Compare commits

..

6 Commits

Author SHA1 Message Date
Jeremy Siek
825d793cf7 *** empty log message ***
[SVN r11537]
2001-11-02 20:12:01 +00:00
Dave Abrahams
2e92a0ae50 changes for new policies interface
[SVN r11510]
2001-11-01 17:25:27 +00:00
nobody
1e620d5a08 This commit was manufactured by cvs2svn to create branch
'iterator_adaptor_update'.

[SVN r11418]
2001-10-22 17:04:24 +00:00
Jeremy Siek
acf95c6812 added tests for named params
[SVN r11415]
2001-10-21 16:36:47 +00:00
Dave Abrahams
750f40c2fd removed less() function from policies
policies now operate on whole adaptors rather than Base types


[SVN r11377]
2001-10-12 21:58:50 +00:00
nobody
fd81b63852 This commit was manufactured by cvs2svn to create branch
'iterator_adaptor_update'.

[SVN r11341]
2001-10-04 21:02:13 +00:00
7 changed files with 1524 additions and 1265 deletions

View File

@@ -1,155 +0,0 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
//
// See http://www.boost.org/libs/utility for most recent version including documentation.
// call_traits: defines typedefs for function usage
// (see libs/utility/call_traits.htm)
/* Release notes:
23rd July 2000:
Fixed array specialization. (JM)
Added Borland specific fixes for reference types
(issue raised by Steve Cleary).
*/
#ifndef BOOST_DETAIL_CALL_TRAITS_HPP
#define BOOST_DETAIL_CALL_TRAITS_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#include <cstddef>
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/detail/workaround.hpp>
namespace boost{
namespace detail{
template <typename T, bool small_>
struct ct_imp2
{
typedef const T& param_type;
};
template <typename T>
struct ct_imp2<T, true>
{
typedef const T param_type;
};
template <typename T, bool isp, bool b1>
struct ct_imp
{
typedef const T& param_type;
};
template <typename T, bool isp>
struct ct_imp<T, isp, true>
{
typedef typename ct_imp2<T, sizeof(T) <= sizeof(void*)>::param_type param_type;
};
template <typename T, bool b1>
struct ct_imp<T, true, b1>
{
typedef T const param_type;
};
}
template <typename T>
struct call_traits
{
public:
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
//
// C++ Builder workaround: we should be able to define a compile time
// constant and pass that as a single template parameter to ct_imp<T,bool>,
// however compiler bugs prevent this - instead pass three bool's to
// ct_imp<T,bool,bool,bool> and add an extra partial specialisation
// of ct_imp to handle the logic. (JM)
typedef typename boost::detail::ct_imp<
T,
::boost::is_pointer<T>::value,
::boost::is_arithmetic<T>::value
>::param_type param_type;
};
template <typename T>
struct call_traits<T&>
{
typedef T& value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T& param_type; // hh removed const
};
#if BOOST_WORKAROUND( __BORLANDC__, BOOST_TESTED_AT( 0x570 ) )
// these are illegal specialisations; cv-qualifies applied to
// references have no effect according to [8.3.2p1],
// C++ Builder requires them though as it treats cv-qualified
// references as distinct types...
template <typename T>
struct call_traits<T&const>
{
typedef T& value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T& param_type; // hh removed const
};
template <typename T>
struct call_traits<T&volatile>
{
typedef T& value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T& param_type; // hh removed const
};
template <typename T>
struct call_traits<T&const volatile>
{
typedef T& value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T& param_type; // hh removed const
};
#endif
#if !defined(BOOST_NO_ARRAY_TYPE_SPECIALIZATIONS)
template <typename T, std::size_t N>
struct call_traits<T [N]>
{
private:
typedef T array_type[N];
public:
// degrades array to pointer:
typedef const T* value_type;
typedef array_type& reference;
typedef const array_type& const_reference;
typedef const T* const param_type;
};
template <typename T, std::size_t N>
struct call_traits<const T [N]>
{
private:
typedef const T array_type[N];
public:
// degrades array to pointer:
typedef const T* value_type;
typedef array_type& reference;
typedef const array_type& const_reference;
typedef const T* const param_type;
};
#endif
}
#endif // BOOST_DETAIL_CALL_TRAITS_HPP

View File

@@ -1,432 +0,0 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
//
// See http://www.boost.org/libs/utility for most recent version including documentation.
// compressed_pair: pair that "compresses" empty members
// (see libs/utility/compressed_pair.htm)
//
// JM changes 25 Jan 2004:
// For the case where T1 == T2 and both are empty, then first() and second()
// should return different objects.
// JM changes 25 Jan 2000:
// Removed default arguments from compressed_pair_switch to get
// C++ Builder 4 to accept them
// rewriten swap to get gcc and C++ builder to compile.
// added partial specialisations for case T1 == T2 to avoid duplicate constructor defs.
#ifndef BOOST_DETAIL_COMPRESSED_PAIR_HPP
#define BOOST_DETAIL_COMPRESSED_PAIR_HPP
#include <algorithm>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/is_empty.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/call_traits.hpp>
namespace boost
{
template <class T1, class T2>
class compressed_pair;
// compressed_pair
namespace details
{
// JM altered 26 Jan 2000:
template <class T1, class T2, bool IsSame, bool FirstEmpty, bool SecondEmpty>
struct compressed_pair_switch;
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, false, false>
{static const int value = 0;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, true, true>
{static const int value = 3;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, true, false>
{static const int value = 1;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, false, true>
{static const int value = 2;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, true, true, true>
{static const int value = 4;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, true, false, false>
{static const int value = 5;};
template <class T1, class T2, int Version> class compressed_pair_imp;
#ifdef __GNUC__
// workaround for GCC (JM):
using std::swap;
#endif
//
// can't call unqualified swap from within classname::swap
// as Koenig lookup rules will find only the classname::swap
// member function not the global declaration, so use cp_swap
// as a forwarding function (JM):
template <typename T>
inline void cp_swap(T& t1, T& t2)
{
#ifndef __GNUC__
using std::swap;
#endif
swap(t1, t2);
}
// 0 derive from neither
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 0>
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
compressed_pair_imp(first_param_type x)
: first_(x) {}
compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(::boost::compressed_pair<T1, T2>& y)
{
cp_swap(first_, y.first());
cp_swap(second_, y.second());
}
private:
first_type first_;
second_type second_;
};
// 1 derive from T1
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 1>
: private ::boost::remove_cv<T1>::type
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_(y) {}
compressed_pair_imp(first_param_type x)
: first_type(x) {}
compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(::boost::compressed_pair<T1,T2>& y)
{
// no need to swap empty base class:
cp_swap(second_, y.second());
}
private:
second_type second_;
};
// 2 derive from T2
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 2>
: private ::boost::remove_cv<T2>::type
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: second_type(y), first_(x) {}
compressed_pair_imp(first_param_type x)
: first_(x) {}
compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
void swap(::boost::compressed_pair<T1,T2>& y)
{
// no need to swap empty base class:
cp_swap(first_, y.first());
}
private:
first_type first_;
};
// 3 derive from T1 and T2
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 3>
: private ::boost::remove_cv<T1>::type,
private ::boost::remove_cv<T2>::type
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_type(y) {}
compressed_pair_imp(first_param_type x)
: first_type(x) {}
compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
//
// no need to swap empty bases:
void swap(::boost::compressed_pair<T1,T2>&) {}
};
// JM
// 4 T1 == T2, T1 and T2 both empty
// Note does not actually store an instance of T2 at all -
// but reuses T1 base class for both first() and second().
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 4>
: private ::boost::remove_cv<T1>::type
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), m_second(y) {}
compressed_pair_imp(first_param_type x)
: first_type(x), m_second(x) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return m_second;}
second_const_reference second() const {return m_second;}
void swap(::boost::compressed_pair<T1,T2>&) {}
private:
T2 m_second;
};
// 5 T1 == T2 and are not empty: //JM
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 5>
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
compressed_pair_imp(first_param_type x)
: first_(x), second_(x) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(::boost::compressed_pair<T1, T2>& y)
{
cp_swap(first_, y.first());
cp_swap(second_, y.second());
}
private:
first_type first_;
second_type second_;
};
} // details
template <class T1, class T2>
class compressed_pair
: private ::boost::details::compressed_pair_imp<T1, T2,
::boost::details::compressed_pair_switch<
T1,
T2,
::boost::is_same<typename remove_cv<T1>::type, typename remove_cv<T2>::type>::value,
::boost::is_empty<T1>::value,
::boost::is_empty<T2>::value>::value>
{
private:
typedef details::compressed_pair_imp<T1, T2,
::boost::details::compressed_pair_switch<
T1,
T2,
::boost::is_same<typename remove_cv<T1>::type, typename remove_cv<T2>::type>::value,
::boost::is_empty<T1>::value,
::boost::is_empty<T2>::value>::value> base;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y) : base(x, y) {}
explicit compressed_pair(first_param_type x) : base(x) {}
explicit compressed_pair(second_param_type y) : base(y) {}
first_reference first() {return base::first();}
first_const_reference first() const {return base::first();}
second_reference second() {return base::second();}
second_const_reference second() const {return base::second();}
void swap(compressed_pair& y) { base::swap(y); }
};
// JM
// Partial specialisation for case where T1 == T2:
//
template <class T>
class compressed_pair<T, T>
: private details::compressed_pair_imp<T, T,
::boost::details::compressed_pair_switch<
T,
T,
::boost::is_same<typename remove_cv<T>::type, typename remove_cv<T>::type>::value,
::boost::is_empty<T>::value,
::boost::is_empty<T>::value>::value>
{
private:
typedef details::compressed_pair_imp<T, T,
::boost::details::compressed_pair_switch<
T,
T,
::boost::is_same<typename remove_cv<T>::type, typename remove_cv<T>::type>::value,
::boost::is_empty<T>::value,
::boost::is_empty<T>::value>::value> base;
public:
typedef T first_type;
typedef T second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y) : base(x, y) {}
#if !(defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x530))
explicit
#endif
compressed_pair(first_param_type x) : base(x) {}
first_reference first() {return base::first();}
first_const_reference first() const {return base::first();}
second_reference second() {return base::second();}
second_const_reference second() const {return base::second();}
void swap(::boost::compressed_pair<T,T>& y) { base::swap(y); }
};
template <class T1, class T2>
inline
void
swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
} // boost
#endif // BOOST_DETAIL_COMPRESSED_PAIR_HPP

View File

@@ -1,168 +0,0 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
//
// See http://www.boost.org/libs/utility for most recent version including documentation.
//
// Crippled version for crippled compilers:
// see libs/utility/call_traits.htm
//
/* Release notes:
01st October 2000:
Fixed call_traits on VC6, using "poor man's partial specialisation",
using ideas taken from "Generative programming" by Krzysztof Czarnecki
& Ulrich Eisenecker.
*/
#ifndef BOOST_OB_CALL_TRAITS_HPP
#define BOOST_OB_CALL_TRAITS_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifndef BOOST_ARITHMETIC_TYPE_TRAITS_HPP
#include <boost/type_traits/arithmetic_traits.hpp>
#endif
#ifndef BOOST_COMPOSITE_TYPE_TRAITS_HPP
#include <boost/type_traits/composite_traits.hpp>
#endif
namespace boost{
#ifdef BOOST_MSVC6_MEMBER_TEMPLATES
//
// use member templates to emulate
// partial specialisation:
//
namespace detail{
template <class T>
struct standard_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
template <class T>
struct simple_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T param_type;
};
template <class T>
struct reference_call_traits
{
typedef T value_type;
typedef T reference;
typedef T const_reference;
typedef T param_type;
};
template <bool pointer, bool arithmetic, bool reference>
struct call_traits_chooser
{
template <class T>
struct rebind
{
typedef standard_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<true, false, false>
{
template <class T>
struct rebind
{
typedef simple_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<false, false, true>
{
template <class T>
struct rebind
{
typedef reference_call_traits<T> type;
};
};
template <bool size_is_small>
struct call_traits_sizeof_chooser2
{
template <class T>
struct small_rebind
{
typedef simple_call_traits<T> small_type;
};
};
template<>
struct call_traits_sizeof_chooser2<false>
{
template <class T>
struct small_rebind
{
typedef standard_call_traits<T> small_type;
};
};
template <>
struct call_traits_chooser<false, true, false>
{
template <class T>
struct rebind
{
enum { sizeof_choice = (sizeof(T) <= sizeof(void*)) };
typedef call_traits_sizeof_chooser2<(sizeof(T) <= sizeof(void*))> chooser;
typedef typename chooser::template small_rebind<T> bound_type;
typedef typename bound_type::small_type type;
};
};
} // namespace detail
template <typename T>
struct call_traits
{
private:
typedef detail::call_traits_chooser<
::boost::is_pointer<T>::value,
::boost::is_arithmetic<T>::value,
::boost::is_reference<T>::value
> chooser;
typedef typename chooser::template rebind<T> bound_type;
typedef typename bound_type::type call_traits_type;
public:
typedef typename call_traits_type::value_type value_type;
typedef typename call_traits_type::reference reference;
typedef typename call_traits_type::const_reference const_reference;
typedef typename call_traits_type::param_type param_type;
};
#else
//
// sorry call_traits is completely non-functional
// blame your broken compiler:
//
template <typename T>
struct call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
#endif // member templates
}
#endif // BOOST_OB_CALL_TRAITS_HPP

View File

@@ -1,510 +0,0 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
//
// See http://www.boost.org/libs/utility for most recent version including documentation.
// see libs/utility/compressed_pair.hpp
//
/* Release notes:
20 Jan 2001:
Fixed obvious bugs (David Abrahams)
07 Oct 2000:
Added better single argument constructor support.
03 Oct 2000:
Added VC6 support (JM).
23rd July 2000:
Additional comments added. (JM)
Jan 2000:
Original version: this version crippled for use with crippled compilers
- John Maddock Jan 2000.
*/
#ifndef BOOST_OB_COMPRESSED_PAIR_HPP
#define BOOST_OB_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>
#endif
namespace boost
{
#ifdef BOOST_MSVC6_MEMBER_TEMPLATES
//
// use member templates to emulate
// partial specialisation. Note that due to
// problems with overload resolution with VC6
// each of the compressed_pair versions that follow
// have one template single-argument constructor
// in place of two specific constructors:
//
template <class T1, class T2>
class compressed_pair;
namespace detail{
template <class A, class T1, class T2>
struct best_conversion_traits
{
typedef char one;
typedef char (&two)[2];
static A a;
static one test(T1);
static two test(T2);
enum { value = sizeof(test(a)) };
};
template <int>
struct init_one;
template <>
struct init_one<1>
{
template <class A, class T1, class T2>
static void init(const A& a, T1* p1, T2*)
{
*p1 = a;
}
};
template <>
struct init_one<2>
{
template <class A, class T1, class T2>
static void init(const A& a, T1*, T2* p2)
{
*p2 = a;
}
};
// T1 != T2, both non-empty
template <class T1, class T2>
class compressed_pair_0
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_0() : _first(), _second() {}
compressed_pair_0(first_param_type x, second_param_type y) : _first(x), _second(y) {}
template <class A>
explicit compressed_pair_0(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, &_second);
}
compressed_pair_0(const ::boost::compressed_pair<T1,T2>& x)
: _first(x.first()), _second(x.second()) {}
#if 0
compressed_pair_0& operator=(const compressed_pair_0& x) {
cout << "assigning compressed pair 0" << endl;
_first = x._first;
_second = x._second;
cout << "finished assigning compressed pair 0" << endl;
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_0& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
// T1 != T2, T2 empty
template <class T1, class T2>
class compressed_pair_1 : T2
{
private:
T1 _first;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_1() : T2(), _first() {}
compressed_pair_1(first_param_type x, second_param_type y) : T2(y), _first(x) {}
template <class A>
explicit compressed_pair_1(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, static_cast<T2*>(this));
}
compressed_pair_1(const ::boost::compressed_pair<T1,T2>& x)
: T2(x.second()), _first(x.first()) {}
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300
// Total weirdness. If the assignment to _first is moved after
// the call to the inherited operator=, then this breaks graph/test/graph.cpp
// by way of iterator_adaptor.
compressed_pair_1& operator=(const compressed_pair_1& x) {
_first = x._first;
T2::operator=(x);
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_1& y)
{
// no need to swap empty base class:
using std::swap;
swap(_first, y._first);
}
};
// T1 != T2, T1 empty
template <class T1, class T2>
class compressed_pair_2 : T1
{
private:
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_2() : T1(), _second() {}
compressed_pair_2(first_param_type x, second_param_type y) : T1(x), _second(y) {}
template <class A>
explicit compressed_pair_2(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), &_second);
}
compressed_pair_2(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), _second(x.second()) {}
#if 0
compressed_pair_2& operator=(const compressed_pair_2& x) {
cout << "assigning compressed pair 2" << endl;
T1::operator=(x);
_second = x._second;
cout << "finished assigning compressed pair 2" << endl;
return *this;
}
#endif
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_2& y)
{
// no need to swap empty base class:
using std::swap;
swap(_second, y._second);
}
};
// T1 != T2, both empty
template <class T1, class T2>
class compressed_pair_3 : T1, T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_3() : T1(), T2() {}
compressed_pair_3(first_param_type x, second_param_type y) : T1(x), T2(y) {}
template <class A>
explicit compressed_pair_3(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), static_cast<T2*>(this));
}
compressed_pair_3(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), T2(x.second()) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_3& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, and empty
template <class T1, class T2>
class compressed_pair_4 : T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_4() : T1() {}
compressed_pair_4(first_param_type x, second_param_type y) : T1(x), m_second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_4(first_param_type x) : T1(x), m_second(x) {}
compressed_pair_4(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), m_second(x.second()) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return m_second; }
second_const_reference second() const { return m_second; }
void swap(compressed_pair_4& y)
{
// no need to swap empty base classes:
}
private:
T2 m_second;
};
// T1 == T2, not empty
template <class T1, class T2>
class compressed_pair_5
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_5() : _first(), _second() {}
compressed_pair_5(first_param_type x, second_param_type y) : _first(x), _second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_5(first_param_type x) : _first(x), _second(x) {}
compressed_pair_5(const ::boost::compressed_pair<T1,T2>& c)
: _first(c.first()), _second(c.second()) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_5& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <bool e1, bool e2, bool same>
struct compressed_pair_chooser
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_0<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_1<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, false, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_2<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_3<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_4<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, false, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_5<T1, T2> type;
};
};
template <class T1, class T2>
struct compressed_pair_traits
{
private:
typedef compressed_pair_chooser<is_empty<T1>::value, is_empty<T2>::value, is_same<T1,T2>::value> chooser;
typedef typename chooser::template rebind<T1, T2> bound_type;
public:
typedef typename bound_type::type type;
};
} // namespace detail
template <class T1, class T2>
class compressed_pair : public detail::compressed_pair_traits<T1, T2>::type
{
private:
typedef typename detail::compressed_pair_traits<T1, T2>::type base_type;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base_type() {}
compressed_pair(first_param_type x, second_param_type y) : base_type(x, y) {}
template <class A>
explicit compressed_pair(const A& x) : base_type(x){}
first_reference first() { return base_type::first(); }
first_const_reference first() const { return base_type::first(); }
second_reference second() { return base_type::second(); }
second_const_reference second() const { return base_type::second(); }
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#else
// no partial specialisation, no member templates:
template <class T1, class T2>
class compressed_pair
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : _first(), _second() {}
compressed_pair(first_param_type x, second_param_type y) : _first(x), _second(y) {}
explicit compressed_pair(first_param_type x) : _first(x), _second() {}
// can't define this in case T1 == T2:
// explicit compressed_pair(second_param_type y) : _first(), _second(y) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#endif
} // boost
#endif // BOOST_OB_COMPRESSED_PAIR_HPP

376
iterator_adaptor_test.cpp Normal file
View File

@@ -0,0 +1,376 @@
// Test boost/iterator_adaptors.hpp
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 08 Mar 01 Moved indirect and transform tests to separate files.
// (Jeremy Siek)
// 19 Feb 01 Take adavantage of improved iterator_traits to do more tests
// on MSVC. Hack around an MSVC-with-STLport internal compiler
// error. (David Abrahams)
// 11 Feb 01 Added test of operator-> for forward and input iterators.
// (Jeremy Siek)
// 11 Feb 01 Borland fixes (David Abrahams)
// 10 Feb 01 Use new adaptors interface. (David Abrahams)
// 10 Feb 01 Use new filter_ interface. (David Abrahams)
// 09 Feb 01 Use new reverse_ and indirect_ interfaces. Replace
// BOOST_NO_STD_ITERATOR_TRAITS with
// BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION to prove we've
// normalized to core compiler capabilities (David Abrahams)
// 08 Feb 01 Use Jeremy's new make_reverse_iterator form; add more
// comprehensive testing. Force-decay array function arguments to
// pointers.
// 07 Feb 01 Added tests for the make_xxx_iterator() helper functions.
// (Jeremy Siek)
// 07 Feb 01 Replaced use of xxx_pair_generator with xxx_generator where
// possible (which was all but the projection iterator).
// (Jeremy Siek)
// 06 Feb 01 Removed now-defaulted template arguments where possible
// Updated names to correspond to new generator naming convention.
// Added a trivial test for make_transform_iterator().
// Gave traits for const iterators a mutable value_type, per std.
// Resurrected my original tests for indirect iterators.
// (David Abrahams)
// 04 Feb 01 Fix for compilers without standard iterator_traits
// (David Abrahams)
// 13 Jun 00 Added const version of the iterator tests (Jeremy Siek)
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
#include <boost/config.hpp>
#include <iostream>
#include <algorithm>
#include <functional>
#include <boost/iterator_adaptors.hpp>
#include <boost/pending/iterator_tests.hpp>
#include <boost/pending/integer_range.hpp>
#include <boost/concept_archetype.hpp>
#include <boost/type_traits/same_traits.hpp>
#include <stdlib.h>
#include <vector>
#include <deque>
#include <set>
struct my_iterator_tag : public std::random_access_iterator_tag { };
using boost::dummyT;
struct mult_functor {
typedef int result_type;
typedef int argument_type;
// Functors used with transform_iterator must be
// DefaultConstructible, as the transform_iterator must be
// DefaultConstructible to satisfy the requirements for
// TrivialIterator.
mult_functor() { }
mult_functor(int aa) : a(aa) { }
int operator()(int b) const { return a * b; }
int a;
};
template <class Pair>
struct select1st_
: public std::unary_function<Pair, typename Pair::first_type>
{
const typename Pair::first_type& operator()(const Pair& x) const {
return x.first;
}
typename Pair::first_type& operator()(Pair& x) const {
return x.first;
}
};
struct one_or_four {
bool operator()(dummyT x) const {
return x.foo() == 1 || x.foo() == 4;
}
};
typedef std::deque<int> storage;
typedef std::deque<int*> pointer_deque;
typedef std::set<storage::iterator> iterator_set;
template <class T> struct foo;
int
main()
{
dummyT array[] = { dummyT(0), dummyT(1), dummyT(2),
dummyT(3), dummyT(4), dummyT(5) };
const int N = sizeof(array)/sizeof(dummyT);
// sanity check, if this doesn't pass the test is buggy
boost::random_access_iterator_test(array, N, array);
#if 0
// Check that the policy concept checks and the default policy
// implementation match up.
boost::function_requires<
boost::RandomAccessIteratorPoliciesConcept<
boost::default_iterator_policies,
boost::iterator_adaptor<int*, boost::default_iterator_policies>,
boost::iterator<std::random_access_iterator_tag, int, std::ptrdiff_t,
int*, int&>
> >();
// Test the named parameters
{
// Test computation of defaults
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::value_type_is<int> > Iter1;
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::value_type, int>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::reference, int&>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::pointer, int*>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value));
}
{
// Test computation of default when the Value is const
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::value_type_is<const int> > Iter1;
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::value_type, int>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::reference, const int&>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::pointer, const int*>::value));
}
{
// Test with no defaults
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::reference_is<long>,
boost::pointer_is<float>,
boost::value_type_is<char>,
boost::iterator_category_is<std::input_iterator_tag>,
boost::difference_type_is<int>
> Iter1;
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::value_type, char>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::reference, long>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::pointer, float>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::difference_type, int>::value));
BOOST_STATIC_ASSERT((boost::is_same<std::iterator_traits<Iter1>::iterator_category, std::input_iterator_tag>::value));
}
// Test the iterator_adaptor
{
boost::iterator_adaptor<dummyT*, boost::default_iterator_policies, dummyT> i(array);
boost::random_access_iterator_test(i, N, array);
boost::iterator_adaptor<const dummyT*, boost::default_iterator_policies, const dummyT> j(array);
boost::random_access_iterator_test(j, N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test projection_iterator_pair_generator
{
typedef std::pair<dummyT,dummyT> Pair;
Pair pair_array[N];
for (int k = 0; k < N; ++k)
pair_array[k].first = array[k];
typedef boost::projection_iterator_pair_generator<select1st_<Pair>,
Pair*, const Pair*
> Projection;
Projection::iterator i(pair_array);
boost::random_access_iterator_test(i, N, array);
boost::random_access_iterator_test(boost::make_projection_iterator(pair_array, select1st_<Pair>()), N, array);
boost::random_access_iterator_test(boost::make_projection_iterator< select1st_<Pair> >(pair_array), N, array);
Projection::const_iterator j(pair_array);
boost::random_access_iterator_test(j, N, array);
boost::random_access_iterator_test(boost::make_const_projection_iterator(pair_array, select1st_<Pair>()), N, array);
boost::random_access_iterator_test(boost::make_const_projection_iterator<select1st_<Pair> >(pair_array), N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test reverse_iterator_generator
{
dummyT reversed[N];
std::copy(array, array + N, reversed);
std::reverse(reversed, reversed + N);
typedef boost::reverse_iterator_generator<dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, dummyT
#endif
>::type reverse_iterator;
reverse_iterator i(reversed + N);
boost::random_access_iterator_test(i, N, array);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::random_access_iterator_test(boost::make_reverse_iterator(reversed + N), N, array);
#endif
typedef boost::reverse_iterator_generator<const dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, dummyT, const dummyT&, const dummyT
#endif
>::type const_reverse_iterator;
const_reverse_iterator j(reversed + N);
boost::random_access_iterator_test(j, N, array);
const dummyT* const_reversed = reversed;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::random_access_iterator_test(boost::make_reverse_iterator(const_reversed + N), N, array);
#endif
boost::const_nonconst_iterator_test(i, ++j);
}
// Test reverse_iterator_generator again, with traits fully deducible on all platforms
{
std::deque<dummyT> reversed_container;
std::reverse_copy(array, array + N, std::back_inserter(reversed_container));
const std::deque<dummyT>::iterator reversed = reversed_container.begin();
typedef boost::reverse_iterator_generator<
std::deque<dummyT>::iterator>::type reverse_iterator;
typedef boost::reverse_iterator_generator<
std::deque<dummyT>::const_iterator, const dummyT>::type const_reverse_iterator;
// MSVC/STLport gives an INTERNAL COMPILER ERROR when any computation
// (e.g. "reversed + N") is used in the constructor below.
const std::deque<dummyT>::iterator finish = reversed_container.end();
reverse_iterator i(finish);
boost::random_access_iterator_test(i, N, array);
boost::random_access_iterator_test(boost::make_reverse_iterator(reversed + N), N, array);
const_reverse_iterator j = reverse_iterator(finish);
boost::random_access_iterator_test(j, N, array);
const std::deque<dummyT>::const_iterator const_reversed = reversed;
boost::random_access_iterator_test(boost::make_reverse_iterator(const_reversed + N), N, array);
// Many compilers' builtin deque iterators don't interoperate well, though
// STLport fixes that problem.
#if defined(__SGI_STL_PORT) || !defined(__GNUC__) && !defined(__BORLANDC__) && !defined(BOOST_MSVC)
boost::const_nonconst_iterator_test(i, ++j);
#endif
}
// Test integer_range's iterators
{
int int_array[] = { 0, 1, 2, 3, 4, 5 };
boost::integer_range<int> r(0, 5);
boost::random_access_iterator_test(r.begin(), r.size(), int_array);
}
// Test filter iterator
{
// Using typedefs for filter_gen::type confused Borland terribly.
typedef boost::detail::non_bidirectional_category<dummyT*>::type category;
typedef boost::filter_iterator_generator<one_or_four, dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, dummyT
#endif
>::type filter_iter;
#if defined(__BORLANDC__)
// Borland is choking on accessing the policies_type explicitly
// from the filter_iter.
boost::forward_iterator_test(make_filter_iterator(array, array+N,
one_or_four()),
dummyT(1), dummyT(4));
#else
filter_iter i(array, filter_iter::policies_type(one_or_four(), array + N));
boost::forward_iterator_test(i, dummyT(1), dummyT(4));
#endif
#if !defined(__BORLANDC__)
//
enum { is_forward = boost::is_same<
filter_iter::iterator_category,
std::forward_iterator_tag>::value };
BOOST_STATIC_ASSERT(is_forward);
#endif
// On compilers not supporting partial specialization, we can do more type
// deduction with deque iterators than with pointers... unless the library
// is broken ;-(
#if !defined(BOOST_MSVC) || defined(__SGI_STL_PORT)
std::deque<dummyT> array2;
std::copy(array+0, array+N, std::back_inserter(array2));
boost::forward_iterator_test(
boost::make_filter_iterator(array2.begin(), array2.end(), one_or_four()),
dummyT(1), dummyT(4));
boost::forward_iterator_test(
boost::make_filter_iterator<one_or_four>(array2.begin(), array2.end()),
dummyT(1), dummyT(4));
#endif
#if !defined(BOOST_MSVC) // This just freaks MSVC out completely
boost::forward_iterator_test(
boost::make_filter_iterator<one_or_four>(
boost::make_reverse_iterator(array2.end()),
boost::make_reverse_iterator(array2.begin())
),
dummyT(4), dummyT(1));
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::forward_iterator_test(
boost::make_filter_iterator(array+0, array+N, one_or_four()),
dummyT(1), dummyT(4));
boost::forward_iterator_test(
boost::make_filter_iterator<one_or_four>(array, array + N),
dummyT(1), dummyT(4));
#endif
}
// check operator-> with a forward iterator
{
boost::forward_iterator_archetype<dummyT> forward_iter;
#if defined(__BORLANDC__)
typedef boost::iterator_adaptor<boost::forward_iterator_archetype<dummyT>,
boost::default_iterator_policies,
dummyT, const dummyT&, const dummyT*,
std::forward_iterator_tag, std::ptrdiff_t> adaptor_type;
#else
typedef boost::iterator_adaptor<boost::forward_iterator_archetype<dummyT>,
boost::default_iterator_policies,
boost::reference_is<const dummyT&>,
boost::pointer_is<const dummyT*> ,
boost::iterator_category_is<std::forward_iterator_tag>,
boost::value_type_is<dummyT>,
boost::difference_type_is<std::ptrdiff_t>
> adaptor_type;
#endif
adaptor_type i(forward_iter);
int zero = 0;
if (zero) // don't do this, just make sure it compiles
assert((*i).m_x == i->foo());
}
// check operator-> with an input iterator
{
boost::input_iterator_archetype<dummyT> input_iter;
typedef boost::iterator_adaptor<boost::input_iterator_archetype<dummyT>,
boost::default_iterator_policies,
dummyT, const dummyT&, const dummyT*,
std::input_iterator_tag, std::ptrdiff_t> adaptor_type;
adaptor_type i(input_iter);
int zero = 0;
if (zero) // don't do this, just make sure it compiles
assert((*i).m_x == i->foo());
}
#endif
std::cout << "test successful " << std::endl;
return 0;
}

928
iterator_adaptors.htm Normal file
View File

@@ -0,0 +1,928 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost Iterator Adaptor Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align=
"center" width="277" height="86">
<h1>Boost Iterator Adaptor Library</h1>
<h2>Introduction</h2>
<p>The Iterator Adaptor library allows you transform an arbitrary ``base''
type into a standard-conforming iterator with the behaviors you choose.
Doing so is especially easy if the ``base'' type is itself an iterator. The
library also supplies several example <a href=
"../../more/generic_programming.html#adaptors">adaptors</a> which apply
specific useful behaviors to arbitrary base iterators.
<h2>Backward Compatibility Note</h2>
<p>The library's interface has changed since it was first released, breaking
backward compatibility:
<ol>
<li><a href="#policies">Policies classes</a> now operate on instances of the
whole <tt>iterator_adaptor</tt> object, rather than just operating on the
<tt>Base</tt> object. This change not only gives the policies class access
to both members of a pair of interacting iterators, but also eliminates the
need for the ugly <tt>type&lt;Reference&gt;</tt> and
<tt>type&lt;Difference&gt;</tt> parameters to various policy functions.
<li>The <a href="#named_template_parameters">Named Template Parameter</a>
interface has been made simpler, easier to use, and compatible with more
compilers.
</ol>
<h2>Other Documentation</h2>
<p><a href="iterator_adaptors.pdf">``Policy Adaptors and the Boost Iterator
Adaptor Library''</a> is a technical paper describing this library and the
powerful design pattern on which it is based. It was presented at the <a
href="http://www.oonumerics.org/tmpw01">C++ Template Workshop</a> at OOPSLA
2001; the slides from the talk are available <a
href="iterator_adaptors.ppt">here</a>. Please note that while the slides
incorporate the minor interface changes described in the previous section,
the paper does not.
<h2>Table of Contents</h2>
<ul>
<li>
Header <tt><a href=
"../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a></tt>
<ul>
<li>
Generalized Iterator Adaptor
<ul>
<li>Class template <tt><a href=
"#iterator_adaptor">iterator_adaptor</a></tt>
<li><a href="#template_parameters">Template Parameters</a>
<li><a href="#named_template_parameters">Named Template Parameters</a>
<li><a href="#policies">The Policies Class</a>
<li><a href="#additional_members">Additional Class Members</a>
<li><a href="#example">Example</a>
<li>(<tt>const</tt>/non-<tt>const</tt>) <a href=
"#iterator_interactions">Iterator Interactions</a>
<li><a href="#challenge">Challenge</a>
<li><a href="#concept_model">Concept Model</a>
<li><a href="#declaration_synopsis">Declaration Synopsis</a>
<li><a href="#notes">Notes</a>
</ul>
<li>
<a name="specialized_adaptors">Specialized Iterator Adaptors</a>
<ul>
<li><a href="indirect_iterator.htm">Indirect Iterator Adaptor</a>
<li><a href="reverse_iterator.htm">Reverse Iterator Adaptor</a>
<li><a href="transform_iterator.htm">Transform Iterator
Adaptor</a>
<li><a href="projection_iterator.htm">Projection Iterator
Adaptor</a>
<li><a href="filter_iterator.htm">Filter Iterator Adaptor</a>
</ul>
</ul>
<li>Header <tt><a href=
"../../boost/counting_iterator.hpp">boost/counting_iterator.hpp</a></tt><br>
<a href="counting_iterator.htm">Counting Iterator Adaptor</a>
<li>Header <tt><a href=
"../../boost/function_output_iterator.hpp">boost/function_output_iterator.hpp</a></tt><br>
<a href="function_output_iterator.htm">Function Output Iterator Adaptor</a>
</ul>
<p><b><a href="../../people/dave_abrahams.htm">Dave
Abrahams</a></b> started the library, applying <a href=
"../../more/generic_programming.html#policy">policy class</a> technique and
handling const/non-const iterator interactions. He also contributed the
<tt><a href="indirect_iterator.htm">indirect_</a></tt> and <tt><a href=
"reverse_iterator.htm">reverse_</a></tt> iterator generators, and expanded
<tt><a href="counting_iterator.htm">counting_iterator_generator</a></tt> to
cover all incrementable types. He edited most of the documentation,
sometimes heavily.<br>
<b><a href="../../people/jeremy_siek.htm">Jeremy
Siek</a></b> contributed the <a href="transform_iterator.htm">transform
iterator</a> adaptor, the integer-only version of <tt><a href=
"counting_iterator.htm">counting_iterator_generator</a></tt>,
the <a href="function_output_iterator.htm">function output iterator</a>
adaptor, and most of the documentation.<br>
<b><a href="http://www.boost.org/people/john_potter.htm">John
Potter</a></b> contributed the <tt><a href=
"projection_iterator.htm">projection_</a></tt> and <tt><a href=
"filter_iterator.htm">filter_</a></tt> iterator generators and made some
simplifications to the main <tt><a href=
"#iterator_adaptor">iterator_adaptor</a></tt> template.<br>
<h2><a name="iterator_adaptor">Class template</a>
<tt>iterator_adaptor</tt></h2>
Implementing standard conforming iterators is a non-trivial task. There are
some fine points such as the interactions between an iterator and its
corresponding const_iterator, and there are myriad operators that should be
implemented but are easily forgotten or mishandled, such as
<tt>operator-&gt;()</tt>. Using <tt>iterator_adaptor</tt>, you can easily
implement an iterator class, and even more easily extend and <a href=
"../../more/generic_programming.html#adaptors">adapt</a> existing iterator
types. Moreover, it is easy to make a pair of interoperable <tt>const</tt>
and <tt>non-const</tt> iterators.
<p><tt>iterator_adaptor</tt> is declared like this:
<pre>
template &lt;class Base, class Policies,
class ValueOrNamedParam = typename std::iterator_traits&lt;Base&gt;::value_type,
class ReferenceOrNamedParam = <i>...(see below)</i>,
class PointerOrNamedParam = <i>...(see below)</i>,
class CategoryOrNamedParam = typename std::iterator_traits&lt;Base&gt;::iterator_category,
class DistanceOrNamedParam = typename std::iterator_traits&lt;Base&gt;::difference_type&gt;
struct iterator_adaptor;
</pre>
<h3><a name="template_parameters">Template Parameters</a></h3>
<p>Although <tt>iterator_adaptor</tt> takes seven template parameters,
defaults have been carefully chosen to minimize the number of parameters
you must supply in most cases, especially if <tt>BaseType</tt> is an
iterator.
<table border="1" summary="iterator_adaptor template parameters">
<tr>
<th>Parameter
<th>Description
<tr>
<td><tt>BaseType</tt>
<td>The type being wrapped.
<tr>
<td><tt>Policies</tt>
<td>A <a href="../../more/generic_programming.html#policy">policy
class</a> that supplies core functionality to the resulting iterator. A
detailed description can be found <a href="#policies">below</a>.
<tr>
<td><tt>Value</tt>
<td>The <tt>value_type</tt> of the resulting iterator, unless const. If
Value is <tt>const X</tt> the
<tt>value_type</tt> will be (<i>non-</i><tt>const</tt>) <tt>X</tt><a href=
"#1">[1]</a>. If the <tt>value_type</tt> you wish to use is an abstract
base class see note <a href="#5">[5]</a>.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BaseType&gt;::value_type</tt> <a href=
"#2">[2]</a>
<tr>
<td><tt>Reference</tt>
<td>The <tt>reference</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator*()</tt>.<br>
<b>Default:</b> If <tt>Value</tt> is supplied, <tt>Value&amp;</tt> is
used. Otherwise
<tt>std::iterator_traits&lt;BaseType&gt;::reference</tt> is used. <a href="#7">[7]</a>
<tr>
<td><tt>Pointer</tt>
<td>The <tt>pointer</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> If <tt>Value</tt> was supplied, then <tt>Value*</tt>,
otherwise <tt>std::iterator_traits&lt;BaseType&gt;::pointer</tt>. <a href="#7">[7]</a>
<tr>
<td><tt>Category</tt>
<td>The <tt>iterator_category</tt> type for the resulting iterator.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BaseType&gt;::iterator_category</tt>
<tr>
<td><tt>Distance</tt>
<td>The <tt>difference_type</tt> for the resulting iterator.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BaseType&gt;::difference_type</tt>
<tr>
<td><tt>NamedParam</tt>
<td>A named template parameter (see below).
</table>
<h3><a name="named_template_parameters">Named Template Parameters</a></h3>
With seven template parameters, providing arguments for
<tt>iterator_adaptor</tt> in the correct order can be challenging.
Also, often times one would like to specify the sixth or seventh
template parameter, but use the defaults for the third through
fifth. As a solution to these problems we provide a mechanism for
naming the last five template parameters, and providing them in
any order through a set of named template parameters. The following
classes are provided for specifying the parameters. Any of these
classes can be used for any of the last five template parameters
of <tt>iterator_adaptor</tt>.
<blockquote>
<pre>
template &lt;class Value&gt; struct value_type_is;
template &lt;class Reference&gt; struct reference_is;
template &lt;class Pointer&gt; struct pointer_is;
template &lt;class Distance&gt; struct difference_type_is;
template &lt;class Category&gt; struct iterator_category_is;
</pre>
</blockquote>
For example, the following adapts <tt>foo_iterator</tt> to create
an <a href=
"http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>
with <tt>reference</tt> type <tt>foo</tt>, and whose other traits
are determined according to the defaults described <a
href="#template_parameters">above</a>.
<blockquote>
<pre>
typedef iterator_adaptor&lt;foo_iterator, foo_policies,
reference_is&lt;foo&gt;, iterator_category_is&lt;std::input_iterator_tag&gt;
&gt; MyIterator;
</pre>
</blockquote>
<h3><a name="policies">The Policies Class</a></h3>
<p>The main task in using <tt>iterator_adaptor</tt> is creating an
appropriate <tt>Policies</tt> class. The <tt>Policies</tt> class will become
the functional heart of the resulting iterator, supplying the core
operations that determine its behavior. The <tt>iterator_adaptor</tt>
template defines all of the operators required of a <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a> by dispatching to a <tt>Policies</tt> object. Your
<tt>Policies</tt> class must implement a subset of the core iterator
operations below corresponding to the iterator categories you want it to
support.<br>
<br>
<table border="1" summary="iterator_adaptor Policies operations">
<caption>
<b>Core Iterator Operations</b><br>
<tt>T</tt>: adapted iterator type; <tt>p</tt>: object of type T; <tt>n</tt>: <tt>T::size_type</tt>; <tt>x</tt>: <tt>T::difference_type</tt>; <tt>p1</tt>, <tt>p2</tt>: iterators
</caption>
<tr>
<th>Operation
<th>Effects
<th>Implements Operations
<th>Required for Iterator Categories
<tr>
<td><tt>initialize</tt>
<td>optionally modify base iterator during iterator construction
<td>constructors
<td rowspan="4"><a href=
"http://www.sgi.com/tech/stl/InputIterator.html">Input</a>/ <a href=
"http://www.sgi.com/tech/stl/OutputIterator.html">Output</a>/ <a href=
"http://www.sgi.com/tech/stl/ForwardIterator.html">Forward</a>/ <a
href=
"http://www.sgi.com/tech/stl/BidirectionalIterator.html">Bidirectional</a>/
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access</a>
<tr>
<td><tt>dereference</tt>
<td>returns an element of the iterator's <tt>reference</tt> type
<td><tt>*p</tt>, <tt>p[n]</tt>
<tr>
<td><tt>equal</tt>
<td>tests the iterator for equality
<td><tt>p1&nbsp;==&nbsp;p2</tt>, <tt>p1&nbsp;!=&nbsp;p2</tt>
<tr>
<td><tt>increment</tt>
<td>increments the iterator
<td><tt>++p</tt>, <tt>p++</tt>
<tr>
<td><tt>decrement</tt>
<td>decrements the iterator
<td><tt>--p</tt>, <tt>p--</tt>
<td><a href=
"http://www.sgi.com/tech/stl/BidirectionalIterator.html">Bidirectional</a>/
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access</a>
<tr>
<td><tt>less</tt>
<td>imposes a <a href=
"http://www.sgi.com/tech/stl/StrictWeakOrdering.html">Strict Weak
Ordering</a> relation on iterators
<td>
<tt>p1&nbsp;&lt;&nbsp;p2</tt>,
<tt>p1&nbsp;&lt;=&nbsp;p2</tt>,
<tt>p1&nbsp;&gt;&nbsp;p2</tt>,
<tt>p1&nbsp;&gt;=&nbsp;p2</tt>
<td rowspan="3"><a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access</a>
<tr>
<td><tt>distance</tt>
<td>measures the distance between iterators
<td><tt>p1 - p2</tt>
<tr>
<td><tt>advance</tt>
<td>adds an integer offset to iterators
<td>
<tt>p&nbsp;+&nbsp;x</tt>,
<tt>x&nbsp;+&nbsp;p</tt>,
<tt>p&nbsp;+=&nbsp;x</tt>,
<tt>p&nbsp;-&nbsp;x</tt>,
<tt>p&nbsp;-=&nbsp;x</tt>
</table>
<p>The library also supplies a "trivial" policy class,
<tt>default_iterator_policies</tt>, which implements all seven of the core
operations in the usual way. If you wish to create an iterator adaptor that
only changes a few of the base type's behaviors, then you can derive your
new policy class from <tt>default_iterator_policies</tt> to avoid retyping
the usual behaviors. You should also look at
<tt>default_iterator_policies</tt> as the ``boilerplate'' for your own
policy classes, defining functions with the same interface. This is the
definition of <tt>default_iterator_policies</tt>:<br>
<br>
<blockquote>
<pre>
struct <a name="default_iterator_policies">default_iterator_policies</a>
{
// Some of these members were defined static, but Borland got confused
// and thought they were non-const. Also, Sun C++ does not like static
// function templates.
template &lt;class Base&gt;
void initialize(Base&amp;)
{ }
template &lt;class IteratorAdaptor&gt;
typename IteratorAdaptor::reference dereference(const IteratorAdaptor&amp; x) const
{ return *x.base(); }
template &lt;class IteratorAdaptor&gt;
void increment(IteratorAdaptor&amp; x)
{ ++x.base(); }
template &lt;class IteratorAdaptor&gt;
void decrement(IteratorAdaptor&amp; x)
{ --x.base(); }
template &lt;class IteratorAdaptor, class DifferenceType&gt;
void advance(IteratorAdaptor&amp; x, DifferenceType n)
{ x.base() += n; }
template &lt;class IteratorAdaptor1, class IteratorAdaptor2&gt;
typename IteratorAdaptor1::difference_type
distance(const IteratorAdaptor1&amp; x, const IteratorAdaptor2&amp; y) const
{ return y.base() - x.base(); }
template &lt;class IteratorAdaptor1, class IteratorAdaptor2&gt;
bool equal(const IteratorAdaptor1&amp; x, const IteratorAdaptor2&amp; y) const
{ return x.base() == y.base(); }
};
</pre></blockquote>
<p>Template member functions are used throughout
<tt>default_iterator_policies</tt> so that it can be employed with a wide
range of iterators. If we had used concrete types above, we'd have tied the
usefulness of <tt>default_iterator_policies</tt> to a particular range of
adapted iterators. If you follow the same pattern with your
<tt>Policies</tt> classes, you can use them to generate more specialized
adaptors along the lines of <a href="#specialized_adaptors">those supplied by this library</a>.
<h3><a name="additional_members">Additional Members</a></h3>
In addition to all of the member functions required of a <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a>, the <tt>iterator_adaptor</tt> class template defines the
following members. <br>
<br>
<table border="1" summary="additional iterator_adaptor members">
<tr>
<td><tt>explicit iterator_adaptor(const Base&amp;, const Policies&amp; =
Policies())</tt>
<br><br>
Construct an adapted iterator from a base object and a policies
object. As this constructor is <tt>explicit</tt>, it does not
provide for implicit conversions from the <tt>Base</tt> type to
the iterator adaptor.
<tr>
<td><tt>template &lt;class B, class V, class R, class P&gt;<br>
iterator_adaptor(const
iterator_adaptor&lt;B,Policies,V,R,P,Category,Distance&gt;&amp;)</tt>
<br><br>
This constructor allows for conversion from mutable to
constant adapted iterators. See <a href=
"#iterator_interactions">below</a> for more details.<br>
Requires: <tt>B</tt> is convertible to <tt>Base</tt>.
<tr>
<td><tt>base_type base() const;</tt>
<br><br>
Return a copy of the base object.
</table>
<h3><a name="example">Example</a></h3>
<p>It is often useful to automatically apply some function to the value
returned by dereferencing an iterator. The <a href=
"./transform_iterator.htm">transform iterator</a> makes it easy to create
an iterator adaptor which does just that. Here we will show how easy it is
to implement the transform iterator using the <tt>iterator_adaptor</tt>
template.
<p>We want to be able to adapt a range of iterators and functions, so the
policies class will have a template parameter for the function type and it
will have a data member of that type. We know that the function takes one
argument and that we'll need to be able to deduce the <tt>result_type</tt>
of the function so we can use it for the adapted iterator's
<tt>value_type</tt>. <a href=
"http://www.sgi.com/Technology/STL/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>
is the <a href="../../more/generic_programming.html#concept">Concept</a>
that fulfills those requirements.
<p>To implement a transform iterator we will only change one of the base
iterator's behaviors, so the <tt>transform_iterator_policies</tt> class can
inherit the rest from <tt>default_iterator_policies</tt>. We will define the
<tt>dereference()</tt> member function, which is used to implement
<tt>operator*()</tt> of the adapted iterator. The implementation will
dereference the base iterator and apply the function object. The complete
code for <tt>transform_iterator_policies</tt> is:<br>
<br>
<blockquote><pre>
template &lt;class AdaptableUnaryFunction&gt;
struct transform_iterator_policies : public default_iterator_policies
{
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction&amp; f)
: m_f(f) { }
template &lt;class IteratorAdaptor&gt;
typename IteratorAdaptor::reference
dereference(const IteratorAdaptor&amp; iter) const
{ return m_f(*iter.base()); }
AdaptableUnaryFunction m_f;
};
</pre></blockquote>
<p>The next step is to use the <tt>iterator_adaptor</tt> template to
construct the transform iterator type. The nicest way to package the
construction of the transform iterator is to create a <a href=
"../../more/generic_programming.html#type_generator">type generator</a>.
The first template parameter to the generator will be the type of the
function object and the second will be the base iterator type. We use
<tt>iterator_adaptor</tt> to define the transform iterator type as a nested
<tt>typedef</tt> inside the <tt>transform_iterator_generator</tt> class.
Because the function may return by-value, we must limit the
<tt>iterator_category</tt> to <a href=
"http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>, and
the iterator's <tt>reference</tt> type cannot be a true reference (the
standard allows this for input iterators), so in this case we can use few
of <tt>iterator_adaptor</tt>'s default template arguments.<br>
<br>
<blockquote>
<pre>
template &lt;class AdaptableUnaryFunction, class Iterator&gt;
struct transform_iterator_generator
{
typedef typename AdaptableUnaryFunction::result_type value_type;
public:
typedef iterator_adaptor&lt;Iterator,
transform_iterator_policies&lt;AdaptableUnaryFunction&gt;,
value_type, value_type, value_type*, std::input_iterator_tag&gt;
type;
};
</pre>
</blockquote>
<p>As a finishing touch, we will create an <a href=
"../../more/generic_programming.html#object_generator">object generator</a>
for the transform iterator. Our object generator makes it more
convenient to create a transform iterator.<br>
<br>
<blockquote>
<pre>
template &lt;class AdaptableUnaryFunction, class Iterator&gt;
typename transform_iterator_generator&lt;AdaptableUnaryFunction,Iterator&gt;::type
make_transform_iterator(Iterator base,
const AdaptableUnaryFunction&amp; f = AdaptableUnaryFunction())
{
typedef typename transform_iterator_generator&lt;AdaptableUnaryFunction,
Iterator&gt;::type result_t;
return result_t(base, f);
}
</pre>
</blockquote>
<p>Here is an example that shows how to use a transform iterator to iterate
through a range of numbers, multiplying each of them by 2 and printing the
result to standard output.<br>
<br>
<blockquote>
<pre>
#include &lt;functional&gt;
#include &lt;algorithm&gt;
#include &lt;iostream&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
int main(int, char*[])
{
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
const int N = sizeof(x)/sizeof(int);
std::cout &lt;&lt; &quot;multiplying the array by 2:&quot; &lt;&lt; std::endl;
std::copy(boost::make_transform_iterator(x, std::bind1st(std::multiplies&lt;int&gt;(), 2)),
boost::make_transform_iterator(x + N, std::bind1st(std::multiplies&lt;int&gt;(), 2)),
std::ostream_iterator&lt;int&gt;(std::cout, &quot; &quot;));
std::cout &lt;&lt; std::endl;
return 0;
}
</pre>
This output is:
<pre>
2 4 6 8 10 12 14 16
</pre>
</blockquote>
<h3><a name="iterator_interactions">Iterator Interactions</a></h3>
<p>C++ allows <tt>const</tt> and non-<tt>const</tt> pointers to interact in
the following intuitive ways:
<ul>
<li>a non-<tt>const</tt> pointer to <tt>T</tt> can be implicitly
converted to a <tt>const</tt> pointer to <tt>T</tt>.
<li><tt>const</tt> and non-<tt>const</tt> pointers to <tt>T</tt> can be
freely mixed in comparison expressions.
<li><tt>const</tt> and non-<tt>const</tt> pointers to <tt>T</tt> can be
freely subtracted, in any order.
</ul>
Getting user-defined iterators to work together that way is nontrivial (see
<a href="reverse_iterator.htm#interactions">here</a> for an example of where
the C++ standard got it wrong), but <tt>iterator_adaptor</tt> can make it
easy. The rules are as follows:
<ul>
<li><a name="interoperable">Adapted iterators that share the same <tt>Policies</tt>,
<tt>Category</tt>, and <tt>Distance</tt> parameters are called
<i>interoperable</i>.</a>
<li>An adapted iterator can be implicitly converted to any other adapted
iterator with which it is interoperable, so long as the <tt>Base</tt>
type of the source iterator can be converted to the <tt>Base</tt> type of
the target iterator.
<li>Interoperable iterators can be freely mixed in comparison expressions
so long as the <tt>Policies</tt> class has <tt>equal</tt> (and, for
random access iterators, <tt>less</tt>) members that can accept both
<tt>Base</tt> types in either order.
<li>Interoperable iterators can be freely mixed in subtraction
expressions so long as the <tt>Policies</tt> class has a
<tt>distance</tt> member that can accept both <tt>Base</tt> types in
either order.
</ul>
<h4>Example</h4>
<p>The <a href="projection_iterator.htm">Projection Iterator</a> adaptor is similar to the <a
href="./transform_iterator.htm">transform iterator adaptor</a> in that
its <tt>operator*()</tt> applies some function to the result of
dereferencing the base iterator and then returns the result. The
difference is that the function must return a reference to some
existing object (for example, a data member within the
<tt>value_type</tt> of the base iterator).
<p>
The <a
href="projection_iterator.htm#projection_iterator_pair_generator">projection_iterator_pair_generator</a> template
is a special two-<a href="../../more/generic_programming.html#type_generator">type generator</a> for mutable and constant versions of a
projection iterator. It is defined as follows:
<blockquote>
<pre>
template &lt;class AdaptableUnaryFunction, class Iterator, class ConstIterator&gt;
struct projection_iterator_pair_generator {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef projection_iterator_policies&lt;AdaptableUnaryFunction&gt; policies;
public:
typedef iterator_adaptor&lt;Iterator,policies,value_type&gt; iterator;
typedef iterator_adaptor&lt;ConstIterator,policies,value_type,
const value_type&amp;,const value_type*&gt; const_iterator;
};
</pre>
</blockquote>
<p>It is assumed that the <tt>Iterator</tt> and <tt>ConstIterator</tt> arguments are corresponding mutable
and constant iterators. <ul>
<li>
Clearly, then, the
<tt>projection_iterator_pair_generator</tt>'s <tt>iterator</tt> and
<tt>const_iterator</tt> are <a href="#interoperable">interoperable</a>, since
they share the same <tt>Policies</tt> and since <tt>Category</tt> and
<tt>Distance</tt> as supplied by <tt>std::iterator_traits</tt> through the
<a href="#template_parameters">default template parameters</a> to
<tt>iterator_adaptor</tt> should be the same.
<li>Since <tt>Iterator</tt> can presumably be converted to
<tt>ConstIterator</tt>, the projection <tt>iterator</tt> will be convertible to
the projection <tt>const_iterator</tt>.
<li> Since <tt>projection_iterator_policies</tt> implements only the
<tt>dereference</tt> operation, and inherits all other behaviors from <tt><a
href="#default_iterator_policies">default_iterator_policies</a></tt>, which has
fully-templatized <tt>equal</tt>, <tt>less</tt>, and <tt>distance</tt>
operations, the <tt>iterator</tt> and <tt>const_iterator</tt> can be freely
mixed in comparison and subtraction expressions.
</ul>
<h3><a name="challenge">Challenge</a></h3>
<p>There is an unlimited number of ways the <tt>iterator_adaptors</tt>
class can be used to create iterators. One interesting exercise would be to
re-implement the iterators of <tt>std::list</tt> and <tt>std::slist</tt>
using <tt>iterator_adaptors</tt>, where the adapted <tt>Iterator</tt> types
would be node pointers.
<h3><a name="concept_model">Concept Model</a></h3>
Depending on the <tt>Base</tt> and <tt>Policies</tt> template parameters,
an <tt>iterator_adaptor</tt> can be a <a href=
"http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>, <a
href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward
Iterator</a>, <a href=
"http://www.sgi.com/tech/stl/BidirectionalIterator.html">Bidirectional
Iterator</a>, or <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a>.
<h3><a name="declaration_synopsis">Declaration Synopsis</a></h3>
<pre>
template &lt;class Base, class Policies,
class Value = typename std::iterator_traits&lt;Base&gt;::value_type,
class Reference = <i>...(see below)</i>,
class Pointer = <i>...(see below)</i>,
class Category = typename std::iterator_traits&lt;Base&gt;::iterator_category,
class Distance = typename std::iterator_traits&lt;Base&gt;::difference_type
&gt;
struct iterator_adaptor
{
typedef Distance difference_type;
typedef typename boost::remove_const&lt;Value&gt;::type value_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;
typedef Base base_type;
typedef Policies policies_type;
iterator_adaptor();
explicit iterator_adaptor(const Base&amp;, const Policies&amp; = Policies());
base_type base() const;
template &lt;class B, class V, class R, class P&gt;
iterator_adaptor(
const iterator_adaptor&lt;B,Policies,V,R,P,Category,Distance&gt;&amp;);
reference operator*() const; <a href="#6">[6]</a>
<i>operator_arrow_result_type</i> operator-&gt;() const; <a href=
"#3">[3]</a>
<i>value_type</i> operator[](difference_type n) const; <a href="#3">[4]</a>, <a href="#6">[6]</a>
iterator_adaptor&amp; operator++();
iterator_adaptor&amp; operator++(int);
iterator_adaptor&amp; operator--();
iterator_adaptor&amp; operator--(int);
iterator_adaptor&amp; operator+=(difference_type n);
iterator_adaptor&amp; operator-=(difference_type n);
iterator_adaptor&amp; operator-(Distance x) const;
};
template &lt;class B, class P, class V, class R, class Ptr,
class C, class D1, class D2&gt;
iterator_adaptor&lt;B,P,V,R,Ptr,C,D1&gt;
operator+(iterator_adaptor&lt;B,P,V,R,Ptr,C,D1&gt;, D2);
template &lt;class B, class P, class V, class R, class Ptr,
class C, class D1, class D2&gt;
iterator_adaptor&lt;B,P,V,R,P,C,D1&gt;
operator+(D2, iterator_adaptor&lt;B,P,V,R,Ptr,C,D1&gt; p);
template &lt;class B1, class B2, class P, class V1, class V2,
class R1, class R2, class P1, class P2, class C, class D&gt;
Distance operator-(const iterator_adaptor&lt;B1,P,V1,R1,P1,C,D&gt;&amp;,
const iterator_adaptor&lt;B2,P,V2,R2,P2,C,D&gt;&amp;);
template &lt;class B1, class B2, class P, class V1, class V2,
class R1, class R2, class P1, class P2, class C, class D&gt;
bool operator==(const iterator_adaptor&lt;B1,P,V1,R1,P1,C,D&gt;&amp;,
const iterator_adaptor&lt;B2,P,V2,R2,P2,C,D&gt;&amp;);
// and similarly for operators !=, &lt;, &lt;=, &gt;=, &gt;
</pre>
<h3><a name="notes">Notes</a></h3>
<p><a name="1">[1]</a> The standard specifies that the <tt>value_type</tt>
of <tt>const</tt> iterators to <tt>T</tt> (e.g. <tt>const T*</tt>) is
<tt><i>non-</i>const T</tt>, while the <tt>pointer</tt> and
<tt>reference</tt> types for all <a href=
"http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterators</a> are
<tt>const T*</tt> and <tt>const T&amp;</tt>, respectively. Stripping the
<tt>const</tt>-ness of <tt>Value</tt> allows you to easily make a constant
iterator by supplying a <tt>const</tt> type for <tt>Value</tt>, and allowing
the defaults for the <tt>Pointer</tt> and <tt>Reference</tt> parameters to
take effect. Although compilers that don't support partial specialization
won't strip <tt>const</tt> for you, having a <tt>const value_type</tt> is
often harmless in practice.
<p><a name="2">[2]</a> If your compiler does not support partial
specialization and the base iterator is a builtin pointer type, you
will not be able to use the default for <tt>Value</tt> and will have to
specify this type explicitly.
<p><a name="3">[3]</a> The result type for the <tt>operator-&gt;()</tt>
depends on the category and value type of the iterator and is somewhat
complicated to describe. But be assured, it works in a stardard conforming
fashion, providing access to members of the objects pointed to by the
iterator.
<p><a name="4">[4]</a> The result type of <tt>operator[]()</tt> is
<tt>value_type</tt> instead of <tt>reference</tt> as might be expected.
There are two reasons for this choice. First, the C++ standard only
requires that the return type of an arbitrary <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a>'s <tt>operator[]</tt>be ``convertible to T'' (Table 76), so
when adapting an arbitrary base iterator we may not have a reference to
return. Second, and more importantly, for certain kinds of iterators,
returning a reference could cause serious memory problems due to the
reference being bound to a temporary object whose lifetime ends inside of
the <tt>operator[]</tt>.
<p><a name="5">[5]</a>
The <tt>value_type</tt> of an iterator may not be
an abstract base class, however many common uses of iterators
never need the <tt>value_type</tt>, only the <tt>reference</tt> type.
If you wish to create such an iterator adaptor, use a dummy
type such as <tt>char</tt> for the <tt>Value</tt> parameter,
and use a reference to your abstract base class for
the <tt>Reference</tt> parameter. Note that such an iterator
does not fulfill the C++ standards requirements for a
<a href= "http://www.sgi.com/tech/stl/ForwardIterator.html">
Forward Iterator</a>, so you will need to use a less restrictive
iterator category such as <tt>std::input_iterator_tag</tt>.
<p><a name="6">[6]</a>
There is a common misconception that an iterator should have two
versions of <tt>operator*</tt> and of <tt>operator[]</tt>, one
version that is a <tt>const</tt> member function and one version
that is non-<tt>const</tt>. Perhaps the source of this
misconception is that containers typically have const and
non-const versions of many of their member functions. Iterators,
however, are different. A particular iterator type can be either
<i>mutable</i> or <i>constant</i> (but not both). One can assign
to and change the object pointed to by a mutable iterator whereas a
constant iterator returns constant objects when dereferenced. Whether
the iterator object itself is <tt>const</tt> has nothing to do with
whether the iterator is mutable or constant. This is analogous to
the way built-in pointer types behave. For example, one can
modify objects pointed to by a <tt>const</tt> pointer
<pre>
int* const x = new int;
int i = 3;
*x = i;
</pre>
but one cannot modify objects pointed to by a pointer
to <tt>const</tt>
<pre>
int const* x = new int;
int i = 3;
*x = i;
</pre>
<p><a name="7">[7]</a>
If you are using a compiler that does not have a version of
<tt>std::iterator_traits</tt> that works for pointers (i.e., if your
compiler does not support partial specialization) then if the
<tt>Base</tt> type is a const pointer, then the correct defaults
for the <tt>reference</tt> and <tt>pointer</tt> types can not be
deduced. You must specify these types explicitly.
<hr>
<p>Revised
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->18 Sep 2001<!--webbot bot="Timestamp" endspan i-checksum="14941" -->
<p>&copy; Copyright Dave Abrahams and Jeremy Siek 2001. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided "as is"
without express or implied warranty, and with no claim as to its
suitability for any purpose.
</body>
<!-- LocalWords: HTML html charset alt gif abrahams htm const iterator
incrementable david abrahams
-->
<!-- LocalWords: jeremy siek mishandled interoperable typename struct Iter iter src
-->
<!-- LocalWords: int bool ForwardIterator BidirectionalIterator BaseIterator
-->
<!-- LocalWords: RandomAccessIterator DifferenceType AdaptableUnaryFunction
-->
<!-- LocalWords: iostream hpp sizeof InputIterator constness ConstIterator
David Abrahams
-->
<!-- LocalWords: Iterators dereferenced
-->
</html>

220
iterator_traits_test.cpp Normal file
View File

@@ -0,0 +1,220 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 12 Oct 2001 Put static asserts in functions for MWERSK (Dave Abrahams)
// 04 Mar 2001 Patches for Intel C++ (Dave Abrahams)
// 19 Feb 2001 Take advantage of improved iterator_traits to do more tests
// on MSVC. Reordered some #ifdefs for coherency.
// (David Abrahams)
// 13 Feb 2001 Test new VC6 workarounds (David Abrahams)
// 11 Feb 2001 Final fixes for Borland (David Abrahams)
// 11 Feb 2001 Some fixes for Borland get it closer on that compiler
// (David Abrahams)
// 07 Feb 2001 More comprehensive testing; factored out static tests for
// better reuse (David Abrahams)
// 21 Jan 2001 Quick fix to my_iterator, which wasn't returning a
// reference type from operator* (David Abrahams)
// 19 Jan 2001 Initial version with iterator operators (David Abrahams)
#include <boost/detail/iterator.hpp>
#include <boost/type_traits.hpp>
#include <boost/operators.hpp>
#include <boost/static_assert.hpp>
#include <iterator>
#include <vector>
#include <list>
#include <cassert>
#include <iostream>
// An iterator for which we can get traits.
struct my_iterator1
: boost::forward_iterator_helper<my_iterator1, char, long, const char*, const char&>
{
my_iterator1(const char* p) : m_p(p) {}
bool operator==(const my_iterator1& rhs) const
{ return this->m_p == rhs.m_p; }
my_iterator1& operator++() { ++this->m_p; return *this; }
const char& operator*() { return *m_p; }
private:
const char* m_p;
};
// Used to prove that we don't require std::iterator<> in the hierarchy under
// MSVC6, and that we can compute all the traits for a standard-conforming UDT
// iterator.
struct my_iterator2
: boost::equality_comparable<my_iterator2
, boost::incrementable<my_iterator2
, boost::dereferenceable<my_iterator2,const char*> > >
{
typedef char value_type;
typedef long difference_type;
typedef const char* pointer;
typedef const char& reference;
typedef std::forward_iterator_tag iterator_category;
my_iterator2(const char* p) : m_p(p) {}
bool operator==(const my_iterator2& rhs) const
{ return this->m_p == rhs.m_p; }
my_iterator2& operator++() { ++this->m_p; return *this; }
const char& operator*() { return *m_p; }
private:
const char* m_p;
};
// Used to prove that we're not overly confused by the existence of
// std::iterator<> in the hierarchy under MSVC6 - we should find that
// boost::detail::iterator_traits<my_iterator3>::difference_type is int.
struct my_iterator3 : my_iterator1
{
typedef int difference_type;
my_iterator3(const char* p) : my_iterator1(p) {}
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct non_portable_tests
{
non_portable_tests()
{
// Unfortunately, the VC6 standard library doesn't supply these :(
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::pointer,
pointer
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::reference,
reference
>::value));
}
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct portable_tests
{
portable_tests()
{
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::difference_type,
difference_type
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::iterator_category,
category
>::value));
}
};
// Test iterator_traits
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct input_iterator_test
: portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
{
input_iterator_test()
{
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::value_type,
value_type
>::value));
}
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct non_pointer_test
: input_iterator_test<Iterator,value_type,difference_type,pointer,reference,category>
, non_portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
{
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct maybe_pointer_test
: portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, non_portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#endif
{
};
input_iterator_test<std::istream_iterator<int>, int, std::ptrdiff_t, int*, int&, std::input_iterator_tag>
istream_iterator_test;
//
#if defined(__BORLANDC__) && !defined(__SGI_STL_PORT)
typedef ::std::char_traits<char>::off_type distance;
non_pointer_test<std::ostream_iterator<int>,int,
distance,int*,int&,std::output_iterator_tag> ostream_iterator_test;
#elif defined(BOOST_MSVC_STD_ITERATOR)
non_pointer_test<std::ostream_iterator<int>,
int, void, void, void, std::output_iterator_tag>
ostream_iterator_test;
#else
non_pointer_test<std::ostream_iterator<int>,
void, void, void, void, std::output_iterator_tag>
ostream_iterator_test;
#endif
#ifdef __KCC
typedef long std_list_diff_type;
#else
typedef std::ptrdiff_t std_list_diff_type;
#endif
non_pointer_test<std::list<int>::iterator, int, std_list_diff_type, int*, int&, std::bidirectional_iterator_tag>
list_iterator_test;
maybe_pointer_test<std::vector<int>::iterator, int, std::ptrdiff_t, int*, int&, std::random_access_iterator_tag>
vector_iterator_test;
maybe_pointer_test<int*, int, std::ptrdiff_t, int*, int&, std::random_access_iterator_tag>
int_pointer_test;
non_pointer_test<my_iterator1, char, long, const char*, const char&, std::forward_iterator_tag>
my_iterator1_test;
non_pointer_test<my_iterator2, char, long, const char*, const char&, std::forward_iterator_tag>
my_iterator2_test;
non_pointer_test<my_iterator3, char, int, const char*, const char&, std::forward_iterator_tag>
my_iterator3_test;
int main()
{
char chars[100];
int ints[100];
for (std::ptrdiff_t length = 3; length < 100; length += length / 3)
{
std::list<int> l(length);
assert(boost::detail::distance(l.begin(), l.end()) == length);
std::vector<int> v(length);
assert(boost::detail::distance(v.begin(), v.end()) == length);
assert(boost::detail::distance(&ints[0], ints + length) == length);
assert(boost::detail::distance(my_iterator1(chars), my_iterator1(chars + length)) == length);
assert(boost::detail::distance(my_iterator2(chars), my_iterator2(chars + length)) == length);
assert(boost::detail::distance(my_iterator3(chars), my_iterator3(chars + length)) == length);
}
return 0;
}