--TOC subsection Overlapping enabler conditions-->
<H3><A NAME="htoc7">3.2</A>&nbsp;&nbsp;Overlapping enabler conditions</H3><!--SEC END -->
<A NAME="sec:overlapping_conditions"></A>
Once the compiler has examined the enabling conditions and included the
function into the overload resolution set, normal C++ overload resolution
rules are used to select the best matching function.
In particular, there is no ordering between enabling conditions.
Function templates with enabling conditions that are not mutually exclusive can
lead to ambiguities. For example:
<PRE>
template &lt;class T&gt;
typename enable_if&lt;boost::is_integral&lt;T&gt;::value, void&gt;::type foo(T t) {}
template &lt;class T&gt;
typename enable_if&lt;boost::is_arithmetic&lt;T&gt;::value, void&gt;::type foo(T t) {}
</PRE>
All integral types are also arithmetic. Therefore, say, for the call <TT>foo(1)</TT>,
both conditions are true and both functions are thus in the overload resolution set.
They are both equally good matches and thus ambiguous.
Of course, more than one enabling condition can be simultaneously true as long as
other arguments disambiguate the functions.<BR>
<BR>
The above discussion applies to using <TT>enable_if</TT> in class template
partial specializations as well.<BR>
<BR>
<!--TOC subsection Lazy <TT>enable_if</TT>-->
<H3><A NAME="htoc8">3.3</A>&nbsp;&nbsp;Lazy <TT>enable_if</TT></H3><!--SEC END -->
<A NAME="sec:enable_if_lazy"></A>
The standard is not entirely clear on how deep into nested template instantiations SFINAE applies,
and there is variation among compilers. For example:
<PRE>
template &lt;class T, class U&gt; class mult_traits;
template &lt;class T, class U&gt;
typename enable_if&lt;is_multipliable&lt;T, U&gt;::value, typename mult_traits&lt;T, U&gt;::type&gt;::type
operator*(const T&amp; t, const U&amp; u) { ... }
</PRE>Assume the class template <TT>mult_traits</TT> is a traits class defining
the resulting type of a multiplication operator. The <TT>is_multipliable</TT> traits
class specifies for which types to enable the operator. Whenever
<TT>is_multipliable&lt;A, B&gt;::value</TT> is <TT>true</TT> for some types <TT>A</TT> and <TT>B</TT>,
then <TT>mult_traits&lt;A, B&gt;::type</TT> is defined.<BR>
<BR>
Now, trying to invoke (some other overload) of <TT>operator*</TT> with, say, operand types <TT>C</TT> and <TT>D</TT>
for which <TT>is_multipliable&lt;C, D&gt;::value</TT> is <TT>false</TT>
and <TT>mult_traits&lt;C, D&gt;::type</TT> is not defined is an error on some compilers.
The SFINAE principle is not applied because
the invalid type occurs as an argument to another template. The <TT>enable_if_lazy</TT>
and <TT>disable_if_lazy</TT> templates can be used in such
situations:
<PRE>
template&lt;class T, class U&gt;
typename enable_if_lazy&lt;is_multipliable&lt;T, U&gt;::value, mult_traits&lt;T, U&gt; &gt;::type
operator*(const T&amp; t, const U&amp; u) { ... }
</PRE>The second argument of <TT>enable_if_lazy</TT> must be a class type
that defines a nested type named <TT>type</TT> whenever the first
parameter (the condition) is true.<BR>
<BR>
<!--TOC subsection Compiler workarounds-->
<H3><A NAME="htoc9">3.4</A>&nbsp;&nbsp;Compiler workarounds</H3><!--SEC END -->
<A NAME="sec:workarounds"></A>
Some compilers flag functions as ambiguous if the only distinguishing factor is a different
condition in an enabler (even though the functions could never be ambiguous). For example,
some compilers (e.g. GCC 3.2) diagnose the following two functions as ambiguous:
<PRE>
template &lt;class T&gt; struct dummy { dummy(int) {} };
template &lt;class T&gt;
typename enable_if&lt;boost::is_arithmetic&lt;T&gt;::value, T&gt;::type foo(T t);
template &lt;class T&gt;
typename enable_if&lt;!boost::is_arithmetic&lt;T&gt;::value, T&gt;::type foo(T t);
</PRE>Two workarounds can be applied:
<UL><LI>
Use an extra dummy parameter which disambiguates the functions. Use a default value for
it to hide the parameter from the caller. For example:
<PRE>
template &lt;class T&gt; struct dummy { dummy(int) {} };
template &lt;class T&gt;
typename enable_if&lt;boost::is_arithmetic&lt;T&gt;::value, T&gt;::type foo(T t, dummy&lt;0&gt; = 0);
template &lt;class T&gt;
typename enable_if&lt;!boost::is_arithmetic&lt;T&gt;::value, T&gt;::type foo(T t, dummy&lt;1&gt; = 0);
</PRE><BR>
<BR>
<LI>Define the functions in different namespaces and bring them into a common
namespace with <TT>using</TT> declarations:
<PRE>
namespace A {
template &lt;class T&gt;
typename enable_if&lt;boost::is_arithmetic&lt;T&gt;::value, T&gt;::type foo(T t);
}
namespace B {
template &lt;class T&gt;
typename enable_if&lt;!boost::is_arithmetic&lt;T&gt;::value, T&gt;::type foo(T t);
}
using A::foo;
using B::foo;
</PRE>
Note that the second workaround above cannot be used for member
templates. On the other hand, operators do not accept extra arguments,
which makes the first workaround unusable. As the net effect,
neither of the workarounds are of help for templated operators that
need to be defined as member functions (assignment and
subscript operators).
</UL>
<!--TOC section Acknowledgements-->
<H2><A NAME="htoc10">4</A>&nbsp;&nbsp;Acknowledgements</H2><!--SEC END -->
We are grateful to Howard Hinnant, Jason Shirk, Paul Mensonides and Richard
Smith whose findings have influenced the library.<BR>
<BR>
<!--TOC section References-->
<H2>References</H2><!--SEC END -->
<DL COMPACT=compact><DT><A NAME="jarvi:03:cuj_arbitrary_overloading"><FONT COLOR=purple>[1]</FONT></A><DD>
Jaakko J&auml;rvi, Jeremiah Willcock, Howard Hinnant, and Andrew Lumsdaine.
Function overloading based on arbitrary properties of types.
<EM>C/C++ Users Journal</EM>, 21(6):25--32, June 2003.<BR>
<BR>
<DT><A NAME="jarvi:03:c++typeclasses"><FONT COLOR=purple>[2]</FONT></A><DD>
Jaakko J&auml;rvi, Jeremiah Willcock, and Andrew Lumsdaine.
Concept-controlled polymorphism.
In <EM>Proceedings of Generative Programming and Component
Engineering (GPCE'03)</EM>, September 2003.
To appear.<BR>
<BR>
<DT><A NAME="vandevoorde2002:templates"><FONT COLOR=purple>[3]</FONT></A><DD>
David Vandevoorde and Nicolai&nbsp;M. Josuttis.
<EM>C++ Templates: The Complete Guide</EM>.
Addison-Wesley, 2002.</DL>
<hr></hr>
<B>Contributed by:</B> <BR>
Jaakko J&auml;rvi, Jeremiah Willcock and Andrew Lumsdaine<BR>
<EM>{jajarvi|jewillco|lums}@osl.iu.edu</EM><BR>
Indiana University<BR>
Open Systems Lab
<!--HTMLFOOT-->
<!--ENDHTML-->
<!--FOOTER-->
<HR SIZE=2>
<BLOCKQUOTE><EM>This document was translated from L<sup>A</sup>T<sub>E</sub>X by
</EM><A HREF="http://pauillac.inria.fr/~maranget/hevea/index.html"><EM>H<FONT SIZE=2><sup>E</sup></FONT>V<FONT SIZE=2><sup>E</sup></FONT>A</EM></A><EM>.
</EM></BLOCKQUOTE>
</BODY>
</HTML>