Compare commits

..

7 Commits

Author SHA1 Message Date
Beman Dawes
c7f99ec5b6 Branch for 2nd try at V2 removal
[SVN r77497]
2012-03-23 12:04:44 +00:00
Lorenzo Caminiti
2a6cd0c9c4 Split Utility/IdentityType and Functional/OverloadedFunction tests into smaller tests.
Updated docs for ScopeExit, LocalFunction, Utility/IdentityType, and Functional/OverloadedFunction.

[SVN r77484]
2012-03-22 20:54:20 +00:00
Lorenzo Caminiti
5825b6c329 Fixed test indentation and updated docs.
[SVN r77080]
2012-02-20 20:17:07 +00:00
Lorenzo Caminiti
54c78121c2 Updated ScopeExit "world" tests making person a struct instead of a class.
Added a code comment to Utility/IdentityType tmp_assert test.

[SVN r77071]
2012-02-18 19:29:35 +00:00
Lorenzo Caminiti
2891cb52d6 Added Boost.Utility/IdentityType and Boost.Functional/OverloadedFunction to status/Jamfile.v2 list of regression tests.
Updated Boost.ScopeExit documentation.

[SVN r77059]
2012-02-17 21:02:00 +00:00
Daryle Walker
0db9276e8c Fixed (hopefully) conflict between boost::base_from_member's C++11 constructor template and the automatically defined non-template copy- and/or move-constructors.
[SVN r77046]
2012-02-17 01:55:33 +00:00
Lorenzo Caminiti
d6cb9a9176 Fixed a bug in BOOST_LOCAL_FUNCTION_DETAIL_PP_VOID_LIST: a typo VOId -> VOID.
Fixed a bug in scope_exit.hpp: An extra trailing \ in a macro definition (compiled only when BOOST_NO_VARIADIC_MACROS is defined).
Renamed LocalFunction and ScopeExit tests and examples from _err to _error.
Updated LocalFunction docs.

[SVN r77042]
2012-02-16 18:24:34 +00:00
25 changed files with 388 additions and 2064 deletions

View File

@@ -129,6 +129,8 @@ particular member type does not need to concern itself with the integer.</p>
<h2><a name="synopsis">Synopsis</a></h2>
<blockquote><pre>
#include &lt;type_traits&gt; <i>// exposition only</i>
#ifndef BOOST_BASE_FROM_MEMBER_MAX_ARITY
#define BOOST_BASE_FROM_MEMBER_MAX_ARITY 10
#endif
@@ -139,6 +141,11 @@ class boost::base_from_member
protected:
MemberType member;
#if <i>C++2011 is in use</i>
template&lt; typename ...T &gt;
explicit constexpr base_from_member( T&amp;&amp; ...x )
noexcept( std::is_nothrow_constructible&lt;MemberType, T...&gt;::value );
#else
base_from_member();
template&lt; typename T1 &gt;
@@ -154,6 +161,7 @@ protected:
typename T10 &gt;
base_from_member( T1 x1, T2 x2, T3 x3, T4 x4, T5 x5, T6 x6, T7 x7,
T8 x8, T9 x9, T10 x10 );
#endif
};
</pre></blockquote>
@@ -166,13 +174,29 @@ value of zero if it is omitted. The class template has a protected
data member called <var>member</var> that the derived class can use
for later base classes (or itself).</p>
<p>There is a default constructor and several constructor member
templates. These constructor templates can take as many arguments
(currently up to ten) as possible and pass them to a constructor of
the data member. Since C++ does not allow any way to explicitly state
<p>If the appropriate features of C++2011 are present, there will be a single
constructor template. It implements &quot;perfect forwarding&quot; to the best
constructor call of <code>member</code> (if any). The constructor template is
marked both <code>constexpr</code> and <code>explicit</code>. The former will
be ignored if the corresponding inner constructor call (of <code>member</code>)
does not have the marker. The latter binds the other way; always taking
effect, even when the inner constructor call does not have the marker. The
constructor template propagates the <code>noexcept</code> status of the inner
constructor call. (The constructor template has a trailing parameter with a
default value that disables the template when its signature is too close to the
signatures of the automatically-defined non-template copy- and/or
move-constructors of <code>base_from_member</code>.)</p>
<p>On earlier-standard compilers, there is a default constructor and several
constructor member templates. These constructor templates can take as many
arguments (currently up to ten) as possible and pass them to a constructor of
the data member.</p>
<p>Since C++ does not allow any way to explicitly state
the template parameters of a templated constructor, make sure that
the arguments are already close as possible to the actual type used in
the data member's desired constructor.</p>
the data member's desired constructor. Explicit conversions may be
necessary.</p>
<p>The <var>BOOST_BASE_FROM_MEMBER_MAX_ARITY</var> macro constant specifies
the maximum argument length for the constructor templates. The constant
@@ -180,7 +204,7 @@ may be overridden if more (or less) argument configurations are needed. The
constant may be read for code that is expandable like the class template and
needs to maintain the same maximum size. (Example code would be a class that
uses this class template as a base class for a member with a flexible set of
constructors.)</p>
constructors.) This constant is ignored when C++2011 features are present.</p>
<h2><a name="usage">Usage</a></h2>
@@ -323,11 +347,14 @@ constructor argument for <code>pbase0_type</code> is converted from
argument for <code>pbase2_type</code> is converted from <code>int</code>
to <code>double</code>. The second constructor argument for
<code>pbase3_type</code> is a special case of necessary conversion; all
forms of the null-pointer literal in C++ also look like compile-time
integral expressions, so C++ always interprets such code as an integer
when it has overloads that can take either an integer or a pointer. The
last conversion is necessary for the compiler to call a constructor form
with the exact pointer type used in <code>switcher</code>'s constructor.</p>
forms of the null-pointer literal in C++ (except <code>nullptr</code> from
C++2011) also look like compile-time integral expressions, so C++ always
interprets such code as an integer when it has overloads that can take either
an integer or a pointer. The last conversion is necessary for the compiler to
call a constructor form with the exact pointer type used in
<code>switcher</code>'s constructor. (If C++2011's <code>nullptr</code> is
used, it still needs a conversion if multiple pointer types can be accepted in
a constructor call but <code>std::nullptr_t</code> cannot.)</p>
<h2><a name="credits">Credits</a></h2>
@@ -360,9 +387,9 @@ with the exact pointer type used in <code>switcher</code>'s constructor.</p>
<hr>
<p>Revised: 28 August 2004</p>
<p>Revised: 16 February 2012</p>
<p>Copyright 2001, 2003, 2004 Daryle Walker. Use, modification, and distribution
<p>Copyright 2001, 2003, 2004, 2012 Daryle Walker. Use, modification, and distribution
are subject to the Boost Software License, Version 1.0. (See accompanying
file <a href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or a copy at &lt;<a
href="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>&gt;.)</p>

View File

@@ -210,8 +210,10 @@ int main()
comparible_UDT u;
c1(u);
call_traits_checker<int> c2;
call_traits_checker<enum_UDT> c2b;
int i = 2;
c2(i);
c2b(one);
int* pi = &i;
int a[2] = {1,2};
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) && !defined(__ICL)
@@ -292,7 +294,11 @@ int main()
BOOST_CHECK_TYPE(incomplete_type&, boost::call_traits<incomplete_type>::reference);
BOOST_CHECK_TYPE(const incomplete_type&, boost::call_traits<incomplete_type>::const_reference);
BOOST_CHECK_TYPE(const incomplete_type&, boost::call_traits<incomplete_type>::param_type);
// test enum:
BOOST_CHECK_TYPE(enum_UDT, boost::call_traits<enum_UDT>::value_type);
BOOST_CHECK_TYPE(enum_UDT&, boost::call_traits<enum_UDT>::reference);
BOOST_CHECK_TYPE(const enum_UDT&, boost::call_traits<enum_UDT>::const_reference);
BOOST_CHECK_TYPE(const enum_UDT, boost::call_traits<enum_UDT>::param_type);
return 0;
}

View File

@@ -43,7 +43,7 @@ using quickbook ;
path-constant boost-images : ../../../doc/src/images ;
xml declval : declval.qbk ;
boostbook standalone_declval
boostbook standalone
:
declval
:
@@ -62,22 +62,7 @@ boostbook standalone_declval
;
xml string_ref : string_ref.qbk ;
boostbook standalone_string_ref
:
string_ref
:
# File name of HTML output:
<xsl:param>root.filename=string_ref
# How far down we chunk nested sections, basically all of them:
<xsl:param>chunk.section.depth=0
# Don't put the first section on the same page as the TOC:
<xsl:param>chunk.first.sections=0
# How far down sections get TOC's
<xsl:param>toc.section.depth=1
# Max depth in each TOC:
<xsl:param>toc.max.depth=1
# How far down we go with TOC's
<xsl:param>generate.section.toc.level=1
;

View File

@@ -1,6 +1,7 @@
[/
/ Copyright (c) 2008 Howard Hinnant
/ Copyright (c) 2009-20012 Vicente J. Botet Escriba
/ Copyright (c) 2008 Beman Dawes
/ Copyright (c) 2009-20010 Vicente J. Botet Escriba
/
/ Distributed under the Boost Software License, Version 1.0. (See accompanying
/ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -9,9 +10,11 @@
[article Declval
[quickbook 1.5]
[authors [Hinnant, Howard]]
[authors [Dawes, Beman]]
[authors [Botet Escriba, Vicente J.]]
[copyright 2008 Howard Hinnant]
[copyright 2009-2012 Vicente J. Botet Escriba]
[copyright 2008 Beman Dawes]
[copyright 2009-2010 Vicente J. Botet Escriba]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
@@ -74,7 +77,7 @@ This extremely light-weight function is expected to be part of the daily tool-bo
namespace boost {
template <typename T>
typename add_rvalue_reference<T>::type declval() noexcept; // as unevaluated operand
typename add_rvalue_reference<T>::type declval(); //noexcept; // as unevaluated operand
} // namespace boost
@@ -97,19 +100,5 @@ Declares a function template convert which only participates in overloading if t
[endsect]
[/===============]
[section History]
[/===============]
[heading boost 1.50]
Fixes:
* [@http://svn.boost.org/trac/boost/ticket/6570 #6570] Adding noexcept to boost::declval.
[endsect]

View File

@@ -3,7 +3,7 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Declval</title>
<link rel="stylesheet" href="../../../../doc/src/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.76.0">
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
<link rel="home" href="declval.html" title="Declval">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
@@ -27,13 +27,17 @@
<span class="firstname">Howard</span> <span class="surname">Hinnant</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Beman</span> <span class="surname">Dawes</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Vicente J.</span> <span class="surname">Botet Escriba</span>
</h3></div>
</div></div>
<div><p class="copyright">Copyright &#169; 2008 Howard Hinnant</p></div>
<div><p class="copyright">Copyright &#169; 2009 -2012 Vicente J. Botet Escriba</p></div>
<div><p class="copyright">Copyright &#169; 2008 Beman Dawes</p></div>
<div><p class="copyright">Copyright &#169; 2009, 2010 Vicente J. Botet Escriba</p></div>
<div><div class="legalnotice">
<a name="idp13449552"></a><p>
<a name="id3354293"></a><p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
@@ -46,7 +50,6 @@
<dl>
<dt><span class="section"><a href="declval.html#declval.overview">Overview</a></span></dt>
<dt><span class="section"><a href="declval.html#declval.reference">Reference </a></span></dt>
<dt><span class="section"><a href="declval.html#declval.history">History</a></span></dt>
</dl>
</div>
<div class="section">
@@ -119,7 +122,7 @@
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">add_rvalue_reference</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">declval</span><span class="special">()</span> <span class="identifier">noexcept</span><span class="special">;</span> <span class="comment">// as unevaluated operand
<span class="keyword">typename</span> <span class="identifier">add_rvalue_reference</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">declval</span><span class="special">();</span> <span class="comment">//noexcept; // as unevaluated operand
</span>
<span class="special">}</span> <span class="comment">// namespace boost
</span></pre>
@@ -149,25 +152,9 @@
if the type From can be explicitly converted to type To.
</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="declval.history"></a><a class="link" href="declval.html#declval.history" title="History">History</a>
</h2></div></div></div>
<a name="declval.history.boost_1_50"></a><h4>
<a name="idp13553216"></a>
<a class="link" href="declval.html#declval.history.boost_1_50">boost 1.50</a>
</h4>
<p>
Fixes:
</p>
<div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">
<a href="http://svn.boost.org/trac/boost/ticket/6570" target="_top">#6570</a>
Adding noexcept to boost::declval.
</li></ul></div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"><p><small>Last revised: May 28, 2012 at 18:59:06 GMT</small></p></td>
<td align="left"><p><small>Last revised: April 06, 2011 at 20:06:10 GMT</small></p></td>
<td align="right"><div class="copyright-footer"></div></td>
</tr></table>
<hr>

View File

@@ -1,280 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>String_Ref</title>
<link rel="stylesheet" href="../../../../doc/src/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
<link rel="home" href="string_ref.html" title="String_Ref">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../boost.png"></td>
<td align="center"><a href="../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
<div class="article">
<div class="titlepage">
<div>
<div><h2 class="title">
<a name="string_ref"></a>String_Ref</h2></div>
<div><div class="authorgroup"><div class="author"><h3 class="author">
<span class="firstname">Marshall</span> <span class="surname">Clow</span>
</h3></div></div></div>
<div><p class="copyright">Copyright &#169; 2012 Marshall Clow</p></div>
<div><div class="legalnotice">
<a name="string_ref.legal"></a><p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></div>
</div>
<hr>
</div>
<div class="toc">
<p><b>Table of Contents</b></p>
<dl>
<dt><span class="section"><a href="string_ref.html#string_ref.overview">Overview</a></span></dt>
<dt><span class="section"><a href="string_ref.html#string_ref.examples">Examples</a></span></dt>
<dt><span class="section"><a href="string_ref.html#string_ref.reference">Reference </a></span></dt>
<dt><span class="section"><a href="string_ref.html#string_ref.history">History</a></span></dt>
</dl>
</div>
<div class="section string_ref_overview">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="string_ref.overview"></a><a class="link" href="string_ref.html#string_ref.overview" title="Overview">Overview</a>
</h2></div></div></div>
<p>
Boost.StringRef is an implementation of Jeffrey Yaskin's <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3442.html" target="_top">N3442:
string_ref: a non-owning reference to a string</a>.
</p>
<p>
When you are parsing/processing strings from some external source, frequently
you want to pass a piece of text to a procedure for specialized processing.
The canonical way to do this is as a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span></code>,
but that has certain drawbacks:
</p>
<p>
1) If you are processing a buffer of text (say a HTTP response or the contents
of a file), then you have to create the string from the text you want to pass,
which involves memory allocation and copying of data.
</p>
<p>
2) if a routine receives a constant <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span></code>
and wants to pass a portion of that string to another routine, then it must
create a new string of that substring.
</p>
<p>
3) A routine receives a constant <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span></code>
and wants to return a portion of the string, then it must create a new string
to return.
</p>
<p>
<code class="computeroutput"><span class="identifier">string_ref</span></code> is designed to solve
these efficiency problems. A <code class="computeroutput"><span class="identifier">string_ref</span></code>
is a read-only reference to a contiguous sequence of characters, and provides
much of the functionality of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span></code>.
A <code class="computeroutput"><span class="identifier">string_ref</span></code> is cheap to create,
copy and pass by value, because it does not actually own the storage that it
points to.
</p>
<p>
A <code class="computeroutput"><span class="identifier">string_ref</span></code> is implemented
as a small struct that contains a pointer to the start of the character data
and a count. A <code class="computeroutput"><span class="identifier">string_ref</span></code> is
cheap to create and cheap to copy.
</p>
<p>
<code class="computeroutput"><span class="identifier">string_ref</span></code> acts as a container;
it includes all the methods that you would expect in a container, including
iteration support, <code class="computeroutput"><span class="keyword">operator</span> <span class="special">[]</span></code>,
<code class="computeroutput"><span class="identifier">at</span></code> and <code class="computeroutput"><span class="identifier">size</span></code>.
It can be used with any of the iterator-based algorithms in the STL - as long
as you don't need to change the underlying data (<code class="computeroutput"><span class="identifier">sort</span></code>
and <code class="computeroutput"><span class="identifier">remove</span></code>, for example, will
not work)
</p>
<p>
Besides generic container functionality, <code class="computeroutput"><span class="identifier">string_ref</span></code>
provides a subset of the interface of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span></code>.
This makes it easy to replace parameters of type <code class="computeroutput"><span class="keyword">const</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="special">&amp;</span></code>
with <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">string_ref</span></code>. Like <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span></code>,
<code class="computeroutput"><span class="identifier">string_ref</span></code> has a static member
variable named <code class="computeroutput"><span class="identifier">npos</span></code> to denote
the result of failed searches, and to mean "the end".
</p>
<p>
Because a <code class="computeroutput"><span class="identifier">string_ref</span></code> does not
own the data that it "points to", it introduces lifetime issues into
code that uses it. The programmer must ensure that the data that a <code class="computeroutput"><span class="identifier">string_ref</span></code> refers to exists as long as the
<code class="computeroutput"><span class="identifier">string_ref</span></code> does.
</p>
</div>
<div class="section string_ref_examples">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="string_ref.examples"></a><a class="link" href="string_ref.html#string_ref.examples" title="Examples">Examples</a>
</h2></div></div></div>
<p>
Integrating <code class="computeroutput"><span class="identifier">string_ref</span></code> into
your code is fairly simple. Wherever you pass a <code class="computeroutput"><span class="keyword">const</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="special">&amp;</span></code>
or <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span></code> as a parameter, that's a candidate
for passing a <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">string_ref</span></code>.
</p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">extract_part</span> <span class="special">(</span> <span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="special">&amp;</span><span class="identifier">bar</span> <span class="special">)</span> <span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">bar</span><span class="special">.</span><span class="identifier">substr</span> <span class="special">(</span> <span class="number">2</span><span class="special">,</span> <span class="number">3</span> <span class="special">);</span>
<span class="special">}</span>
<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">extract_part</span> <span class="special">(</span> <span class="string">"ABCDEFG"</span> <span class="special">).</span><span class="identifier">front</span><span class="special">()</span> <span class="special">==</span> <span class="string">"C"</span> <span class="special">)</span> <span class="special">{</span> <span class="comment">/* do something */</span> <span class="special">}</span>
</pre>
<p>
Let's figure out what happens in this (contrived) example.
</p>
<p>
First, a temporary string is created from the string literal <code class="computeroutput"><span class="string">"ABCDEFG"</span></code>, and it is passed (by reference)
to the routine <code class="computeroutput"><span class="identifier">extract_part</span></code>.
Then a second string is created in the call <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span><span class="special">::</span><span class="identifier">substr</span></code>
and returned to <code class="computeroutput"><span class="identifier">extract_part</span></code>
(this copy may be elided by RVO). Then <code class="computeroutput"><span class="identifier">extract_part</span></code>
returns that string back to the caller (again this copy may be elided). The
first temporary string is deallocated, and <code class="computeroutput"><span class="identifier">front</span></code>
is called on the second string, and then it is deallocated as well.
</p>
<p>
Two <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span></code>s are created, and two copy operations.
That's (potentially) four memory allocations and deallocations, and the associated
copying of data.
</p>
<p>
Now let's look at the same code with <code class="computeroutput"><span class="identifier">string_ref</span></code>:
</p>
<pre class="programlisting"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">string_ref</span> <span class="identifier">extract_part</span> <span class="special">(</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">string_ref</span> <span class="identifier">bar</span> <span class="special">)</span> <span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">bar</span><span class="special">.</span><span class="identifier">substr</span> <span class="special">(</span> <span class="number">2</span><span class="special">,</span> <span class="number">3</span> <span class="special">);</span>
<span class="special">}</span>
<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">extract_part</span> <span class="special">(</span> <span class="string">"ABCDEFG"</span> <span class="special">).</span><span class="identifier">front</span><span class="special">()</span> <span class="special">==</span> <span class="string">"C"</span> <span class="special">)</span> <span class="special">{</span> <span class="comment">/* do something */</span> <span class="special">}</span>
</pre>
<p>
No memory allocations. No copying of character data. No changes to the code
other than the types. There are two <code class="computeroutput"><span class="identifier">string_ref</span></code>s
created, and two <code class="computeroutput"><span class="identifier">string_ref</span></code>s
copied, but those are cheap operations.
</p>
</div>
<div class="section string_ref_reference">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="string_ref.reference"></a><a class="link" href="string_ref.html#string_ref.reference" title="Reference">Reference </a>
</h2></div></div></div>
<p>
The header file "string_ref.hpp" defines a template <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">basic_string_ref</span></code>,
and four specializations - for <code class="computeroutput"><span class="keyword">char</span></code>
/ <code class="computeroutput"><span class="keyword">wchar_t</span></code> / <code class="computeroutput"><span class="identifier">char16_t</span></code>
/ <code class="computeroutput"><span class="identifier">char32_t</span></code> .
</p>
<p>
<code class="computeroutput"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">utility</span><span class="special">/</span><span class="identifier">string_ref</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></code>
</p>
<p>
Construction and copying:
</p>
<pre class="programlisting"><span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">basic_string_ref</span> <span class="special">();</span> <span class="comment">// Constructs an empty string_ref</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">basic_string_ref</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">charT</span><span class="special">*</span> <span class="identifier">str</span><span class="special">);</span> <span class="comment">// Constructs from a NULL-terminated string</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">basic_string_ref</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">charT</span><span class="special">*</span> <span class="identifier">str</span><span class="special">,</span> <span class="identifier">size_type</span> <span class="identifier">len</span><span class="special">);</span> <span class="comment">// Constructs from a pointer, length pair</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Allocator</span><span class="special">&gt;</span>
<span class="identifier">basic_string_ref</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">basic_string</span><span class="special">&lt;</span><span class="identifier">charT</span><span class="special">,</span> <span class="identifier">traits</span><span class="special">,</span> <span class="identifier">Allocator</span><span class="special">&gt;&amp;</span> <span class="identifier">str</span><span class="special">);</span> <span class="comment">// Constructs from a std::string</span>
<span class="identifier">basic_string_ref</span> <span class="special">(</span><span class="keyword">const</span> <span class="identifier">basic_string_ref</span> <span class="special">&amp;</span><span class="identifier">rhs</span><span class="special">);</span>
<span class="identifier">basic_string_ref</span><span class="special">&amp;</span> <span class="keyword">operator</span><span class="special">=(</span><span class="keyword">const</span> <span class="identifier">basic_string_ref</span> <span class="special">&amp;</span><span class="identifier">rhs</span><span class="special">);</span>
</pre>
<p>
<code class="computeroutput"><span class="identifier">string_ref</span></code> does not define
a move constructor nor a move-assignment operator because copying a <code class="computeroutput"><span class="identifier">string_ref</span></code> is just a cheap as moving one.
</p>
<p>
Basic container-like functions:
</p>
<pre class="programlisting"><span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">size_type</span> <span class="identifier">size</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">size_type</span> <span class="identifier">length</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">size_type</span> <span class="identifier">max_size</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="keyword">bool</span> <span class="identifier">empty</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="comment">// All iterators are const_iterators</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">const_iterator</span> <span class="identifier">begin</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">const_iterator</span> <span class="identifier">cbegin</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">const_iterator</span> <span class="identifier">end</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">const_iterator</span> <span class="identifier">cend</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">const_reverse_iterator</span> <span class="identifier">rbegin</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">const_reverse_iterator</span> <span class="identifier">crbegin</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">const_reverse_iterator</span> <span class="identifier">rend</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">const_reverse_iterator</span> <span class="identifier">crend</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
</pre>
<p>
Access to the individual elements (all of which are const):
</p>
<pre class="programlisting"><span class="identifier">BOOST_CONSTEXPR</span> <span class="keyword">const</span> <span class="identifier">charT</span><span class="special">&amp;</span> <span class="keyword">operator</span><span class="special">[](</span><span class="identifier">size_type</span> <span class="identifier">pos</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="keyword">const</span> <span class="identifier">charT</span><span class="special">&amp;</span> <span class="identifier">at</span><span class="special">(</span><span class="identifier">size_t</span> <span class="identifier">pos</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="keyword">const</span> <span class="identifier">charT</span><span class="special">&amp;</span> <span class="identifier">front</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="keyword">const</span> <span class="identifier">charT</span><span class="special">&amp;</span> <span class="identifier">back</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">BOOST_CONSTEXPR</span> <span class="keyword">const</span> <span class="identifier">charT</span><span class="special">*</span> <span class="identifier">data</span><span class="special">()</span> <span class="keyword">const</span> <span class="special">;</span>
</pre>
<p>
Modifying the <code class="computeroutput"><span class="identifier">string_ref</span></code> (but
not the underlying data):
</p>
<pre class="programlisting"><span class="keyword">void</span> <span class="identifier">clear</span><span class="special">();</span>
<span class="keyword">void</span> <span class="identifier">remove_prefix</span><span class="special">(</span><span class="identifier">size_type</span> <span class="identifier">n</span><span class="special">);</span>
<span class="keyword">void</span> <span class="identifier">remove_suffix</span><span class="special">(</span><span class="identifier">size_type</span> <span class="identifier">n</span><span class="special">);</span>
</pre>
<p>
Searching:
</p>
<pre class="programlisting"><span class="identifier">size_type</span> <span class="identifier">find</span><span class="special">(</span><span class="identifier">basic_string_ref</span> <span class="identifier">s</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find</span><span class="special">(</span><span class="identifier">charT</span> <span class="identifier">c</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">rfind</span><span class="special">(</span><span class="identifier">basic_string_ref</span> <span class="identifier">s</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">rfind</span><span class="special">(</span><span class="identifier">charT</span> <span class="identifier">c</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find_first_of</span><span class="special">(</span><span class="identifier">charT</span> <span class="identifier">c</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find_last_of</span> <span class="special">(</span><span class="identifier">charT</span> <span class="identifier">c</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find_first_of</span><span class="special">(</span><span class="identifier">basic_string_ref</span> <span class="identifier">s</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find_last_of</span><span class="special">(</span><span class="identifier">basic_string_ref</span> <span class="identifier">s</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find_first_not_of</span><span class="special">(</span><span class="identifier">basic_string_ref</span> <span class="identifier">s</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find_first_not_of</span><span class="special">(</span><span class="identifier">charT</span> <span class="identifier">c</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find_last_not_of</span><span class="special">(</span><span class="identifier">basic_string_ref</span> <span class="identifier">s</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="identifier">size_type</span> <span class="identifier">find_last_not_of</span><span class="special">(</span><span class="identifier">charT</span> <span class="identifier">c</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
</pre>
<p>
String-like operations:
</p>
<pre class="programlisting"><span class="identifier">BOOST_CONSTEXPR</span> <span class="identifier">basic_string_ref</span> <span class="identifier">substr</span><span class="special">(</span><span class="identifier">size_type</span> <span class="identifier">pos</span><span class="special">,</span> <span class="identifier">size_type</span> <span class="identifier">n</span><span class="special">=</span><span class="identifier">npos</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span> <span class="comment">// Creates a new string_ref</span>
<span class="keyword">bool</span> <span class="identifier">starts_with</span><span class="special">(</span><span class="identifier">charT</span> <span class="identifier">c</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="keyword">bool</span> <span class="identifier">starts_with</span><span class="special">(</span><span class="identifier">basic_string_ref</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="keyword">bool</span> <span class="identifier">ends_with</span><span class="special">(</span><span class="identifier">charT</span> <span class="identifier">c</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
<span class="keyword">bool</span> <span class="identifier">ends_with</span><span class="special">(</span><span class="identifier">basic_string_ref</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span> <span class="special">;</span>
</pre>
</div>
<div class="section string_ref_history">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="string_ref.history"></a><a class="link" href="string_ref.html#string_ref.history" title="History">History</a>
</h2></div></div></div>
<h4>
<a name="string_ref.history.h0"></a>
<span><a name="string_ref.history.boost_1_53"></a></span><a class="link" href="string_ref.html#string_ref.history.boost_1_53">boost
1.53</a>
</h4>
<div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">
Introduced
</li></ul></div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"><p><small>Last revised: January 14, 2013 at 16:24:14 GMT</small></p></td>
<td align="right"><div class="copyright-footer"></div></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
</body>
</html>

View File

@@ -1,167 +0,0 @@
[/
/ Copyright (c) 2012 Marshall Clow
/
/ Distributed under the Boost Software License, Version 1.0. (See accompanying
/ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
/]
[article String_Ref
[quickbook 1.5]
[authors [Clow, Marshall]]
[copyright 2012 Marshall Clow]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
]
[/===============]
[section Overview]
[/===============]
Boost.StringRef is an implementation of Jeffrey Yaskin's [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3442.html N3442:
string_ref: a non-owning reference to a string].
When you are parsing/processing strings from some external source, frequently you want to pass a piece of text to a procedure for specialized processing. The canonical way to do this is as a `std::string`, but that has certain drawbacks:
1) If you are processing a buffer of text (say a HTTP response or the contents of a file), then you have to create the string from the text you want to pass, which involves memory allocation and copying of data.
2) if a routine receives a constant `std::string` and wants to pass a portion of that string to another routine, then it must create a new string of that substring.
3) A routine receives a constant `std::string` and wants to return a portion of the string, then it must create a new string to return.
`string_ref` is designed to solve these efficiency problems. A `string_ref` is a read-only reference to a contiguous sequence of characters, and provides much of the functionality of `std::string`. A `string_ref` is cheap to create, copy and pass by value, because it does not actually own the storage that it points to.
A `string_ref` is implemented as a small struct that contains a pointer to the start of the character data and a count. A `string_ref` is cheap to create and cheap to copy.
`string_ref` acts as a container; it includes all the methods that you would expect in a container, including iteration support, `operator []`, `at` and `size`. It can be used with any of the iterator-based algorithms in the STL - as long as you don't need to change the underlying data (`sort` and `remove`, for example, will not work)
Besides generic container functionality, `string_ref` provides a subset of the interface of `std::string`. This makes it easy to replace parameters of type `const std::string &` with `boost::string_ref`. Like `std::string`, `string_ref` has a static member variable named `npos` to denote the result of failed searches, and to mean "the end".
Because a `string_ref` does not own the data that it "points to", it introduces lifetime issues into code that uses it. The programmer must ensure that the data that a `string_ref` refers to exists as long as the `string_ref` does.
[endsect]
[/===============]
[section Examples]
[/===============]
Integrating `string_ref` into your code is fairly simple. Wherever you pass a `const std::string &` or `std::string` as a parameter, that's a candidate for passing a `boost::string_ref`.
std::string extract_part ( const std::string &bar ) {
return bar.substr ( 2, 3 );
}
if ( extract_part ( "ABCDEFG" ).front() == "C" ) { /* do something */ }
Let's figure out what happens in this (contrived) example.
First, a temporary string is created from the string literal `"ABCDEFG"`, and it is passed (by reference) to the routine `extract_part`. Then a second string is created in the call `std::string::substr` and returned to `extract_part` (this copy may be elided by RVO). Then `extract_part` returns that string back to the caller (again this copy may be elided). The first temporary string is deallocated, and `front` is called on the second string, and then it is deallocated as well.
Two `std::string`s are created, and two copy operations. That's (potentially) four memory allocations and deallocations, and the associated copying of data.
Now let's look at the same code with `string_ref`:
boost::string_ref extract_part ( boost::string_ref bar ) {
return bar.substr ( 2, 3 );
}
if ( extract_part ( "ABCDEFG" ).front() == "C" ) { /* do something */ }
No memory allocations. No copying of character data. No changes to the code other than the types. There are two `string_ref`s created, and two `string_ref`s copied, but those are cheap operations.
[endsect]
[/=================]
[section:reference Reference ]
[/=================]
The header file "string_ref.hpp" defines a template `boost::basic_string_ref`, and four specializations - for `char` / `wchar_t` / `char16_t` / `char32_t` .
`#include <boost/utility/string_ref.hpp>`
Construction and copying:
BOOST_CONSTEXPR basic_string_ref (); // Constructs an empty string_ref
BOOST_CONSTEXPR basic_string_ref(const charT* str); // Constructs from a NULL-terminated string
BOOST_CONSTEXPR basic_string_ref(const charT* str, size_type len); // Constructs from a pointer, length pair
template<typename Allocator>
basic_string_ref(const std::basic_string<charT, traits, Allocator>& str); // Constructs from a std::string
basic_string_ref (const basic_string_ref &rhs);
basic_string_ref& operator=(const basic_string_ref &rhs);
`string_ref` does not define a move constructor nor a move-assignment operator because copying a `string_ref` is just a cheap as moving one.
Basic container-like functions:
BOOST_CONSTEXPR size_type size() const ;
BOOST_CONSTEXPR size_type length() const ;
BOOST_CONSTEXPR size_type max_size() const ;
BOOST_CONSTEXPR bool empty() const ;
// All iterators are const_iterators
BOOST_CONSTEXPR const_iterator begin() const ;
BOOST_CONSTEXPR const_iterator cbegin() const ;
BOOST_CONSTEXPR const_iterator end() const ;
BOOST_CONSTEXPR const_iterator cend() const ;
const_reverse_iterator rbegin() const ;
const_reverse_iterator crbegin() const ;
const_reverse_iterator rend() const ;
const_reverse_iterator crend() const ;
Access to the individual elements (all of which are const):
BOOST_CONSTEXPR const charT& operator[](size_type pos) const ;
const charT& at(size_t pos) const ;
BOOST_CONSTEXPR const charT& front() const ;
BOOST_CONSTEXPR const charT& back() const ;
BOOST_CONSTEXPR const charT* data() const ;
Modifying the `string_ref` (but not the underlying data):
void clear();
void remove_prefix(size_type n);
void remove_suffix(size_type n);
Searching:
size_type find(basic_string_ref s) const ;
size_type find(charT c) const ;
size_type rfind(basic_string_ref s) const ;
size_type rfind(charT c) const ;
size_type find_first_of(charT c) const ;
size_type find_last_of (charT c) const ;
size_type find_first_of(basic_string_ref s) const ;
size_type find_last_of(basic_string_ref s) const ;
size_type find_first_not_of(basic_string_ref s) const ;
size_type find_first_not_of(charT c) const ;
size_type find_last_not_of(basic_string_ref s) const ;
size_type find_last_not_of(charT c) const ;
String-like operations:
BOOST_CONSTEXPR basic_string_ref substr(size_type pos, size_type n=npos) const ; // Creates a new string_ref
bool starts_with(charT c) const ;
bool starts_with(basic_string_ref x) const ;
bool ends_with(charT c) const ;
bool ends_with(basic_string_ref x) const ;
[endsect]
[/===============]
[section History]
[/===============]
[heading boost 1.53]
* Introduced
[endsect]

View File

@@ -15,7 +15,7 @@ doxygen reference : ../../../../boost/utility/identity_type.hpp
<doxygen:param>WARN_IF_UNDOCUMENTED=NO
<doxygen:param>HIDE_UNDOC_MEMBERS=YES
<doxygen:param>HIDE_UNDOC_CLASSES=YES
<doxygen:param>ALIASES=" Params=\"<b>Parameters:</b> <table border="0">\" Param{2}=\"<tr><td><b><tt>\\1</tt></b></td><td>\\2</td></tr>\" EndParams=\"</table>\" Returns=\"<b>Returns:</b>\" Note=\"<b>Note:</b>\" Warning=\"<b>Warning:</b>\" See=\"<b>See:</b>\" RefSect{2}=\"\\xmlonly<link linkend='boost_utility_identitytype.\\1'>\\2</link>\\endxmlonly\" RefClass{1}=\"\\xmlonly<computeroutput><classname alt='\\1'>\\1</classname></computeroutput>\\endxmlonly\" RefFunc{1}=\"\\xmlonly<computeroutput><functionname alt='\\1'>\\1</functionname></computeroutput>\\endxmlonly\" RefMacro{1}=\"\\xmlonly<computeroutput><macroname alt='\\1'>\\1</macroname></computeroutput>\\endxmlonly\" "
<doxygen:param>ALIASES=" Params=\"<b>Parameters:</b> <table border="0">\" Param{2}=\"<tr><td><b><tt>\\1</tt></b></td><td>\\2</td></tr>\" EndParams=\"</table>\" Returns=\"<b>Returns:</b>\" Note=\"<b>Note:</b>\" Warning=\"<b>Warning:</b>\" See=\"<b>See:</b>\" RefSect{1}=\"\\xmlonly<link linkend='boost_utility_identitytype.\\1'>\\1</link>\\endxmlonly\" RefSectId{2}=\"\\xmlonly<link linkend='boost_utility_identitytype.\\1'>\\2</link>\\endxmlonly\" RefClass{1}=\"\\xmlonly<computeroutput><classname alt='\\1'>\\1</classname></computeroutput>\\endxmlonly\" RefFunc{1}=\"\\xmlonly<computeroutput><functionname alt='\\1'>\\1</functionname></computeroutput>\\endxmlonly\" RefMacro{1}=\"\\xmlonly<computeroutput><macroname alt='\\1'>\\1</macroname></computeroutput>\\endxmlonly\" "
;
# This target must be called "index" so to generate "index.html" file.
@@ -29,16 +29,3 @@ boostbook doc : index
<xsl:param>boost.root=../../../../..
;
#
# This is very imperfect - it results in both html and pdf docs being built,
# for some reason I can't get the "onehtml" format specified above to play nice
# with the usual incantations for mixed pdf/html builds. JM 06/2012.
#
boostbook pdf_doc : index
:
<format>pdf
<format>html:<build>no
;
install pdf_doc_install : pdf_doc : <location>. <name>identity_type.pdf <install-type>PDF ;
explicit pdf_doc_install ;

View File

@@ -2,10 +2,11 @@
Caminiti</p></div><div><div class="legalnotice" title="Legal Notice"><a name="boost_utility_identitytype.legal"></a><p>
Distributed under the Boost Software License, Version 1.0 (see accompanying
file LICENSE_1_0.txt or a copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p></div></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="section"><a href="#boost_utility_identitytype.motivation">Motivation</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.solution">Solution</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.templates">Templates</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.abstract_types">Abstract Types</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.annex__usage">Annex: Usage</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.annex__implementation">Annex:
</p></div></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="section"><a href="#boost_utility_identitytype.motivation">Motivation</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.solution">Solution</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.templates">Templates</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.abstract_types">Abstract Types</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.compilers_and_platforms">Compilers
and Platforms</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.annex__usage">Annex: Usage</a></span></dt><dt><span class="section"><a href="#boost_utility_identitytype.annex__implementation">Annex:
Implementation</a></span></dt><dt><span class="section"><a href="#reference">Reference</a></span></dt></dl></div><p>
This library allows to wrap types within round parenthesis so they can always
be passed as macro parameters.
This library allows to wrap type expressions within round parenthesis so they
can be passed to macros even when they contain commas.
</p><div class="section boost_utility_identitytype_motivation" title="Motivation"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="boost_utility_identitytype.motivation"></a><a class="link" href="#boost_utility_identitytype.motivation" title="Motivation">Motivation</a></h2></div></div></div><p>
Consider the following macro which declares a variable named <code class="computeroutput"><span class="identifier">var</span></code><code class="literal"><span class="emphasis"><em>n</em></span></code>
with the specified <code class="literal"><span class="emphasis"><em>type</em></span></code> (see also
@@ -36,23 +37,21 @@
<code class="computeroutput"><span class="number">2</span></code>
</li></ol></div><p>
Note that, differently from the compiler, the preprocessor only recognizes
round parenthesis <code class="computeroutput"><span class="special">()</span></code>. Angular
<code class="computeroutput"><span class="special">&lt;&gt;</span></code> and squared <code class="computeroutput"><span class="special">[]</span></code> parenthesis are not recognized by the preprocessor
when parsing macro parameters.
round parameters <code class="computeroutput"><span class="special">()</span></code>. Angular
<code class="computeroutput"><span class="special">&lt;&gt;</span></code> or squared <code class="computeroutput"><span class="special">[]</span></code> parenthesis are not used by the preprocessor
when parsing the macro parameters.
</p></div><div class="section boost_utility_identitytype_solution" title="Solution"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="boost_utility_identitytype.solution"></a><a class="link" href="#boost_utility_identitytype.solution" title="Solution">Solution</a></h2></div></div></div><p>
In some cases, it might be possible to workaround this issue by avoiding to
pass the type expression to the macro all together. For example, in the case
above a <code class="computeroutput"><span class="keyword">typedef</span></code> could have been
used to specify the type expression with the commas outside the macro (see
also <a href="../../test/var.cpp" target="_top"><code class="literal">var.cpp</code></a>):
pass the type expression to the macro all together. For example, in some cases
a <code class="computeroutput"><span class="keyword">typedef</span></code> can be used to specify
the type expression with the commas outside the macro (see also <a href="../../test/var.cpp" target="_top"><code class="literal">var.cpp</code></a>):
</p><p>
</p><pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">,</span> <span class="keyword">char</span><span class="special">&gt;</span> <span class="identifier">map_type</span><span class="special">;</span>
<span class="identifier">VAR</span><span class="special">(</span><span class="identifier">map_type</span><span class="special">,</span> <span class="number">3</span><span class="special">);</span> <span class="comment">// OK.</span>
</pre><p>
</p><p>
When this is neither possible nor desired (e.g., see the function template
<code class="computeroutput"><span class="identifier">f</span></code> in the section below), this
library header <code class="computeroutput"><a class="link" href="#header.boost.utility.identity_type_hpp" title="Header &lt;boost/utility/identity_type.hpp&gt;">boost/utility/identity_type.hpp</a></code>
When this is not possible or desired (e.g., see the function template <code class="computeroutput"><span class="identifier">f</span></code> in the section below), the library header
<code class="computeroutput"><a class="link" href="#header.boost.utility.identity_type_hpp" title="Header &lt;boost/utility/identity_type.hpp&gt;">boost/utility/identity_type.hpp</a></code>
defines a macro <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code>
which can be used to workaround the issue while keeping the type expression
as one of the macro parameters (see also <a href="../../test/var.cpp" target="_top"><code class="literal">var.cpp</code></a>).
@@ -62,21 +61,15 @@
<span class="identifier">VAR</span><span class="special">(</span><span class="identifier">BOOST_IDENTITY_TYPE</span><span class="special">((</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">,</span> <span class="keyword">char</span><span class="special">&gt;)),</span> <span class="number">4</span><span class="special">);</span> <span class="comment">// OK.</span>
</pre><p>
</p><p>
The <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code> macro
expands to an expression that evaluates (at compile-time) to the specified
type. The specified type is never split into multiple macro parameters because
it is always wrapped by a set of extra round parenthesis <code class="computeroutput"><span class="special">()</span></code>.
In fact, a total of two sets of round parenthesis must be used: The parenthesis
to invoke the macro <code class="computeroutput"><span class="identifier">BOOST_IDENTITY_TYPE</span><span class="special">(...)</span></code> plus the inner parenthesis to wrap the
This macro expands to an expression that evaluates (at compile-time) to the
specified type. The specified type is never split into multiple macro parameters
because it is always wrapped by a set of extra round parenthesis <code class="computeroutput"><span class="special">()</span></code>. In fact, a total of two sets of round parenthesis
must be used: The parenthesis to invoke the macro <code class="computeroutput"><span class="identifier">BOOST_IDENTITY_TYPE</span><span class="special">(...)</span></code> plus the inner parenthesis to wrap the
type passed to the macro <code class="computeroutput"><span class="identifier">BOOST_IDENTITY_TYPE</span><span class="special">((...))</span></code>.
</p><p>
This macro works on any <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/standards" target="_top">C++03</a>
compiler (and it does not use <a href="http://en.wikipedia.org/wiki/Variadic_macro" target="_top">variadic
macros</a>). <sup>[<a name="boost_utility_identitytype.solution.f0" href="#ftn.boost_utility_identitytype.solution.f0" class="footnote">1</a>]</sup> The authors originally developed and tested this library using
GNU Compiler Collection (GCC) C++ 4.5.3 (with and without C++11 features enabled
<code class="computeroutput"><span class="special">-</span><span class="identifier">std</span><span class="special">=</span><span class="identifier">c</span><span class="special">++</span><span class="number">0</span><span class="identifier">x</span></code>) on Cygwin
and Miscrosoft Visual C++ (MSVC) 8.0 on Windows 7. See the library <a href="http://www.boost.org/development/tests/release/developer/utility-identity_type.html" target="_top">regressions
test results</a> for more information on supported compilers and platforms.
compiler (because it does not use <a href="http://en.wikipedia.org/wiki/Variadic_macro" target="_top">variadic
macros</a>). <sup>[<a name="boost_utility_identitytype.solution.f0" href="#ftn.boost_utility_identitytype.solution.f0" class="footnote">1</a>]</sup>
</p></div><div class="section boost_utility_identitytype_templates" title="Templates"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="boost_utility_identitytype.templates"></a><a class="link" href="#boost_utility_identitytype.templates" title="Templates">Templates</a></h2></div></div></div><p>
This macro must be prefixed by <code class="computeroutput"><span class="keyword">typename</span></code>
when used within templates. For example, let's program a macro that declares
@@ -102,12 +95,11 @@
</pre><p>
</p><p>
However, note that the template parameter <code class="computeroutput"><span class="keyword">char</span></code>
must be manually specified when invoking the function as in <code class="computeroutput"><span class="identifier">f</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">&gt;(</span><span class="identifier">a</span><span class="special">)</span></code>. In fact,
must be manually specified when invoking the function <code class="computeroutput"><span class="identifier">f</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">&gt;(</span><span class="identifier">a</span><span class="special">)</span></code>. In fact,
when the <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code>
macro is used to wrap a function template parameter, the template parameter
can no longer be automatically deduced by the compiler form the function call
as <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">a</span><span class="special">)</span></code> would
have done. <sup>[<a name="boost_utility_identitytype.templates.f0" href="#ftn.boost_utility_identitytype.templates.f0" class="footnote">2</a>]</sup> (This limitation does not apply to class templates because class
as in <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">a</span><span class="special">)</span></code>. <sup>[<a name="boost_utility_identitytype.templates.f0" href="#ftn.boost_utility_identitytype.templates.f0" class="footnote">2</a>]</sup> (This limitation does not apply to class templates because class
template parameters must always be explicitly specified.) In other words, without
using the <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code>
macro, C++ would normally be able to automatically deduce the function template
@@ -127,7 +119,8 @@
</p></div><div class="section boost_utility_identitytype_abstract_types" title="Abstract Types"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="boost_utility_identitytype.abstract_types"></a><a class="link" href="#boost_utility_identitytype.abstract_types" title="Abstract Types">Abstract Types</a></h2></div></div></div><p>
On some compilers (e.g., GCC), using this macro on abstract types (i.e., classes
with one or more pure virtual functions) generates a compiler error. This can
be avoided by manipulating the type adding and removing a reference to it.
be worked around by manipulating the type adding and removing a reference to
it.
</p><p>
Let's program a macro that performs a static assertion on a <a href="http://en.wikipedia.org/wiki/Template_metaprogramming" target="_top">Template
Meta-Programming</a> (TMP) meta-function (similarly to Boost.MPL <a href="http://www.boost.org/doc/libs/1_36_0/libs/mpl/doc/refmanual/assert.html" target="_top"><code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span></code></a>). The <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code> macro can be used
@@ -155,13 +148,25 @@
<span class="special">&gt;::</span><span class="identifier">type</span>
<span class="special">);</span>
</pre><p>
</p></div><div class="section boost_utility_identitytype_compilers_and_platforms" title="Compilers and Platforms"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="boost_utility_identitytype.compilers_and_platforms"></a><a class="link" href="#boost_utility_identitytype.compilers_and_platforms" title="Compilers and Platforms">Compilers
and Platforms</a></h2></div></div></div><p>
The authors originally developed and tested the library on:
</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem">
GNU Compiler Collection (GCC) C++ 4.5.3 (with and without C++11 features
enabled <code class="computeroutput"><span class="special">-</span><span class="identifier">std</span><span class="special">=</span><span class="identifier">c</span><span class="special">++</span><span class="number">0</span><span class="identifier">x</span></code>) on
Cygwin.
</li><li class="listitem">
Miscrosoft Visual C++ (MSVC) 8.0 on Windows 7.
</li></ol></div><p>
See the library <a href="http://www.boost.org/development/tests/release/developer/utility-identity_type.html" target="_top">regressions
test results</a> for detailed information on supported compilers and platforms.
</p></div><div class="section boost_utility_identitytype_annex__usage" title="Annex: Usage"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="boost_utility_identitytype.annex__usage"></a><a class="link" href="#boost_utility_identitytype.annex__usage" title="Annex: Usage">Annex: Usage</a></h2></div></div></div><p>
The <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code> macro
can be used either when calling a user-defined macro (as shown by the examples
so far), or internally when implementing a user-defined macro (as shown below).
When <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code> is
used in the implementation of the user-defined macro, the caller of the user
macro will have to specify the extra parenthesis (see also <a href="../../test/paren.cpp" target="_top"><code class="literal">paren.cpp</code></a>):
so far), or internally in the definition of a user-defined macro (as shown
below). When <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code>
is used in the user macro definition, the call of the user macro will only
have to specify the extra parenthesis (see also <a href="../../test/paren.cpp" target="_top"><code class="literal">paren.cpp</code></a>):
</p><p>
</p><pre class="programlisting"><span class="preprocessor">#define</span> <span class="identifier">TMP_ASSERT_PAREN</span><span class="special">(</span><span class="identifier">parenthesized_metafunction</span><span class="special">)</span> <span class="special">\</span>
<span class="comment">/* use `BOOST_IDENTITY_TYPE` in macro definition instead of invocation */</span> <span class="special">\</span>
@@ -177,7 +182,7 @@
<span class="identifier">TMP_ASSERT</span><span class="special">(</span><span class="identifier">BOOST_IDENTITY_TYPE</span><span class="special">((</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_const</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">,</span> <span class="keyword">char</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&gt;)));</span>
</pre><p>
</p><p>
However, note that the caller will <span class="emphasis"><em>always</em></span> have to specify
However, note that the user will <span class="emphasis"><em>always</em></span> have to specify
the extra parenthesis even when the macro parameters contain no comma:
</p><p>
</p><pre class="programlisting"><span class="identifier">TMP_ASSERT_PAREN</span><span class="special">((</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_const</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="keyword">const</span><span class="special">&gt;));</span> <span class="comment">// Always extra `((...))`.</span>
@@ -186,8 +191,8 @@
</pre><p>
</p><p>
In some cases, using <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code>
in the implementation of the user-defined macro might provide the best syntax
for the caller. For example, this is the case for <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span></code>
within the user macro definition might provide the best syntax for the user.
For example, this is the case for <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span></code>
because the majority of template meta-programming expressions contain unwrapped
commas so it is less confusing for the user to always specify the extra parenthesis
<code class="computeroutput"><span class="special">((...))</span></code> instead of using <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code>:
@@ -210,9 +215,7 @@
Instead requiring the user to specify <code class="computeroutput"><a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a></code>
only when needed allows for the more natural syntax <code class="computeroutput"><span class="identifier">BOOST_LOCAL_FUNCTION</span><span class="special">(</span><span class="keyword">int</span><span class="special">&amp;</span>
<span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span><span class="special">&amp;</span> <span class="identifier">y</span><span class="special">)</span></code> in the common cases when the parameter types
contain no comma (while still allowing to specify parameter types with commas
as special cases using <code class="computeroutput"><span class="identifier">BOOST_LOCAL_FUNCTION</span><span class="special">(</span><span class="identifier">BOOST_IDENTITY_TYPE</span><span class="special">((</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">,</span> <span class="keyword">char</span><span class="special">&gt;))&amp;</span>
<span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span><span class="special">&amp;</span> <span class="identifier">y</span><span class="special">)</span></code>).
contain no comma.
</p></div><div class="section boost_utility_identitytype_annex__implementation" title="Annex: Implementation"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="boost_utility_identitytype.annex__implementation"></a><a class="link" href="#boost_utility_identitytype.annex__implementation" title="Annex: Implementation">Annex:
Implementation</a></h2></div></div></div><p>
The implementation of this library macro is equivalent to the following: <sup>[<a name="boost_utility_identitytype.annex__implementation.f0" href="#ftn.boost_utility_identitytype.annex__implementation.f0" class="footnote">3</a>]</sup>
@@ -236,8 +239,8 @@
<a class="link" href="#BOOST_IDENTITY_TYPE" title="Macro BOOST_IDENTITY_TYPE">BOOST_IDENTITY_TYPE</a>(parenthesized_type)</pre><div class="refentry" title="Macro BOOST_IDENTITY_TYPE"><a name="BOOST_IDENTITY_TYPE"></a><div class="titlepage"></div><div class="refnamediv"><h2><span class="refentrytitle">Macro BOOST_IDENTITY_TYPE</span></h2><p>BOOST_IDENTITY_TYPE — This macro allows to wrap the specified type expression within extra round parenthesis so the type can be passed as a single macro parameter even if it contains commas (not already wrapped within round parenthesis). </p></div><h2 class="refsynopsisdiv-title">Synopsis</h2><div class="refsynopsisdiv"><pre class="synopsis"><span class="comment">// In header: &lt;<a class="link" href="#header.boost.utility.identity_type_hpp" title="Header &lt;boost/utility/identity_type.hpp&gt;">boost/utility/identity_type.hpp</a>&gt;
</span>BOOST_IDENTITY_TYPE(parenthesized_type)</pre></div><div class="refsect1" title="Description"><a name="id554262"></a><h2>Description</h2><p><span class="bold"><strong>Parameters:</strong></span> </p><div class="informaltable"><table class="table"><colgroup><col><col></colgroup><tbody><tr><td><span class="bold"><strong><code class="computeroutput">parenthesized_type</code></strong></span></td><td>The type expression to be passed as macro parameter wrapped by a single set of round parenthesis <code class="computeroutput">(...)</code>. This type expression can contain an arbitrary number of commas. </td></tr></tbody></table></div><p>
</p><p>This macro works on any C++03 compiler (it does not use variadic macros).</p><p>This macro must be prefixed by <code class="computeroutput">typename</code> when used within templates. Note that the compiler will not be able to automatically determine function template parameters when they are wrapped with this macro (these parameters need to be explicitly specified when calling the function template).</p><p>On some compilers (like GCC), using this macro on abstract types requires to add and remove a reference to the specified type. </p></div></div></div></div><div class="footnotes"><br><hr width="100" align="left"><div class="footnote"><p><sup>[<a id="ftn.boost_utility_identitytype.solution.f0" href="#boost_utility_identitytype.solution.f0" class="para">1</a>] </sup>
</span>BOOST_IDENTITY_TYPE(parenthesized_type)</pre></div><div class="refsect1" title="Description"><a name="id558453"></a><h2>Description</h2><p><span class="bold"><strong>Parameters:</strong></span> </p><div class="informaltable"><table class="table"><colgroup><col><col></colgroup><tbody><tr><td><span class="bold"><strong><code class="computeroutput">parenthesized_type</code></strong></span></td><td>The type expression to be passed as macro parameter wrapped by a single set of round parenthesis <code class="computeroutput">(...)</code>. This type expression can contain an arbitrary number of commas. </td></tr></tbody></table></div><p>
</p><p>This macro works on any C++03 compiler (it does not require variadic macros).</p><p>This macro must be prefixed by <code class="computeroutput">typename</code> when used within templates. However, the compiler will not be able to automatically determine function template parameters when they are wrapped with this macro (these parameters need to be explicitly specified when calling the function template).</p><p>On some compilers (like GCC), using this macro on an abstract types requires to add and remove a reference to the type. </p></div></div></div></div><div class="footnotes"><br><hr width="100" align="left"><div class="footnote"><p><sup>[<a id="ftn.boost_utility_identitytype.solution.f0" href="#boost_utility_identitytype.solution.f0" class="para">1</a>] </sup>
Using variadic macros, it would be possible to require a single set of extra
parenthesis <code class="computeroutput"><span class="identifier">BOOST_IDENTITY_TYPE</span><span class="special">(</span></code><code class="literal"><span class="emphasis"><em>type</em></span></code><code class="computeroutput"><span class="special">)</span></code> instead of two <code class="computeroutput"><span class="identifier">BOOST_IDENTITY_TYPE</span><span class="special">((</span></code><code class="literal"><span class="emphasis"><em>type</em></span></code><code class="computeroutput"><span class="special">))</span></code> but variadic macros are not part of C++03
(even if nowadays they are supported by most modern compilers and they are
@@ -247,6 +250,6 @@
wraps the specified type within a meta-function.
</p></div><div class="footnote"><p><sup>[<a id="ftn.boost_utility_identitytype.annex__implementation.f0" href="#boost_utility_identitytype.annex__implementation.f0" class="para">3</a>] </sup>
There is absolutely no guarantee that the macro is actually implemented using
the code listed in this documentation. The listed code is for explanatory
purposes only.
the code listed in this documentation. This code is for explanatory purposes
only.
</p></div></div></div></body></html>

View File

@@ -19,7 +19,7 @@
[category Utilities]
]
This library allows to wrap types within round parenthesis so they can always be passed as macro parameters.
This library allows to wrap type expressions within round parenthesis so they can be passed to macros even when they contain commas.
[import ../test/var_error.cpp]
[import ../test/var.cpp]
@@ -47,32 +47,30 @@ The preprocessor interprets that unwrapped comma as a separation between macro p
# `char>`
# `2`
Note that, differently from the compiler, the preprocessor only recognizes round parenthesis `()`.
Angular `<>` and squared `[]` parenthesis are not recognized by the preprocessor when parsing macro parameters.
Note that, differently from the compiler, the preprocessor only recognizes round parameters `()`.
Angular `<>` or squared `[]` parenthesis are not used by the preprocessor when parsing the macro parameters.
[endsect]
[section Solution]
In some cases, it might be possible to workaround this issue by avoiding to pass the type expression to the macro all together.
For example, in the case above a `typedef` could have been used to specify the type expression with the commas outside the macro (see also [@../../test/var.cpp =var.cpp=]):
For example, in some cases a `typedef` can be used to specify the type expression with the commas outside the macro (see also [@../../test/var.cpp =var.cpp=]):
[var_typedef]
When this is neither possible nor desired (e.g., see the function template `f` in the section below), this library header [headerref boost/utility/identity_type.hpp] defines a macro [macroref BOOST_IDENTITY_TYPE] which can be used to workaround the issue while keeping the type expression as one of the macro parameters (see also [@../../test/var.cpp =var.cpp=]).
When this is not possible or desired (e.g., see the function template `f` in the section below), the library header [headerref boost/utility/identity_type.hpp] defines a macro [macroref BOOST_IDENTITY_TYPE] which can be used to workaround the issue while keeping the type expression as one of the macro parameters (see also [@../../test/var.cpp =var.cpp=]).
[var_ok]
The [macroref BOOST_IDENTITY_TYPE] macro expands to an expression that evaluates (at compile-time) to the specified type.
This macro expands to an expression that evaluates (at compile-time) to the specified type.
The specified type is never split into multiple macro parameters because it is always wrapped by a set of extra round parenthesis `()`.
In fact, a total of two sets of round parenthesis must be used: The parenthesis to invoke the macro `BOOST_IDENTITY_TYPE(...)` plus the inner parenthesis to wrap the type passed to the macro `BOOST_IDENTITY_TYPE((...))`.
This macro works on any [@http://www.open-std.org/JTC1/SC22/WG21/docs/standards C++03] compiler (and it does not use [@http://en.wikipedia.org/wiki/Variadic_macro variadic macros]).
This macro works on any [@http://www.open-std.org/JTC1/SC22/WG21/docs/standards C++03] compiler (because it does not use [@http://en.wikipedia.org/wiki/Variadic_macro variadic macros]).
[footnote
Using variadic macros, it would be possible to require a single set of extra parenthesis `BOOST_IDENTITY_TYPE(`[^['type]]`)` instead of two `BOOST_IDENTITY_TYPE((`[^['type]]`))` but variadic macros are not part of C++03 (even if nowadays they are supported by most modern compilers and they are also part of C++11).
]
The authors originally developed and tested this library using GNU Compiler Collection (GCC) C++ 4.5.3 (with and without C++11 features enabled `-std=c++0x`) on Cygwin and Miscrosoft Visual C++ (MSVC) 8.0 on Windows 7.
See the library [@http://www.boost.org/development/tests/release/developer/utility-identity_type.html regressions test results] for more information on supported compilers and platforms.
[endsect]
@@ -84,8 +82,8 @@ For example, let's program a macro that declares a function parameter named `arg
[template_f_decl]
[template_f_call]
However, note that the template parameter `char` must be manually specified when invoking the function as in `f<char>(a)`.
In fact, when the [macroref BOOST_IDENTITY_TYPE] macro is used to wrap a function template parameter, the template parameter can no longer be automatically deduced by the compiler form the function call as `f(a)` would have done.
However, note that the template parameter `char` must be manually specified when invoking the function `f<char>(a)`.
In fact, when the [macroref BOOST_IDENTITY_TYPE] macro is used to wrap a function template parameter, the template parameter can no longer be automatically deduced by the compiler form the function call as in `f(a)`.
[footnote
This is because the implementation of [macroref BOOST_IDENTITY_TYPE] wraps the specified type within a meta-function.
]
@@ -100,7 +98,7 @@ In other words, without using the [macroref BOOST_IDENTITY_TYPE] macro, C++ woul
[section Abstract Types]
On some compilers (e.g., GCC), using this macro on abstract types (i.e., classes with one or more pure virtual functions) generates a compiler error.
This can be avoided by manipulating the type adding and removing a reference to it.
This can be worked around by manipulating the type adding and removing a reference to it.
Let's program a macro that performs a static assertion on a [@http://en.wikipedia.org/wiki/Template_metaprogramming Template Meta-Programming] (TMP) meta-function (similarly to Boost.MPL [@http://www.boost.org/doc/libs/1_36_0/libs/mpl/doc/refmanual/assert.html `BOOST_MPL_ASSERT`]).
The [macroref BOOST_IDENTITY_TYPE] macro can be used to pass a meta-function with multiple template parameters to the assert macro (so to handle the commas separating the template parameters).
@@ -110,18 +108,29 @@ In this case, if the meta-function is an abstract type, it needs to be manipulat
[endsect]
[section Compilers and Platforms]
The authors originally developed and tested the library on:
# GNU Compiler Collection (GCC) C++ 4.5.3 (with and without C++11 features enabled `-std=c++0x`) on Cygwin.
# Miscrosoft Visual C++ (MSVC) 8.0 on Windows 7.
See the library [@http://www.boost.org/development/tests/release/developer/utility-identity_type.html regressions test results] for detailed information on supported compilers and platforms.
[endsect]
[section Annex: Usage]
The [macroref BOOST_IDENTITY_TYPE] macro can be used either when calling a user-defined macro (as shown by the examples so far), or internally when implementing a user-defined macro (as shown below).
When [macroref BOOST_IDENTITY_TYPE] is used in the implementation of the user-defined macro, the caller of the user macro will have to specify the extra parenthesis (see also [@../../test/paren.cpp =paren.cpp=]):
The [macroref BOOST_IDENTITY_TYPE] macro can be used either when calling a user-defined macro (as shown by the examples so far), or internally in the definition of a user-defined macro (as shown below).
When [macroref BOOST_IDENTITY_TYPE] is used in the user macro definition, the call of the user macro will only have to specify the extra parenthesis (see also [@../../test/paren.cpp =paren.cpp=]):
[paren]
However, note that the caller will /always/ have to specify the extra parenthesis even when the macro parameters contain no comma:
However, note that the user will /always/ have to specify the extra parenthesis even when the macro parameters contain no comma:
[paren_always]
In some cases, using [macroref BOOST_IDENTITY_TYPE] in the implementation of the user-defined macro might provide the best syntax for the caller.
In some cases, using [macroref BOOST_IDENTITY_TYPE] within the user macro definition might provide the best syntax for the user.
For example, this is the case for `BOOST_MPL_ASSERT` because the majority of template meta-programming expressions contain unwrapped commas so it is less confusing for the user to always specify the extra parenthesis `((...))` instead of using [macroref BOOST_IDENTITY_TYPE]:
BOOST_MPL_ASSERT(( // Natural syntax.
@@ -138,7 +147,7 @@ For example, this is the case for [@http://www.boost.org/libs/local_function `BO
return x + y;
} BOOST_LOCAL_FUNCTION_NAME(add)
Instead requiring the user to specify [macroref BOOST_IDENTITY_TYPE] only when needed allows for the more natural syntax `BOOST_LOCAL_FUNCTION(int& x, int& y)` in the common cases when the parameter types contain no comma (while still allowing to specify parameter types with commas as special cases using `BOOST_LOCAL_FUNCTION(BOOST_IDENTITY_TYPE((std::map<int, char>))& x, int& y)`).
Instead requiring the user to specify [macroref BOOST_IDENTITY_TYPE] only when needed allows for the more natural syntax `BOOST_LOCAL_FUNCTION(int& x, int& y)` in the common cases when the parameter types contain no comma.
[endsect]
@@ -147,7 +156,7 @@ Instead requiring the user to specify [macroref BOOST_IDENTITY_TYPE] only when n
The implementation of this library macro is equivalent to the following:
[footnote
There is absolutely no guarantee that the macro is actually implemented using the code listed in this documentation.
The listed code is for explanatory purposes only.
This code is for explanatory purposes only.
]
#include <boost/type_traits/function_traits.hpp>

View File

@@ -101,7 +101,12 @@ namespace boost
<< "***** Internal Program Error - assertion (" << expr << ") failed in "
<< function << ":\n"
<< file << '(' << line << "): " << msg << std::endl;
std::abort();
#ifdef UNDER_CE
// The Windows CE CRT library does not have abort() so use exit(-1) instead.
std::exit(-1);
#else
std::abort();
#endif
}
} // detail
} // assertion

View File

@@ -13,7 +13,6 @@
#include <boost/utility/base_from_member.hpp>
#include <boost/utility/binary.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/utility/identity_type.hpp>
#include <boost/checked_delete.hpp>
#include <boost/next_prior.hpp>
#include <boost/noncopyable.hpp>

View File

@@ -1,6 +1,6 @@
// boost utility/base_from_member.hpp header file --------------------------//
// Copyright 2001, 2003, 2004 Daryle Walker. Use, modification, and
// Copyright 2001, 2003, 2004, 2012 Daryle Walker. Use, modification, and
// distribution are subject to the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or a copy at
// <http://www.boost.org/LICENSE_1_0.txt>.)
@@ -10,10 +10,15 @@
#ifndef BOOST_UTILITY_BASE_FROM_MEMBER_HPP
#define BOOST_UTILITY_BASE_FROM_MEMBER_HPP
#include <boost/config.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/utility/enable_if.hpp>
// Base-from-member arity configuration macro ------------------------------//
@@ -53,6 +58,59 @@
namespace boost
{
namespace detail
{
// Type-unmarking class template -------------------------------------------//
// Type-trait to get the raw type, i.e. the type without top-level reference nor
// cv-qualification, from a type expression. Mainly for function arguments, any
// reference part is stripped first.
// Contributed by Daryle Walker
template < typename T >
struct remove_cv_ref
{
typedef typename ::boost::remove_cv<typename
::boost::remove_reference<T>::type>::type type;
}; // boost::detail::remove_cv_ref
// Unmarked-type comparison class template ---------------------------------//
// Type-trait to check if two type expressions have the same raw type.
// Contributed by Daryle Walker, based on a work-around by Luc Danton
template < typename T, typename U >
struct is_related
: public ::boost::is_same<
typename ::boost::detail::remove_cv_ref<T>::type,
typename ::boost::detail::remove_cv_ref<U>::type >
{};
// Enable-if-on-unidentical-unmarked-type class template -------------------//
// Enable-if on the first two type expressions NOT having the same raw type.
// Contributed by Daryle Walker, based on a work-around by Luc Danton
#ifndef BOOST_NO_VARIADIC_TEMPLATES
template<typename ...T>
struct enable_if_unrelated
: public ::boost::enable_if_c<true>
{};
template<typename T, typename U, typename ...U2>
struct enable_if_unrelated<T, U, U2...>
: public ::boost::disable_if< ::boost::detail::is_related<T, U> >
{};
#endif
} // namespace boost::detail
// Base-from-member class template -----------------------------------------//
// Helper to initialize a base object so a derived class can use this
@@ -68,12 +126,24 @@ class base_from_member
protected:
MemberType member;
#if !defined(BOOST_NO_RVALUE_REFERENCES) && \
!defined(BOOST_NO_VARIADIC_TEMPLATES) && \
!defined(BOOST_NO_FUNCTION_TEMPLATE_DEFAULT_ARGS)
template <typename ...T, typename EnableIf = typename
::boost::detail::enable_if_unrelated<base_from_member, T...>::type>
explicit BOOST_CONSTEXPR base_from_member( T&& ...x )
BOOST_NOEXCEPT_IF( BOOST_NOEXCEPT_EXPR(::new ((void*) 0) MemberType(
static_cast<T&&>(x)... )) ) // no std::is_nothrow_constructible...
: member( static_cast<T&&>(x)... ) // ...nor std::forward needed
{}
#else
base_from_member()
: member()
{}
BOOST_PP_REPEAT_FROM_TO( 1, BOOST_PP_INC(BOOST_BASE_FROM_MEMBER_MAX_ARITY),
BOOST_PRIVATE_CTR_DEF, _ )
#endif
}; // boost::base_from_member

View File

@@ -13,7 +13,6 @@
//----------------------------------------------------------------------------//
#include <boost/type_traits/add_rvalue_reference.hpp>
//#include <boost/type_traits/add_lvalue_reference.hpp>
//----------------------------------------------------------------------------//
// //
@@ -37,13 +36,9 @@
namespace boost {
//#if !defined(BOOST_NO_RVALUE_REFERENCES)
template <typename T>
typename add_rvalue_reference<T>::type declval() BOOST_NOEXCEPT; // as unevaluated operand
//#else
// template <typename T>
// typename add_lvalue_reference<T>::type declval() BOOST_NOEXCEPT; // as unevaluated operand
//#endif
typename add_rvalue_reference<T>::type declval(); //noexcept; // as unevaluated operand
} // namespace boost
#endif // BOOST_TYPE_TRAITS_EXT_DECLVAL__HPP

View File

@@ -5,11 +5,6 @@
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Copyright Daniel Walker, Eric Niebler, Michel Morin 2008-2012.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or
// copy at http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org/libs/utility
#if !defined(BOOST_PP_IS_ITERATING)
# error Boost result_of - do not include this file!
@@ -23,29 +18,31 @@
#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x551))
template<typename F BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename F BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct tr1_result_of<F(BOOST_RESULT_OF_ARGS)>
: mpl::if_<
mpl::or_< is_pointer<F>, is_member_function_pointer<F> >
, boost::detail::tr1_result_of_impl<
typename remove_cv<F>::type,
typename remove_cv<F>::type(BOOST_RESULT_OF_ARGS),
typename remove_cv<F>::type,
typename remove_cv<F>::type(BOOST_RESULT_OF_ARGS),
(boost::detail::has_result_type<F>::value)>
, boost::detail::tr1_result_of_impl<
F,
F(BOOST_RESULT_OF_ARGS),
F(BOOST_RESULT_OF_ARGS),
(boost::detail::has_result_type<F>::value)> >::type { };
#endif
#ifdef BOOST_RESULT_OF_USE_DECLTYPE
#if !defined(BOOST_NO_DECLTYPE) && defined(BOOST_RESULT_OF_USE_DECLTYPE)
// Uses declval following N3225 20.7.7.6 when F is not a pointer.
template<typename F BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename F BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct result_of<F(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T))>
: mpl::if_<
is_member_function_pointer<F>
mpl::or_< is_pointer<F>, is_member_function_pointer<F> >
, detail::tr1_result_of_impl<
typename remove_cv<F>::type,
typename remove_cv<F>::type,
typename remove_cv<F>::type(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T)), false
>
, detail::cpp0x_result_of_impl<
@@ -56,119 +53,53 @@ struct result_of<F(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T))>
namespace detail {
#ifdef BOOST_NO_SFINAE_EXPR
template<typename F>
struct BOOST_PP_CAT(result_of_callable_fun_2_, BOOST_PP_ITERATION());
template<typename R BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(), typename T)>
struct BOOST_PP_CAT(result_of_callable_fun_2_, BOOST_PP_ITERATION())<R(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(), T))> {
R operator()(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(), T)) const;
typedef result_of_private_type const &(*pfn_t)(...);
operator pfn_t() const volatile;
};
template<typename F>
struct BOOST_PP_CAT(result_of_callable_fun_, BOOST_PP_ITERATION());
template<typename F>
struct BOOST_PP_CAT(result_of_callable_fun_, BOOST_PP_ITERATION())<F *>
: BOOST_PP_CAT(result_of_callable_fun_2_, BOOST_PP_ITERATION())<F>
{};
template<typename F>
struct BOOST_PP_CAT(result_of_callable_fun_, BOOST_PP_ITERATION())<F &>
: BOOST_PP_CAT(result_of_callable_fun_2_, BOOST_PP_ITERATION())<F>
{};
template<typename F>
struct BOOST_PP_CAT(result_of_select_call_wrapper_type_, BOOST_PP_ITERATION())
: mpl::eval_if<
is_class<typename remove_reference<F>::type>,
result_of_wrap_callable_class<F>,
mpl::identity<BOOST_PP_CAT(result_of_callable_fun_, BOOST_PP_ITERATION())<typename remove_cv<F>::type> >
>
{};
template<typename F BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(), typename T)>
struct BOOST_PP_CAT(result_of_is_callable_, BOOST_PP_ITERATION()) {
typedef typename BOOST_PP_CAT(result_of_select_call_wrapper_type_, BOOST_PP_ITERATION())<F>::type wrapper_t;
static const bool value = (
sizeof(result_of_no_type) == sizeof(detail::result_of_is_private_type(
(boost::declval<wrapper_t>()(BOOST_PP_ENUM_BINARY_PARAMS(BOOST_PP_ITERATION(), boost::declval<T, >() BOOST_PP_INTERCEPT)), result_of_weird_type())
))
);
typedef mpl::bool_<value> type;
};
template<typename F BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct cpp0x_result_of_impl<F(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T)), true>
: lazy_enable_if<
BOOST_PP_CAT(result_of_is_callable_, BOOST_PP_ITERATION())<F BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(), T)>
, cpp0x_result_of_impl<F(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T)), false>
>
{};
template<typename F BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct cpp0x_result_of_impl<F(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T)), false>
template<typename F BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct cpp0x_result_of_impl<F(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T))>
{
typedef decltype(
boost::declval<F>()(
BOOST_PP_ENUM_BINARY_PARAMS(BOOST_PP_ITERATION(), boost::declval<T, >() BOOST_PP_INTERCEPT)
BOOST_PP_ENUM_BINARY_PARAMS(BOOST_PP_ITERATION(), declval<T, >() BOOST_PP_INTERCEPT)
)
) type;
};
#else // BOOST_NO_SFINAE_EXPR
} // namespace detail
template<typename F BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct cpp0x_result_of_impl<F(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T)),
typename result_of_always_void<decltype(
boost::declval<F>()(
BOOST_PP_ENUM_BINARY_PARAMS(BOOST_PP_ITERATION(), boost::declval<T, >() BOOST_PP_INTERCEPT)
)
)>::type> {
typedef decltype(
boost::declval<F>()(
BOOST_PP_ENUM_BINARY_PARAMS(BOOST_PP_ITERATION(), boost::declval<T, >() BOOST_PP_INTERCEPT)
)
) type;
};
#endif // BOOST_NO_SFINAE_EXPR
} // namespace detail
#else // defined(BOOST_RESULT_OF_USE_DECLTYPE)
#else // defined(BOOST_NO_DECLTYPE)
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x551))
template<typename F BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename F BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct result_of<F(BOOST_RESULT_OF_ARGS)>
: tr1_result_of<F(BOOST_RESULT_OF_ARGS)> { };
#endif
#endif // defined(BOOST_RESULT_OF_USE_DECLTYPE)
#endif // defined(BOOST_NO_DECLTYPE)
#undef BOOST_RESULT_OF_ARGS
#if BOOST_PP_ITERATION() >= 1
#if BOOST_PP_ITERATION() >= 1
namespace detail {
template<typename R, typename FArgs BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename R, typename FArgs BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct tr1_result_of_impl<R (*)(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T)), FArgs, false>
{
typedef R type;
};
template<typename R, typename FArgs BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename R, typename FArgs BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct tr1_result_of_impl<R (&)(BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),T)), FArgs, false>
{
typedef R type;
};
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x551))
template<typename R, typename FArgs BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename R, typename FArgs BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct tr1_result_of_impl<R (T0::*)
(BOOST_PP_ENUM_SHIFTED_PARAMS(BOOST_PP_ITERATION(),T)),
FArgs, false>
@@ -176,7 +107,8 @@ struct tr1_result_of_impl<R (T0::*)
typedef R type;
};
template<typename R, typename FArgs BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename R, typename FArgs BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct tr1_result_of_impl<R (T0::*)
(BOOST_PP_ENUM_SHIFTED_PARAMS(BOOST_PP_ITERATION(),T))
const,
@@ -185,7 +117,8 @@ struct tr1_result_of_impl<R (T0::*)
typedef R type;
};
template<typename R, typename FArgs BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename R, typename FArgs BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct tr1_result_of_impl<R (T0::*)
(BOOST_PP_ENUM_SHIFTED_PARAMS(BOOST_PP_ITERATION(),T))
volatile,
@@ -194,7 +127,8 @@ struct tr1_result_of_impl<R (T0::*)
typedef R type;
};
template<typename R, typename FArgs BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PP_ITERATION(),typename T)>
template<typename R, typename FArgs BOOST_PP_COMMA_IF(BOOST_PP_ITERATION())
BOOST_PP_ENUM_PARAMS(BOOST_PP_ITERATION(),typename T)>
struct tr1_result_of_impl<R (T0::*)
(BOOST_PP_ENUM_SHIFTED_PARAMS(BOOST_PP_ITERATION(),T))
const volatile,

View File

@@ -28,15 +28,14 @@ This type expression can contain an arbitrary number of commas.
}
@EndParams
This macro works on any C++03 compiler (it does not use variadic macros).
This macro works on any C++03 compiler (it does not require variadic macros).
This macro must be prefixed by <c>typename</c> when used within templates.
Note that the compiler will not be able to automatically determine function
template parameters when they are wrapped with this macro (these parameters
need to be explicitly specified when calling the function template).
However, the compiler will not be able to automatically determine function template parameters when they are wrapped with this macro (these parameters need to
be explicitly specified when calling the function template).
On some compilers (like GCC), using this macro on abstract types requires to
add and remove a reference to the specified type.
On some compilers (like GCC), using this macro on an abstract types requires to
add and remove a reference to the type.
*/
#define BOOST_IDENTITY_TYPE(parenthesized_type) \
/* must NOT prefix this with `::` to work with parenthesized syntax */ \

View File

@@ -10,50 +10,26 @@
#define BOOST_RESULT_OF_HPP
#include <boost/config.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/iteration/iterate.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_shifted_params.hpp>
#include <boost/preprocessor/facilities/intercept.hpp>
#include <boost/preprocessor/iteration/iterate.hpp>
#include <boost/preprocessor/punctuation/comma_if.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_shifted_params.hpp>
#include <boost/preprocessor/facilities/intercept.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/mpl/has_xxx.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/or.hpp>
#include <boost/type_traits/is_class.hpp>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/type_traits/is_member_function_pointer.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/utility/declval.hpp>
#include <boost/utility/enable_if.hpp>
#ifndef BOOST_RESULT_OF_NUM_ARGS
# define BOOST_RESULT_OF_NUM_ARGS 16
#endif
// Use the decltype-based version of result_of by default if the compiler
// supports N3276 <http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3276.pdf>.
// The user can force the choice by defining either BOOST_RESULT_OF_USE_DECLTYPE or
// BOOST_RESULT_OF_USE_TR1, but not both!
#if defined(BOOST_RESULT_OF_USE_DECLTYPE) && defined(BOOST_RESULT_OF_USE_TR1)
# error Both BOOST_RESULT_OF_USE_DECLTYPE and BOOST_RESULT_OF_USE_TR1 cannot be defined at the same time.
#endif
#ifndef BOOST_RESULT_OF_USE_TR1
# ifndef BOOST_RESULT_OF_USE_DECLTYPE
# ifndef BOOST_NO_CXX11_DECLTYPE_N3276 // this implies !defined(BOOST_NO_CXX11_DECLTYPE)
# define BOOST_RESULT_OF_USE_DECLTYPE
# else
# define BOOST_RESULT_OF_USE_TR1
# endif
# endif
#endif
namespace boost {
template<typename F> struct result_of;
@@ -65,67 +41,7 @@ namespace detail {
BOOST_MPL_HAS_XXX_TRAIT_DEF(result_type)
template<typename F, typename FArgs, bool HasResultType> struct tr1_result_of_impl;
#ifdef BOOST_NO_SFINAE_EXPR
struct result_of_private_type {};
struct result_of_weird_type {
friend result_of_private_type operator,(result_of_private_type, result_of_weird_type);
};
typedef char result_of_yes_type; // sizeof(result_of_yes_type) == 1
typedef char (&result_of_no_type)[2]; // sizeof(result_of_no_type) == 2
template<typename T>
result_of_no_type result_of_is_private_type(T const &);
result_of_yes_type result_of_is_private_type(result_of_private_type);
template<typename C>
struct result_of_callable_class : C {
result_of_callable_class();
typedef result_of_private_type const &(*pfn_t)(...);
operator pfn_t() const volatile;
};
template<typename C>
struct result_of_wrap_callable_class {
typedef result_of_callable_class<C> type;
};
template<typename C>
struct result_of_wrap_callable_class<C const> {
typedef result_of_callable_class<C> const type;
};
template<typename C>
struct result_of_wrap_callable_class<C volatile> {
typedef result_of_callable_class<C> volatile type;
};
template<typename C>
struct result_of_wrap_callable_class<C const volatile> {
typedef result_of_callable_class<C> const volatile type;
};
template<typename C>
struct result_of_wrap_callable_class<C &> {
typedef typename result_of_wrap_callable_class<C>::type &type;
};
template<typename F, bool TestCallability = true> struct cpp0x_result_of_impl;
#else // BOOST_NO_SFINAE_EXPR
template<typename T>
struct result_of_always_void
{
typedef void type;
};
template<typename F, typename Enable = void> struct cpp0x_result_of_impl {};
#endif // BOOST_NO_SFINAE_EXPR
template<typename F> struct cpp0x_result_of_impl;
template<typename F>
struct result_of_void_impl

View File

@@ -1,386 +0,0 @@
/*
Copyright (c) Marshall Clow 2012-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
Based on the StringRef implementation in LLVM (http://llvm.org) and
N3422 by Jeffrey Yasskin
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3442.html
*/
#ifndef BOOST_STRING_REF_HPP
#define BOOST_STRING_REF_HPP
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#include <stdexcept>
#include <algorithm>
#include <functional>
#include <string>
namespace boost {
namespace detail {
// A helper functor because sometimes we don't have lambdas
template <typename charT, typename traits>
class string_ref_traits_eq {
public:
string_ref_traits_eq ( charT ch ) : ch_(ch) {}
bool operator () ( charT val ) const { return traits::eq ( ch_, val ); }
charT ch_;
};
}
template<typename charT, typename traits> class basic_string_ref;
typedef basic_string_ref<char, std::char_traits<char> > string_ref;
typedef basic_string_ref<wchar_t, std::char_traits<wchar_t> > wstring_ref;
#ifndef BOOST_NO_CXX11_CHAR16_T
typedef basic_string_ref<char16_t, std::char_traits<char16_t> > u16string_ref;
#endif
#ifndef BOOST_NO_CXX11_CHAR32_T
typedef basic_string_ref<char32_t, std::char_traits<char32_t> > u32string_ref;
#endif
template<typename charT, typename traits>
class basic_string_ref {
public:
// types
typedef charT value_type;
typedef const charT* pointer;
typedef const charT& reference;
typedef const charT& const_reference;
typedef pointer const_iterator; // impl-defined
typedef const_iterator iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef const_reverse_iterator reverse_iterator;
typedef std::size_t size_type;
typedef ptrdiff_t difference_type;
static BOOST_CONSTEXPR_OR_CONST size_type npos = size_type(-1);
// construct/copy
BOOST_CONSTEXPR basic_string_ref ()
: ptr_(NULL), len_(0) {}
BOOST_CONSTEXPR basic_string_ref (const basic_string_ref &rhs)
: ptr_(rhs.ptr_), len_(rhs.len_) {}
basic_string_ref& operator=(const basic_string_ref &rhs) {
ptr_ = rhs.ptr_;
len_ = rhs.len_;
return *this;
}
basic_string_ref(const charT* str)
: ptr_(str), len_(traits::length(str)) {}
template<typename Allocator>
basic_string_ref(const std::basic_string<charT, traits, Allocator>& str)
: ptr_(str.data()), len_(str.length()) {}
BOOST_CONSTEXPR basic_string_ref(const charT* str, size_type len)
: ptr_(str), len_(len) {}
#ifndef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
template<typename Allocator>
explicit operator std::basic_string<charT, traits, Allocator>() const {
return std::basic_string<charT, traits, Allocator> ( ptr_, len_ );
}
#endif
// iterators
BOOST_CONSTEXPR const_iterator begin() const { return ptr_; }
BOOST_CONSTEXPR const_iterator cbegin() const { return ptr_; }
BOOST_CONSTEXPR const_iterator end() const { return ptr_ + len_; }
BOOST_CONSTEXPR const_iterator cend() const { return ptr_ + len_; }
const_reverse_iterator rbegin() const { return const_reverse_iterator (end()); }
const_reverse_iterator crbegin() const { return const_reverse_iterator (end()); }
const_reverse_iterator rend() const { return const_reverse_iterator (begin()); }
const_reverse_iterator crend() const { return const_reverse_iterator (begin()); }
// capacity
BOOST_CONSTEXPR size_type size() const { return len_; }
BOOST_CONSTEXPR size_type length() const { return len_; }
BOOST_CONSTEXPR size_type max_size() const { return len_; }
BOOST_CONSTEXPR bool empty() const { return len_ == 0; }
// element access
BOOST_CONSTEXPR const charT& operator[](size_type pos) const { return ptr_[pos]; }
const charT& at(size_t pos) const {
if ( pos >= len_ )
throw std::out_of_range ( "boost::string_ref::at" );
return ptr_[pos];
}
BOOST_CONSTEXPR const charT& front() const { return ptr_[0]; }
BOOST_CONSTEXPR const charT& back() const { return ptr_[len_-1]; }
BOOST_CONSTEXPR const charT* data() const { return ptr_; }
// modifiers
void clear() { len_ = 0; }
void remove_prefix(size_type n) {
if ( n > len_ )
n = len_;
ptr_ += n;
len_ -= n;
}
void remove_suffix(size_type n) {
if ( n > len_ )
n = len_;
len_ -= n;
}
// basic_string_ref string operations
BOOST_CONSTEXPR
basic_string_ref substr(size_type pos, size_type n=npos) const {
#if BOOST_WORKAROUND(BOOST_MSVC, <= 1600)
// Looks like msvc 8 and 9 have a codegen bug when one branch of
// a conditional operator is a throw expression. -EAN 2012/12/04
if ( pos > size()) throw std::out_of_range ( "string_ref::substr" );
if ( n == npos || pos + n > size()) n = size () - pos;
return basic_string_ref ( data() + pos, n );
#else
return pos > size() ? throw std::out_of_range ( "string_ref::substr" ) :
basic_string_ref ( data() + pos, n == npos || pos + n > size() ? size() - pos : n );
#endif
}
int compare(basic_string_ref x) const {
int cmp = traits::compare ( ptr_, x.ptr_, (std::min)(len_, x.len_));
return cmp != 0 ? cmp : ( len_ == x.len_ ? 0 : len_ < x.len_ ? -1 : 1 );
}
bool starts_with(charT c) const { return !empty() && traits::eq ( c, front()); }
bool starts_with(basic_string_ref x) const {
return len_ >= x.len_ && traits::compare ( ptr_, x.ptr_, x.len_ ) == 0;
}
bool ends_with(charT c) const { return !empty() && traits::eq ( c, back()); }
bool ends_with(basic_string_ref x) const {
return len_ >= x.len_ && traits::compare ( ptr_ + len_ - x.len_, x.ptr_, x.len_ ) == 0;
}
size_type find(basic_string_ref s) const {
const_iterator iter = std::search ( this->cbegin (), this->cend (),
s.cbegin (), s.cend (), traits::eq );
return iter = this->cend () ? npos : std::distance ( this->cbegin (), iter );
}
size_type find(charT c) const {
const_iterator iter = std::find_if ( this->cbegin (), this->cend (),
detail::string_ref_traits_eq<charT, traits> ( c ));
return iter == this->cend () ? npos : std::distance ( this->cbegin (), iter );
}
size_type rfind(basic_string_ref s) const {
const_reverse_iterator iter = std::search ( this->crbegin (), this->crend (),
s.crbegin (), s.crend (), traits::eq );
return iter == this->crend () ? npos : reverse_distance ( this->crbegin (), iter );
}
size_type rfind(charT c) const {
const_reverse_iterator iter = std::find_if ( this->crbegin (), this->crend (),
detail::string_ref_traits_eq<charT, traits> ( c ));
return iter == this->crend () ? npos : reverse_distance ( this->crbegin (), iter );
}
size_type find_first_of(charT c) const { return find (c); }
size_type find_last_of (charT c) const { return rfind (c); }
size_type find_first_of(basic_string_ref s) const {
const_iterator iter = std::find_first_of
( this->cbegin (), this->cend (), s.cbegin (), s.cend (), traits::eq );
return iter == this->cend () ? npos : std::distance ( this->cbegin (), iter );
}
size_type find_last_of(basic_string_ref s) const {
const_reverse_iterator iter = std::find_first_of
( this->crbegin (), this->crend (), s.cbegin (), s.cend (), traits::eq );
return iter == this->crend () ? npos : reverse_distance ( this->crbegin (), iter);
}
size_type find_first_not_of(basic_string_ref s) const {
const_iterator iter = find_not_of ( this->cbegin (), this->cend (), s );
return iter == this->cend () ? npos : std::distance ( this->cbegin (), iter );
}
size_type find_first_not_of(charT c) const {
for ( const_iterator iter = this->cbegin (); iter != this->cend (); ++iter )
if ( !traits::eq ( c, *iter ))
return std::distance ( this->cbegin (), iter );
return npos;
}
size_type find_last_not_of(basic_string_ref s) const {
const_reverse_iterator iter = find_not_of ( this->crbegin (), this->crend (), s );
return iter == this->crend () ? npos : reverse_distance ( this->crbegin (), iter );
}
size_type find_last_not_of(charT c) const {
for ( const_reverse_iterator iter = this->crbegin (); iter != this->crend (); ++iter )
if ( !traits::eq ( c, *iter ))
return reverse_distance ( this->crbegin (), iter );
return npos;
}
private:
template <typename r_iter>
size_type reverse_distance ( r_iter first, r_iter last ) const {
return len_ - 1 - std::distance ( first, last );
}
template <typename Iterator>
Iterator find_not_of ( Iterator first, Iterator last, basic_string_ref s ) const {
for ( ; first != last ; ++first )
if ( 0 == traits::find ( s.ptr_, s.len_, *first ))
return first;
return last;
}
const charT *ptr_;
std::size_t len_;
};
// Comparison operators
template<typename charT, typename traits>
bool operator==(basic_string_ref<charT, traits> x, basic_string_ref<charT, traits> y) {
if ( x.size () != y.size ()) return false;
return x.compare(y) == 0;
}
template<typename charT, typename traits>
bool operator!=(basic_string_ref<charT, traits> x, basic_string_ref<charT, traits> y) {
if ( x.size () != y.size ()) return true;
return x.compare(y) != 0;
}
template<typename charT, typename traits>
bool operator<(basic_string_ref<charT, traits> x, basic_string_ref<charT, traits> y) {
return x.compare(y) < 0;
}
template<typename charT, typename traits>
bool operator>(basic_string_ref<charT, traits> x, basic_string_ref<charT, traits> y) {
return x.compare(y) > 0;
}
template<typename charT, typename traits>
bool operator<=(basic_string_ref<charT, traits> x, basic_string_ref<charT, traits> y) {
return x.compare(y) <= 0;
}
template<typename charT, typename traits>
bool operator>=(basic_string_ref<charT, traits> x, basic_string_ref<charT, traits> y) {
return x.compare(y) >= 0;
}
// Inserter
template<class charT, class traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const basic_string_ref<charT,traits>& str) {
#ifdef BOOST_NO_CXX11_RANGE_BASED_FOR
for ( typename basic_string_ref<charT, traits>::const_iterator iter = str.begin (); iter != str.end (); ++iter )
os << *iter;
#else
for ( charT x : str )
os << x;
#endif
return os;
}
#if 0
// numeric conversions
//
// These are short-term implementations.
// In a production environment, I would rather avoid the copying.
//
int stoi (string_ref str, size_t* idx=0, int base=10) {
return std::stoi ( std::string(str), idx, base );
}
long stol (string_ref str, size_t* idx=0, int base=10) {
return std::stol ( std::string(str), idx, base );
}
unsigned long stoul (string_ref str, size_t* idx=0, int base=10) {
return std::stoul ( std::string(str), idx, base );
}
long long stoll (string_ref str, size_t* idx=0, int base=10) {
return std::stoll ( std::string(str), idx, base );
}
unsigned long long stoull (string_ref str, size_t* idx=0, int base=10) {
return std::stoull ( std::string(str), idx, base );
}
float stof (string_ref str, size_t* idx=0) {
return std::stof ( std::string(str), idx );
}
double stod (string_ref str, size_t* idx=0) {
return std::stod ( std::string(str), idx );
}
long double stold (string_ref str, size_t* idx=0) {
return std::stold ( std::string(str), idx );
}
int stoi (wstring_ref str, size_t* idx=0, int base=10) {
return std::stoi ( std::wstring(str), idx, base );
}
long stol (wstring_ref str, size_t* idx=0, int base=10) {
return std::stol ( std::wstring(str), idx, base );
}
unsigned long stoul (wstring_ref str, size_t* idx=0, int base=10) {
return std::stoul ( std::wstring(str), idx, base );
}
long long stoll (wstring_ref str, size_t* idx=0, int base=10) {
return std::stoll ( std::wstring(str), idx, base );
}
unsigned long long stoull (wstring_ref str, size_t* idx=0, int base=10) {
return std::stoull ( std::wstring(str), idx, base );
}
float stof (wstring_ref str, size_t* idx=0) {
return std::stof ( std::wstring(str), idx );
}
double stod (wstring_ref str, size_t* idx=0) {
return std::stod ( std::wstring(str), idx );
}
long double stold (wstring_ref str, size_t* idx=0) {
return std::stold ( std::wstring(str), idx );
}
#endif
}
#if 0
namespace std {
// Hashing
template<> struct hash<boost::string_ref>;
template<> struct hash<boost::u16string_ref>;
template<> struct hash<boost::u32string_ref>;
template<> struct hash<boost::wstring_ref>;
}
#endif
#endif

View File

@@ -14,21 +14,26 @@
<p>But that doesn't mean there isn't useful stuff here. Take a look:</p>
<blockquote>
<p>
<a href="utility.htm#addressof">addressof</a><br>
<a href="assert.html">assert</a><br>
<a href="base_from_member.html">base_from_member</a><br>
<a href="utility.htm#BOOST_BINARY">BOOST_BINARY</a><br>
<a href="call_traits.htm">call_traits</a><br>
<a href="checked_delete.html">checked_delete</a><br>
<a href="compressed_pair.htm">compressed_pair</a><br>
<a href="current_function.html">current_function</a><br>
<a href="doc/html/declval.html">declval</a><br>
<a href="enable_if.html">enable_if</a><br>
<a href="doc/html/declval.html">declval</a><br>
<a href="enable_if.html">enable_if</a><br>
<a href="in_place_factories.html">in_place_factory</a><br>
<a href="iterator_adaptors.htm">iterator_adaptors</a><br>
<a href="generator_iterator.htm">generator iterator adaptors</a><br>
<a href="utility.htm#functions_next_prior">next/prior</a><br>
<a href="utility.htm#Class_noncopyable">noncopyable</a><br>
<a href="operators.htm">operators</a><br>
<a href="utility.htm#result_of">result_of</a><br>
<a href="swap.html">swap</a><br>
<a href="throw_exception.html">throw_exception</a><br>
<a href="utility.htm">utility</a><br>
<a href="doc/html/string_ref.html">string_ref</a><br>
<a href="value_init.htm">value_init</a>
</p>
</blockquote>
@@ -43,4 +48,3 @@
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->07 November, 2006<!--webbot bot="Timestamp" endspan i-checksum="39368" --></p>
</body>
</html>

View File

@@ -31,8 +31,6 @@ test-suite utility
[ run ../ref_test.cpp ../../test/build//boost_test_exec_monitor/<link>static ]
[ compile result_of_test.cpp ]
[ run ../shared_iterator_test.cpp ]
[ run string_ref_test1.cpp ]
[ run string_ref_test2.cpp ]
[ run ../value_init_test.cpp ]
[ run ../value_init_workaround_test.cpp ]
[ run ../initialized_test.cpp ]

View File

@@ -5,7 +5,7 @@
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/config.hpp>
#define BOOST_RESULT_OF_USE_DECLTYPE
// For more information, see http://www.boost.org/libs/utility
#include <boost/utility/result_of.hpp>
@@ -62,9 +62,6 @@ struct int_result_type_and_float_result_of_and_char_return_template
char operator()(char);
};
template<typename T>
struct cv_overload_check {};
struct result_of_member_function_template
{
template<typename F> struct result;
@@ -72,13 +69,13 @@ struct result_of_member_function_template
template<typename This, typename That> struct result<This(That)> { typedef That type; };
template<class T> typename result<result_of_member_function_template(T)>::type operator()(T);
template<typename This, typename That> struct result<const This(That)> { typedef cv_overload_check<const That> type; };
template<typename This, typename That> struct result<const This(That)> { typedef const That type; };
template<class T> typename result<const result_of_member_function_template(T)>::type operator()(T) const;
template<typename This, typename That> struct result<volatile This(That)> { typedef cv_overload_check<volatile That> type; };
template<typename This, typename That> struct result<volatile This(That)> { typedef volatile That type; };
template<class T> typename result<volatile result_of_member_function_template(T)>::type operator()(T) volatile;
template<typename This, typename That> struct result<const volatile This(That)> { typedef cv_overload_check<const volatile That> type; };
template<typename This, typename That> struct result<const volatile This(That)> { typedef const volatile That type; };
template<class T> typename result<const volatile result_of_member_function_template(T)>::type operator()(T) const volatile;
template<typename This, typename That> struct result<This(That &, That)> { typedef That & type; };
@@ -94,17 +91,14 @@ struct result_of_member_function_template
template<class T> typename result<result_of_member_function_template(T const volatile &, T)>::type operator()(T const volatile &, T);
};
struct no_result_type_or_result
struct no_result_type_or_result_of
{
short operator()(double);
cv_overload_check<const short> operator()(double) const;
cv_overload_check<volatile short> operator()(double) volatile;
cv_overload_check<const volatile short> operator()(double) const volatile;
int operator()();
cv_overload_check<const int> operator()() const;
cv_overload_check<volatile int> operator()() volatile;
cv_overload_check<const volatile int> operator()() const volatile;
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
int operator()(double);
short operator()(double) const;
unsigned int operator()();
unsigned short operator()() volatile;
const unsigned short operator()() const volatile;
#if !defined(BOOST_NO_RVALUE_REFERENCES)
short operator()(int&&);
int operator()(int&);
long operator()(int const&);
@@ -112,44 +106,20 @@ struct no_result_type_or_result
};
template<typename T>
struct no_result_type_or_result_template
struct no_result_type_or_result_of_template
{
short operator()(double);
cv_overload_check<const short> operator()(double) const;
cv_overload_check<volatile short> operator()(double) volatile;
cv_overload_check<const volatile short> operator()(double) const volatile;
int operator()();
cv_overload_check<const int> operator()() const;
cv_overload_check<volatile int> operator()() volatile;
cv_overload_check<const volatile int> operator()() const volatile;
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
int operator()(double);
short operator()(double) const;
unsigned int operator()();
unsigned short operator()() volatile;
const unsigned short operator()() const volatile;
#if !defined(BOOST_NO_RVALUE_REFERENCES)
short operator()(int&&);
int operator()(int&);
long operator()(int const&);
#endif
};
// sfinae_tests are derived from example code from Joel de Guzman,
// which demonstrated the interaction between result_of and SFINAE.
template <typename F, typename Arg>
typename boost::result_of<F(Arg const&)>::type
sfinae_test(F f, Arg const& arg)
{
return f(arg);
}
template <typename F, typename Arg>
typename boost::result_of<F(Arg&)>::type
sfinae_test(F f, Arg& arg)
{
return f(arg);
}
int sfinae_test_f(int& i)
{
return i;
}
struct X {};
int main()
@@ -160,10 +130,6 @@ int main()
typedef int (&func_ref)(float, double);
typedef int (*func_ptr_0)();
typedef int (&func_ref_0)();
typedef void (*func_ptr_void)(float, double);
typedef void (&func_ref_void)(float, double);
typedef void (*func_ptr_void_0)();
typedef void (&func_ref_void_0)();
typedef int (X::*mem_func_ptr)(float);
typedef int (X::*mem_func_ptr_c)(float) const;
typedef int (X::*mem_func_ptr_v)(float) volatile;
@@ -191,7 +157,7 @@ int main()
// Prior to decltype, result_of could not deduce the return type
// nullary function objects unless they exposed a result_type.
#if defined(BOOST_RESULT_OF_USE_DECLTYPE)
#if !defined(BOOST_NO_DECLTYPE)
BOOST_STATIC_ASSERT((is_same<result_of<int_result_of(void)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile int_result_of(void)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<int_result_of_template<void>(void)>::type, int>::value));
@@ -203,11 +169,14 @@ int main()
BOOST_STATIC_ASSERT((is_same<result_of<volatile int_result_of_template<void>(void)>::type, void>::value));
#endif
BOOST_STATIC_ASSERT((is_same<tr1_result_of<int_result_type_and_float_result_of_and_char_return(char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<int_result_type_and_float_result_of_and_char_return_template<void>(char)>::type, int>::value));
// Prior to decltype, result_of ignored a nested result<> if
// result_type was defined. After decltype, result_of deduces the
// actual return type of the function object, ignoring both
// result<> and result_type.
#if defined(BOOST_RESULT_OF_USE_DECLTYPE)
#if !defined(BOOST_NO_DECLTYPE)
BOOST_STATIC_ASSERT((is_same<result_of<int_result_type_and_float_result_of_and_char_return(char)>::type, char>::value));
BOOST_STATIC_ASSERT((is_same<result_of<int_result_type_and_float_result_of_and_char_return_template<void>(char)>::type, char>::value));
#else
@@ -215,52 +184,41 @@ int main()
BOOST_STATIC_ASSERT((is_same<result_of<int_result_type_and_float_result_of_and_char_return_template<void>(char)>::type, int>::value));
#endif
BOOST_STATIC_ASSERT((is_same<tr1_result_of<int_result_type_and_float_result_of_and_char_return(char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<int_result_type_and_float_result_of_and_char_return_template<void>(char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ptr(char, float)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ref(char, float)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ptr_0()>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ref_0()>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ptr_void(char, float)>::type, void>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ref_void(char, float)>::type, void>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ptr_void_0()>::type, void>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ref_void_0()>::type, void>::value));
BOOST_STATIC_ASSERT((is_same<result_of<mem_func_ptr(X,char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<mem_func_ptr_c(X,char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<mem_func_ptr_v(X,char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<mem_func_ptr_cv(X,char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<mem_func_ptr_0(X)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<func_ptr(void)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ptr(char, float)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ref(char, float)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ptr_0()>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ref_0()>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ptr_void(char, float)>::type, void>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ref_void(char, float)>::type, void>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ptr_void_0()>::type, void>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ref_void_0()>::type, void>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<mem_func_ptr(X,char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<mem_func_ptr_c(X,char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<mem_func_ptr_v(X,char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<mem_func_ptr_cv(X,char)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<mem_func_ptr_0(X)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ptr(void)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<func_ref(void)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<result_of_member_function_template(double)>::type, double>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const result_of_member_function_template(double)>::type, cv_overload_check<const double> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile result_of_member_function_template(double)>::type, cv_overload_check<volatile double> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<const volatile result_of_member_function_template(double)>::type, cv_overload_check<const volatile double> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<const result_of_member_function_template(double)>::type, const double>::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile result_of_member_function_template(double)>::type, volatile double>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const volatile result_of_member_function_template(double)>::type, const volatile double>::value));
BOOST_STATIC_ASSERT((is_same<result_of<result_of_member_function_template(int &, int)>::type, int &>::value));
BOOST_STATIC_ASSERT((is_same<result_of<result_of_member_function_template(int const &, int)>::type, int const &>::value));
BOOST_STATIC_ASSERT((is_same<result_of<result_of_member_function_template(int volatile &, int)>::type, int volatile &>::value));
BOOST_STATIC_ASSERT((is_same<result_of<result_of_member_function_template(int const volatile &, int)>::type, int const volatile &>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<result_of_member_function_template(double)>::type, double>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<const result_of_member_function_template(double)>::type, cv_overload_check<const double> >::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<volatile result_of_member_function_template(double)>::type, cv_overload_check<volatile double> >::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<const volatile result_of_member_function_template(double)>::type, cv_overload_check<const volatile double> >::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<const result_of_member_function_template(double)>::type, const double>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<volatile result_of_member_function_template(double)>::type, volatile double>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<const volatile result_of_member_function_template(double)>::type, const volatile double>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<result_of_member_function_template(int &, int)>::type, int &>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<result_of_member_function_template(int const &, int)>::type, int const &>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<result_of_member_function_template(int volatile &, int)>::type, int volatile &>::value));
@@ -273,38 +231,26 @@ int main()
BOOST_STATIC_ASSERT((is_same<tr1_result_of<pf_t(int)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<tr1_result_of<pf_t const(int)>::type,int>::value));
#if defined(BOOST_RESULT_OF_USE_DECLTYPE)
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result(double)>::type, short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const no_result_type_or_result(double)>::type, cv_overload_check<const short> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile no_result_type_or_result(double)>::type, cv_overload_check<volatile short> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<const volatile no_result_type_or_result(double)>::type, cv_overload_check<const volatile short> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result(void)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const no_result_type_or_result(void)>::type, cv_overload_check<const int> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile no_result_type_or_result(void)>::type, cv_overload_check<volatile int> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<const volatile no_result_type_or_result(void)>::type, cv_overload_check<const volatile int> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_template<void>(double)>::type, short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const no_result_type_or_result_template<void>(double)>::type, cv_overload_check<const short> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile no_result_type_or_result_template<void>(double)>::type, cv_overload_check<volatile short> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<const volatile no_result_type_or_result_template<void>(double)>::type, cv_overload_check<const volatile short> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_template<void>(void)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const no_result_type_or_result_template<void>(void)>::type, cv_overload_check<const int> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile no_result_type_or_result_template<void>(void)>::type, cv_overload_check<volatile int> >::value));
BOOST_STATIC_ASSERT((is_same<result_of<const volatile no_result_type_or_result_template<void>(void)>::type, cv_overload_check<const volatile int> >::value));
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result(int&&)>::type, short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result(int&)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result(int const&)>::type, long>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_template<void>(int&&)>::type, short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_template<void>(int&)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_template<void>(int const&)>::type, long>::value));
#if !defined(BOOST_NO_DECLTYPE)
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of(double)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of(void)>::type, unsigned int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const no_result_type_or_result_of(double)>::type, short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile no_result_type_or_result_of(void)>::type, unsigned short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const volatile no_result_type_or_result_of(void)>::type, const unsigned short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of_template<void>(double)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of_template<void>(void)>::type, unsigned int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const no_result_type_or_result_of_template<void>(double)>::type, short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<volatile no_result_type_or_result_of_template<void>(void)>::type, unsigned short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<const volatile no_result_type_or_result_of_template<void>(void)>::type, const unsigned short>::value));
#if !defined(BOOST_NO_RVALUE_REFERENCES)
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of(int&&)>::type, short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of(int&)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of(int const&)>::type, long>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of_template<void>(int&&)>::type, short>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of_template<void>(int&)>::type, int>::value));
BOOST_STATIC_ASSERT((is_same<result_of<no_result_type_or_result_of_template<void>(int const&)>::type, long>::value));
#endif
#endif
#if defined(BOOST_RESULT_OF_USE_DECLTYPE)
int i = 123;
sfinae_test(sfinae_test_f, i);
#endif // defined(BOOST_RESULT_OF_USE_DECLTYPE)
return 0;
}

View File

@@ -1,111 +0,0 @@
/*
Copyright (c) Marshall Clow 2012-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
*/
#include <iostream>
#include <algorithm>
#include <string>
#include <boost/utility/string_ref.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
typedef boost::string_ref string_ref;
// Should be equal
void interop ( const std::string &str, string_ref ref ) {
// BOOST_CHECK ( str == ref );
BOOST_CHECK ( str.size () == ref.size ());
BOOST_CHECK ( std::equal ( str.begin (), str.end (), ref.begin ()));
BOOST_CHECK ( std::equal ( str.rbegin (), str.rend (), ref.rbegin ()));
}
void null_tests ( const char *p ) {
// All zero-length string-refs should be equal
string_ref sr1; // NULL, 0
string_ref sr2 ( NULL, 0 );
string_ref sr3 ( p, 0 );
string_ref sr4 ( p );
sr4.clear ();
BOOST_CHECK ( sr1 == sr2 );
BOOST_CHECK ( sr1 == sr3 );
BOOST_CHECK ( sr2 == sr3 );
BOOST_CHECK ( sr1 == sr4 );
}
// make sure that substrings work just like strings
void test_substr ( const std::string &str ) {
const size_t sz = str.size ();
string_ref ref ( str );
// Substrings at the end
for ( size_t i = 0; i <= sz; ++ i )
interop ( str.substr ( i ), ref.substr ( i ));
// Substrings at the beginning
for ( size_t i = 0; i <= sz; ++ i )
interop ( str.substr ( 0, i ), ref.substr ( 0, i ));
// All possible substrings
for ( size_t i = 0; i < sz; ++i )
for ( size_t j = i; j < sz; ++j )
interop ( str.substr ( i, j ), ref.substr ( i, j ));
}
// make sure that removing prefixes and suffixes work just like strings
void test_remove ( const std::string &str ) {
const size_t sz = str.size ();
std::string work;
string_ref ref;
for ( size_t i = 1; i <= sz; ++i ) {
work = str;
ref = str;
while ( ref.size () >= i ) {
interop ( work, ref );
work.erase ( 0, i );
ref.remove_prefix (i);
}
}
for ( size_t i = 1; i < sz; ++ i ) {
work = str;
ref = str;
while ( ref.size () >= i ) {
interop ( work, ref );
work.erase ( work.size () - i, i );
ref.remove_suffix (i);
}
}
}
const char *test_strings [] = {
"",
"1",
"ABCDEFGHIJKLMNOPQRSTUVWXYZ",
"0123456789",
NULL
};
int test_main( int , char* [] ) {
const char **p = &test_strings[0];
while ( *p != NULL ) {
interop ( *p, *p );
test_substr ( *p );
test_remove ( *p );
null_tests ( *p );
p++;
}
return 0;
}

View File

@@ -1,256 +0,0 @@
/*
Copyright (c) Marshall Clow 2012-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
*/
#include <iostream>
#include <cstring> // for std::strchr
#include <boost/utility/string_ref.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
typedef boost::string_ref string_ref;
void ends_with ( const char *arg ) {
const size_t sz = strlen ( arg );
string_ref sr ( arg );
string_ref sr2 ( arg );
const char *p = arg;
while ( !*p ) {
BOOST_CHECK ( sr.ends_with ( p ));
++p;
}
while ( !sr2.empty ()) {
BOOST_CHECK ( sr.ends_with ( sr2 ));
sr2.remove_prefix (1);
}
sr2 = arg;
while ( !sr2.empty ()) {
BOOST_CHECK ( sr.ends_with ( sr2 ));
sr2.remove_prefix (1);
}
char ch = sz == 0 ? '\0' : arg [ sz - 1 ];
sr2 = arg;
if ( sz > 0 )
BOOST_CHECK ( sr2.ends_with ( ch ));
BOOST_CHECK ( !sr2.ends_with ( ++ch ));
BOOST_CHECK ( sr2.ends_with ( string_ref ()));
}
void starts_with ( const char *arg ) {
const size_t sz = strlen ( arg );
string_ref sr ( arg );
string_ref sr2 ( arg );
const char *p = arg + std::strlen ( arg ) - 1;
while ( p >= arg ) {
std::string foo ( arg, p + 1 );
BOOST_CHECK ( sr.starts_with ( foo ));
--p;
}
while ( !sr2.empty ()) {
BOOST_CHECK ( sr.starts_with ( sr2 ));
sr2.remove_suffix (1);
}
char ch = *arg;
sr2 = arg;
if ( sz > 0 )
BOOST_CHECK ( sr2.starts_with ( ch ));
BOOST_CHECK ( !sr2.starts_with ( ++ch ));
BOOST_CHECK ( sr2.starts_with ( string_ref ()));
}
void reverse ( const char *arg ) {
// Round trip
string_ref sr1 ( arg );
std::string string1 ( sr1.rbegin (), sr1.rend ());
string_ref sr2 ( string1 );
std::string string2 ( sr2.rbegin (), sr2.rend ());
BOOST_CHECK ( std::equal ( sr2.rbegin (), sr2.rend (), arg ));
BOOST_CHECK ( string2 == arg );
BOOST_CHECK ( std::equal ( sr1.begin (), sr1.end (), string2.begin ()));
}
// This helper function eliminates signed vs. unsigned warnings
string_ref::size_type ptr_diff ( const char *res, const char *base ) {
BOOST_CHECK ( res >= base );
return static_cast<string_ref::size_type> ( res - base );
}
void find ( const char *arg ) {
string_ref sr1;
string_ref sr2;
const char *p;
// Look for each character in the string(searching from the start)
p = arg;
sr1 = arg;
while ( *p ) {
string_ref::size_type pos = sr1.find(*p);
BOOST_CHECK ( pos != string_ref::npos && ( pos <= ptr_diff ( p, arg )));
++p;
}
// Look for each character in the string (searching from the end)
p = arg;
sr1 = arg;
while ( *p ) {
string_ref::size_type pos = sr1.rfind(*p);
BOOST_CHECK ( pos != string_ref::npos && pos < sr1.size () && ( pos >= ptr_diff ( p, arg )));
++p;
}
sr1 = arg;
p = arg;
// for all possible chars, see if we find them in the right place.
// Note that strchr will/might do the _wrong_ thing if we search for NULL
for ( int ch = 1; ch < 256; ++ch ) {
string_ref::size_type pos = sr1.find(ch);
const char *strp = std::strchr ( arg, ch );
BOOST_CHECK (( strp == NULL ) == ( pos == string_ref::npos ));
if ( strp != NULL )
BOOST_CHECK ( ptr_diff ( strp, arg ) == pos );
}
sr1 = arg;
p = arg;
// for all possible chars, see if we find them in the right place.
// Note that strchr will/might do the _wrong_ thing if we search for NULL
for ( int ch = 1; ch < 256; ++ch ) {
string_ref::size_type pos = sr1.rfind(ch);
const char *strp = std::strrchr ( arg, ch );
BOOST_CHECK (( strp == NULL ) == ( pos == string_ref::npos ));
if ( strp != NULL )
BOOST_CHECK ( ptr_diff ( strp, arg ) == pos );
}
// Find everything at the start
p = arg;
sr1 = arg;
while ( !sr1.empty ()) {
string_ref::size_type pos = sr1.find(*p);
BOOST_CHECK ( pos == 0 );
sr1.remove_prefix (1);
++p;
}
// Find everything at the end
sr1 = arg;
p = arg + strlen ( arg ) - 1;
while ( !sr1.empty ()) {
string_ref::size_type pos = sr1.rfind(*p);
BOOST_CHECK ( pos == sr1.size () - 1 );
sr1.remove_suffix (1);
--p;
}
// Find everything at the start
sr1 = arg;
p = arg;
while ( !sr1.empty ()) {
string_ref::size_type pos = sr1.find_first_of(*p);
BOOST_CHECK ( pos == 0 );
sr1.remove_prefix (1);
++p;
}
// Find everything at the end
sr1 = arg;
p = arg + strlen ( arg ) - 1;
while ( !sr1.empty ()) {
string_ref::size_type pos = sr1.find_last_of(*p);
BOOST_CHECK ( pos == sr1.size () - 1 );
sr1.remove_suffix (1);
--p;
}
// Basic sanity checking for "find_first_of / find_first_not_of"
sr1 = arg;
sr2 = arg;
while ( !sr1.empty() ) {
BOOST_CHECK ( sr1.find_first_of ( sr2 ) == 0 );
BOOST_CHECK ( sr1.find_first_not_of ( sr2 ) == string_ref::npos );
sr1.remove_prefix ( 1 );
}
p = arg;
sr1 = arg;
while ( *p ) {
string_ref::size_type pos1 = sr1.find_first_of(*p);
string_ref::size_type pos2 = sr1.find_first_not_of(*p);
BOOST_CHECK ( pos1 != string_ref::npos && pos1 < sr1.size () && pos1 <= ptr_diff ( p, arg ));
if ( pos2 != string_ref::npos ) {
for ( size_t i = 0 ; i < pos2; ++i )
BOOST_CHECK ( sr1[i] == *p );
BOOST_CHECK ( sr1 [ pos2 ] != *p );
}
BOOST_CHECK ( pos2 != pos1 );
++p;
}
// Basic sanity checking for "find_last_of / find_last_not_of"
sr1 = arg;
sr2 = arg;
while ( !sr1.empty() ) {
BOOST_CHECK ( sr1.find_last_of ( sr2 ) == ( sr1.size () - 1 ));
BOOST_CHECK ( sr1.find_last_not_of ( sr2 ) == string_ref::npos );
sr1.remove_suffix ( 1 );
}
p = arg;
sr1 = arg;
while ( *p ) {
string_ref::size_type pos1 = sr1.find_last_of(*p);
string_ref::size_type pos2 = sr1.find_last_not_of(*p);
BOOST_CHECK ( pos1 != string_ref::npos && pos1 < sr1.size () && pos1 >= ptr_diff ( p, arg ));
BOOST_CHECK ( pos2 == string_ref::npos || pos1 < sr1.size ());
if ( pos2 != string_ref::npos ) {
for ( size_t i = sr1.size () -1 ; i > pos2; --i )
BOOST_CHECK ( sr1[i] == *p );
BOOST_CHECK ( sr1 [ pos2 ] != *p );
}
BOOST_CHECK ( pos2 != pos1 );
++p;
}
}
const char *test_strings [] = {
"",
"0",
"abc",
"AAA", // all the same
"adsfadadiaef;alkdg;aljt;j agl;sjrl;tjs;lga;lretj;srg[w349u5209dsfadfasdfasdfadsf",
"abc\0asdfadsfasf",
NULL
};
int test_main( int , char* [] ) {
const char **p = &test_strings[0];
while ( *p != NULL ) {
starts_with ( *p );
ends_with ( *p );
reverse ( *p );
find ( *p );
p++;
}
return 0;
}

View File

@@ -143,7 +143,7 @@ void f() {
<h2><a name="result_of">Class template
result_of</a></h2> <p>The class template
<code>result_of</code> helps determine the type of a
call expression. For example, given an lvalue <code>f</code> of
call expression. Given an lvalue <code>f</code> of
type <code>F</code> and lvalues <code>t1</code>,
<code>t2</code>, ..., <code>t<em>N</em></code> of
types <code>T1</code>, <code>T2</code>, ...,
@@ -161,18 +161,16 @@ void f() {
resides in the header <code>&lt;<a
href="../../boost/utility/result_of.hpp">boost/utility/result_of.hpp</a>&gt;</code>.</p>
<p>If your compiler's support for <code>decltype</code> is
adequate, <code>result_of</code> automatically uses it to
deduce the type of the call expression, in which case
<code>result_of&lt;F(T1, T2, ...,
T<em>N</em>)&gt;::type</code> names the type
<code>decltype(boost::declval&lt;F&gt;()(boost::declval&lt;T1&gt;(),
boost::declval&lt;T2&gt;(), ...,
boost::declval&lt;T<em>N</em>&gt;()))</code>, as in the
following example.</p>
<p>If your compiler supports <code>decltype</code>,
then you can enable automatic result type deduction by
defining the macro <code>BOOST_RESULT_OF_USE_DECLTYPE</code>,
as in the following example.</p>
<blockquote>
<pre>struct functor {
<pre>#define BOOST_RESULT_OF_USE_DECLTYPE
#include &lt;boost/utility/result_of.hpp&gt;
struct functor {
template&lt;class T&gt;
T operator()(T x)
{
@@ -182,29 +180,21 @@ void f() {
typedef boost::result_of&lt;
functor(int)
&gt;::type type; // type is int</pre>
&gt;::type type;</pre>
</blockquote>
<p>You can test whether <code>result_of</code> is using
<code>decltype</code> by checking if the macro
<code>BOOST_RESULT_OF_USE_DECLTYPE</code> is defined after
including <code>result_of.hpp</code>. You can also force
<code>result_of</code> to use <code>decltype</code> by
defining <code>BOOST_RESULT_OF_USE_DECLTYPE</code> prior
to including <code>result_of.hpp</code>.</p>
<p>If <code>decltype</code> is not used,
<p>If <code>decltype</code> is not enabled,
then automatic result type deduction of function
objects is not possible. Instead, <code>result_of</code>
uses the following protocol to allow the programmer to
specify a type. When <code>F</code> is a class type with a
member type <code>result_type</code>,
<code>result_of&lt;F(T1, T2, ...,
T<em>N</em>)&gt;::type</code> is
T<em>N</em>)&gt;</code> is
<code>F::result_type</code>. When <code>F</code> does
not contain <code>result_type</code>,
<code>result_of&lt;F(T1, T2, ...,
T<em>N</em>)&gt;::type</code> is <code>F::result&lt;F(T1,
T<em>N</em>)&gt;</code> is <code>F::result&lt;F(T1,
T2, ..., T<em>N</em>)&gt;::type</code> when
<code><em>N</em> &gt; 0</code> or <code>void</code>
when <code><em>N</em> = 0</code>. Note that it is the
@@ -231,29 +221,22 @@ typedef boost::result_of&lt;
typedef boost::result_of&lt;
functor(int)
&gt;::type type; // type is int</pre>
&gt;::type type;</pre>
</blockquote>
<p>Since <code>decltype</code> is a new language
feature recently standardized in C++11,
if you are writing a function object
to be used with <code>result_of</code>, for
maximum portability, you might consider following
the above protocol even if your compiler has
proper <code>decltype</code> support. If you wish to continue to
<p>In a future
release, <code>BOOST_RESULT_OF_USE_DECLTYPE</code>
may be enabled by default on compilers that
support <code>decltype</code>, so if you use the above
protocol please take care to ensure that
the <code>result_type</code>
and <code>result&lt;&gt;</code> members accurately
represent the result type. If you wish to continue to
use the protocol on compilers that
support <code>decltype</code>, there are two options:
You can use <code>boost::tr1_result_of</code>, which is also
defined in <code>&lt;<a href="../../boost/utility/result_of.hpp">boost/utility/result_of.hpp</a>&gt;</code>.
Alternatively, you can define the macro
<code>BOOST_RESULT_OF_USE_TR1</code>, which causes
<code>result_of</code> to use the protocol described
above instead of <code>decltype</code>. If you choose to
follow the protocol, take care to ensure that the
<code>result_type</code> and
<code>result&lt;&gt;</code> members accurately
represent the return type of
<code>operator()</code> given a call expression.</p>
support <code>decltype</code>,
use <code>boost::tr1_result_of</code>, which is also
defined
in <code>&lt;<a href="../../boost/utility/result_of.hpp">boost/utility/result_of.hpp</a>&gt;</code>.</p>
<a name="BOOST_NO_RESULT_OF"></a>
<p>This implementation of <code>result_of</code>
@@ -270,322 +253,7 @@ typedef boost::result_of&lt;
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf">N1836</a>,
or, for motivation and design rationale,
the <code>result_of</code> <a href="http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1454.html">proposal</a>.</p>
<a name="result_of_guidelines">
<h3>Usage guidelines for boost::result_of</h3>
</a>
<p>The following are general suggestions about when
and how to use <code>boost::result_of</code>.</p>
<ol>
<li> If you are targeting C++11 and are not concerned
about portability to non-compliant compilers or
previous versions of the standard, then use
<code>std::result_of</code>. If <code>std::result_of</code>
meets your needs, then there's no reason to stop using
it.</li>
<li> If you are targeting C++11 but may port your code
to legacy compilers at some time in the future, then
use <code>boost::result_of</code> with
<code>decltype</code>. When <code>decltype</code> is
used <code>boost::result_of</code>
and <code>std::result_of</code> are usually
interchangeable. See the documentation on
known <a href="#result_of_cxx11_diff">differences</a>
between boost::result_of and C++11 result_of.</li>
<li> If compiler portability is required,
use <code>boost::result_of</code> with the TR1 protocol.</li>
</ol>
<p>Regardless of how you
configure <code>boost::result_of</code>, it is
important to bear in mind that the return type of a
function may change depending on its arguments, and
additionally, the return type of a member function may
change depending on the cv-qualification of the
object. <code>boost::result_of</code> must be passed
the appropriately cv-qualified types in order to
deduce the corresponding return type. For example:
<blockquote>
<pre>struct functor {
int& operator()(int);
int const& operator()(int) const;
float& operator()(float&);
float const& operator()(float const&);
};
typedef boost::result_of&lt;
functor(int)
&gt;::type type1; // type1 is int &
typedef boost::result_of&lt;
const functor(int)
&gt;::type type2; // type2 is int const &
typedef boost::result_of&lt;
functor(float&)
&gt;::type type3; // type3 is float &
typedef boost::result_of&lt;
functor(float const&)
&gt;::type type4; // type4 is float const &</pre>
</blockquote>
<a name="result_of_tr1_protocol_guidelines">
<h3>Usage guidelines for the TR1 result_of protocol</h3>
</a>
<p>On compliant C++11
compilers, <code>boost::result_of</code> can
use <code>decltype</code> to deduce the type of any
call expression, including calls to function
objects. However, on pre-C++11 compilers or on
compilers without adequate decltype support,
additional scaffolding is needed from function
objects as described above. The following are
suggestions about how to use the TR1 protocol.</p>
<ul>
<li>When the return type does not depend on the
argument types or the cv-qualification of the
function object, simply
define <code>result_type</code>. There is no need
to use the <code>result</code> template unless the
return type varies.</li>
<li>Use the protocol specified type when defining
function prototypes. This can help ensure the
actual return type does not get out of sync with
the protocol specification. For example:
<blockquote>
<pre>struct functor {
typedef int result_type;
result_type operator()(int);
};</pre>
</blockquote> </li>
<li>Always specify the <code>result</code>
specialization near the corresponding
<code>operator()</code> overload. This can make it
easier to keep the specializations in sync with the
overloads. For example:
<blockquote>
<pre>struct functor {
template&lt;class&gt; struct result;
template&lt;class F&gt;
struct result&lt;F(int)&gt; {
typedef int& type;
};
result&lt;functor(int)&gt;::type operator()(int);
template&lt;class F&gt;
struct result&lt;const F(int)&gt; {
typedef int const& type;
};
result&lt;const functor(int)&gt;::type operator()(int) const;
};</pre>
</blockquote> </li>
<li>Use type transformations to simplify
the <code>result</code> template specialization. For
example, the following uses
<a href="../type_traits/doc/html/index.html">Boost.TypeTraits</a>
to specialize the <code>result</code> template for
a single <code>operator()</code> that can be called on
both a const and non-const function object with
either an lvalue or rvalue argument.
<blockquote>
<pre>struct functor {
template&lt;class&gt; struct result;
template&lt;class F, class T&gt;
struct result&lt;F(T)&gt;
: boost::remove_cv&lt;
typename boost::remove_reference&lt;T&gt;::type
&gt;
{};
template&lt;class T&gt;
T operator()(T const&amp; x) const;
};</pre>
</blockquote></li>
</ul>
<a name="result_of_tr1_diff">
<h3>Known differences between boost::result_of and TR1 result_of</h3>
</a>
When using <code>decltype</code>, <code>boost::result_of</code>
ignores the TR1 protocol and instead deduces the
return type of function objects directly
via <code>decltype</code>. In most situations, users
will not notice a difference, so long as they use the
protocol correctly. The following are situations in
which the type deduced
by <code>boost::result_of</code> is known to differ depending on
whether <code>decltype</code> or the TR1 protocol is
used.
<ul>
<li> TR1 protocol misusage
<p>When using the TR1
protocol, <code>boost::result_of</code> cannot
detect whether the actual type of a call to a
function object is the same as the type specified
by the protocol, which allows for the possibility
of inadvertent mismatches between the specified
type and the actual type. When
using <code>decltype</code>, these subtle bugs
may result in compilation errors. For example:</p>
<blockquote>
<pre>struct functor {
typedef short result_type;
int operator()(short);
};
#ifdef BOOST_RESULT_OF_USE_DECLTYPE
BOOST_STATIC_ASSERT((
boost::is_same&lt;boost::result_of&lt;functor(short)&gt;::type, int&gt;::value
));
#else
BOOST_STATIC_ASSERT((
boost::is_same&lt;boost::result_of&lt;functor(short)&gt;::type, short&gt;::value
));
#endif</pre>
</blockquote>
<p>Note that the user can
force <code>boost::result_of</code> to use the TR1
protocol even on platforms that
support <code>decltype</code> by
defining <code>BOOST_RESULT_OF_USE_TR1</code>.</p></li>
<li> Nullary function objects
<p>When using the TR1 protocol, <code>boost::result_of</code>
cannot always deduce the type of calls to
nullary function objects, in which case the
type defaults to void. When using <code>decltype</code>,
<code>boost::result_of</code> always gives the actual type of the
call expression. For example:</p>
<blockquote>
<pre>struct functor {
template&lt;class&gt; struct result {
typedef int type;
};
int operator()();
};
#ifdef BOOST_RESULT_OF_USE_DECLTYPE
BOOST_STATIC_ASSERT((
boost::is_same&lt;boost::result_of&lt;functor()&gt;::type, int&gt;::value
));
#else
BOOST_STATIC_ASSERT((
boost::is_same&lt;boost::result_of&lt;functor()&gt;::type, void&gt;::value
));
#endif</pre>
</blockquote>
<p>Note that there are some workarounds for the
nullary function problem. So long as the return
type does not vary,
<code>result_type</code> can always be used to
specify the return type regardless of arity. If the
return type does vary, then the user can
specialize <code>boost::result_of</code> itself for
nullary calls.</p></li>
<li> Non-class prvalues and cv-qualification
<p>When using the TR1
protocol, <code>boost::result_of</code> will
report the cv-qualified type specified
by <code>result_type</code> or
the <code>result</code> template regardless of
the actual cv-qualification of the call
expression. When using
<code>decltype</code>, <code>boost::result_of</code>
will report the actual type of the call expression,
which is not cv-qualified when the expression is a
non-class prvalue. For example:</p>
<blockquote>
<pre>struct functor {
template&lt;class&gt; struct result;
template&lt;class F, class T&gt; struct result&lt;F(const T)&gt; {
typedef const T type;
};
const short operator()(const short);
int const & operator()(int const &);
};
// Non-prvalue call expressions work the same with or without decltype.
BOOST_STATIC_ASSERT((
boost::is_same&lt;
boost::result_of&lt;functor(int const &)&gt;::type,
int const &
::value
));
// Non-class prvalue call expressions are not actually cv-qualified,
// but only the decltype-based result_of reports this accurately.
#ifdef BOOST_RESULT_OF_USE_DECLTYPE
BOOST_STATIC_ASSERT((
boost::is_same&lt;
boost::result_of&lt;functor(const short)&gt;::type,
short
::value
));
#else
BOOST_STATIC_ASSERT((
boost::is_same&lt;
boost::result_of&lt;functor(const short)&gt;::type,
const short
::value
));
#endif</pre>
</blockquote></li>
</ul>
<a name="result_of_cxx11_diff">
<h3>Known differences between boost::result_of and C++11 result_of</h3>
</a>
<p>When using <code>decltype</code>, <code>boost::result_of</code>
implements most of the C++11 result_of
specification. One known exception is that
<code>boost::result_of</code> does not implement the
requirements regarding pointers to member data.</p>
<p>Created by Doug Gregor. Contributions from Daniel Walker, Eric Niebler, Michel Morin and others</p>
Contributed by Doug Gregor.</p>
<h2>Class templates for the Base-from-Member Idiom</h2>
<p>See <a href="base_from_member.html">separate documentation</a>.</p>

View File

@@ -22,7 +22,7 @@
#pragma hdrstop
#endif
#include "boost/test/minimal.hpp"
#include <boost/detail/lightweight_test.hpp>
//
// Sample POD type
@@ -215,7 +215,7 @@ template<class T>
void check_initialized_value ( T const& y )
{
T initializedValue = boost::initialized_value ;
BOOST_CHECK ( y == initializedValue ) ;
BOOST_TEST ( y == initializedValue ) ;
}
#ifdef __BORLANDC__
@@ -245,128 +245,125 @@ void check_initialized_value( NonPOD const& )
template<class T>
bool test ( T const& y, T const& z )
{
const boost::unit_test::counter_t counter_before_test = boost::minimal_test::errors_counter();
const int errors_before_test = boost::detail::test_errors();
check_initialized_value(y);
boost::value_initialized<T> x ;
BOOST_CHECK ( y == x ) ;
BOOST_CHECK ( y == boost::get(x) ) ;
BOOST_TEST ( y == x ) ;
BOOST_TEST ( y == boost::get(x) ) ;
static_cast<T&>(x) = z ;
boost::get(x) = z ;
BOOST_CHECK ( x == z ) ;
BOOST_TEST ( x == z ) ;
boost::value_initialized<T> const x_c ;
BOOST_CHECK ( y == x_c ) ;
BOOST_CHECK ( y == boost::get(x_c) ) ;
BOOST_TEST ( y == x_c ) ;
BOOST_TEST ( y == boost::get(x_c) ) ;
T& x_c_ref = const_cast<T&>( boost::get(x_c) ) ;
x_c_ref = z ;
BOOST_CHECK ( x_c == z ) ;
BOOST_TEST ( x_c == z ) ;
boost::value_initialized<T> const copy1 = x;
BOOST_CHECK ( boost::get(copy1) == boost::get(x) ) ;
BOOST_TEST ( boost::get(copy1) == boost::get(x) ) ;
boost::value_initialized<T> copy2;
copy2 = x;
BOOST_CHECK ( boost::get(copy2) == boost::get(x) ) ;
BOOST_TEST ( boost::get(copy2) == boost::get(x) ) ;
boost::shared_ptr<boost::value_initialized<T> > ptr( new boost::value_initialized<T> );
BOOST_CHECK ( y == *ptr ) ;
BOOST_TEST ( y == *ptr ) ;
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1300)
boost::value_initialized<T const> cx ;
BOOST_CHECK ( y == cx ) ;
BOOST_CHECK ( y == boost::get(cx) ) ;
BOOST_TEST ( y == cx ) ;
BOOST_TEST ( y == boost::get(cx) ) ;
boost::value_initialized<T const> const cx_c ;
BOOST_CHECK ( y == cx_c ) ;
BOOST_CHECK ( y == boost::get(cx_c) ) ;
BOOST_TEST ( y == cx_c ) ;
BOOST_TEST ( y == boost::get(cx_c) ) ;
#endif
return boost::minimal_test::errors_counter() == counter_before_test ;
return boost::detail::test_errors() == errors_before_test ;
}
int test_main(int, char **)
int main(int, char **)
{
BOOST_CHECK ( test( 0,1234 ) ) ;
BOOST_CHECK ( test( 0.0,12.34 ) ) ;
BOOST_CHECK ( test( POD(0,0,0.0), POD('a',1234,56.78f) ) ) ;
BOOST_CHECK ( test( NonPOD( std::string() ), NonPOD( std::string("something") ) ) ) ;
BOOST_TEST ( test( 0,1234 ) ) ;
BOOST_TEST ( test( 0.0,12.34 ) ) ;
BOOST_TEST ( test( POD(0,0,0.0), POD('a',1234,56.78f) ) ) ;
BOOST_TEST ( test( NonPOD( std::string() ), NonPOD( std::string("something") ) ) ) ;
NonPOD NonPOD_object( std::string("NonPOD_object") );
BOOST_CHECK ( test<NonPOD *>( 0, &NonPOD_object ) ) ;
BOOST_TEST ( test<NonPOD *>( 0, &NonPOD_object ) ) ;
AggregatePODStruct zeroInitializedAggregatePODStruct = { 0.0f, '\0', 0 };
AggregatePODStruct nonZeroInitializedAggregatePODStruct = { 1.25f, 'a', -1 };
BOOST_CHECK ( test(zeroInitializedAggregatePODStruct, nonZeroInitializedAggregatePODStruct) );
BOOST_TEST ( test(zeroInitializedAggregatePODStruct, nonZeroInitializedAggregatePODStruct) );
StringAndInt stringAndInt0;
StringAndInt stringAndInt1;
stringAndInt0.i = 0;
stringAndInt1.i = 1;
stringAndInt1.s = std::string("1");
BOOST_CHECK ( test(stringAndInt0, stringAndInt1) );
BOOST_TEST ( test(stringAndInt0, stringAndInt1) );
StructWithDestructor structWithDestructor0;
StructWithDestructor structWithDestructor1;
structWithDestructor0.i = 0;
structWithDestructor1.i = 1;
BOOST_CHECK ( test(structWithDestructor0, structWithDestructor1) );
BOOST_TEST ( test(structWithDestructor0, structWithDestructor1) );
StructWithVirtualFunction structWithVirtualFunction0;
StructWithVirtualFunction structWithVirtualFunction1;
structWithVirtualFunction0.i = 0;
structWithVirtualFunction1.i = 1;
BOOST_CHECK ( test(structWithVirtualFunction0, structWithVirtualFunction1) );
BOOST_TEST ( test(structWithVirtualFunction0, structWithVirtualFunction1) );
DerivedFromAggregatePODStruct derivedFromAggregatePODStruct0;
DerivedFromAggregatePODStruct derivedFromAggregatePODStruct1;
static_cast<AggregatePODStruct &>(derivedFromAggregatePODStruct0) = zeroInitializedAggregatePODStruct;
static_cast<AggregatePODStruct &>(derivedFromAggregatePODStruct1) = nonZeroInitializedAggregatePODStruct;
BOOST_CHECK ( test(derivedFromAggregatePODStruct0, derivedFromAggregatePODStruct1) );
BOOST_TEST ( test(derivedFromAggregatePODStruct0, derivedFromAggregatePODStruct1) );
AggregatePODStructWrapper aggregatePODStructWrapper0;
AggregatePODStructWrapper aggregatePODStructWrapper1;
aggregatePODStructWrapper0.dataMember = zeroInitializedAggregatePODStruct;
aggregatePODStructWrapper1.dataMember = nonZeroInitializedAggregatePODStruct;
BOOST_CHECK ( test(aggregatePODStructWrapper0, aggregatePODStructWrapper1) );
BOOST_TEST ( test(aggregatePODStructWrapper0, aggregatePODStructWrapper1) );
ArrayOfBytes zeroInitializedArrayOfBytes = { 0 };
boost::value_initialized<ArrayOfBytes> valueInitializedArrayOfBytes;
BOOST_CHECK (std::memcmp(get(valueInitializedArrayOfBytes), zeroInitializedArrayOfBytes, sizeof(ArrayOfBytes)) == 0);
BOOST_TEST (std::memcmp(get(valueInitializedArrayOfBytes), zeroInitializedArrayOfBytes, sizeof(ArrayOfBytes)) == 0);
boost::value_initialized<ArrayOfBytes> valueInitializedArrayOfBytes2;
valueInitializedArrayOfBytes2 = valueInitializedArrayOfBytes;
BOOST_CHECK (std::memcmp(get(valueInitializedArrayOfBytes), get(valueInitializedArrayOfBytes2), sizeof(ArrayOfBytes)) == 0);
BOOST_TEST (std::memcmp(get(valueInitializedArrayOfBytes), get(valueInitializedArrayOfBytes2), sizeof(ArrayOfBytes)) == 0);
boost::value_initialized<CopyFunctionCallTester> copyFunctionCallTester1;
BOOST_CHECK ( ! get(copyFunctionCallTester1).is_copy_constructed);
BOOST_CHECK ( ! get(copyFunctionCallTester1).is_assignment_called);
BOOST_TEST ( ! get(copyFunctionCallTester1).is_copy_constructed);
BOOST_TEST ( ! get(copyFunctionCallTester1).is_assignment_called);
boost::value_initialized<CopyFunctionCallTester> copyFunctionCallTester2 = boost::value_initialized<CopyFunctionCallTester>(copyFunctionCallTester1);
BOOST_CHECK ( get(copyFunctionCallTester2).is_copy_constructed);
BOOST_CHECK ( ! get(copyFunctionCallTester2).is_assignment_called);
BOOST_TEST ( get(copyFunctionCallTester2).is_copy_constructed);
BOOST_TEST ( ! get(copyFunctionCallTester2).is_assignment_called);
boost::value_initialized<CopyFunctionCallTester> copyFunctionCallTester3;
copyFunctionCallTester3 = boost::value_initialized<CopyFunctionCallTester>(copyFunctionCallTester1);
BOOST_CHECK ( ! get(copyFunctionCallTester3).is_copy_constructed);
BOOST_CHECK ( get(copyFunctionCallTester3).is_assignment_called);
BOOST_TEST ( ! get(copyFunctionCallTester3).is_copy_constructed);
BOOST_TEST ( get(copyFunctionCallTester3).is_assignment_called);
boost::value_initialized<SwapFunctionCallTester> swapFunctionCallTester1;
boost::value_initialized<SwapFunctionCallTester> swapFunctionCallTester2;
get(swapFunctionCallTester1).data = 1;
get(swapFunctionCallTester2).data = 2;
boost::swap(swapFunctionCallTester1, swapFunctionCallTester2);
BOOST_CHECK( get(swapFunctionCallTester1).data == 2 );
BOOST_CHECK( get(swapFunctionCallTester2).data == 1 );
BOOST_CHECK( get(swapFunctionCallTester1).is_custom_swap_called );
BOOST_CHECK( get(swapFunctionCallTester2).is_custom_swap_called );
BOOST_TEST( get(swapFunctionCallTester1).data == 2 );
BOOST_TEST( get(swapFunctionCallTester2).data == 1 );
BOOST_TEST( get(swapFunctionCallTester1).is_custom_swap_called );
BOOST_TEST( get(swapFunctionCallTester2).is_custom_swap_called );
return 0;
return boost::report_errors();
}
unsigned int expected_failures = 0;