Compare commits

...

521 Commits

Author SHA1 Message Date
bf2154d563 This commit was manufactured by cvs2svn to create branch
'array_wrapper'.

[SVN r31998]
2005-12-12 15:22:03 +00:00
f66e844ff1 Merged from Version_1_33_1
[SVN r31949]
2005-12-08 03:23:02 +00:00
62e8cc2b36 Attempted portability fix for Sun compilers
[SVN r31904]
2005-12-04 18:47:02 +00:00
30236f8915 Made the Boost logo link to the home page
[SVN r31112]
2005-09-25 21:54:19 +00:00
155e787ea3 Fix reporting of enable_if tests
[SVN r31060]
2005-09-20 18:35:26 +00:00
1d60d49136 Large patch from Ulrich Eckhardt to fix support for EVC++ 4.
[SVN r30670]
2005-08-25 16:27:28 +00:00
2dffdac9fe Disabiguated the detail namespace.
[SVN r30558]
2005-08-12 19:06:10 +00:00
ddf00eb29d Merged from 1.33.0 release
[SVN r30540]
2005-08-12 13:02:37 +00:00
0a6acd8ce8 Fix broken links
[SVN r30403]
2005-08-03 13:01:57 +00:00
745322e797 Fix broken links
[SVN r30401]
2005-08-03 12:25:30 +00:00
9f10fc03ce More Parameter library reference edits
[SVN r30276]
2005-07-28 04:19:28 +00:00
84fbb3c896 Fix mis-nested namespace scope/#ifdef
[SVN r30159]
2005-07-18 18:50:47 +00:00
865c707756 BOOST_NO_RESULT_OF support
[SVN r30040]
2005-07-13 12:35:37 +00:00
871f3a6779 Don't use the self contained include files for boost.test as this test is linked
with the boost.test library. We end up with multiple defined symbols, otherwise.


[SVN r29559]
2005-06-14 13:46:20 +00:00
aaca5ca871 Updated Borland workaround.
[SVN r29462]
2005-06-07 09:44:19 +00:00
5a4e19989f Workaround for nonconformance to CWG issue 298, checked in on behalf of John Maddock
[SVN r29415]
2005-06-03 19:11:54 +00:00
6ea398c446 Make it clear that POD's are not zero initialised.
[SVN r29254]
2005-05-28 11:51:04 +00:00
1bd83d43e8 Improvements in type_traits have gotten MSVC 7.0 and prior down to 12 failures here
[SVN r29170]
2005-05-24 14:53:49 +00:00
5ca5b4102b Optional's Assignment fixed
[SVN r28412]
2005-04-22 13:28:34 +00:00
aca7699046 Add V2 Jamfile
[SVN r28246]
2005-04-14 13:15:46 +00:00
e702a944ca Fixes to get the tests working with the latest type traits and Boost.Test versions.
[SVN r27864]
2005-03-29 11:21:53 +00:00
a157c345ee Updated is_convertible test cases to check polymorphic-type conversions.
Added more test types to testing header.
Changed utility code to use new test header.


[SVN r27807]
2005-03-24 18:20:18 +00:00
dcb2dd4736 Removed type_traits include, added more tests
[SVN r27712]
2005-03-16 22:02:22 +00:00
ae19cd6236 work-around for Borland addressof(array) bug and associated tests
[SVN r27656]
2005-03-14 23:03:42 +00:00
3ab4d38931 Apply typo fixes from Julio M. Merino Vidal
[SVN r27513]
2005-02-27 17:28:24 +00:00
18c7fb72b5 ADL problem (with VC7.1) fixed
[SVN r27495]
2005-02-24 16:04:49 +00:00
6bb092a9b1 Add comment explaining use of assert.h
[SVN r27473]
2005-02-21 12:32:20 +00:00
f721b8b28c replaced BOOST_TEST
[SVN r27054]
2005-02-03 13:48:49 +00:00
e5ba34472d merge RC_1_32_0 fixes
[SVN r26333]
2004-11-28 04:44:21 +00:00
082ae17eaf merge RC_1_32_0 fixes
[SVN r26328]
2004-11-28 03:35:12 +00:00
dd86e09ab4 merge RC_1_32_0 tab fixes
[SVN r26327]
2004-11-28 03:27:25 +00:00
baff23116e Fixed link to function_output_iterator
[SVN r25949]
2004-10-29 19:19:20 +00:00
e549baf93a move enable_if tests into their own subdirectory
[SVN r25649]
2004-10-10 16:15:58 +00:00
30d46adcb7 bad links fixed
added myself to people


[SVN r25610]
2004-10-07 16:01:24 +00:00
e854726be0 c++boost.gif -> boost.png replacement
[SVN r25573]
2004-10-05 15:45:52 +00:00
d198bd9d96 added explicit return to main
[SVN r25387]
2004-09-24 06:17:26 +00:00
5eb23cecd0 In-place factories moved from /detail to /utility
New value_initalized tests added


[SVN r25377]
2004-09-23 17:03:54 +00:00
eff2c75bba taken care of BOOST_NO_STDC_NAMESPACE
[SVN r25345]
2004-09-22 17:18:06 +00:00
325bd73df7 In-place factories moved from /detail to /utility
New value_initalized tests added


[SVN r25313]
2004-09-21 14:54:32 +00:00
0fcc554abd Initial commit
[SVN r25178]
2004-09-17 16:53:57 +00:00
b685784155 Added new types boost::long_long_type and boost::ulong_long_type in boost/config.hpp and applied these types in place of "long long" throughout. As a result, almost all of boost now compiles cleanly with -ansi -pedantic with gcc. Changes tested with gcc 3.3, 2.95, VC7.1 and Intel 8.
[SVN r24899]
2004-09-04 10:34:49 +00:00
ac90fdc611 merge new MPL version from 'mplbook' branch
[SVN r24874]
2004-09-02 15:41:37 +00:00
51077e49f5 Fixed CW problems and refactored fail cases
[SVN r24870]
2004-09-02 13:19:50 +00:00
0c3199f72d Added my long name
[SVN r24869]
2004-09-02 12:59:42 +00:00
62675a3bcd added copyright/license
[SVN r24814]
2004-08-30 01:31:40 +00:00
c26dbaa620 Updated copyright year list, since the interface changed
[SVN r24801]
2004-08-28 20:51:19 +00:00
8201624959 Moved a template argument default for base_from_member to primary header; removed forwarding header as it's not needed anymore
[SVN r24800]
2004-08-28 20:46:17 +00:00
f2116413d6 Changed constructor templates to be generated with the Preprocessor library; added a control macro for the maximum constructor argument length
[SVN r24799]
2004-08-28 20:24:17 +00:00
b0baebeb0a fix noncopyable, finally
[SVN r24618]
2004-08-20 17:17:06 +00:00
fb943b77d5 License updates
[SVN r24597]
2004-08-19 15:19:17 +00:00
b4b39510fc ADL protection
[SVN r24595]
2004-08-19 13:12:35 +00:00
6f0f05ba12 remove forward declaration for noncopyable
[SVN r24578]
2004-08-19 02:31:29 +00:00
f0b64b6229 ADL protection
[SVN r24564]
2004-08-18 17:01:11 +00:00
4229488989 Added redirection to fix old links.
[SVN r24558]
2004-08-18 13:55:35 +00:00
acd2e6ef2b Added Daryle Walker's copyrights as requested.
[SVN r24481]
2004-08-15 10:13:49 +00:00
c26aaed71f Moved to BSL
[SVN r24446]
2004-08-12 17:13:07 +00:00
326d7ad4d7 Removed boost.org copyright assignments, and reverted to orginal author (as based on cvs history).
[SVN r24402]
2004-08-11 10:59:33 +00:00
c76a2f4aab Add my license info
[SVN r24373]
2004-08-10 13:57:30 +00:00
d8b0ff2d7e Removed Boost.org copyrights and replaced with originating authors copyright instead.
[SVN r24372]
2004-08-10 12:53:34 +00:00
996ce2d307 Updated Beman Dawes' licence statement to use the new prefered form of words.
[SVN r24370]
2004-08-10 10:34:20 +00:00
167fa4154f Eliminated unreviewed, unused, noncompiling code
[SVN r24314]
2004-08-05 18:57:39 +00:00
0c7e7c3c39 half_open_range_test removed
[SVN r24313]
2004-08-05 18:46:55 +00:00
9d8f8f41dc Include for test library fixed
[SVN r24299]
2004-08-05 09:23:05 +00:00
39c4445b39 add missing tests, reorder tests by filename
[SVN r24216]
2004-08-01 05:40:21 +00:00
7819b022ad License update
[SVN r24180]
2004-07-30 04:46:56 +00:00
65d27e7f86 License update
[SVN r24175]
2004-07-30 01:47:08 +00:00
212a70bf77 Remove "and" from copyright
[SVN r24167]
2004-07-29 15:50:36 +00:00
6b5dc18a46 Converted to Boost Software License, Version 1.0
[SVN r24096]
2004-07-27 03:43:34 +00:00
0917f83b9c Converted to Boost Software License, Version 1.0
[SVN r24055]
2004-07-26 00:32:12 +00:00
7322bd3903 License update
[SVN r24048]
2004-07-25 19:13:06 +00:00
e998010184 Add license
[SVN r24021]
2004-07-25 03:57:20 +00:00
918a1c93e4 Doug Gregor -> Douglas Gregor
[SVN r24016]
2004-07-25 02:29:29 +00:00
14c87853c2 Needed to include cstddef to get std::size_t
[SVN r24000]
2004-07-23 18:42:30 +00:00
d5a5b84a40 Switch the test to use std::stringstream, not std::ostrstream, since
the latter is deprecated and gcc warns whenever one tries to use it.


[SVN r23896]
2004-07-21 12:28:18 +00:00
35d3c03d19 Update
[SVN r23085]
2004-06-11 11:18:50 +00:00
8933fbb254 The binary_search_test does not require Boost.Test all all, and does not
provide 'test_main' or 'unit_test_main', so don't link to Boost.Test.


[SVN r23073]
2004-06-10 11:49:39 +00:00
c320330cd5 fixed a typo
[SVN r22754]
2004-05-06 22:38:34 +00:00
822b46a3df Complain when compiler can't support result_of
[SVN r22749]
2004-05-06 17:29:54 +00:00
a821ef6e2c Added enable_if.hpp as an include
[SVN r22735]
2004-05-04 16:07:00 +00:00
491db15997 boost/utility/result_of.hpp, boost/utility/detail/result_of_iterate.hpp:
- result_of implementation

libs/utility/test/result_of_test.cpp:
  - result_of tests

libs/utility/test/Jamfile, libs/utility/test/Jamfile.v2:
  - run result_of tests

libs/utility/utility.htm:
  - document result_of

libs/libraries.htm:
  - list result_of

index.htm:
  - announce result_of


[SVN r22720]
2004-05-02 19:55:02 +00:00
b6c826a139 shared_container_iterator library:
- updated Copyright and License notices
 - Added shared_iterator_test to the iterator test suite.


[SVN r22140]
2004-02-02 22:16:36 +00:00
7b472a05ee Obsoleted old iterator adaptor docs
[SVN r22101]
2004-02-01 04:30:15 +00:00
9a07bc0d9b Added missing include <cstddef>
[SVN r21993]
2004-01-27 11:24:25 +00:00
154d6bb198 When we have a compressed pair of two types that are the same, and both empty, then we must still have two distict objects in the pair.
[SVN r21958]
2004-01-26 11:29:07 +00:00
0dde936e61 DM fixes
[SVN r21933]
2004-01-26 00:19:59 +00:00
918bf25039 Fixed documentation for less_pointees
[SVN r21737]
2004-01-14 20:22:00 +00:00
04fda4fb4e Use proper syntax to refer to Boost.Test.
[SVN r21566]
2004-01-09 13:03:16 +00:00
e14a250d6e pro9 workarounds; some ADL protection for is_xxx
[SVN r21529]
2004-01-07 14:07:21 +00:00
806745f24e Fix tabs in file.
[SVN r21399]
2003-12-26 23:26:49 +00:00
4231f774e4 fix next_prior_test.cpp directory
[SVN r21384]
2003-12-23 19:14:37 +00:00
dfc320124f Extended next/prior using patch from Daniel Walker (Daniel.Walker-at-bowneglobal.com)
[SVN r21382]
2003-12-23 14:59:59 +00:00
be43ba1569 Improved workarounds.
[SVN r21157]
2003-12-06 03:57:54 +00:00
f3f879555a Fixed result_type
[SVN r21155]
2003-12-05 22:03:33 +00:00
3155044abd added dummy versions of enable_if templates for platforms that
have BOOST_NO_SFINAE defined


[SVN r21154]
2003-12-05 21:38:43 +00:00
484d184de5 guarded enable_if definitions with BOOST_NO_SFINAE
[SVN r21149]
2003-12-05 16:31:38 +00:00
3305cf1592 Fixed a bug in the semantics of less_pointees() {again}
[SVN r21133]
2003-12-04 01:53:29 +00:00
ec36cd8c54 Fixed a bug in the semantics of less_pointees()
[SVN r21132]
2003-12-04 01:47:31 +00:00
61fb5a0b8f fix broken link to logo
[SVN r21122]
2003-12-03 14:36:38 +00:00
8024c3e9c7 Updated license terms
[SVN r21120]
2003-12-03 13:34:11 +00:00
2f5945d0cd Removed bool_testable, added note about portability of separate, explicit instantiation, changed license of documentation
[SVN r21110]
2003-12-03 07:01:28 +00:00
929517d6d7 Added enable_if library
[SVN r21090]
2003-12-02 21:41:15 +00:00
abcab174a5 _MSC_VER use clarified.
[SVN r20992]
2003-11-28 15:35:21 +00:00
801be90699 Moved from "utility" to "detail" until a Fast Track Review formalizes it.
[SVN r20983]
2003-11-28 14:36:21 +00:00
265c2348b8 Removed access category tags from iterator library, made corresponding
changes elsewhere.

boost/iterator and libs/iterator/test were updated from
branch "simplify"


[SVN r20905]
2003-11-22 01:18:37 +00:00
fb95bcc64c Moved some of my stuff to the Boost Software License, Version 1.0
[SVN r20681]
2003-11-05 07:04:53 +00:00
aedc410525 New License
[SVN r20607]
2003-11-03 02:59:08 +00:00
7fa440c154 *** empty log message ***
[SVN r20511]
2003-10-28 00:09:18 +00:00
746e0fad2b Changed email address to john@johnmaddock.co.uk
[SVN r20472]
2003-10-24 11:13:42 +00:00
1616f6f5a8 Update credits for R. Samuel Klatchko
[SVN r20325]
2003-10-09 14:16:15 +00:00
ca3e7d8530 Add V2 Jamfile
[SVN r20270]
2003-10-07 07:25:24 +00:00
f0f753ba6c Typed in place construction added
[SVN r20070]
2003-09-15 20:28:10 +00:00
532065b51b Change license message to reference Boost Software License
[SVN r20038]
2003-09-12 17:09:29 +00:00
4bfb534bae Added for new Boost.Optional functionality
[SVN r19995]
2003-09-10 15:40:47 +00:00
95ba7a4381 Use the import rule
[SVN r19968]
2003-09-08 17:38:49 +00:00
e92213431e Removed tie_example.cpp per Daniel's request
[SVN r19910]
2003-09-03 05:24:48 +00:00
7dd7daee1b Removed obsolete references to utility/tie
[SVN r19902]
2003-09-01 21:04:26 +00:00
953cc46220 Removed code-breaking change from boost/detail/iterator.hpp and
corresponding workarounds from tests.

Added permutation_iterator_test to the suite after fixing it up -- it
was riddled with bugs!


[SVN r19841]
2003-08-28 20:18:51 +00:00
b5ae0ad86b Moved to much cleaner system of using BOOST_TT_BROKEN_COMPILER_SPEC
for handling vc6/7 deficiencies with iterator_traits.

Fixed a bug in iterator_facade which was causing incomplete types to
be passed through is_convertible.

Reinstated libs/utility/iterator_traits_test.cpp


[SVN r19840]
2003-08-28 16:52:02 +00:00
c86fcbf456 Fix for Metrowerks CW
[SVN r19626]
2003-08-16 01:05:43 +00:00
6ded8b9ad6 Initial revision.
[SVN r19536]
2003-08-11 19:24:03 +00:00
bb6a6272e1 Updated shared_container_iterator to use the new iterator adaptors library.
Updated the documentation and examples as well to reflect the changes.


[SVN r19535]
2003-08-11 16:29:47 +00:00
242634b3fc Added safe_bool_testable_test
[SVN r19373]
2003-07-30 21:33:37 +00:00
662cf14bf6 Initial version
[SVN r19372]
2003-07-30 21:32:19 +00:00
fe3aaf62cd Undo overeager workarounding and safe_bool.
[SVN r19364]
2003-07-30 12:41:10 +00:00
cb189bd6be operators.hpp, operators_test.cpp - workaround for compilers not
supporting the PP lib, many workarounds for another problem which
   may be our bug.

linear_congruential.hpp - Borland workaround


[SVN r19350]
2003-07-30 01:11:14 +00:00
f57c914b8f Preparation for delivering nicely-formatted error messages in
Boost.Python.  The major change is that, instead of being
boost::function2<PyObject*,PyObject*,PyObject*>, py_function is now a
runtime-polymorphic wrapper for compile-time polymorphic
behavior (just like function) of our own which carries more
information/behaviors.  In particular, you can retrieve an array of
c-strings describing the types in the function signature.
Additionally, the minimum and maximum arity are stored in the
py_function object instead of in the 'function' object which wraps it.

* data_members.hpp -

     Adjustments for the new py_function.  Workarounds for CodeWarrior
     Pro 8.3 bugs in function template argument deduction with
     pointers-to-members.

* has_back_reference.hpp, test/back_reference.cpp,
  test/select_holder.cpp -

     Updated to follow the metafunction protocol

* init.hpp, detail/defaults_gen.hpp -

     Make Keywords a more-specific type in function signatures to
     prevent string literals that show up as char[N] from binding to
     the wrong argument (at least Intel 7.1 for Windows does this).

* make_function.hpp -

     Adjustments for the new py_function.  Arities are now computed
     by caller<>.

* opaque_pointer_converter.hpp, type_id.hpp -

     Use BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS facilities;
     generate specializations that all compilers can handle.

* raw_function.hpp -

     Adjustments for the new py_function.

* caller.hpp -

     Added arity and signature type name reporting.

* detail/config.hpp

     Enable __declspec(dllexport) for Cygwin, thereby fixing the
     recent horrible Cygwin linking problems.


* detail/msvc_typeinfo.hpp -

     Always pass boost::type<T>* explicitly, thereby working around
     incompatible notions of how to specialize function templates with
     default arguments on various compilers.

*   object/function.hpp
  , object/function_handle.hpp
  , object/function_object.hpp
  , object/function_object.cpp

     Adjustments for the new py_function.  Arities are carried by
     py_function.

* object/iterator.hpp, object/iterator.cpp

     Adjustments for the new py_function; we have to compute a
     signature of types to construct it with.

* object/py_function.hpp

     Removed dependency on boost::function; see the comment at the
     top of this entry for more details.

* object/select_holder.hpp

     Clean up to more closely follow MPL idioms.

* test/Jamfile -

     Adjust the embedding test for the new Cygwin use of declspec.
     Update bases and pointee tests with missing properties.

* test/input_iterator.cpp -

     Updates for the new iterator adaptors.

* test/opaque.py -

     Add Python encoding comment to suppress PendinDeprecationWarning
     with recent Python builds.

* test/str.cpp

     Pass a Python long instead of a float to string.expandtabs,
     suppressing a PendinDeprecationWarning with recent Python builds.

* libs/utility/counting_iterator_example.cpp

     Borland workaround

* libs/utility/indirect_iterator_example.cpp

     const-correctness fix.

*


[SVN r19247]
2003-07-22 00:06:41 +00:00
7cec198e14 Added missing algorithm include.
[SVN r19230]
2003-07-20 19:17:18 +00:00
52d3120528 Borland workaround
[SVN r19157]
2003-07-16 19:10:34 +00:00
f1aff5670c strict 2-phase ADL fixes.
[SVN r19152]
2003-07-16 15:16:21 +00:00
632f682292 Satisfy assignable requirement for output iterators.
[SVN r19150]
2003-07-16 14:30:47 +00:00
d1d0d6b788 Fixed Intel 7 issue (reported by Daniel Frey)
[SVN r19145]
2003-07-16 10:53:06 +00:00
3bd833c8ff avoid default parameters for function templates, they confuse SunCC
[SVN r19100]
2003-07-13 18:59:08 +00:00
1ef77b0853 fix cut-and-paste problem with subproject path
[SVN r19084]
2003-07-12 09:37:36 +00:00
074007ab8c Get examples working, mostly. Some interface expansion for a few of
the adaptors, allowing default construction of UnaryFunction and
Predicate arguments when they are class types.


[SVN r19081]
2003-07-12 04:15:13 +00:00
c4b7aaf281 Move to new iterator adaptors
[SVN r19074]
2003-07-11 22:18:58 +00:00
22b8494e9a Factored out separate utility/test Jamfile
[SVN r19068]
2003-07-11 17:24:18 +00:00
c1c8329403 Expanded base-from-member constructors to 10 arguments; did minor tweaks
[SVN r18791]
2003-06-15 01:16:49 +00:00
20a89040e1 -Wundef fixes.
[SVN r18788]
2003-06-12 17:09:24 +00:00
1c7a2a1476 IBM C++ support added.
[SVN r18587]
2003-05-28 13:45:58 +00:00
7c40cc0b63 Fixed bool_testable for compilers with BOOST_NO_OPERATORS_IN_NAMESPACE
[SVN r18521]
2003-05-23 23:09:21 +00:00
73a9e0d351 Intel support.
[SVN r18520]
2003-05-23 22:30:23 +00:00
dc9856744a Fixed tests for bool_testable
[SVN r18502]
2003-05-23 00:18:57 +00:00
88f4e47550 Added bool_testable by Sam Partington
[SVN r18413]
2003-05-15 22:40:33 +00:00
1be04eeec5 Fix a bug in preprocessor usage
[SVN r18231]
2003-04-11 06:56:52 +00:00
56acf9c325 Fixed shift-operators to respect BOOST_FORCE_SYMMETRIC_OPERATORS
[SVN r17664]
2003-02-26 21:26:57 +00:00
c6e3957efc MPL names/directory structure refactoring
[SVN r17651]
2003-02-25 23:11:41 +00:00
25e8284950 Qualified checked_delete calls to prevent ADL (reported by Daniel Frey)
[SVN r17636]
2003-02-25 13:00:22 +00:00
37a6537a5b fix metafunctions for MPL
[SVN r17621]
2003-02-25 00:57:33 +00:00
80df1d8f12 split utility.hpp header
[SVN r17472]
2003-02-17 06:20:57 +00:00
75afed7f17 Made operator()s const.
[SVN r17411]
2003-02-14 16:20:01 +00:00
1d7066aee1 __func__ is a predefined identifier, not a macro.
[SVN r17308]
2003-02-10 16:25:41 +00:00
12272a38d4 Initial Commit (was left out when the Optional Library was commited)
[SVN r17204]
2003-02-04 15:29:12 +00:00
04f901e52e fixed some typos
[SVN r17052]
2003-01-27 19:14:18 +00:00
fabfb31bf6 add value_init
[SVN r16826]
2003-01-09 13:26:13 +00:00
683701cd07 fix invalid bookmarks
[SVN r16823]
2003-01-09 13:03:37 +00:00
119c64be0b Workaround VC7 bug which strips const from nested classes
[SVN r16797]
2003-01-08 17:21:10 +00:00
d429c9a7d8 minor cleanup
[SVN r16709]
2002-12-27 16:58:27 +00:00
1e8216431b add or update See www.boost.org comments
[SVN r16708]
2002-12-27 16:51:53 +00:00
e45b2e2136 Doc link updated.
[SVN r16699]
2002-12-24 12:34:42 +00:00
9e6951009b Add /libs/lib-name to comment
[SVN r16685]
2002-12-23 02:43:12 +00:00
a009a209f1 Use BOOST_WORKAROUND
[SVN r16668]
2002-12-20 00:03:04 +00:00
97605056ed Added a note that throw_exception must not return (Beman Dawes)
[SVN r16471]
2002-12-02 12:12:42 +00:00
8fcfa33d33 Fix: Comeau with bcc32 as backend defines __BORLANDC__ as 1.
[SVN r16455]
2002-11-28 13:32:44 +00:00
aa65e3da3b sort_by_value(std::list<std::string>& l) is not declared inline anymore to make it compile with vacpp
[SVN r16407]
2002-11-25 15:54:37 +00:00
b4cfadb4d5 Metrowerks support (Bertolt Mildner)
[SVN r16263]
2002-11-15 19:44:18 +00:00
45a6249668 New BOOST_ASSERT, including documentation.
[SVN r16240]
2002-11-14 16:09:29 +00:00
1d601aef4d boost::throw_exception documentation added.
[SVN r16239]
2002-11-14 15:13:59 +00:00
32fb45eba9 checked_delete.hpp documentation added.
[SVN r16238]
2002-11-14 14:53:32 +00:00
2b7d10aceb BOOST_CURRENT_FUNCTION documentation added.
[SVN r16236]
2002-11-14 14:41:25 +00:00
5dc62711e1 Fix from Yitzhak Sapir <yitzhaks@actimize.com>
[SVN r16198]
2002-11-11 19:50:05 +00:00
252c02aca0 Works with MSVC and Intel5 now. Thanks, Aleksey!!
[SVN r16165]
2002-11-08 17:08:17 +00:00
9655beb7ba Cleanups on boost::iterator_traits<>
Broke MSVC though :(


[SVN r16157]
2002-11-08 06:57:31 +00:00
f0ea53e77e rip out illegal semicolons
[SVN r16134]
2002-11-06 18:20:38 +00:00
4755b42909 Daniel Frey's NRVO patches
[SVN r16084]
2002-11-04 01:59:32 +00:00
ef9af03c6c Changed typename to class; some libraries helpfully #define typename
[SVN r15970]
2002-10-23 13:55:18 +00:00
7439073cbf Merged from branch to trunk
[SVN r15572]
2002-09-30 16:54:26 +00:00
aff985a563 explicit "private" inheritance to avoid compiler warnings (MIPSpro)
[SVN r15422]
2002-09-17 21:06:32 +00:00
db425222d5 mpl_v2 branch checkin
[SVN r15258]
2002-09-11 05:35:41 +00:00
e20af510f7 Initial Revision
[SVN r15254]
2002-09-10 16:13:08 +00:00
d8230c6a73 Added Shared Container Iterator adaptor to iterator adaptor library.
[SVN r15169]
2002-09-05 14:05:29 +00:00
f5690787bf Distinguish between VC++ versions
[SVN r15127]
2002-09-01 14:57:40 +00:00
a4fd7b32dd Misc Kylix fixes
[SVN r15086]
2002-08-25 11:57:37 +00:00
f4336ec693 fixed typo.
[SVN r14798]
2002-08-12 20:47:54 +00:00
03d906976b Reduced probes from 10,000 to 1,000 to speed regression tests
[SVN r14789]
2002-08-12 15:05:23 +00:00
4ba6a96822 fix test_main signature
[SVN r14783]
2002-08-12 13:22:40 +00:00
1ea4140d56 Added tests for BOOST_NO_STD_ITERATOR_TRAITS
[SVN r14654]
2002-07-31 11:25:25 +00:00
351d4ecb15 Document policies() member of iterator_adaptor
[SVN r14613]
2002-07-26 00:03:24 +00:00
7fbf84dcc6 BaseType -> Base in one more place
[SVN r14605]
2002-07-25 19:10:05 +00:00
3ff49b272d fixup
[SVN r14598]
2002-07-25 14:16:54 +00:00
5b52e3d418 Fix doc based on Beman's feedback
[SVN r14596]
2002-07-25 13:52:48 +00:00
8c0eb498d3 Fix unversioned VC++ checks
[SVN r14436]
2002-07-13 12:26:19 +00:00
48a81ef7ea VC++ fixes
[SVN r14435]
2002-07-13 12:22:51 +00:00
f7610c9b26 fix link
[SVN r14318]
2002-07-05 23:51:20 +00:00
1755eaf019 Merged from RC_1_28_0
[SVN r13944]
2002-05-16 00:56:42 +00:00
6b8b218efb Removed tabs, fixed end of files.
[SVN r13803]
2002-05-10 11:35:38 +00:00
333d79b345 Add index.html so automatic tools work correctly
[SVN r13725]
2002-05-07 19:23:05 +00:00
f0fa436fe4 Added new config macro BOOST_HAS_MS_INT64 to detect presence of __int64 data type.
Modified boost source to use BOOST_HAS_LONG_LONG and BOOST_HAS_MS_INT64
   where appropriate to do so.


[SVN r13714]
2002-05-07 11:24:29 +00:00
13e6d78fa8 Fixes for Borland C++ Builder 6
[SVN r13662]
2002-05-04 11:03:42 +00:00
7126ea2685 Borland C++ Builder 6 fixes
[SVN r13659]
2002-05-04 10:55:15 +00:00
a37518cb4a Fixed broken links.
[SVN r13574]
2002-04-27 11:05:49 +00:00
64b3e8c3bd add missing #include <iterator>
[SVN r13554]
2002-04-23 19:52:11 +00:00
339937380e MSVC fixes.
[SVN r13476]
2002-04-13 13:19:57 +00:00
6156f0d302 Roll addressof() patch back in!
[SVN r13433]
2002-04-10 17:01:35 +00:00
00560e8e17 addressof.hpp:
- Peter Dimov suggested a fix to deal with those evil cv-qualifiers


[SVN r13431]
2002-04-10 14:47:32 +00:00
029ff9828f Roll back addressof() patch temporarily
[SVN r13428]
2002-04-10 09:48:30 +00:00
ec188c7c3e Make local classes nonlocal to silence annoying warnings from Borland C++
[SVN r13418]
2002-04-10 04:00:22 +00:00
0a0296a5d0 ref.hpp:
- Use addressof() instead of & operator


[SVN r13416]
2002-04-10 03:36:17 +00:00
6e26a5bbe7 boost/utility.hpp:
- Include boost/utility/addressof.hpp

boost/utility/addressof.hpp:
  - addressof() implementation

libs/utility/utility.htm:
  - Document addressof

libs/utility/addressof_test.cpp:
  - Test addressof()


[SVN r13414]
2002-04-10 03:31:18 +00:00
dc1b6246a0 boost/ref.hpp:
- Added get_pointer method to return a pointer (instead of a reference)

libs/bind/ref.html:
  - Document get_pointer


[SVN r13322]
2002-03-31 00:24:00 +00:00
15f69eaf14 Fixed new problem with Borland compile -
code clashes with some new type traits workarounds for some reason.


[SVN r13226]
2002-03-19 11:33:00 +00:00
4774a0d325 Added Copyright
[SVN r13145]
2002-03-09 20:34:06 +00:00
be78ab72c9 update expected failures for Sun CC
[SVN r13101]
2002-03-05 20:41:37 +00:00
0bc4a1b20d Warning suppressioni from Craig Rodrigues
[SVN r13098]
2002-03-05 18:55:49 +00:00
c8b674d105 Add missing paren.
[SVN r12997]
2002-03-01 17:43:00 +00:00
b421d4725a Fixed expected failures for gcc 3.1
[SVN r12994]
2002-03-01 12:27:01 +00:00
1662bb5713 use of "small" changed to "small_" to suppress confusion on some compilers
[SVN r12916]
2002-02-24 02:35:19 +00:00
ad79a21abd added portability note about using std::vector's as Base with VC++
[SVN r12875]
2002-02-21 12:09:46 +00:00
19645a52e6 Added a default constructor to shared_count and shared_ptr for incomplete types (void).
[SVN r12815]
2002-02-15 13:31:58 +00:00
74c3077c9a Added test cases for incomplete and abstract base class types.
[SVN r12803]
2002-02-14 12:57:32 +00:00
1f29191329 Modified call_traits to work with incomplete types.
[SVN r12800]
2002-02-14 12:54:57 +00:00
4b636a7680 Always say "private noncopyable" to avoid warnings.
[SVN r12762]
2002-02-08 20:08:15 +00:00
e6fc2555f3 removed tabs
[SVN r12707]
2002-02-04 20:29:35 +00:00
e27d0fcf2a New smart pointer documentation. Related clean-up of the smart pointer
library. Changing includes to include the new individual smart pointer
headers. Replacing old smart pointer library with an include of the new
smart pointer headers. Simplify ifdefs that involve the member templates
macros now that BOOST_MSVC6_MEMBER_TEMPLATES is also guaranteed to bet
set for platforms that have full member templates.


[SVN r12647]
2002-02-02 18:36:12 +00:00
2643c33b20 Doc fixes from Thomas Witt
[SVN r12621]
2002-02-01 13:03:21 +00:00
71af1e77c8 compile-time ref.hpp header test, initial checkin
[SVN r12525]
2002-01-27 13:39:06 +00:00
99e7406bd9 ref_ct_test.cpp
[SVN r12524]
2002-01-27 13:32:37 +00:00
413265f497 compile-time ref.hpp header test, initial checkin
[SVN r12522]
2002-01-27 13:07:20 +00:00
fe44cdf09b made 'reference_wrapper' Assignable
[SVN r12520]
2002-01-27 13:02:27 +00:00
e413428d71 Added tests for the new smart pointers.
[SVN r12500]
2002-01-25 13:54:30 +00:00
88b9822db7 Mark inline to avoid warning with "require prototypes" on.
[SVN r12490]
2002-01-24 19:15:30 +00:00
24045c0cd7 #included <boost/checked_delete.hpp>, removed unnecessary #includes.
[SVN r12488]
2002-01-24 17:47:08 +00:00
d2aa9f4a84 added missing #include of boost/config.hpp
[SVN r12483]
2002-01-24 16:55:41 +00:00
d2a5fd169f initial checkin
[SVN r12481]
2002-01-24 16:52:06 +00:00
4e350d9934 Modified is_reference_wrapper<> to work for reference types.
[SVN r12475]
2002-01-24 13:28:08 +00:00
f3f697bbc8 added is_reference_wrapper<>, unwrap_reference<>
[SVN r12470]
2002-01-23 21:19:14 +00:00
c7c09696db Tweak comments. Include <assert.h> and <boost/current_function.hpp> only
when needed.


[SVN r12446]
2002-01-22 18:28:33 +00:00
dbcc58d984 Smart pointer enhancements, initial commit
[SVN r12439]
2002-01-22 13:38:52 +00:00
8231310c4d initial checkin
[SVN r12390]
2002-01-21 01:29:06 +00:00
2988140430 tabs
[SVN r12360]
2002-01-19 16:07:28 +00:00
7387966005 Stripped tabs from source
[SVN r12351]
2002-01-19 12:38:14 +00:00
e0a5a61375 removed eroneous "detail::" prefix
[SVN r12326]
2002-01-15 19:14:53 +00:00
66ecd70689 removed std:: prefix from slist
[SVN r12310]
2002-01-14 14:57:20 +00:00
67f4f45653 Fixed violation of 'explicit' constructor
[SVN r12256]
2002-01-09 13:15:54 +00:00
1bf28b3de2 Fixes for Borland
[SVN r12254]
2002-01-09 12:11:37 +00:00
eb3c3435d7 Updated expected results
[SVN r12250]
2002-01-08 13:01:15 +00:00
8a81d8b16c Workarounds for MSVC
[SVN r12246]
2002-01-07 19:24:45 +00:00
bc9d8b13d0 converted some of the old terminology (OrderIterator) to the current
terminology (IndexIterator)


[SVN r12164]
2001-12-28 15:49:45 +00:00
4768b167ab Removed obsolete mentions of "less"; Added formalized Policies Concept description
[SVN r12056]
2001-12-14 12:54:21 +00:00
591ff70ed1 many fixes
[SVN r12054]
2001-12-13 19:43:35 +00:00
7bf2ad0b22 VC6 patch
[SVN r12045]
2001-12-13 18:24:29 +00:00
409c79b2e4 fix example (thanks to Michael Stevens)
[SVN r11979]
2001-12-08 08:39:27 +00:00
d0410691a1 removed calls to non-standard std::iota (SGI extension)
[SVN r11904]
2001-12-04 08:02:36 +00:00
64e5115138 Fixed spelling error ing gcc-3.0 bug workaround
[SVN r11888]
2001-12-03 21:48:54 +00:00
7ae912d83c Rolled in Helmut's fixes for random_access_iterable; rolled back
workarounds for that problem.


[SVN r11887]
2001-12-03 21:47:58 +00:00
2937f5876c changed std::iota call (SGI extension) to a manual loop
in permutation_iterator test


[SVN r11869]
2001-12-03 08:35:08 +00:00
8619c9b5c3 fix gcc looping (from Dave Abrahams)
[SVN r11839]
2001-11-30 17:55:39 +00:00
e4d5684f6b added test for permutation_iterator
[SVN r11825]
2001-11-30 11:10:07 +00:00
3d69cf95da added documentation for the permutation_iterator_adaptor
and linked to it from the iterator_adaptors documentation.


[SVN r11824]
2001-11-30 10:40:03 +00:00
18944572b7 committing Daryle and Helmut's changes
[SVN r11813]
2001-11-29 21:22:52 +00:00
3e9d0f80c2 add generator iterator adaptor
[SVN r11736]
2001-11-19 22:11:51 +00:00
a2c4d1990a add boost::generator_iterator_policies and convenience classes
[SVN r11725]
2001-11-18 17:56:43 +00:00
404261c6ee add definition for integral constants initialized in-class
[SVN r11723]
2001-11-18 17:32:19 +00:00
87abc59612 #undef BOOST_REF_CONST added
[SVN r11674]
2001-11-14 14:40:29 +00:00
cb98ddf7db Fixed a bug w/ adaptable function objects + nested binds, made ref<> return const
[SVN r11670]
2001-11-13 13:56:05 +00:00
7d2e6c9025 __stdcall support added.
[SVN r11649]
2001-11-10 19:18:58 +00:00
75eaa14a18 Removed defunct boost::tied (thanks, Daryle Walker)
[SVN r11622]
2001-11-07 10:35:12 +00:00
082d6e3b32 *** empty log message ***
[SVN r11614]
2001-11-06 16:09:14 +00:00
35b3770b6f *** empty log message ***
[SVN r11613]
2001-11-06 16:05:25 +00:00
5b9d20c7e2 *** empty log message ***
[SVN r11611]
2001-11-06 15:52:56 +00:00
5bbed2372e *** empty log message ***
[SVN r11602]
2001-11-05 21:03:59 +00:00
a9d407d239 update SunCC to 6.u2 (C++ 5.3)
[SVN r11601]
2001-11-05 21:00:53 +00:00
3ca4a33a65 updated for named parameters
[SVN r11566]
2001-11-04 16:21:51 +00:00
95197f427c remoeved #if 0
[SVN r11565]
2001-11-04 16:18:10 +00:00
84cdfb032c commit these changes
[SVN r11563]
2001-11-04 04:37:14 +00:00
ec2ceb9c96 no message
[SVN r11508]
2001-11-01 17:22:39 +00:00
6286c893fd Minor regression fixes for Borland and Sunpro tests.
[SVN r11470]
2001-10-30 11:41:35 +00:00
354aef0e8c changed named parameters doc to match new stuff
[SVN r11417]
2001-10-22 17:04:23 +00:00
139e33c36d Updated preprocessor logic to use BOOST_HAS_LONG_LONG
[SVN r11399]
2001-10-18 11:33:52 +00:00
e01de59cdd Made these actually compile
[SVN r11378]
2001-10-12 22:22:42 +00:00
686f822dea Fix spelling error: "occurances" -> "occurrences".
[SVN r11376]
2001-10-11 17:26:04 +00:00
9961d5c9af Last fix had broken preprocessor logic, now fixed.
[SVN r11373]
2001-10-11 12:04:00 +00:00
628be0d125 Fixes for Sunpro C++ 5.3 (code now works!)
[SVN r11368]
2001-10-09 11:24:56 +00:00
633e45f61a Fixed test to work with sunpro 5.3 (omits array specialisation tests)
[SVN r11359]
2001-10-08 11:35:05 +00:00
2f357c3805 Partial fixes for sunpro 5.3 - doesn't actually work yet though
[SVN r11355]
2001-10-08 11:31:29 +00:00
cda0894d0d Fix for sunpro 5.3 (array specialisations don't work)
[SVN r11354]
2001-10-08 11:30:53 +00:00
117720a8bc 1.25.0 Final runup
[SVN r11315]
2001-10-01 15:54:23 +00:00
a6f6c3613a Change comments to make it clear why forward declaration header is required.
[SVN r11314]
2001-10-01 14:15:44 +00:00
7914f5b931 Fixed unused variables that show up as warnings when doing regression
tests.


[SVN r11241]
2001-09-24 23:21:16 +00:00
a1add0a6f6 Intel C++ fixes: Added class copy constructor.
[SVN r11200]
2001-09-22 11:52:56 +00:00
c032b337c4 Fix broken links and other HTML changes related to new config system
[SVN r11142]
2001-09-18 21:24:51 +00:00
ec363261ae remove "explicit" on two- and three-argument constructors to avoid
error on HP aCC


[SVN r11097]
2001-09-11 18:42:25 +00:00
97cde2183d Initial base_from_member commit
[SVN r11086]
2001-09-10 14:04:28 +00:00
7f43c682db Fixed the pair_generator documentation. Order of parameters was wrong; reordered
the table to match the corrected order.


[SVN r11035]
2001-09-05 16:29:29 +00:00
0c9eee3c6b changed note about the move to the tuples library
[SVN r10972]
2001-08-30 19:45:19 +00:00
3b1afa3ba6 changed "empty-member" to "empty base-class"
[SVN r10966]
2001-08-30 10:58:19 +00:00
93e6a75125 changed #include for tie() to tuple.hpp
[SVN r10951]
2001-08-28 19:09:33 +00:00
52f8a7c0ca changed #include for tie()
[SVN r10950]
2001-08-28 19:07:51 +00:00
55bfeb646f removed tie() and class tied
[SVN r10938]
2001-08-26 19:55:49 +00:00
75c9dd3be1 added not about constness of operator* and operator[]
[SVN r10931]
2001-08-24 15:28:20 +00:00
6392e2788f Removed incorrect statics, added const
[SVN r10930]
2001-08-24 12:09:34 +00:00
6a97f3f9ba Tabs converted to spaces.
[SVN r10916]
2001-08-23 19:05:21 +00:00
6e5f52e279 initial commit
[SVN r10914]
2001-08-23 18:42:16 +00:00
7f92bed902 Fix some broken links. Fix order of constructor initializers.
[SVN r10913]
2001-08-23 17:42:07 +00:00
d68a11cc42 Misc; mostly fix links to hard disk locations
[SVN r10902]
2001-08-20 13:04:43 +00:00
328a81e194 Fix broken hyperlink
[SVN r10896]
2001-08-19 15:08:33 +00:00
31d0908b74 Add workaround for BOOST_NO_STDC_NAMESPACE
[SVN r10681]
2001-07-20 21:29:36 +00:00
32c77599f4 Fixes for ICL
[SVN r10613]
2001-07-14 12:51:59 +00:00
812ebf3562 Back out commit made in error
[SVN r10596]
2001-07-12 16:15:30 +00:00
37f476013d Change absolute URL's to relative
[SVN r10594]
2001-07-12 15:31:15 +00:00
9f3104166f output_iterator_helper changes: removed default template parameters, added
support for self-proxying, additional documentation and tests (Aleksey Gurtovoy)


[SVN r10576]
2001-07-09 23:51:49 +00:00
64cc0daf34 Integrate Aleksey's changes
[SVN r10575]
2001-07-09 23:50:55 +00:00
d5d64df124 Fix broken link
[SVN r10553]
2001-07-06 19:19:45 +00:00
0edcfcd5c1 Tuples library causes tie to be deprecated
[SVN r10552]
2001-07-06 19:16:39 +00:00
50ba2d419a Tweeked gcc workaround (gcc 3 still has same problem as gcc 2.9x), added tentative Metrowerks and Intel compiler workarounds.
[SVN r10422]
2001-06-25 11:31:14 +00:00
ff3a77ca5a Fixed problem with VC6 compilers - probably a temporary fix.
[SVN r10361]
2001-06-20 11:43:57 +00:00
4eaed6c23d remove superfluous, illegal "typename" (twice)
[SVN r10314]
2001-06-12 18:50:37 +00:00
4d0dd46471 meant to add as a branch
[SVN r10280]
2001-06-06 19:16:34 +00:00
9c2549bd00 files for the tmpw2001 paper about iterator adaptors
[SVN r10278]
2001-06-06 19:08:51 +00:00
b7c8e0c17f changes from Daryle Walker
[SVN r10264]
2001-06-04 11:57:37 +00:00
dd3cfe1837 removed old arg ordering, use defaults instead
[SVN r10258]
2001-06-03 20:00:24 +00:00
43f525298e Remove compiler workarounds no longer needed due to BOOST_STATIC_ASSERT fix. For stylistic reasons, change sizeof() test to sizeof() != 0
[SVN r10236]
2001-05-28 14:22:30 +00:00
1bb1898ab9 Dave says qualifiers weren't really needed
[SVN r10222]
2001-05-24 19:11:51 +00:00
9578f24be9 Workaround compiler problems while waiting to find out if BOOST_STATIC_ASSERT is broken
[SVN r10218]
2001-05-24 16:02:42 +00:00
46fae3aed2 added check_delete workaround for Sun CC
[SVN r10213]
2001-05-24 09:26:48 +00:00
e35f91a70a Smart pointer and utility changes related to adding checked_delere and checked_array_delete
[SVN r10189]
2001-05-22 18:58:21 +00:00
851052fcca Updated docs - added VC6 bug warning
[SVN r10062]
2001-05-08 11:17:44 +00:00
5ef81b2952 Updated/stricter test program
[SVN r10061]
2001-05-08 11:17:05 +00:00
ef2851c053 Fixes for Sun C++ 5.1
[SVN r10060]
2001-05-08 11:16:35 +00:00
0b4387cff5 reorganised tests to show up VC6 bugs
[SVN r10002]
2001-05-02 10:59:32 +00:00
a40cf11fbf Rewritten compressed_pair regression script to test everything in a more methodical way
[SVN r10000]
2001-05-01 11:17:02 +00:00
5c495cd223 Change all eGroups references to YahooGroups
[SVN r9979]
2001-04-25 00:24:50 +00:00
cf1296dff8 added stuff about Default Constructible needed for the function object
[SVN r9683]
2001-03-29 16:26:42 +00:00
d6d88db6e8 std::bind1st -> boost::bind1st
[SVN r9682]
2001-03-29 16:19:34 +00:00
85c2a35257 std::binder1st -> boost::binder1st
[SVN r9681]
2001-03-29 16:18:41 +00:00
836d8b1c64 added spaces in name
[SVN r9673]
2001-03-29 04:08:38 +00:00
98d8c8ab71 fixed broken link
[SVN r9645]
2001-03-27 10:54:12 +00:00
db45013339 fixed sgi stl link
[SVN r9631]
2001-03-22 16:06:15 +00:00
a55c37e7f6 fixed sgi stl links
[SVN r9630]
2001-03-22 16:05:48 +00:00
46a270fcca fixed link to sgi stl
[SVN r9629]
2001-03-22 16:02:11 +00:00
967856518e updated link to sgi stl
[SVN r9628]
2001-03-22 16:01:18 +00:00
7f93e739fe added documentation for initialize() policy function
[SVN r9592]
2001-03-19 21:46:14 +00:00
2cd1422514 added comment about abstract base classes as value_type
[SVN r9584]
2001-03-19 17:31:27 +00:00
feb370b201 1.21.0 run up including fixing broken links
[SVN r9523]
2001-03-09 14:36:41 +00:00
d1b34e64d8 Fixes for validator.w3.org
[SVN r9518]
2001-03-09 03:28:13 +00:00
b9a1eead40 Mostly clarification. Fix: changed "category" to "iterator_category" in one place.
[SVN r9517]
2001-03-09 03:10:32 +00:00
1e4bfac98c added named template parameter to table of contents
[SVN r9510]
2001-03-08 21:36:09 +00:00
3bb504fbf3 added revision history line
[SVN r9506]
2001-03-08 20:50:14 +00:00
5029791c90 split off indirect and transform tests into separate files
[SVN r9505]
2001-03-08 20:49:05 +00:00
a1a68f0970 1.21.0 run up
[SVN r9502]
2001-03-08 20:35:52 +00:00
f8543d79eb added more static asserts
[SVN r9500]
2001-03-08 20:02:00 +00:00
f353415136 added docs for iterator_traits_generator
[SVN r9498]
2001-03-08 19:19:46 +00:00
26240403b0 added a test to make sure that the type set by the generator is really the
type used


[SVN r9497]
2001-03-08 19:04:29 +00:00
3a39729b58 new file
[SVN r9488]
2001-03-08 16:33:40 +00:00
096c961d9a Patches for Intel C++
[SVN r9425]
2001-03-04 16:08:20 +00:00
01fe04a6a2 Workaround for Borland
[SVN r9424]
2001-03-04 16:07:11 +00:00
7ea4014993 Misc fixes that missed the last commit..
[SVN r9402]
2001-03-04 11:08:29 +00:00
d50b374f88 Boost Test Library initial commit
[SVN r9364]
2001-02-28 21:39:56 +00:00
27dfb25570 added function output iterator adaptor
[SVN r9351]
2001-02-27 05:50:51 +00:00
b5ed77985e added missing typename's to docs
[SVN r9324]
2001-02-25 12:04:48 +00:00
61243bd15f type_traits: more tentative EDG compiler fixes...
[SVN r9321]
2001-02-24 13:04:56 +00:00
368b94d804 Corrected numeric_limits<>::is_integral -> numeric_limits<>::is_integer
[SVN r9299]
2001-02-20 23:15:29 +00:00
a5adbbfd5f use filter_iter::policies_type instead of filter_gen::policies_type
[SVN r9292]
2001-02-20 16:01:00 +00:00
a19d13f123 More type_traits tweeks.
[SVN r9287]
2001-02-20 12:17:55 +00:00
78886ab383 Added cross-reference; improved policies documentation
[SVN r9286]
2001-02-20 03:49:26 +00:00
168012b465 Describe const/mutable interactions and give rationale for no
reverse_iterator_pair_generator.


[SVN r9285]
2001-02-20 03:04:03 +00:00
d9d58ea66e Take advantage of improved iterator_traits to do more tests on MSVC. Reordered
some #ifdefs for coherency.


[SVN r9281]
2001-02-19 22:36:22 +00:00
56f5f6e8d5 Take adavantage of improved iterator_traits to do more tests on MSVC. Hack
around an MSVC-with-STLport internal compiler error.


[SVN r9280]
2001-02-19 22:34:31 +00:00
3cb6420eda Roll back the reverse_iterator_pair_generator test
[SVN r9278]
2001-02-19 20:37:24 +00:00
60be2c1186 Added tests for reverse_iterator_pair_generator
[SVN r9273]
2001-02-19 16:21:12 +00:00
ed210f6b2c more type traits updates:
Header includes get BOOST_ prefix,
BOOST_DECL_MC dropped in favour of new BOOST_STATIC_CONSTANT (from config.hpp),
operator ! dropped in favour of boost::type_traits::ice_not template.


[SVN r9270]
2001-02-19 12:52:30 +00:00
029bc59d74 Added some missing 'explicit's
[SVN r9265]
2001-02-18 22:23:13 +00:00
961c08a82f Apply Jens' suggested fixes
[SVN r9263]
2001-02-18 21:50:57 +00:00
7ee484c614 fix minor typos
[SVN r9259]
2001-02-18 19:26:20 +00:00
05c6fbbf99 needs <boost/type_traits/same_traits.hpp>
[SVN r9253]
2001-02-18 15:19:23 +00:00
91078b7f7a type_traits: regression failure fixes from type traits changes...
[SVN r9249]
2001-02-18 11:43:01 +00:00
20d804afc4 changes to order of indirect_iterator template parameter list, and
fixed a typo


[SVN r9247]
2001-02-17 22:03:30 +00:00
c21f6d1cbf added Category parameter and made a few more edits with regards to type requirements
[SVN r9239]
2001-02-17 19:59:19 +00:00
393e79c1fd Added new type traits files.
[SVN r9238]
2001-02-17 12:25:45 +00:00
8b92c8a085 adjusted requirements for value type of the base iterator
[SVN r9236]
2001-02-17 01:51:45 +00:00
ff73dd94c9 made iterator_adaptor constructor explicit
[SVN r9235]
2001-02-17 01:50:40 +00:00
af43904f38 added "explicit" to iterator_adaptor constructor
[SVN r9234]
2001-02-17 01:44:41 +00:00
485074f265 Added a missing const. Made the tests run (somewhat) with plain MSVC again.
[SVN r9232]
2001-02-16 23:04:49 +00:00
2e0ee55b5e add missing my_int3::operator!=
[SVN r9231]
2001-02-16 21:28:59 +00:00
e9105d32cb background color and a whitespace edit
[SVN r9228]
2001-02-16 16:38:45 +00:00
964d23f68c Edits for clarity
[SVN r9224]
2001-02-16 05:51:37 +00:00
be5aaaae7b More edits for clarity. Added const/non-const example.
[SVN r9223]
2001-02-16 05:33:21 +00:00
bf13bd7b3f Massive edits
[SVN r9222]
2001-02-16 05:30:49 +00:00
352e392fcb Checked and cleaned using HTML TIDY.
[SVN r9220]
2001-02-16 02:36:36 +00:00
083b1b02df Bigtime edits
[SVN r9219]
2001-02-16 00:38:28 +00:00
648c6240a2 added another link to the generic_programming.html#policies
[SVN r9218]
2001-02-15 16:57:12 +00:00
60cab840cb removed strange ssh garbage
[SVN r9217]
2001-02-15 16:52:39 +00:00
83a4380dab added mention of traits requirement under Type Requirements section
[SVN r9216]
2001-02-15 16:49:16 +00:00
de84fe8d98 oops, meant to remove use of policies_type from filter_iterator_generator
in the last commit, but accidentally added it :(


[SVN r9215]
2001-02-15 16:43:54 +00:00
ed3cbfdb8e removed policies_type from filter_iterator_generator
[SVN r9214]
2001-02-15 16:41:48 +00:00
fda44ca17d General edits for clarity; some reorganization.
[SVN r9213]
2001-02-15 16:39:55 +00:00
272025bb07 fixed my_int::operator--
[SVN r9208]
2001-02-15 06:47:06 +00:00
8e92bcf1b2 removed policies_type from filter_iterator_generator
[SVN r9207]
2001-02-15 06:44:26 +00:00
84f1ffdefe added section on Members to cover constructors, etc. and added
a section on Operators


[SVN r9206]
2001-02-15 06:41:46 +00:00
7e25450054 added discusion of counting_iterator_traits, and added type requirements
for the Incrementable type.

added uses of user-defined types to the test


[SVN r9204]
2001-02-15 05:53:10 +00:00
4a563fa266 added missing boost::
[SVN r9199]
2001-02-14 20:35:39 +00:00
aa4c0ec000 Test new VC6 workarounds
[SVN r9198]
2001-02-13 23:32:19 +00:00
e1ecfbdc43 added output for the transform iterator example
[SVN r9187]
2001-02-13 04:38:59 +00:00
a4e122a82e changed template class to class template
[SVN r9186]
2001-02-13 04:34:44 +00:00
93216e8fb7 copyright
[SVN r9184]
2001-02-13 04:25:24 +00:00
16272c210d fixed typo
[SVN r9183]
2001-02-13 04:24:24 +00:00
e104b00da1 merged in Dave's additions and added a tutorial using the implementation
of transform iterator as the example


[SVN r9182]
2001-02-13 04:15:17 +00:00
ce5c6bcc08 removed use of istream_iterator for operator-> test, replaced with
use of concept archetypes


[SVN r9180]
2001-02-13 02:03:13 +00:00
8694ce31fe changed int* to std::vector<int>::iterator
[SVN r9178]
2001-02-12 21:59:25 +00:00
d960e5eadd added another example
[SVN r9177]
2001-02-12 21:57:19 +00:00
2dc71e87a3 new files
[SVN r9176]
2001-02-12 21:35:20 +00:00
6bf17edde2 updated url to the iterator_adaptor class
[SVN r9156]
2001-02-12 05:24:45 +00:00
88573d515d fixed Reference and Pointer template paremeter descriptions
[SVN r9155]
2001-02-12 05:20:09 +00:00
89b9f77823 obsolete and not needed
[SVN r9152]
2001-02-12 04:55:19 +00:00
765d9be17d small edit
[SVN r9151]
2001-02-12 04:53:39 +00:00
7135373008 various edits
[SVN r9150]
2001-02-12 04:52:24 +00:00
ee269884fc finished 1st draft of reverse iterator docs
[SVN r9149]
2001-02-12 04:51:56 +00:00
387540d5f1 using make_const_projection_iterator() for last example,
and a couple other minor edits


[SVN r9145]
2001-02-12 02:55:19 +00:00
2eba7b42a8 new files
[SVN r9144]
2001-02-12 02:52:26 +00:00
07115d26c7 finished 1st draft
[SVN r9143]
2001-02-12 01:50:50 +00:00
c43ed815a0 new files
[SVN r9137]
2001-02-11 20:05:00 +00:00
ff01e36d12 Compile with Borland, re-enable failing tests
[SVN r9136]
2001-02-11 19:53:56 +00:00
ac4798b16c Final fixes for Borland
[SVN r9135]
2001-02-11 19:50:14 +00:00
d4e14fed0e Fixed bugs in the iterator helpers which prevented explicitly supplied arguments from actually being used
[SVN r9128]
2001-02-11 19:31:21 +00:00
5f91259344 few edits
[SVN r9125]
2001-02-11 19:26:26 +00:00
20a9d9645d Added test of operator-> for forward and input iterators.
[SVN r9124]
2001-02-11 19:25:49 +00:00
c86f6b4abd Dave's suggested edits
[SVN r9122]
2001-02-11 18:27:40 +00:00
d66489b5b2 changed per Dave's comments
[SVN r9121]
2001-02-11 18:14:04 +00:00
b743ee9f0c #if 0'd out use of counting_iterator on non-numeric types in MSVC without STLport, so that the other tests may proceed
[SVN r9120]
2001-02-11 16:19:17 +00:00
95ba69c00a Borland fixes
[SVN r9119]
2001-02-11 16:16:53 +00:00
2ac273739c Update for compatibility with new iterator_adaptor interface
[SVN r9118]
2001-02-11 16:14:14 +00:00
5b4d28708c Fixes for Borland
[SVN r9117]
2001-02-11 16:13:38 +00:00
4cc4383488 Some fixes for Borland get it closer on that compiler
[SVN r9112]
2001-02-11 16:05:01 +00:00
8935232248 new files
[SVN r9109]
2001-02-11 05:25:19 +00:00
5c6dd2f172 various edits
[SVN r9108]
2001-02-11 04:34:32 +00:00
eeeb7ef5b9 Replaced some static_casts with explicit construction
[SVN r9107]
2001-02-11 03:12:04 +00:00
2efc9c1178 Use new adaptors interface
[SVN r9105]
2001-02-11 03:07:55 +00:00
a84c46f6e3 added another example
[SVN r9103]
2001-02-11 03:01:47 +00:00
a5c3dcdd02 redid docs for the template parameters
[SVN r9102]
2001-02-11 02:55:38 +00:00
46f7a75eb7 fixed bug in policy object constructor
[SVN r9101]
2001-02-11 02:40:02 +00:00
94b6710c5b fixed bug in policy object construction
[SVN r9100]
2001-02-11 02:39:35 +00:00
d8dd3da9ab small edit
[SVN r9099]
2001-02-11 02:38:08 +00:00
803ced004a finished 1st draft
[SVN r9098]
2001-02-11 02:35:09 +00:00
0ea7d36ad0 A fix for EDG
[SVN r9096]
2001-02-10 23:16:05 +00:00
87aafab759 new file
[SVN r9094]
2001-02-10 22:33:43 +00:00
994d310abd Use new filter_ interface.
[SVN r9090]
2001-02-10 20:11:42 +00:00
228cdcf05e All final 1.20.2 changes, including fixing broken hyperlinks
[SVN r9071]
2001-02-10 14:42:14 +00:00
42598e352c Use new reverse_ and indirect_ interfaces. Replace BOOST_NO_STD_ITERATOR_TRAITS
with BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION to prove we've normalized to core
compiler capabilities


[SVN r9067]
2001-02-10 00:38:08 +00:00
36a9e4d1da fixed usage of indirect_iterator_pair_generator
[SVN r9053]
2001-02-09 05:45:10 +00:00
456dfd0dea adjusted to changes in iterator_adaptors.hpp, added more
tests of make_xxx


[SVN r9051]
2001-02-09 05:26:48 +00:00
155457e2b5 more work on default args and explicit templat args
[SVN r9049]
2001-02-09 04:40:42 +00:00
b5c91485bf Use Jeremy's new make_reverse_iterator form; add more comprehensive
testing. Force-decay array function arguments to pointers.


[SVN r9047]
2001-02-09 03:32:59 +00:00
c959cf7870 bug fixes
[SVN r9031]
2001-02-08 04:46:41 +00:00
5878c88636 added indirect_iterator_pair_generator back in
[SVN r9026]
2001-02-08 03:35:03 +00:00
ddcef2fb19 Added tests for the make_xxx_iterator() helper functions
[SVN r9025]
2001-02-08 03:08:09 +00:00
493d124c07 rename counting_iterator() -> make_counting_iterator()
[SVN r9015]
2001-02-07 22:27:02 +00:00
f42060c616 add missing "typename"
[SVN r9005]
2001-02-07 17:51:55 +00:00
834facc932 trivial flotsam cleanup
[SVN r9004]
2001-02-07 17:23:52 +00:00
f82d0b76ee More comprehensive testing; factored out static tests for better reuse
[SVN r9001]
2001-02-07 16:38:41 +00:00
c25d225275 Replaced use of xxx_pair_generator with xxx_generator where
possible (which was all but the projection iterator).


[SVN r8996]
2001-02-07 06:36:12 +00:00
c503a274b5 Removed now-defaulted template arguments where possible
Updated names to correspond to new generator naming convention.
Added a trivial test for make_transform_iterator().
Gave traits for const iterators a mutable value_type, per std.
Resurrected my original tests for indirect iterators.


[SVN r8995]
2001-02-07 05:37:08 +00:00
087069d215 added concept check for the default iterator policy
[SVN r8990]
2001-02-07 02:44:18 +00:00
826a6dd114 changed test for transform iterator to use input_iterator instead of
random access iterator


[SVN r8937]
2001-02-04 23:46:31 +00:00
f31483838d Fix for compilers without standard iterator_traits
[SVN r8929]
2001-02-04 20:11:30 +00:00
d8a9b633d9 Fix for newly-corrected bidirectional_iterator_test requirements.
[SVN r8926]
2001-02-04 19:09:46 +00:00
c060e4466a Added use of iterator_tests.hpp
[SVN r8923]
2001-02-04 18:26:43 +00:00
a9951376f4 removed UDT -> int is_convertible test because the noncopyable -> int
test already brings out the g++ warning


[SVN r8834]
2001-01-31 19:08:27 +00:00
bda0c8f5e3 added some more tests and fixed signature of main() so this will link
with MSVC


[SVN r8833]
2001-01-31 18:54:29 +00:00
71902f23a2 Added test case for is_convertible with UDT that brings out the
warning message bug with g++.


[SVN r8821]
2001-01-31 02:12:08 +00:00
dfd6c85569 Inital checkin
[SVN r8813]
2001-01-30 16:00:37 +00:00
0e41b2cc1a Removed not_an_iterator detritus
[SVN r8808]
2001-01-29 02:14:44 +00:00
e5c81d0702 fixed very strange VC++ bug that was showing up in graph/test/graph.cpp
Something about the code gen for compressed_pair_1::operator=
was going wrong. Writing it explicitly, and playing with some ordering
fixed the problem, don't ask my why.


[SVN r8765]
2001-01-25 04:45:52 +00:00
6caf7d4d5a Initial checkin
[SVN r8757]
2001-01-24 18:36:52 +00:00
98e87c8afb Added test for wchar_t
[SVN r8748]
2001-01-24 01:48:01 +00:00
d9e0f80d50 Now statically selecting a test for signed numbers to avoid warnings with fancy
compilers. Added commentary and additional dumping of traits data for tested
types.


[SVN r8746]
2001-01-24 01:40:22 +00:00
6396fdb5ff added filter iterator test
[SVN r8736]
2001-01-23 19:10:03 +00:00
2470b53373 minor fix: move "static" storage specifier to the front of a declaration
[SVN r8714]
2001-01-22 21:11:35 +00:00
16334e92ca added KAI C++ type for std::list::difference_type
[SVN r8709]
2001-01-22 16:52:36 +00:00
c22d98a8ec Quick fix to my_iterator, which wasn't returning a reference type from operator*
[SVN r8705]
2001-01-22 05:03:48 +00:00
28617afbb9 Initial checkin
[SVN r8702]
2001-01-22 04:08:29 +00:00
0c3bc42bec new files
[SVN r8685]
2001-01-21 20:12:32 +00:00
e3d9745df1 Initial Checkin
[SVN r8676]
2001-01-21 06:02:08 +00:00
b8471c1015 Suppress an expected warning for MSVC
Added a test to prove that we can use void with is_same<>
      Removed "press any key to exit" as it interferes with testing in large
      batches.


[SVN r8673]
2001-01-21 05:56:57 +00:00
045b09c9ef A first attempt at clarifying the documentation
[SVN r8672]
2001-01-21 05:48:55 +00:00
4ac07b97d3 Fixed what seemed like glaring bugs (illegal access to private members, missing template parameters).
[SVN r8658]
2001-01-20 21:59:55 +00:00
34c847c17f moved global variables in front of reference in test_align
[SVN r8648]
2001-01-19 19:27:09 +00:00
f694e557e1 compressed pair fixes for VC6
[SVN r8543]
2001-01-10 12:21:30 +00:00
6a0c3e92a0 Initial commit after public review (note change in library name per review)
[SVN r8516]
2001-01-06 16:47:36 +00:00
cba48df8e3 VC6 fixes for compressed_pair
[SVN r8485]
2000-12-21 12:27:22 +00:00
a0e8d1bf36 a C++ standard version of LessThanComparable
[SVN r8435]
2000-12-09 22:39:50 +00:00
912dedaca7 added #include boost/config.hpp at top to remove truncation warning on VC++
[SVN r8434]
2000-12-09 20:28:48 +00:00
7dd90c3919 CVS says it needs a commit; who knows why?
[SVN r8405]
2000-12-08 17:35:43 +00:00
7c3a25a377 various changes, almost forgot to check in
[SVN r8379]
2000-12-03 06:20:23 +00:00
c8fbca2d44 added docs for projection iterator
[SVN r8322]
2000-11-24 21:31:43 +00:00
f7ed0aaeed added std:: to unary_function
[SVN r8321]
2000-11-24 20:48:02 +00:00
6e78270140 added projection iterator to the test
[SVN r8320]
2000-11-24 20:45:26 +00:00
ba354377d5 updated docs for indirect iterators
[SVN r8319]
2000-11-24 20:22:23 +00:00
353c030918 simplified version of iterator_adaptor, plus fix to indirect iterator
and addition of projection iterator


[SVN r8317]
2000-11-24 19:40:51 +00:00
331a2b8282 Fixed regex memory leak, and type_traits bad test case
[SVN r8273]
2000-11-21 12:39:09 +00:00
4bd6909ea1 *** empty log message ***
[SVN r8158]
2000-11-07 23:05:04 +00:00
26119613e1 BeOS5 (intel) fixes
[SVN r8133]
2000-11-04 11:16:12 +00:00
45bfe0b607 HTML change for 1.18.2 reflecting separation of old utility library
[SVN r8118]
2000-11-03 19:22:26 +00:00
ce2f573ab2 new file, based on the C++ standard, not SGI STL's definition of Assignable
[SVN r8062]
2000-10-29 21:35:59 +00:00
66d5cc43f3 added BeOS5 support to test script (not finished yet though...)
[SVN r8037]
2000-10-28 10:54:12 +00:00
e8265e09a3 Add trivial numeric_cast tests for floating types.
[SVN r8007]
2000-10-19 19:12:53 +00:00
860cf0b321 Fix broken HTML links
[SVN r7951]
2000-10-15 17:08:00 +00:00
89c74708d7 misc minor fixes
[SVN r7938]
2000-10-14 12:03:10 +00:00
74c8680350 Add missing "typename" that Metrowerks compiler is picky about
[SVN r7929]
2000-10-12 21:01:49 +00:00
3cd9f5b623 MWCW fix: added std:: qualifier to memset
[SVN r7923]
2000-10-10 11:40:19 +00:00
0936110741 minor typo fixes
[SVN r7922]
2000-10-10 10:40:58 +00:00
6161ce15c7 more VC6 type-traits and compressed pair fixes
[SVN r7921]
2000-10-07 10:53:47 +00:00
28594a22f1 More VC6 fixes for is_pointer/is_array/is_same
[SVN r7896]
2000-10-03 11:53:39 +00:00
656517b059 More VC6 fixes for compressed_pair and type_traits.
[SVN r7895]
2000-10-03 11:47:24 +00:00
ad576863b4 fix typo: compressed_pait->compressed_pair
[SVN r7894]
2000-10-03 08:06:19 +00:00
775be75366 updated call_traits and type_traits test programs for VC6
[SVN r7883]
2000-10-01 11:57:00 +00:00
7ae6e5bac9 call_traits and type_traits updates for VC6
[SVN r7882]
2000-10-01 11:48:27 +00:00
c5915c23e7 Fix broken link
[SVN r7870]
2000-09-28 17:47:29 +00:00
1f2a827df3 Integrate Tie with other HTML files
[SVN r7866]
2000-09-28 12:35:46 +00:00
f51ee4ef2e Initial Graph and Regex HTML integration
[SVN r7849]
2000-09-26 19:02:50 +00:00
75aadf0509 removed tabs
[SVN r7835]
2000-09-25 21:19:29 +00:00
4f9b0bcb9b disabled warning about operator-> not returning a UDT. If operator->
does not get called, it should not be checked for this error. This
showed up when using an iterator with value_type=int.


[SVN r7813]
2000-09-25 05:36:21 +00:00
9628e5adb0 Fix broken links
[SVN r7770]
2000-09-22 18:09:04 +00:00
31 changed files with 670 additions and 7242 deletions

View File

@ -1,188 +0,0 @@
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<Title>CopyConstructible</Title>
</HEAD>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost">
<!--end header-->
<BR Clear>
<H1>CopyConstructible</H1>
<h3>Description</h3>
A type is CopyConstructible if it is possible to copy objects of that
type.
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>T</tt>
</TD>
<TD VAlign=top>
is type that is a model of CopyConstructible
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>t</tt>
</TD>
<TD VAlign=top>
is an object of type <tt>T</tt>
</TD>
</tr>
<TR>
<TD VAlign=top>
<tt>u</tt>
</TD>
<TD VAlign=top>
is an object of type <tt>const T</tt>
</TD>
</tr>
</table>
<h3>Definitions</h3>
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Copy constructor
</TD>
<TD VAlign=top>
<tt>T(t)</tt>
</TD>
<TD VAlign=top>
<tt>T</tt>
</TD>
<TD VAlign=top>
<tt>t</tt> is equivalent to <tt>T(t)</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
Copy constructor
</TD>
<TD VAlign=top>
<pre>
T(u)
</pre>
</TD>
<TD VAlign=top>
<tt>T</tt>
</TD>
<TD VAlign=top>
<tt>u</tt> is equivalent to <tt>T(u)</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
Destructor
</TD>
<TD VAlign=top>
<pre>
t.~T()
</pre>
</TD>
<TD VAlign=top>
<tt>T</tt>
</TD>
<TD VAlign=top>
&nbsp;
</TD>
</TR>
<TR>
<TD VAlign=top>
Address Operator
</TD>
<TD VAlign=top>
<pre>
&amp;t
</pre>
</TD>
<TD VAlign=top>
<tt>T*</tt>
</TD>
<TD VAlign=top>
denotes the address of <tt>t</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
Address Operator
</TD>
<TD VAlign=top>
<pre>
&amp;u
</pre>
</TD>
<TD VAlign=top>
<tt>T*</tt>
</TD>
<TD VAlign=top>
denotes the address of <tt>u</tt>
</TD>
</TR>
</table>
</table>
<h3>Models</h3>
<UL>
<LI><tt>int</tt>
<LI><tt>std::pair</tt>
</UL>
<h3>See also</h3>
<A
href="http://www.sgi.com/Technology/STL/DefaultConstructible.html">DefaultConstructible</A>
and
<A href="http://www.sgi.com/Technology/STL/Assignable.html">Assignable</A>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF=http://www.lsc.nd.edu/~jsiek>Jeremy Siek</A>, Univ.of Notre Dame (<A HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>

View File

@ -1,92 +0,0 @@
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<Title>MultiPassInputIterator</Title>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost">
<BR Clear>
<H2>
<A NAME="concept:MultiPassInputIterator"></A>
MultiPassInputIterator
</H2>
This concept is a refinement of <a
href="http://www.sgi.com/Technology/STL/InputIterator.html">InputIterator</a>,
adding the requirements that the iterator can be used to make multiple
passes through a range, and that if <TT>it1 == it2</TT> and
<TT>it1</TT> is dereferenceable then <TT>++it1 == ++it2</TT>. The
MultiPassInputIterator is very similar to the <a
href="http://www.sgi.com/Technology/STL/ForwardIterator.hmtl">ForwardIterator</a>. The
only difference is that a <a
href="http://www.sgi.com/Technology/STL/ForwardIterator.hmtl">ForwardIterator</a>
requires the <TT>reference</TT> type to be <TT>value_type&amp;</TT>, whereas
MultiPassInputIterator is like <a
href="http://www.sgi.com/Technology/STL/InputIterator.html">InputIterator</a>
in that the <TT>reference</TT> type merely has to be convertible to
<TT>value_type</TT>.
<h3>Design Notes</h3>
comments by Valentin Bonnard:
<p> I think that introducing MultiPassInputIterator isn't the right
solution. Do you also want to define MultiPassBidirectionnalIterator
and MultiPassRandomAccessIterator ? I don't, definitly. It only
confuses the issue. The problem lies into the existing hierarchy of
iterators, which mixes movabillity, modifiabillity and lvalue-ness,
and these are clearly independant.
<p> The terms Forward, Bidirectionnal and RandomAccess are about
movabillity and shouldn't be used to mean anything else. In a
completly orthogonal way, iterators can be immutable, mutable, or
neither. Lvalueness of iterators is also orthogonal with
immutabillity. With these clean concepts, your MultiPassInputIterator
is just called a ForwardIterator.
<p>
Other translations are:<br>
std::ForwardIterator -> ForwardIterator & LvalueIterator<br>
std::BidirectionnalIterator -> BidirectionnalIterator & LvalueIterator<br>
std::RandomAccessIterator -> RandomAccessIterator & LvalueIterator<br>
<p>
Note that in practice the only operation not allowed on my
ForwardIterator which is allowed on std::ForwardIterator is
<tt>&*it</tt>. I think that <tt>&*</tt> is rarely needed in generic code.
<p>
reply by Jeremy Siek:
<p>
The above analysis by Valentin is right on. Of course, there is
the problem with backward compatibility. The current STL implementations
are based on the old definition of ForwardIterator. The right course
of action is to get ForwardIterator, etc. changed in the C++ standard.
Once that is done we can drop MultiPassInputIterator.
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF=http://www.boost.org/people/jeremy_siek.htm>Jeremy Siek</A>, Univ.of Notre Dame (<A HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>

View File

@ -1,423 +0,0 @@
/*
*
* Copyright (c) 1999
* Dr John Maddock
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Dr John Maddock makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*
* This file provides some example of type_traits usage -
* by "optimising" various algorithms:
*
* opt::copy - optimised for trivial copy (cf std::copy)
* opt::fill - optimised for trivial copy/small types (cf std::fill)
* opt::destroy_array - an example of optimisation based upon omitted destructor calls
* opt::iter_swap - uses type_traits to determine whether the iterator is a proxy
* in which case it uses a "safe" approach, otherwise calls swap
* on the assumption that swap may be specialised for the pointed-to type.
*
*/
/* Release notes:
23rd July 2000:
Added explicit failure for broken compilers that don't support these examples.
Fixed broken gcc support (broken using directive).
Reordered tests slightly.
*/
#include <iostream>
#include <typeinfo>
#include <algorithm>
#include <iterator>
#include <vector>
#include <memory>
#include <boost/timer.hpp>
#include <boost/type_traits.hpp>
#include <boost/call_traits.hpp>
using std::cout;
using std::endl;
using std::cin;
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#error "Sorry, without template partial specialisation support there isn't anything to test here..."
#endif
namespace opt{
//
// algorithm destroy_array:
// The reverse of std::unitialized_copy, takes a block of
// unitialized memory and calls destructors on all objects therein.
//
namespace detail{
template <bool>
struct array_destroyer
{
template <class T>
static void destroy_array(T* i, T* j){ do_destroy_array(i, j); }
};
template <>
struct array_destroyer<true>
{
template <class T>
static void destroy_array(T*, T*){}
};
template <class T>
void do_destroy_array(T* first, T* last)
{
while(first != last)
{
first->~T();
++first;
}
}
}; // namespace detail
template <class T>
inline void destroy_array(T* p1, T* p2)
{
detail::array_destroyer<boost::has_trivial_destructor<T>::value>::destroy_array(p1, p2);
}
//
// unoptimised versions of destroy_array:
//
template <class T>
void destroy_array1(T* first, T* last)
{
while(first != last)
{
first->~T();
++first;
}
}
template <class T>
void destroy_array2(T* first, T* last)
{
for(; first != last; ++first) first->~T();
}
//
// opt::copy
// same semantics as std::copy
// calls memcpy where appropiate.
//
namespace detail{
template <bool b>
struct copier
{
template<typename I1, typename I2>
static I2 do_copy(I1 first, I1 last, I2 out);
};
template <bool b>
template<typename I1, typename I2>
I2 copier<b>::do_copy(I1 first, I1 last, I2 out)
{
while(first != last)
{
*out = *first;
++out;
++first;
}
return out;
}
template <>
struct copier<true>
{
template<typename I1, typename I2>
static I2* do_copy(I1* first, I1* last, I2* out)
{
memcpy(out, first, (last-first)*sizeof(I2));
return out+(last-first);
}
};
}
template<typename I1, typename I2>
inline I2 copy(I1 first, I1 last, I2 out)
{
typedef typename boost::remove_cv<typename std::iterator_traits<I1>::value_type>::type v1_t;
typedef typename boost::remove_cv<typename std::iterator_traits<I2>::value_type>::type v2_t;
enum{ can_opt = boost::is_same<v1_t, v2_t>::value
&& boost::is_pointer<I1>::value
&& boost::is_pointer<I2>::value
&& boost::has_trivial_assign<v1_t>::value };
return detail::copier<can_opt>::do_copy(first, last, out);
}
//
// fill
// same as std::fill, uses memset where appropriate, along with call_traits
// to "optimise" parameter passing.
//
namespace detail{
template <bool opt>
struct filler
{
template <typename I, typename T>
static void do_fill(I first, I last, typename boost::call_traits<T>::param_type val);
};
template <bool b>
template <typename I, typename T>
void filler<b>::do_fill(I first, I last, typename boost::call_traits<T>::param_type val)
{
while(first != last)
{
*first = val;
++first;
}
}
template <>
struct filler<true>
{
template <typename I, typename T>
static void do_fill(I first, I last, T val)
{
memset(first, val, last-first);
}
};
}
template <class I, class T>
inline void fill(I first, I last, const T& val)
{
enum{ can_opt = boost::is_pointer<I>::value
&& boost::is_arithmetic<T>::value
&& (sizeof(T) == 1) };
typedef detail::filler<can_opt> filler_t;
filler_t::template do_fill<I,T>(first, last, val);
}
//
// iter_swap:
// tests whether iterator is a proxying iterator or not, and
// uses optimal form accordingly:
//
namespace detail{
template <bool b>
struct swapper
{
template <typename I>
static void do_swap(I one, I two)
{
typedef typename std::iterator_traits<I>::value_type v_t;
v_t v = *one;
*one = *two;
*two = v;
}
};
#ifdef __GNUC__
using std::swap;
#endif
template <>
struct swapper<true>
{
template <typename I>
static void do_swap(I one, I two)
{
using std::swap;
swap(*one, *two);
}
};
}
template <typename I1, typename I2>
inline void iter_swap(I1 one, I2 two)
{
typedef typename std::iterator_traits<I1>::reference r1_t;
typedef typename std::iterator_traits<I2>::reference r2_t;
enum{ can_opt = boost::is_reference<r1_t>::value && boost::is_reference<r2_t>::value && boost::is_same<r1_t, r2_t>::value };
detail::swapper<can_opt>::do_swap(one, two);
}
}; // namespace opt
//
// define some global data:
//
const int array_size = 1000;
int i_array[array_size] = {0,};
const int ci_array[array_size] = {0,};
char c_array[array_size] = {0,};
const char cc_array[array_size] = { 0,};
const int iter_count = 1000000;
int main()
{
//
// test destroy_array,
// compare destruction time of an array of ints
// with unoptimised form.
//
cout << "Measuring times in micro-seconds per 1000 elements processed" << endl << endl;
cout << "testing destroy_array...\n"
"[Some compilers may be able to optimise the \"unoptimised\"\n versions as well as type_traits does.]" << endl;
/*cache load*/ opt::destroy_array(i_array, i_array + array_size);
boost::timer t;
double result;
int i;
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>: " << result << endl;
/*cache load*/ opt::destroy_array1(i_array, i_array + array_size);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array1(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>(unoptimised#1): " << result << endl;
/*cache load*/ opt::destroy_array2(i_array, i_array + array_size);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array2(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>(unoptimised#2): " << result << endl << endl;
cout << "testing fill(char)...\n"
"[Some standard library versions may already perform this optimisation.]" << endl;
/*cache load*/ opt::fill<char*, char>(c_array, c_array + array_size, (char)3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::fill<char*, char>(c_array, c_array + array_size, (char)3);
}
result = t.elapsed();
cout << "opt::fill<char*, char>: " << result << endl;
/*cache load*/ std::fill(c_array, c_array + array_size, (char)3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::fill(c_array, c_array + array_size, (char)3);
}
result = t.elapsed();
cout << "std::fill<char*, char>: " << result << endl << endl;
cout << "testing fill(int)...\n"
"[Tests the effect of call_traits pass-by-value optimisation -\nthe value of this optimisation may depend upon hardware characteristics.]" << endl;
/*cache load*/ opt::fill<int*, int>(i_array, i_array + array_size, 3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::fill<int*, int>(i_array, i_array + array_size, 3);
}
result = t.elapsed();
cout << "opt::fill<int*, int>: " << result << endl;
/*cache load*/ std::fill(i_array, i_array + array_size, 3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::fill(i_array, i_array + array_size, 3);
}
result = t.elapsed();
cout << "std::fill<int*, int>: " << result << endl << endl;
cout << "testing copy...\n"
"[Some standard library versions may already perform this optimisation.]" << endl;
/*cache load*/ opt::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "opt::copy<const int*, int*>: " << result << endl;
/*cache load*/ std::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "std::copy<const int*, int*>: " << result << endl;
/*cache load*/ opt::detail::copier<false>::template do_copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::detail::copier<false>::template do_copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "standard \"unoptimised\" copy: " << result << endl << endl;
/*cache load*/ opt::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "opt::copy<const char*, char*>: " << result << endl;
/*cache load*/ std::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "std::copy<const char*, char*>: " << result << endl;
/*cache load*/ opt::detail::copier<false>::template do_copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::detail::copier<false>::template do_copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "standard \"unoptimised\" copy: " << result << endl << endl;
//
// testing iter_swap
// really just a check that it does in fact compile...
std::vector<int> v1;
v1.push_back(0);
v1.push_back(1);
std::vector<bool> v2;
v2.push_back(0);
v2.push_back(1);
opt::iter_swap(v1.begin(), v1.begin()+1);
opt::iter_swap(v2.begin(), v2.begin()+1);
cout << "Press any key to exit...";
cin.get();
}

View File

@ -1,489 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>C++ Type traits</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<h2 align="center">C++ Type traits</h2>
<p align="center"><em>by John Maddock and Steve Cleary</em></p>
<p align="center"><em>This is a draft of an article that will appear in a future
issue of </em><a href="http://www.ddj.com"><em>Dr Dobb's Journal</em></a></p>
<p>Generic programming (writing code which works with any data type meeting a
set of requirements) has become the method of choice for providing reusable
code. However, there are times in generic programming when &quot;generic&quot;
just isn't good enough - sometimes the differences between types are too large
for an efficient generic implementation. This is when the traits technique
becomes important - by encapsulating those properties that need to be considered
on a type by type basis inside a traits class, we can minimise the amount of
code that has to differ from one type to another, and maximise the amount of
generic code.</p>
<p>Consider an example: when working with character strings, one common
operation is to determine the length of a null terminated string. Clearly it's
possible to write generic code that can do this, but it turns out that there are
much more efficient methods available: for example, the C library functions <font size="2" face="Courier New">strlen</font>
and <font size="2" face="Courier New">wcslen</font> are usually written in
assembler, and with suitable hardware support can be considerably faster than a
generic version written in C++. The authors of the C++ standard library realised
this, and abstracted the properties of <font size="2" face="Courier New">char</font>
and <font size="2" face="Courier New">wchar_t</font> into the class <font size="2" face="Courier New">char_traits</font>.
Generic code that works with character strings can simply use <font size="2" face="Courier New">char_traits&lt;&gt;::length</font>
to determine the length of a null terminated string, safe in the knowledge that
specialisations of <font size="2" face="Courier New">char_traits</font> will use
the most appropriate method available to them.</p>
<h4>Type traits</h4>
<p>Class <font size="2" face="Courier New">char_traits</font> is a classic
example of a collection of type specific properties wrapped up in a single class
- what Nathan Myers termed a <i>baggage class</i>[1]. In the Boost type-traits
library, we[2] have written a set of very specific traits classes, each of which
encapsulate a single trait from the C++ type system; for example, is a type a
pointer or a reference type? Or does a type have a trivial constructor, or a
const-qualifier? The type-traits classes share a unified design: each class has
a single member <i>value</i>, a compile-time constant that is true if the type
has the specified property, and false otherwise. As we will show, these classes
can be used in generic programming to determine the properties of a given type
and introduce optimisations that are appropriate for that case.</p>
<p>The type-traits library also contains a set of classes that perform a
specific transformation on a type; for example, they can remove a top-level
const or volatile qualifier from a type. Each class that performs a
transformation defines a single typedef-member <i>type</i> that is the result of
the transformation. All of the type-traits classes are defined inside namespace <font size="2" face="Courier New">boost</font>;
for brevity, namespace-qualification is omitted in most of the code samples
given.</p>
<h4>Implementation</h4>
<p>There are far too many separate classes contained in the type-traits library
to give a full implementation here - see the source code in the Boost library
for the full details - however, most of the implementation is fairly repetitive
anyway, so here we will just give you a flavour for how some of the classes are
implemented. Beginning with possibly the simplest class in the library, is_void&lt;T&gt;
has a member <i>value</i> that is true only if T is void.</p>
<pre>template &lt;typename T&gt;
struct is_void
{ static const bool value = false; };
template &lt;&gt;
struct is_void&lt;void&gt;
{ static const bool value = true; };</pre>
<p>Here we define a primary version of the template class <font size="2" face="Courier New">is_void</font>,
and provide a full-specialisation when T is void. While full specialisation of a
template class is an important technique, sometimes we need a solution that is
halfway between a fully generic solution, and a full specialisation. This is
exactly the situation for which the standards committee defined partial
template-class specialisation. As an example, consider the class
boost::is_pointer&lt;T&gt;: here we needed a primary version that handles all
the cases where T is not a pointer, and a partial specialisation to handle all
the cases where T is a pointer:</p>
<pre>template &lt;typename T&gt;
struct is_pointer
{ static const bool value = false; };
template &lt;typename T&gt;
struct is_pointer&lt;T*&gt;
{ static const bool value = true; };</pre>
<p>The syntax for partial specialisation is somewhat arcane and could easily
occupy an article in its own right; like full specialisation, in order to write
a partial specialisation for a class, you must first declare the primary
template. The partial specialisation contains an extra &lt;<EFBFBD>&gt; after the
class name that contains the partial specialisation parameters; these define the
types that will bind to that partial specialisation rather than the default
template. The rules for what can appear in a partial specialisation are somewhat
convoluted, but as a rule of thumb if you can legally write two function
overloads of the form:</p>
<pre>void foo(T);
void foo(U);</pre>
<p>Then you can also write a partial specialisation of the form:</p>
<pre>template &lt;typename T&gt;
class c{ /*details*/ };
template &lt;typename T&gt;
class c&lt;U&gt;{ /*details*/ };</pre>
<p>This rule is by no means foolproof, but it is reasonably simple to remember
and close enough to the actual rule to be useful for everyday use.</p>
<p>As a more complex example of partial specialisation consider the class
remove_bounds&lt;T&gt;. This class defines a single typedef-member <i>type</i>
that is the same type as T but with any top-level array bounds removed; this is
an example of a traits class that performs a transformation on a type:</p>
<pre>template &lt;typename T&gt;
struct remove_bounds
{ typedef T type; };
template &lt;typename T, std::size_t N&gt;
struct remove_bounds&lt;T[N]&gt;
{ typedef T type; };</pre>
<p>The aim of remove_bounds is this: imagine a generic algorithm that is passed
an array type as a template parameter, <font size="2" face="Courier New">remove_bounds</font>
provides a means of determining the underlying type of the array. For example <code>remove_bounds&lt;int[4][5]&gt;::type</code>
would evaluate to the type <code>int[5]</code>. This example also shows that the
number of template parameters in a partial specialisation does not have to match
the number in the default template. However, the number of parameters that
appear after the class name do have to match the number and type of the
parameters in the default template.</p>
<h4>Optimised copy</h4>
<p>As an example of how the type traits classes can be used, consider the
standard library algorithm copy:</p>
<pre>template&lt;typename Iter1, typename Iter2&gt;
Iter2 copy(Iter1 first, Iter1 last, Iter2 out);</pre>
<p>Obviously, there's no problem writing a generic version of copy that works
for all iterator types Iter1 and Iter2; however, there are some circumstances
when the copy operation can best be performed by a call to <font size="2" face="Courier New">memcpy</font>.
In order to implement copy in terms of <font size="2" face="Courier New">memcpy</font>
all of the following conditions need to be met:</p>
<ul>
<li>Both of the iterator types Iter1 and Iter2 must be pointers.</li>
<li>Both Iter1 and Iter2 must point to the same type - excluding <font size="2" face="Courier New">const</font>
and <font size="2" face="Courier New">volatile</font>-qualifiers.</li>
<li>The type pointed to by Iter1 must have a trivial assignment operator.</li>
</ul>
<p>By trivial assignment operator we mean that the type is either a scalar
type[3] or:</p>
<ul>
<li>The type has no user defined assignment operator.</li>
<li>The type does not have any data members that are references.</li>
<li>All base classes, and all data member objects must have trivial assignment
operators.</li>
</ul>
<p>If all these conditions are met then a type can be copied using <font size="2" face="Courier New">memcpy</font>
rather than using a compiler generated assignment operator. The type-traits
library provides a class <i>has_trivial_assign</i>, such that <code>has_trivial_assign&lt;T&gt;::value</code>
is true only if T has a trivial assignment operator. This class &quot;just
works&quot; for scalar types, but has to be explicitly specialised for
class/struct types that also happen to have a trivial assignment operator. In
other words if <i>has_trivial_assign</i> gives the wrong answer, it will give
the &quot;safe&quot; wrong answer - that trivial assignment is not allowable.</p>
<p>The code for an optimised version of copy that uses <font size="2" face="Courier New">memcpy</font>
where appropriate is given in listing 1. The code begins by defining a template
class <i>copier</i>, that takes a single Boolean template parameter, and has a
static template member function <font size="2" face="Courier New">do_copy</font>
which performs the generic version of <font size="2">copy</font> (in other words
the &quot;slow but safe version&quot;). Following that there is a specialisation
for <i>copier&lt;true&gt;</i>: again this defines a static template member
function <font size="2" face="Courier New">do_copy</font>, but this version uses
memcpy to perform an &quot;optimised&quot; copy.</p>
<p>In order to complete the implementation, what we need now is a version of
copy, that calls <code>copier&lt;true&gt;::do_copy</code> if it is safe to use <font size="2" face="Courier New">memcpy</font>,
and otherwise calls <code>copier&lt;false&gt;::do_copy</code> to do a
&quot;generic&quot; copy. This is what the version in listing 1 does. To
understand how the code works look at the code for <font size="2" face="Courier New">copy</font>
and consider first the two typedefs <i>v1_t</i> and <i>v2_t</i>. These use <code>std::iterator_traits&lt;Iter1&gt;::value_type</code>
to determine what type the two iterators point to, and then feed the result into
another type-traits class <i>remove_cv</i> that removes the top-level
const-volatile-qualifiers: this will allow copy to compare the two types without
regard to const- or volatile-qualifiers. Next, <font size="2" face="Courier New">copy</font>
declares an enumerated value <i>can_opt</i> that will become the template
parameter to copier - declaring this here as a constant is really just a
convenience - the value could be passed directly to class <font size="2" face="Courier New">copier</font>.
The value of <i>can_opt</i> is computed by verifying that all of the following
are true:</p>
<ul>
<li>first that the two iterators point to the same type by using a type-traits
class <i>is_same</i>.</li>
<li>Then that both iterators are real pointers - using the class <i>is_pointer</i>
described above.</li>
<li>Finally that the pointed-to types have a trivial assignment operator using
<i>has_trivial_assign</i>.</li>
</ul>
<p>Finally we can use the value of <i>can_opt</i> as the template argument to
copier - this version of copy will now adapt to whatever parameters are passed
to it, if its possible to use <font size="2" face="Courier New">memcpy</font>,
then it will do so, otherwise it will use a generic copy.</p>
<h4>Was it worth it?</h4>
<p>It has often been repeated in these columns that &quot;premature optimisation
is the root of all evil&quot; [4]. So the question must be asked: was our
optimisation premature? To put this in perspective the timings for our version
of copy compared a conventional generic copy[5] are shown in table 1.</p>
<p>Clearly the optimisation makes a difference in this case; but, to be fair,
the timings are loaded to exclude cache miss effects - without this accurate
comparison between algorithms becomes difficult. However, perhaps we can add a
couple of caveats to the premature optimisation rule:</p>
<ul>
<li>If you use the right algorithm for the job in the first place then
optimisation will not be required; in some cases, <font size="2" face="Courier New">memcpy</font>
is the right algorithm.</li>
<li>If a component is going to be reused in many places by many people then
optimisations may well be worthwhile where they would not be so for a single
case - in other words, the likelihood that the optimisation will be
absolutely necessary somewhere, sometime is that much higher. Just as
importantly the perceived value of the stock implementation will be higher:
there is no point standardising an algorithm if users reject it on the
grounds that there are better, more heavily optimised versions available.</li>
</ul>
<h4>Table 1: Time taken to copy 1000 elements using copy&lt;const T*, T*&gt;
(times in micro-seconds)</h4>
<table border="1" cellpadding="7" cellspacing="1" width="529">
<tr>
<td valign="top" width="33%">
<p align="center">Version</p>
</td>
<td valign="top" width="33%">
<p align="center">T</p>
</td>
<td valign="top" width="33%">
<p align="center">Time</p>
</td>
</tr>
<tr>
<td valign="top" width="33%">&quot;Optimised&quot; copy</td>
<td valign="top" width="33%">char</td>
<td valign="top" width="33%">0.99</td>
</tr>
<tr>
<td valign="top" width="33%">Conventional copy</td>
<td valign="top" width="33%">char</td>
<td valign="top" width="33%">8.07</td>
</tr>
<tr>
<td valign="top" width="33%">&quot;Optimised&quot; copy</td>
<td valign="top" width="33%">int</td>
<td valign="top" width="33%">2.52</td>
</tr>
<tr>
<td valign="top" width="33%">Conventional copy</td>
<td valign="top" width="33%">int</td>
<td valign="top" width="33%">8.02</td>
</tr>
</table>
<p>&nbsp;</p>
<h4>Pair of References</h4>
<p>The optimised copy example shows how type traits may be used to perform
optimisation decisions at compile-time. Another important usage of type traits
is to allow code to compile that otherwise would not do so unless excessive
partial specialization is used. This is possible by delegating partial
specialization to the type traits classes. Our example for this form of usage is
a pair that can hold references [6].</p>
<p>First, let us examine the definition of &quot;std::pair&quot;, omitting the
comparision operators, default constructor, and template copy constructor for
simplicity:</p>
<pre>template &lt;typename T1, typename T2&gt;
struct pair
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair(const T1 &amp; nfirst, const T2 &amp; nsecond)
:first(nfirst), second(nsecond) { }
};</pre>
<p>Now, this &quot;pair&quot; cannot hold references as it currently stands,
because the constructor would require taking a reference to a reference, which
is currently illegal [7]. Let us consider what the constructor's parameters
would have to be in order to allow &quot;pair&quot; to hold non-reference types,
references, and constant references:</p>
<table border="1" cellpadding="7" cellspacing="1" width="638">
<tr>
<td valign="top" width="50%">Type of &quot;T1&quot;</td>
<td valign="top" width="50%">Type of parameter to initializing constructor</td>
</tr>
<tr>
<td valign="top" width="50%">
<pre>T</pre>
</td>
<td valign="top" width="50%">
<pre>const T &amp;</pre>
</td>
</tr>
<tr>
<td valign="top" width="50%">
<pre>T &amp;</pre>
</td>
<td valign="top" width="50%">
<pre>T &amp;</pre>
</td>
</tr>
<tr>
<td valign="top" width="50%">
<pre>const T &amp;</pre>
</td>
<td valign="top" width="50%">
<pre>const T &amp;</pre>
</td>
</tr>
</table>
<p>A little familiarity with the type traits classes allows us to construct a
single mapping that allows us to determine the type of parameter from the type
of the contained class. The type traits classes provide a transformation &quot;add_reference&quot;,
which adds a reference to its type, unless it is already a reference.</p>
<table border="1" cellpadding="7" cellspacing="1" width="580">
<tr>
<td valign="top" width="21%">Type of &quot;T1&quot;</td>
<td valign="top" width="27%">Type of &quot;const T1&quot;</td>
<td valign="top" width="53%">Type of &quot;add_reference&lt;const
T1&gt;::type&quot;</td>
</tr>
<tr>
<td valign="top" width="21%">
<pre>T</pre>
</td>
<td valign="top" width="27%">
<pre>const T</pre>
</td>
<td valign="top" width="53%">
<pre>const T &amp;</pre>
</td>
</tr>
<tr>
<td valign="top" width="21%">
<pre>T &amp;</pre>
</td>
<td valign="top" width="27%">
<pre>T &amp; [8]</pre>
</td>
<td valign="top" width="53%">
<pre>T &amp;</pre>
</td>
</tr>
<tr>
<td valign="top" width="21%">
<pre>const T &amp;</pre>
</td>
<td valign="top" width="27%">
<pre>const T &amp;</pre>
</td>
<td valign="top" width="53%">
<pre>const T &amp;</pre>
</td>
</tr>
</table>
<p>This allows us to build a primary template definition for &quot;pair&quot;
that can contain non-reference types, reference types, and constant reference
types:</p>
<pre>template &lt;typename T1, typename T2&gt;
struct pair
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair(boost::add_reference&lt;const T1&gt;::type nfirst,
boost::add_reference&lt;const T2&gt;::type nsecond)
:first(nfirst), second(nsecond) { }
};</pre>
<p>Add back in the standard comparision operators, default constructor, and
template copy constructor (which are all the same), and you have a std::pair
that can hold reference types!</p>
<p>This same extension <i>could</i> have been done using partial template
specialization of &quot;pair&quot;, but to specialize &quot;pair&quot; in this
way would require three partial specializations, plus the primary template. Type
traits allows us to define a single primary template that adjusts itself
auto-magically to any of these partial specializations, instead of a brute-force
partial specialization approach. Using type traits in this fashion allows
programmers to delegate partial specialization to the type traits classes,
resulting in code that is easier to maintain and easier to understand.</p>
<h4>Conclusion</h4>
<p>We hope that in this article we have been able to give you some idea of what
type-traits are all about. A more complete listing of the available classes are
in the boost documentation, along with further examples using type traits.
Templates have enabled C++ uses to take the advantage of the code reuse that
generic programming brings; hopefully this article has shown that generic
programming does not have to sink to the lowest common denominator, and that
templates can be optimal as well as generic.</p>
<h4>Acknowledgements</h4>
<p>The authors would like to thank Beman Dawes and Howard Hinnant for their
helpful comments when preparing this article.</p>
<h4>References</h4>
<ol>
<li>Nathan C. Myers, C++ Report, June 1995.</li>
<li>The type traits library is based upon contributions by Steve Cleary, Beman
Dawes, Howard Hinnant and John Maddock: it can be found at www.boost.org.</li>
<li>A scalar type is an arithmetic type (i.e. a built-in integer or floating
point type), an enumeration type, a pointer, a pointer to member, or a
const- or volatile-qualified version of one of these types.</li>
<li>This quote is from Donald Knuth, ACM Computing Surveys, December 1974, pg
268.</li>
<li>The test code is available as part of the boost utility library (see
algo_opt_examples.cpp), the code was compiled with gcc 2.95 with all
optimisations turned on, tests were conducted on a 400MHz Pentium II machine
running Microsoft Windows 98.</li>
<li>John Maddock and Howard Hinnant have submitted a &quot;compressed_pair&quot;
library to Boost, which uses a technique similar to the one described here
to hold references. Their pair also uses type traits to determine if any of
the types are empty, and will derive instead of contain to conserve space --
hence the name &quot;compressed&quot;.</li>
<li>This is actually an issue with the C++ Core Language Working Group (issue
#106), submitted by Bjarne Stroustrup. The tentative resolution is to allow
a &quot;reference to a reference to T&quot; to mean the same thing as a
&quot;reference to T&quot;, but only in template instantiation, in a method
similar to multiple cv-qualifiers.</li>
<li>For those of you who are wondering why this shouldn't be const-qualified,
remember that references are always implicitly constant (for example, you
can't re-assign a reference). Remember also that &quot;const T &amp;&quot;
is something completely different. For this reason, cv-qualifiers on
template type arguments that are references are ignored.</li>
</ol>
<h2>Listing 1</h2>
<pre>namespace detail{
template &lt;bool b&gt;
struct copier
{
template&lt;typename I1, typename I2&gt;
static I2 do_copy(I1 first,
I1 last, I2 out);
};
template &lt;bool b&gt;
template&lt;typename I1, typename I2&gt;
I2 copier&lt;b&gt;::do_copy(I1 first,
I1 last,
I2 out)
{
while(first != last)
{
*out = *first;
++out;
++first;
}
return out;
}
template &lt;&gt;
struct copier&lt;true&gt;
{
template&lt;typename I1, typename I2&gt;
static I2* do_copy(I1* first, I1* last, I2* out)
{
memcpy(out, first, (last-first)*sizeof(I2));
return out+(last-first);
}
};
}
template&lt;typename I1, typename I2&gt;
inline I2 copy(I1 first, I1 last, I2 out)
{
typedef typename
boost::remove_cv&lt;
typename std::iterator_traits&lt;I1&gt;
::value_type&gt;::type v1_t;
typedef typename
boost::remove_cv&lt;
typename std::iterator_traits&lt;I2&gt;
::value_type&gt;::type v2_t;
enum{ can_opt =
boost::is_same&lt;v1_t, v2_t&gt;::value
&amp;&amp; boost::is_pointer&lt;I1&gt;::value
&amp;&amp; boost::is_pointer&lt;I2&gt;::value
&amp;&amp; boost::
has_trivial_assign&lt;v1_t&gt;::value
};
return detail::copier&lt;can_opt&gt;::
do_copy(first, last, out);
}</pre>
<hr>
<p><EFBFBD> Copyright John Maddock and Steve Cleary, 2000</p>
</body>
</html>

View File

@ -1,738 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Call Traits</title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
vlink="#800080">
<h1><img src="../../c++boost.gif" width="276" height="86">Header
&lt;<a href="../../boost/detail/call_traits.hpp">boost/call_traits.hpp</a>&gt;</h1>
<p>All of the contents of &lt;boost/call_traits.hpp&gt; are
defined inside namespace boost.</p>
<p>The template class call_traits&lt;T&gt; encapsulates the
&quot;best&quot; method to pass a parameter of some type T to or
from a function, and consists of a collection of typedefs defined
as in the table below. The purpose of call_traits is to ensure
that problems like &quot;<a href="#refs">references to references</a>&quot;
never occur, and that parameters are passed in the most efficient
manner possible (see <a href="#examples">examples</a>). In each
case if your existing practice is to use the type defined on the
left, then replace it with the call_traits defined type on the
right. Note that for compilers that do not support partial
specialization, no benefit will occur from using call_traits: the
call_traits defined types will always be the same as the existing
practice in this case.</p>
<table border="0" cellpadding="7" cellspacing="1" width="797">
<tr>
<td valign="top" width="17%" bgcolor="#008080"><p
align="center">Existing practice</p>
</td>
<td valign="top" width="35%" bgcolor="#008080"><p
align="center">call_traits equivalent</p>
</td>
<td valign="top" width="32%" bgcolor="#008080"><p
align="center">Description</p>
</td>
<td valign="top" width="16%" bgcolor="#008080"><p
align="center">Notes</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">T<br>
(return by value)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::value_type</code></p>
</td>
<td valign="top" width="32%">Defines a type that
represents the &quot;value&quot; of type T. Use this for
functions that return by value, or possibly for stored
values of type T.</td>
<td valign="top" width="16%"><p align="center">2</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">T&amp;<br>
(return value)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::reference</code></p>
</td>
<td valign="top" width="32%">Defines a type that
represents a reference to type T. Use for functions that
would normally return a T&amp;.</td>
<td valign="top" width="16%"><p align="center">1</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">const T&amp;<br>
(return value)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::const_reference</code></p>
</td>
<td valign="top" width="32%">Defines a type that
represents a constant reference to type T. Use for
functions that would normally return a const T&amp;.</td>
<td valign="top" width="16%"><p align="center">1</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">const T&amp;<br>
(function parameter)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::param_type</code></p>
</td>
<td valign="top" width="32%">Defines a type that
represents the &quot;best&quot; way to pass a parameter
of type T to a function.</td>
<td valign="top" width="16%"><p align="center">1,3</p>
</td>
</tr>
</table>
<p>Notes:</p>
<ol>
<li>If T is already reference type, then call_traits is
defined such that <a href="#refs">references to
references</a> do not occur (requires partial
specialization).</li>
<li>If T is an array type, then call_traits defines <code>value_type</code>
as a &quot;constant pointer to type&quot; rather than an
&quot;array of type&quot; (requires partial
specialization). Note that if you are using value_type as
a stored value then this will result in storing a &quot;constant
pointer to an array&quot; rather than the array itself.
This may or may not be a good thing depending upon what
you actually need (in other words take care!).</li>
<li>If T is a small built in type or a pointer, then <code>param_type</code>
is defined as <code>T const</code>, instead of <code>T
const&amp;</code>. This can improve the ability of the
compiler to optimize loops in the body of the function if
they depend upon the passed parameter, the semantics of
the passed parameter is otherwise unchanged (requires
partial specialization).</li>
</ol>
<p>&nbsp;</p>
<h3>Copy constructibility</h3>
<p>The following table defines which call_traits types can always
be copy-constructed from which other types, those entries marked
with a '?' are true only if and only if T is copy constructible:</p>
<table border="0" cellpadding="7" cellspacing="1" width="766">
<tr>
<td valign="top" width="17%">&nbsp;</td>
<td valign="top" colspan="5" width="85%"
bgcolor="#008080"><p align="center">To:</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#008080">From:</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">T</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">value_type</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const_reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">param_type</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">T</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">value_type</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">reference</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">const_reference</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">param_type</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">?</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">N</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<p>If T is an assignable type the following assignments are
possible:</p>
<table border="0" cellpadding="7" cellspacing="1" width="766">
<tr>
<td valign="top" width="17%">&nbsp;</td>
<td valign="top" colspan="5" width="85%"
bgcolor="#008080"><p align="center">To:</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#008080">From:</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">T</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">value_type</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const_reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">param_type</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">T</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">value_type</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">reference</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">const_reference</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0">param_type</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">Y</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
<td valign="top" width="17%"><p align="center">-</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="examples"></a>Examples</h3>
<p>The following table shows the effect that call_traits has on
various types, the table assumes that the compiler supports
partial specialization: if it doesn't then all types behave in
the same way as the entry for &quot;myclass&quot;, and call_traits
can not be used with reference or array types.</p>
<table border="0" cellpadding="7" cellspacing="1" width="766">
<tr>
<td valign="top" width="17%">&nbsp;</td>
<td valign="top" colspan="5" width="85%"
bgcolor="#008080"><p align="center">Call_traits type:</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#008080"><p
align="center">Original type T</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">value_type</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const_reference</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">param_type</p>
</td>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">Applies to:</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">myclass</p>
</td>
<td valign="top" width="17%"><p align="center">myclass</p>
</td>
<td valign="top" width="17%"><p align="center">myclass&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const
myclass&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">myclass
const&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">All user
defined types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">int</p>
</td>
<td valign="top" width="17%"><p align="center">int</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int const</p>
</td>
<td valign="top" width="17%"><p align="center">All small
built-in types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">int*</p>
</td>
<td valign="top" width="17%"><p align="center">int*</p>
</td>
<td valign="top" width="17%"><p align="center">int*&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int*const&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int* const</p>
</td>
<td valign="top" width="17%"><p align="center">All
pointer types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">All
reference types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">All
constant-references.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">int[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int*</p>
</td>
<td valign="top" width="17%"><p align="center">int(&amp;)[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int(&amp;)[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int*
const</p>
</td>
<td valign="top" width="17%"><p align="center">All array
types.</p>
</td>
</tr>
<tr>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const int[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int*</p>
</td>
<td valign="top" width="17%"><p align="center">const int(&amp;)[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int(&amp;)[3]</p>
</td>
<td valign="top" width="17%"><p align="center">const int*
const</p>
</td>
<td valign="top" width="17%"><p align="center">All
constant-array types.</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h4>Example 1:</h4>
<p>The following class is a trivial class that stores some type T
by value (see the <a href="call_traits_test.cpp">call_traits_test.cpp</a>
file), the aim is to illustrate how each of the available call_traits
typedefs may be used:</p>
<pre>template &lt;class T&gt;
struct contained
{
// define our typedefs first, arrays are stored by value
// so value_type is not the same as result_type:
typedef typename boost::call_traits&lt;T&gt;::param_type param_type;
typedef typename boost::call_traits&lt;T&gt;::reference reference;
typedef typename boost::call_traits&lt;T&gt;::const_reference const_reference;
typedef T value_type;
typedef typename boost::call_traits&lt;T&gt;::value_type result_type;
// stored value:
value_type v_;
// constructors:
contained() {}
contained(param_type p) : v_(p){}
// return byval:
result_type value() { return v_; }
// return by_ref:
reference get() { return v_; }
const_reference const_get()const { return v_; }
// pass value:
void call(param_type p){}
};</pre>
<h4><a name="refs"></a>Example 2 (the reference to reference
problem):</h4>
<p>Consider the definition of std::binder1st:</p>
<pre>template &lt;class Operation&gt;
class binder1st :
public unary_function&lt;Operation::second_argument_type, Operation::result_type&gt;
{
protected:
Operation op;
Operation::first_argument_type value;
public:
binder1st(const Operation&amp; x, const Operation::first_argument_type&amp; y);
Operation::result_type operator()(const Operation::second_argument_type&amp; x) const;
}; </pre>
<p>Now consider what happens in the relatively common case that
the functor takes its second argument as a reference, that
implies that <code>Operation::second_argument_type</code> is a
reference type, <code>operator()</code> will now end up taking a
reference to a reference as an argument, and that is not
currently legal. The solution here is to modify <code>operator()</code>
to use call_traits:</p>
<pre>Operation::result_type operator()(call_traits&lt;Operation::second_argument_type&gt;::param_type x) const;</pre>
<p>Now in the case that <code>Operation::second_argument_type</code>
is a reference type, the argument is passed as a reference, and
the no &quot;reference to reference&quot; occurs.</p>
<h4><a name="ex3"></a>Example 3 (the make_pair problem):</h4>
<p>If we pass the name of an array as one (or both) arguments to <code>std::make_pair</code>,
then template argument deduction deduces the passed parameter as
&quot;const reference to array of T&quot;, this also applies to
string literals (which are really array literals). Consequently
instead of returning a pair of pointers, it tries to return a
pair of arrays, and since an array type is not copy-constructible
the code fails to compile. One solution is to explicitly cast the
arguments to make_pair to pointers, but call_traits provides a
better (i.e. automatic) solution (and one that works safely even
in generic code where the cast might do the wrong thing):</p>
<pre>template &lt;class T1, class T2&gt;
std::pair&lt;
typename boost::call_traits&lt;T1&gt;::value_type,
typename boost::call_traits&lt;T2&gt;::value_type&gt;
make_pair(const T1&amp; t1, const T2&amp; t2)
{
return std::pair&lt;
typename boost::call_traits&lt;T1&gt;::value_type,
typename boost::call_traits&lt;T2&gt;::value_type&gt;(t1, t2);
}</pre>
<p>Here, the deduced argument types will be automatically
degraded to pointers if the deduced types are arrays, similar
situations occur in the standard binders and adapters: in
principle in any function that &quot;wraps&quot; a temporary
whose type is deduced.</p>
<h4><a name="ex4"></a>Example 4 (optimising fill):</h4>
<p>The call_traits template will &quot;optimize&quot; the passing
of a small built-in type as a function parameter, this mainly has
an effect when the parameter is used within a loop body. In the
following example (see <a href="algo_opt_examples.cpp">algo_opt_examples.cpp</a>),
a version of std::fill is optimized in two ways: if the type
passed is a single byte built-in type then std::memset is used to
effect the fill, otherwise a conventional C++ implemention is
used, but with the passed parameter &quot;optimized&quot; using
call_traits:</p>
<pre>namespace detail{
template &lt;bool opt&gt;
struct filler
{
template &lt;typename I, typename T&gt;
static void do_fill(I first, I last, typename boost::call_traits&lt;T&gt;::param_type val);
{
while(first != last)
{
*first = val;
++first;
}
}
};
template &lt;&gt;
struct filler&lt;true&gt;
{
template &lt;typename I, typename T&gt;
static void do_fill(I first, I last, T val)
{
memset(first, val, last-first);
}
};
}
template &lt;class I, class T&gt;
inline void fill(I first, I last, const T&amp; val)
{
enum{ can_opt = boost::is_pointer&lt;I&gt;::value
&amp;&amp; boost::is_arithmetic&lt;T&gt;::value
&amp;&amp; (sizeof(T) == 1) };
typedef detail::filler&lt;can_opt&gt; filler_t;
filler_t::template do_fill&lt;I,T&gt;(first, last, val);
}</pre>
<p>Footnote: the reason that this is &quot;optimal&quot; for
small built-in types is that with the value passed as &quot;T
const&quot; instead of &quot;const T&amp;&quot; the compiler is
able to tell both that the value is constant and that it is free
of aliases. With this information the compiler is able to cache
the passed value in a register, unroll the loop, or use
explicitly parallel instructions: if any of these are supported.
Exactly how much mileage you will get from this depends upon your
compiler - we could really use some accurate benchmarking
software as part of boost for cases like this.</p>
<h3>Rationale</h3>
<p>The following notes are intended to briefly describe the
rational behind choices made in call_traits.</p>
<p>All user-defined types follow &quot;existing practice&quot;
and need no comment.</p>
<p>Small built-in types (what the standard calls fundamental
types [3.9.1]) differ from existing practice only in the <i>param_type</i>
typedef. In this case passing &quot;T const&quot; is compatible
with existing practice, but may improve performance in some cases
(see <a href="#ex4">Example 4</a>), in any case this should never
be any worse than existing practice.</p>
<p>Pointers follow the same rational as small built-in types.</p>
<p>For reference types the rational follows <a href="#refs">Example
2</a> - references to references are not allowed, so the call_traits
members must be defined such that these problems do not occur.
There is a proposal to modify the language such that &quot;a
reference to a reference is a reference&quot; (issue #106,
submitted by Bjarne Stroustrup), call_traits&lt;T&gt;::value_type
and call_traits&lt;T&gt;::param_type both provide the same effect
as that proposal, without the need for a language change (in
other words it's a workaround).</p>
<p>For array types, a function that takes an array as an argument
will degrade the array type to a pointer type: this means that
the type of the actual parameter is different from its declared
type, something that can cause endless problems in template code
that relies on the declared type of a parameter. For example:</p>
<pre>template &lt;class T&gt;
struct A
{
void foo(T t);
};</pre>
<p><font face="Times New Roman">In this case if we instantiate A&lt;int[2]&gt;
then the declared type of the parameter passed to member function
foo is int[2], but it's actual type is const int*, if we try to
use the type T within the function body, then there is a strong
likelyhood that our code will not compile:</font></p>
<pre>template &lt;class T&gt;
void A&lt;T&gt;::foo(T t)
{
T dup(t); // doesn't compile for case that T is an array.
}</pre>
<p>By using call_traits the degradation from array to pointer is
explicit, and the type of the parameter is the same as it's
declared type:</p>
<pre>template &lt;class T&gt;
struct A
{
void foo(call_traits&lt;T&gt;::value_type t);
};
template &lt;class T&gt;
void A&lt;T&gt;::foo(call_traits&lt;T&gt;::value_type t)
{
call_traits&lt;T&gt;::value_type dup(t); // OK even if T is an array type.
}</pre>
<p>For value_type (return by value), again only a pointer may be
returned, not a copy of the whole array, and again call_traits
makes the degradation explicit. The value_type member is useful
whenever an array must be explicitly degraded to a pointer - <a
href="#ex3">Example 3</a> provides the test case (Footnote: the
array specialisation for call_traits is the least well understood
of all the call_traits specialisations, if the given semantics
cause specific problems for you, or don't solve a particular
array-related problem, then I would be interested to hear about
it. Most people though will probably never need to use this
specialisation).</p>
<hr>
<p>Revised 18 June 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
&quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</p>
<p>Based on contributions by Steve Cleary, Beman Dawes, Howard
Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org/">www.boost.org</a>, and the boost
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
<p>.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
</body>
</html>

View File

@ -1,355 +0,0 @@
// boost::compressed_pair test program
// (C) Copyright John Maddock 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/call_traits.hpp>
#include <cassert>
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <typeinfo>
#include <boost/call_traits.hpp>
#include "type_traits_test.hpp"
//
// struct contained models a type that contains a type (for example std::pair)
// arrays are contained by value, and have to be treated as a special case:
//
template <class T>
struct contained
{
// define our typedefs first, arrays are stored by value
// so value_type is not the same as result_type:
typedef typename boost::call_traits<T>::param_type param_type;
typedef typename boost::call_traits<T>::reference reference;
typedef typename boost::call_traits<T>::const_reference const_reference;
typedef T value_type;
typedef typename boost::call_traits<T>::value_type result_type;
// stored value:
value_type v_;
// constructors:
contained() {}
contained(param_type p) : v_(p){}
// return byval:
result_type value()const { return v_; }
// return by_ref:
reference get() { return v_; }
const_reference const_get()const { return v_; }
// pass value:
void call(param_type p){}
};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, std::size_t N>
struct contained<T[N]>
{
typedef typename boost::call_traits<T[N]>::param_type param_type;
typedef typename boost::call_traits<T[N]>::reference reference;
typedef typename boost::call_traits<T[N]>::const_reference const_reference;
typedef T value_type[N];
typedef typename boost::call_traits<T[N]>::value_type result_type;
value_type v_;
contained(param_type p)
{
std::copy(p, p+N, v_);
}
// return byval:
result_type value()const { return v_; }
// return by_ref:
reference get() { return v_; }
const_reference const_get()const { return v_; }
void call(param_type p){}
};
#endif
template <class T>
contained<typename boost::call_traits<T>::value_type> wrap(const T& t)
{
typedef typename boost::call_traits<T>::value_type ct;
return contained<ct>(t);
}
namespace test{
template <class T1, class T2>
std::pair<
typename boost::call_traits<T1>::value_type,
typename boost::call_traits<T2>::value_type>
make_pair(const T1& t1, const T2& t2)
{
return std::pair<
typename boost::call_traits<T1>::value_type,
typename boost::call_traits<T2>::value_type>(t1, t2);
}
} // namespace test
using namespace std;
//
// struct checker:
// verifies behaviour of contained example:
//
template <class T>
struct checker
{
typedef typename boost::call_traits<T>::param_type param_type;
void operator()(param_type);
};
template <class T>
void checker<T>::operator()(param_type p)
{
T t(p);
contained<T> c(t);
cout << "checking contained<" << typeid(T).name() << ">..." << endl;
assert(t == c.value());
assert(t == c.get());
assert(t == c.const_get());
cout << "typeof contained<" << typeid(T).name() << ">::v_ is: " << typeid(&contained<T>::v_).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::value() is: " << typeid(&contained<T>::value).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::get() is: " << typeid(&contained<T>::get).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::const_get() is: " << typeid(&contained<T>::const_get).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::call() is: " << typeid(&contained<T>::call).name() << endl;
cout << endl;
}
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, std::size_t N>
struct checker<T[N]>
{
typedef typename boost::call_traits<T[N]>::param_type param_type;
void operator()(param_type t)
{
contained<T[N]> c(t);
cout << "checking contained<" << typeid(T[N]).name() << ">..." << endl;
unsigned int i = 0;
for(i = 0; i < N; ++i)
assert(t[i] == c.value()[i]);
for(i = 0; i < N; ++i)
assert(t[i] == c.get()[i]);
for(i = 0; i < N; ++i)
assert(t[i] == c.const_get()[i]);
cout << "typeof contained<" << typeid(T[N]).name() << ">::v_ is: " << typeid(&contained<T[N]>::v_).name() << endl;
cout << "typeof contained<" << typeid(T[N]).name() << ">::value is: " << typeid(&contained<T[N]>::value).name() << endl;
cout << "typeof contained<" << typeid(T[N]).name() << ">::get is: " << typeid(&contained<T[N]>::get).name() << endl;
cout << "typeof contained<" << typeid(T[N]).name() << ">::const_get is: " << typeid(&contained<T[N]>::const_get).name() << endl;
cout << "typeof contained<" << typeid(T[N]).name() << ">::call is: " << typeid(&contained<T[N]>::call).name() << endl;
cout << endl;
}
};
#endif
//
// check_wrap:
template <class T, class U>
void check_wrap(const contained<T>& w, const U& u)
{
cout << "checking contained<" << typeid(T).name() << ">..." << endl;
assert(w.value() == u);
}
//
// check_make_pair:
// verifies behaviour of "make_pair":
//
template <class T, class U, class V>
void check_make_pair(T c, U u, V v)
{
cout << "checking std::pair<" << typeid(c.first).name() << ", " << typeid(c.second).name() << ">..." << endl;
assert(c.first == u);
assert(c.second == v);
cout << endl;
}
struct UDT
{
int i_;
UDT() : i_(2){}
bool operator == (const UDT& v){ return v.i_ == i_; }
};
int main()
{
checker<UDT> c1;
UDT u;
c1(u);
checker<int> c2;
int i = 2;
c2(i);
int* pi = &i;
checker<int*> c3;
c3(pi);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
checker<int&> c4;
c4(i);
checker<const int&> c5;
c5(i);
int a[2] = {1,2};
checker<int[2]> c6;
c6(a);
#endif
check_wrap(wrap(2), 2);
const char ca[4] = "abc";
// compiler can't deduce this for some reason:
//check_wrap(wrap(ca), ca);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
check_wrap(wrap(a), a);
check_make_pair(test::make_pair(a, a), a, a);
#endif
// cv-qualifiers applied to reference types should have no effect
// declare these here for later use with is_reference and remove_reference:
typedef int& r_type;
typedef const r_type cr_type;
type_test(UDT, boost::call_traits<UDT>::value_type)
type_test(UDT&, boost::call_traits<UDT>::reference)
type_test(const UDT&, boost::call_traits<UDT>::const_reference)
type_test(const UDT&, boost::call_traits<UDT>::param_type)
type_test(int, boost::call_traits<int>::value_type)
type_test(int&, boost::call_traits<int>::reference)
type_test(const int&, boost::call_traits<int>::const_reference)
type_test(const int, boost::call_traits<int>::param_type)
type_test(int*, boost::call_traits<int*>::value_type)
type_test(int*&, boost::call_traits<int*>::reference)
type_test(int*const&, boost::call_traits<int*>::const_reference)
type_test(int*const, boost::call_traits<int*>::param_type)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
type_test(int&, boost::call_traits<int&>::value_type)
type_test(int&, boost::call_traits<int&>::reference)
type_test(const int&, boost::call_traits<int&>::const_reference)
type_test(int&, boost::call_traits<int&>::param_type)
#if !(defined(__GNUC__) && (__GNUC__ < 3))
type_test(int&, boost::call_traits<cr_type>::value_type)
type_test(int&, boost::call_traits<cr_type>::reference)
type_test(const int&, boost::call_traits<cr_type>::const_reference)
type_test(int&, boost::call_traits<cr_type>::param_type)
#else
std::cout << "Your compiler cannot instantiate call_traits<int&const>, skipping four tests (4 errors)" << std::endl;
failures += 4;
test_count += 4;
#endif
type_test(const int&, boost::call_traits<const int&>::value_type)
type_test(const int&, boost::call_traits<const int&>::reference)
type_test(const int&, boost::call_traits<const int&>::const_reference)
type_test(const int&, boost::call_traits<const int&>::param_type)
type_test(const int*, boost::call_traits<int[3]>::value_type)
type_test(int(&)[3], boost::call_traits<int[3]>::reference)
type_test(const int(&)[3], boost::call_traits<int[3]>::const_reference)
type_test(const int*const, boost::call_traits<int[3]>::param_type)
type_test(const int*, boost::call_traits<const int[3]>::value_type)
type_test(const int(&)[3], boost::call_traits<const int[3]>::reference)
type_test(const int(&)[3], boost::call_traits<const int[3]>::const_reference)
type_test(const int*const, boost::call_traits<const int[3]>::param_type)
#else
std::cout << "You're compiler does not support partial template instantiation, skipping 20 tests (20 errors)" << std::endl;
failures += 20;
test_count += 20;
#endif
std::cout << std::endl << test_count << " tests completed (" << failures << " failures)... press any key to exit";
std::cin.get();
return failures;
}
//
// define call_traits tests to check that the assertions in the docs do actually work
// this is an instantiate only set of tests:
//
template <typename T, bool isarray = false>
struct call_traits_test
{
typedef ::boost::call_traits<T> ct;
typedef typename ct::param_type param_type;
typedef typename ct::reference reference;
typedef typename ct::const_reference const_reference;
typedef typename ct::value_type value_type;
static void assert_construct(param_type val);
};
template <typename T, bool isarray>
void call_traits_test<T, isarray>::assert_construct(typename call_traits_test<T, isarray>::param_type val)
{
//
// this is to check that the call_traits assertions are valid:
T t(val);
value_type v(t);
reference r(t);
const_reference cr(t);
param_type p(t);
value_type v2(v);
value_type v3(r);
value_type v4(p);
reference r2(v);
reference r3(r);
const_reference cr2(v);
const_reference cr3(r);
const_reference cr4(cr);
const_reference cr5(p);
param_type p2(v);
param_type p3(r);
param_type p4(p);
}
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <typename T>
struct call_traits_test<T, true>
{
typedef ::boost::call_traits<T> ct;
typedef typename ct::param_type param_type;
typedef typename ct::reference reference;
typedef typename ct::const_reference const_reference;
typedef typename ct::value_type value_type;
static void assert_construct(param_type val);
};
template <typename T>
void call_traits_test<T, true>::assert_construct(boost::call_traits<T>::param_type val)
{
//
// this is to check that the call_traits assertions are valid:
T t;
value_type v(t);
value_type v5(val);
reference r = t;
const_reference cr = t;
reference r2 = r;
#ifndef __BORLANDC__
// C++ Builder buglet:
const_reference cr2 = r;
#endif
param_type p(t);
value_type v2(v);
const_reference cr3 = cr;
value_type v3(r);
value_type v4(p);
param_type p2(v);
param_type p3(r);
param_type p4(p);
}
#endif //BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
//
// now check call_traits assertions by instantiating call_traits_test:
template struct call_traits_test<int>;
template struct call_traits_test<const int>;
template struct call_traits_test<int*>;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template struct call_traits_test<int&>;
template struct call_traits_test<const int&>;
template struct call_traits_test<int[2], true>;
#endif

148
cast.htm
View File

@ -1,148 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Header boost/cast.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" width="277" height="86">Header
<a href="../../boost/cast.hpp">boost/cast.hpp</a></h1>
<h2><a name="Cast Functions">Cast Functions</a></h2>
<p>The <code>header <a href="../../boost/cast.hpp">boost/cast.hpp</a></code>
provides <a href="#Polymorphic_cast"><b>polymorphic_cast</b></a>, <a href="#Polymorphic_cast"><b>polymorphic_downcast</b></a>,
and <a href="#numeric_cast"><b>numeric_cast</b></a> template functions designed
to complement the C++ Standard's built-in casts.</p>
<p>The program&nbsp;<a href="cast_test.cpp">cast_test.cpp</a> can be used to
verify these function templates work as expected.</p>
<p><b>polymorphic_cast</b> was suggested by Bjarne Stroustrup in &quot;The C++
Programming Language&quot;.<br>
<b>polymorphic_downcast</b> was contributed by <a href="../../people/dave_abrahams.htm">Dave
Abrahams</a>.<b><br>
numeric_cast</b> was contributed by <a href="../../people/kevlin_henney.htm">Kevlin
Henney</a>.</p>
<h3>Namespace synopsis</h3>
<blockquote>
<pre>namespace boost {
namespace cast {
// all synopsis below included here
}
using ::boost::cast::polymorphic_cast;
using ::boost::cast::polymorphic_downcast;
using ::boost::cast::bad_numeric_cast;
using ::boost::cast::numeric_cast;
}</pre>
</blockquote>
<h3><a name="Polymorphic_cast">Polymorphic casts</a></h3>
<p>Pointers to polymorphic objects (objects of classes which define at least one
virtual function) are sometimes downcast or crosscast.&nbsp; Downcasting means
casting from a base class to a derived class.&nbsp; Crosscasting means casting
across an inheritance hierarchy diagram, such as from one base to the other in a
<b>Y</b> diagram hierarchy.</p>
<p>Such casts can be done with old-style casts, but this approach is never to be
recommended.&nbsp; Old-style casts are sorely lacking in type safety, suffer
poor readability, and are difficult to locate with search tools.</p>
<p>The C++ built-in <b>static_cast</b> can be used for efficiently downcasting
pointers to polymorphic objects, but provides no error detection for the case
where the pointer being cast actually points to the wrong derived class. The <b>polymorphic_downcast</b>
template retains the efficiency of <b>static_cast</b> for non-debug
compilations, but for debug compilations adds safety via an assert() that a <b>dynamic_cast</b>
succeeds.&nbsp;<b>&nbsp;</b></p>
<p>The C++ built-in <b>dynamic_cast</b> can be used for downcasts and crosscasts
of pointers to polymorphic objects, but error notification in the form of a
returned value of 0 is inconvenient to test, or worse yet, easy to forget to
test.&nbsp; The <b>polymorphic_cast</b> template performs a <b>dynamic_cast</b>,
and throws an exception if the <b>dynamic_cast</b> returns 0.</p>
<p>A <b>polymorphic_downcast</b> is preferred when debug-mode tests will cover
100% of the object types possibly cast and when non-debug-mode efficiency is an
issue. If these two conditions are not present, <b>polymorphic_cast</b> is
preferred.&nbsp; It must also be used for crosscasts.&nbsp; It does an assert(
dynamic_cast&lt;Derived&gt;(x) == x ) where x is the base pointer, ensuring that
not only is a non-zero pointer returned, but also that it correct in the
presence of multiple inheritance. .<b> Warning:</b>: Because <b>polymorphic_downcast</b>
uses assert(), it violates the One Definition Rule if NDEBUG is inconsistently
defined across translation units.</p>
<p>The C++ built-in <b>dynamic_cast</b> must be used to cast references rather
than pointers.&nbsp; It is also the only cast that can be used to check whether
a given interface is supported; in that case a return of 0 isn't an error
condition.</p>
<h3>polymorphic_cast and polymorphic_downcast synopsis</h3>
<blockquote>
<pre>template &lt;class Derived, class Base&gt;
inline Derived polymorphic_cast(Base* x);
// Throws: std::bad_cast if ( dynamic_cast&lt;Derived&gt;(x) == 0 )
// Returns: dynamic_cast&lt;Derived&gt;(x)
template &lt;class Derived, class Base&gt;
inline Derived polymorphic_downcast(Base* x);
// Effects: assert( dynamic_cast&lt;Derived&gt;(x) == x );
// Returns: static_cast&lt;Derived&gt;(x)</pre>
</blockquote>
<h3>polymorphic_downcast example</h3>
<blockquote>
<pre>#include &lt;boost/cast.hpp&gt;
...
class Fruit { public: virtual ~Fruit(){}; ... };
class Banana : public Fruit { ... };
...
void f( Fruit * fruit ) {
// ... logic which leads us to believe it is a Banana
Banana * banana = boost::polymorphic_downcast&lt;Banana*&gt;(fruit);
...</pre>
</blockquote>
<h3><a name="numeric_cast">numeric_cast</a></h3>
<p>A <b>static_cast</b>, <b>implicit_cast</b> or implicit conversion will not
detect failure to preserve range for numeric casts. The <b>numeric_cast</b>
template function are similar to <b>static_cast</b> and certain (dubious)
implicit conversions in this respect, except that they detect loss of numeric
range. An exception is thrown when a runtime value preservation check fails.</p>
<p>The requirements on the argument and result types are:</p>
<blockquote>
<ul>
<li>Both argument and result types are CopyConstructible [20.1.3].</li>
<li>Both argument and result types are Numeric, defined by <code>std::numeric_limits&lt;&gt;::is_specialized</code>
being true.</li>
<li>The argument can be converted to the result type using <b>static_cast</b>.</li>
</ul>
</blockquote>
<h3>numeric_cast synopsis</h3>
<blockquote>
<pre>class bad_numeric_cast : public std::bad_cast {...};
template&lt;typename Target, typename Source&gt;
inline Target numeric_cast(Source arg);
// Throws: bad_numeric_cast unless, in converting arg from Source to Target,
// there is no loss of negative range, and no underflow, and no
// overflow, as determined by std::numeric_limits
// Returns: static_cast&lt;Target&gt;(arg)</pre>
</blockquote>
<h3>numeric_cast example</h3>
<blockquote>
<pre>#include &lt;boost/cast.hpp&gt;
using namespace boost::cast;
void ariane(double vx)
{
...
unsigned short dx = numeric_cast&lt;unsigned short&gt;(vx);
...
}</pre>
</blockquote>
<h3>numeric_cast rationale</h3>
<p>The form of the throws condition is specified so that != is not a required
operation.</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan
-->28 June, 2000<!--webbot bot="Timestamp" endspan i-checksum="19846"
--></p>
<p><EFBFBD> Copyright boost.org 1999. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided &quot;as is&quot; without express or
implied warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>

View File

@ -1,149 +0,0 @@
// boost utility cast test program -----------------------------------------//
// (C) Copyright boost.org 1999. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 28 Jun 00 implicit_cast removed (Beman Dawes)
// 30 Aug 99 value_cast replaced by numeric_cast
// 3 Aug 99 Initial Version
#include <iostream>
#include <climits>
#include <limits>
#include <boost/cast.hpp>
# if SCHAR_MAX == LONG_MAX
# error "This test program doesn't work if SCHAR_MAX == LONG_MAX"
# endif
using namespace boost;
using std::cout;
namespace
{
struct Base
{
virtual char kind() { return 'B'; }
};
struct Base2
{
virtual char kind2() { return '2'; }
};
struct Derived : public Base, Base2
{
virtual char kind() { return 'D'; }
};
}
int main( int argc, char * argv[] )
{
cout << "Usage: test_casts [n], where n omitted or is:\n"
" 1 = execute #1 assert failure (#ifndef NDEBUG)\n"
" 2 = execute #2 assert failure (#ifndef NDEBUG)\n"
"Example: test_casts 2\n\n";
# ifdef NDEBUG
cout << "NDEBUG is defined\n";
# else
cout << "NDEBUG is not defined\n";
# endif
cout << "\nBeginning tests...\n";
// test polymorphic_cast ---------------------------------------------------//
// tests which should succeed
Base * base = new Derived;
Base2 * base2 = 0;
Derived * derived = 0;
derived = polymorphic_downcast<Derived*>( base ); // downcast
assert( derived->kind() == 'D' );
derived = 0;
derived = polymorphic_cast<Derived*>( base ); // downcast, throw on error
assert( derived->kind() == 'D' );
base2 = polymorphic_cast<Base2*>( base ); // crosscast
assert( base2->kind2() == '2' );
// tests which should result in errors being detected
int err_count = 0;
base = new Base;
if ( argc > 1 && *argv[1] == '1' )
{ derived = polymorphic_downcast<Derived*>( base ); } // #1 assert failure
bool caught_exception = false;
try { derived = polymorphic_cast<Derived*>( base ); }
catch (std::bad_cast)
{ cout<<"caught bad_cast\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
// the following is just so generated code can be inspected
if ( derived->kind() == 'B' ) ++err_count;
// test implicit_cast and numeric_cast -------------------------------------//
// tests which should succeed
long small_value = 1;
long small_negative_value = -1;
long large_value = std::numeric_limits<long>::max();
long large_negative_value = std::numeric_limits<long>::min();
signed char c = 0;
c = large_value; // see if compiler generates warning
c = numeric_cast<signed char>( small_value );
assert( c == 1 );
c = 0;
c = numeric_cast<signed char>( small_value );
assert( c == 1 );
c = 0;
c = numeric_cast<signed char>( small_negative_value );
assert( c == -1 );
// tests which should result in errors being detected
caught_exception = false;
try { c = numeric_cast<signed char>( large_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #1\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
caught_exception = false;
try { c = numeric_cast<signed char>( large_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #2\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
unsigned long ul;
caught_exception = false;
try { ul = numeric_cast<unsigned long>( large_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #3\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
caught_exception = false;
try { ul = numeric_cast<unsigned long>( small_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #4\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
caught_exception = false;
try { numeric_cast<int>( std::numeric_limits<double>::max() ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #5\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
cout << err_count << " errors detected\nTest "
<< (err_count==0 ? "passed\n" : "failed\n");
return err_count;
} // main

View File

@ -1,92 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Header <boost/compressed_pair.hpp></title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
vlink="#800080">
<h2><img src="../../c++boost.gif" width="276" height="86">Header
&lt;<a href="../../boost/detail/call_traits.hpp">boost/compressed_pair.hpp</a>&gt;</h2>
<p>All of the contents of &lt;boost/compressed_pair.hpp&gt; are
defined inside namespace boost.</p>
<p>The class compressed pair is very similar to std::pair, but if
either of the template arguments are empty classes, then the
&quot;empty member optimisation&quot; is applied to compress the
size of the pair.</p>
<pre>template &lt;class T1, class T2&gt;
class compressed_pair
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits&lt;first_type&gt;::param_type first_param_type;
typedef typename call_traits&lt;second_type&gt;::param_type second_param_type;
typedef typename call_traits&lt;first_type&gt;::reference first_reference;
typedef typename call_traits&lt;second_type&gt;::reference second_reference;
typedef typename call_traits&lt;first_type&gt;::const_reference first_const_reference;
typedef typename call_traits&lt;second_type&gt;::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y);
explicit compressed_pair(first_param_type x);
explicit compressed_pair(second_param_type y);
first_reference first();
first_const_reference first() const;
second_reference second();
second_const_reference second() const;
void swap(compressed_pair&amp; y);
};</pre>
<p>The two members of the pair can be accessed using the member
functions first() and second(). Note that not all member
functions can be instantiated for all template parameter types.
In particular compressed_pair can be instantiated for reference
and array types, however in these cases the range of constructors
that can be used are limited. If types T1 and T2 are the same
type, then there is only one version of the single-argument
constructor, and this constructor initialises both values in the
pair to the passed value.</p>
<p>Note that compressed_pair can not be instantiated if either of
the template arguments is an enumerator type, unless there is
compiler support for boost::is_enum, or if boost::is_enum is
specialised for the enumerator type.</p>
<p>Finally, compressed_pair requires compiler support for partial
specialisation of class templates - without that support
compressed_pair behaves just like std::pair.</p>
<hr>
<p>Revised 08 March 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
&quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</p>
<p>Based on contributions by Steve Cleary, Beman Dawes, Howard
Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org">www.boost.org</a>, and the boost
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
<p>&nbsp;</p>
</body>
</html>

View File

@ -1,127 +0,0 @@
// boost::compressed_pair test program
// (C) Copyright John Maddock 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/compressed_pair.hpp>
#include <iostream>
#include <typeinfo>
#include <cassert>
#include <boost/compressed_pair.hpp>
#include "type_traits_test.hpp"
using namespace boost;
struct empty_POD_UDT{};
struct empty_UDT
{
~empty_UDT(){};
};
namespace boost {
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <> struct is_empty<empty_UDT>
{ static const bool value = true; };
template <> struct is_empty<empty_POD_UDT>
{ static const bool value = true; };
template <> struct is_POD<empty_POD_UDT>
{ static const bool value = true; };
#else
template <> struct is_empty<empty_UDT>
{ enum{ value = true }; };
template <> struct is_empty<empty_POD_UDT>
{ enum{ value = true }; };
template <> struct is_POD<empty_POD_UDT>
{ enum{ value = true }; };
#endif
}
int main()
{
compressed_pair<int, double> cp1(1, 1.3);
assert(cp1.first() == 1);
assert(cp1.second() == 1.3);
compressed_pair<int, double> cp1b(2, 2.3);
assert(cp1b.first() == 2);
assert(cp1b.second() == 2.3);
swap(cp1, cp1b);
assert(cp1b.first() == 1);
assert(cp1b.second() == 1.3);
assert(cp1.first() == 2);
assert(cp1.second() == 2.3);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
compressed_pair<empty_UDT, int> cp2(2);
assert(cp2.second() == 2);
#endif
compressed_pair<int, empty_UDT> cp3(1);
assert(cp3.first() ==1);
compressed_pair<empty_UDT, empty_UDT> cp4;
compressed_pair<empty_UDT, empty_POD_UDT> cp5;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
int i = 0;
compressed_pair<int&, int&> cp6(i,i);
assert(cp6.first() == i);
assert(cp6.second() == i);
assert(&cp6.first() == &i);
assert(&cp6.second() == &i);
compressed_pair<int, double[2]> cp7;
cp7.first();
double* pd = cp7.second();
#endif
value_test(true, (sizeof(compressed_pair<empty_UDT, int>) < sizeof(std::pair<empty_UDT, int>)))
value_test(true, (sizeof(compressed_pair<int, empty_UDT>) < sizeof(std::pair<int, empty_UDT>)))
value_test(true, (sizeof(compressed_pair<empty_UDT, empty_UDT>) < sizeof(std::pair<empty_UDT, empty_UDT>)))
value_test(true, (sizeof(compressed_pair<empty_UDT, empty_POD_UDT>) < sizeof(std::pair<empty_UDT, empty_POD_UDT>)))
value_test(true, (sizeof(compressed_pair<empty_UDT, compressed_pair<empty_POD_UDT, int> >) < sizeof(std::pair<empty_UDT, std::pair<empty_POD_UDT, int> >)))
std::cout << std::endl << test_count << " tests completed (" << failures << " failures)... press any key to exit";
std::cin.get();
return failures;
}
//
// instanciate some compressed pairs:
#ifdef __MWERKS__
template class compressed_pair<int, double>;
template class compressed_pair<int, int>;
template class compressed_pair<empty_UDT, int>;
template class compressed_pair<int, empty_UDT>;
template class compressed_pair<empty_UDT, empty_UDT>;
template class compressed_pair<empty_UDT, empty_POD_UDT>;
#else
template class boost::compressed_pair<int, double>;
template class boost::compressed_pair<int, int>;
template class boost::compressed_pair<empty_UDT, int>;
template class boost::compressed_pair<int, empty_UDT>;
template class boost::compressed_pair<empty_UDT, empty_UDT>;
template class boost::compressed_pair<empty_UDT, empty_POD_UDT>;
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
//
// now some for which only a few specific members can be instantiated,
// first references:
template double& compressed_pair<double, int&>::first();
template int& compressed_pair<double, int&>::second();
template compressed_pair<double, int&>::compressed_pair(int&);
template compressed_pair<double, int&>::compressed_pair(call_traits<double>::param_type,int&);
//
// and then arrays:
#ifndef __MWERKS__
#ifndef __BORLANDC__
template call_traits<int[2]>::reference compressed_pair<double, int[2]>::second();
#endif
template call_traits<double>::reference compressed_pair<double, int[2]>::first();
template compressed_pair<double, int[2]>::compressed_pair(const double&);
template compressed_pair<double, int[2]>::compressed_pair();
#endif // __MWERKS__
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION

View File

@ -1,23 +0,0 @@
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// See boost/detail/call_traits.hpp and boost/detail/ob_call_traits.hpp
// for full copyright notices.
#ifndef BOOST_CALL_TRAITS_HPP
#define BOOST_CALL_TRAITS_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#include <boost/detail/ob_call_traits.hpp>
#else
#include <boost/detail/call_traits.hpp>
#endif
#endif // BOOST_CALL_TRAITS_HPP

View File

@ -1,23 +0,0 @@
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// See boost/detail/compressed_pair.hpp and boost/detail/ob_compressed_pair.hpp
// for full copyright notices.
#ifndef BOOST_COMPRESSED_PAIR_HPP
#define BOOST_COMPRESSED_PAIR_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#include <boost/detail/ob_compressed_pair.hpp>
#else
#include <boost/detail/compressed_pair.hpp>
#endif
#endif // BOOST_COMPRESSED_PAIR_HPP

View File

@ -1,10 +1,9 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
//
// See http://www.boost.org/libs/utility for most recent version including documentation.
// call_traits: defines typedefs for function usage
// (see libs/utility/call_traits.htm)
@ -22,29 +21,42 @@
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#include <cstddef>
#ifndef BOOST_TYPE_TRAITS_HPP
#include <boost/type_traits.hpp>
#endif
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/detail/workaround.hpp>
namespace boost{
namespace detail{
template <typename T, bool isp, bool b1, bool b2>
template <typename T, bool small_>
struct ct_imp2
{
typedef const T& param_type;
};
template <typename T>
struct ct_imp2<T, true>
{
typedef const T param_type;
};
template <typename T, bool isp, bool b1>
struct ct_imp
{
typedef const T& param_type;
};
template <typename T, bool isp>
struct ct_imp<T, isp, true, true>
struct ct_imp<T, isp, true>
{
typedef T const param_type;
typedef typename ct_imp2<T, sizeof(T) <= sizeof(void*)>::param_type param_type;
};
template <typename T, bool b1, bool b2>
struct ct_imp<T, true, b1, b2>
template <typename T, bool b1>
struct ct_imp<T, true, b1>
{
typedef T const param_type;
};
@ -64,7 +76,11 @@ public:
// however compiler bugs prevent this - instead pass three bool's to
// ct_imp<T,bool,bool,bool> and add an extra partial specialisation
// of ct_imp to handle the logic. (JM)
typedef typename detail::ct_imp<T, ::boost::is_pointer<typename remove_const<T>::type>::value, ::boost::is_arithmetic<typename remove_const<T>::type>::value, sizeof(T) <= sizeof(void*)>::param_type param_type;
typedef typename boost::detail::ct_imp<
T,
::boost::is_pointer<T>::value,
::boost::is_arithmetic<T>::value
>::param_type param_type;
};
template <typename T>
@ -76,7 +92,7 @@ struct call_traits<T&>
typedef T& param_type; // hh removed const
};
#if defined(__BORLANDC__) && (__BORLANDC__ <= 0x551)
#if BOOST_WORKAROUND( __BORLANDC__, BOOST_TESTED_AT( 0x570 ) )
// these are illegal specialisations; cv-qualifies applied to
// references have no effect according to [8.3.2p1],
// C++ Builder requires them though as it treats cv-qualified
@ -106,7 +122,7 @@ struct call_traits<T&const volatile>
typedef T& param_type; // hh removed const
};
#endif
#if !defined(BOOST_NO_ARRAY_TYPE_SPECIALIZATIONS)
template <typename T, std::size_t N>
struct call_traits<T [N]>
{
@ -132,6 +148,7 @@ public:
typedef const array_type& const_reference;
typedef const T* const param_type;
};
#endif
}

View File

@ -1,14 +1,16 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
//
// See http://www.boost.org/libs/utility for most recent version including documentation.
// compressed_pair: pair that "compresses" empty members
// (see libs/utility/compressed_pair.htm)
//
// JM changes 25 Jan 2004:
// For the case where T1 == T2 and both are empty, then first() and second()
// should return different objects.
// JM changes 25 Jan 2000:
// Removed default arguments from compressed_pair_switch to get
// C++ Builder 4 to accept them
@ -19,16 +21,19 @@
#define BOOST_DETAIL_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_TYPE_TRAITS_HPP
#include <boost/type_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/is_empty.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/call_traits.hpp>
#endif
namespace boost
{
template <class T1, class T2>
class compressed_pair;
// compressed_pair
namespace details
@ -75,7 +80,9 @@ namespace details
template <typename T>
inline void cp_swap(T& t1, T& t2)
{
#ifndef __GNUC__
using std::swap;
#endif
swap(t1, t2);
}
@ -99,10 +106,10 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_(x) {}
explicit compressed_pair_imp(second_param_type y)
compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return first_;}
@ -111,10 +118,10 @@ namespace details
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp& y)
void swap(::boost::compressed_pair<T1, T2>& y)
{
cp_swap(first_, y.first_);
cp_swap(second_, y.second_);
cp_swap(first_, y.first());
cp_swap(second_, y.second());
}
private:
first_type first_;
@ -125,7 +132,7 @@ namespace details
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 1>
: private T1
: private ::boost::remove_cv<T1>::type
{
public:
typedef T1 first_type;
@ -142,10 +149,10 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_type(x) {}
explicit compressed_pair_imp(second_param_type y)
compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return *this;}
@ -154,10 +161,10 @@ namespace details
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp& y)
void swap(::boost::compressed_pair<T1,T2>& y)
{
// no need to swap empty base class:
cp_swap(second_, y.second_);
cp_swap(second_, y.second());
}
private:
second_type second_;
@ -167,7 +174,7 @@ namespace details
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 2>
: private T2
: private ::boost::remove_cv<T2>::type
{
public:
typedef T1 first_type;
@ -184,10 +191,10 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: second_type(y), first_(x) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_(x) {}
explicit compressed_pair_imp(second_param_type y)
compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return first_;}
@ -196,10 +203,10 @@ namespace details
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
void swap(compressed_pair_imp& y)
void swap(::boost::compressed_pair<T1,T2>& y)
{
// no need to swap empty base class:
cp_swap(first_, y.first_);
cp_swap(first_, y.first());
}
private:
@ -210,8 +217,8 @@ namespace details
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 3>
: private T1,
private T2
: private ::boost::remove_cv<T1>::type,
private ::boost::remove_cv<T2>::type
{
public:
typedef T1 first_type;
@ -228,10 +235,10 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_type(y) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_type(x) {}
explicit compressed_pair_imp(second_param_type y)
compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return *this;}
@ -241,7 +248,7 @@ namespace details
second_const_reference second() const {return *this;}
//
// no need to swap empty bases:
void swap(compressed_pair_imp&) {}
void swap(::boost::compressed_pair<T1,T2>&) {}
};
// JM
@ -250,7 +257,7 @@ namespace details
// but reuses T1 base class for both first() and second().
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 4>
: private T1
: private ::boost::remove_cv<T1>::type
{
public:
typedef T1 first_type;
@ -264,20 +271,21 @@ namespace details
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type)
: first_type(x) {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), m_second(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_type(x) {}
compressed_pair_imp(first_param_type x)
: first_type(x), m_second(x) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
second_reference second() {return m_second;}
second_const_reference second() const {return m_second;}
void swap(compressed_pair_imp&) {}
void swap(::boost::compressed_pair<T1,T2>&) {}
private:
T2 m_second;
};
// 5 T1 == T2 and are not empty: //JM
@ -300,7 +308,7 @@ namespace details
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
compressed_pair_imp(first_param_type x)
: first_(x), second_(x) {}
first_reference first() {return first_;}
@ -309,10 +317,10 @@ namespace details
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp<T1, T2, 5>& y)
void swap(::boost::compressed_pair<T1, T2>& y)
{
cp_swap(first_, y.first_);
cp_swap(second_, y.second_);
cp_swap(first_, y.first());
cp_swap(second_, y.second());
}
private:
first_type first_;
@ -396,7 +404,10 @@ public:
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y) : base(x, y) {}
explicit compressed_pair(first_param_type x) : base(x) {}
#if !(defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x530))
explicit
#endif
compressed_pair(first_param_type x) : base(x) {}
first_reference first() {return base::first();}
first_const_reference first() const {return base::first();}
@ -404,7 +415,7 @@ public:
second_reference second() {return base::second();}
second_const_reference second() const {return base::second();}
void swap(compressed_pair& y) { base::swap(y); }
void swap(::boost::compressed_pair<T,T>& y) { base::swap(y); }
};
template <class T1, class T2>
@ -419,4 +430,3 @@ swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
#endif // BOOST_DETAIL_COMPRESSED_PAIR_HPP

View File

@ -1,14 +1,21 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
//
// See http://www.boost.org/libs/utility for most recent version including documentation.
//
// Crippled version for crippled compilers:
// see libs/utility/call_traits.htm
//
/* Release notes:
01st October 2000:
Fixed call_traits on VC6, using "poor man's partial specialisation",
using ideas taken from "Generative programming" by Krzysztof Czarnecki
& Ulrich Eisenecker.
*/
#ifndef BOOST_OB_CALL_TRAITS_HPP
#define BOOST_OB_CALL_TRAITS_HPP
@ -16,12 +23,135 @@
#include <boost/config.hpp>
#endif
#ifndef BOOST_TYPE_TRAITS_HPP
#include <boost/type_traits.hpp>
#ifndef BOOST_ARITHMETIC_TYPE_TRAITS_HPP
#include <boost/type_traits/arithmetic_traits.hpp>
#endif
#ifndef BOOST_COMPOSITE_TYPE_TRAITS_HPP
#include <boost/type_traits/composite_traits.hpp>
#endif
namespace boost{
#ifdef BOOST_MSVC6_MEMBER_TEMPLATES
//
// use member templates to emulate
// partial specialisation:
//
namespace detail{
template <class T>
struct standard_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
template <class T>
struct simple_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T param_type;
};
template <class T>
struct reference_call_traits
{
typedef T value_type;
typedef T reference;
typedef T const_reference;
typedef T param_type;
};
template <bool pointer, bool arithmetic, bool reference>
struct call_traits_chooser
{
template <class T>
struct rebind
{
typedef standard_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<true, false, false>
{
template <class T>
struct rebind
{
typedef simple_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<false, false, true>
{
template <class T>
struct rebind
{
typedef reference_call_traits<T> type;
};
};
template <bool size_is_small>
struct call_traits_sizeof_chooser2
{
template <class T>
struct small_rebind
{
typedef simple_call_traits<T> small_type;
};
};
template<>
struct call_traits_sizeof_chooser2<false>
{
template <class T>
struct small_rebind
{
typedef standard_call_traits<T> small_type;
};
};
template <>
struct call_traits_chooser<false, true, false>
{
template <class T>
struct rebind
{
enum { sizeof_choice = (sizeof(T) <= sizeof(void*)) };
typedef call_traits_sizeof_chooser2<(sizeof(T) <= sizeof(void*))> chooser;
typedef typename chooser::template small_rebind<T> bound_type;
typedef typename bound_type::small_type type;
};
};
} // namespace detail
template <typename T>
struct call_traits
{
private:
typedef detail::call_traits_chooser<
::boost::is_pointer<T>::value,
::boost::is_arithmetic<T>::value,
::boost::is_reference<T>::value
> chooser;
typedef typename chooser::template rebind<T> bound_type;
typedef typename bound_type::type call_traits_type;
public:
typedef typename call_traits_type::value_type value_type;
typedef typename call_traits_type::reference reference;
typedef typename call_traits_type::const_reference const_reference;
typedef typename call_traits_type::param_type param_type;
};
#else
//
// sorry call_traits is completely non-functional
// blame your broken compiler:
//
template <typename T>
struct call_traits
{
@ -31,6 +161,8 @@ struct call_traits
typedef const T& param_type;
};
#endif // member templates
}
#endif // BOOST_OB_CALL_TRAITS_HPP

View File

@ -1,13 +1,18 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
//
// See http://www.boost.org/libs/utility for most recent version including documentation.
// see libs/utility/compressed_pair.hpp
//
/* Release notes:
20 Jan 2001:
Fixed obvious bugs (David Abrahams)
07 Oct 2000:
Added better single argument constructor support.
03 Oct 2000:
Added VC6 support (JM).
23rd July 2000:
Additional comments added. (JM)
Jan 2000:
@ -20,8 +25,11 @@
#define BOOST_OB_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_TYPE_TRAITS_HPP
#include <boost/type_traits.hpp>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>
@ -29,6 +37,426 @@
namespace boost
{
#ifdef BOOST_MSVC6_MEMBER_TEMPLATES
//
// use member templates to emulate
// partial specialisation. Note that due to
// problems with overload resolution with VC6
// each of the compressed_pair versions that follow
// have one template single-argument constructor
// in place of two specific constructors:
//
template <class T1, class T2>
class compressed_pair;
namespace detail{
template <class A, class T1, class T2>
struct best_conversion_traits
{
typedef char one;
typedef char (&two)[2];
static A a;
static one test(T1);
static two test(T2);
enum { value = sizeof(test(a)) };
};
template <int>
struct init_one;
template <>
struct init_one<1>
{
template <class A, class T1, class T2>
static void init(const A& a, T1* p1, T2*)
{
*p1 = a;
}
};
template <>
struct init_one<2>
{
template <class A, class T1, class T2>
static void init(const A& a, T1*, T2* p2)
{
*p2 = a;
}
};
// T1 != T2, both non-empty
template <class T1, class T2>
class compressed_pair_0
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_0() : _first(), _second() {}
compressed_pair_0(first_param_type x, second_param_type y) : _first(x), _second(y) {}
template <class A>
explicit compressed_pair_0(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, &_second);
}
compressed_pair_0(const ::boost::compressed_pair<T1,T2>& x)
: _first(x.first()), _second(x.second()) {}
#if 0
compressed_pair_0& operator=(const compressed_pair_0& x) {
cout << "assigning compressed pair 0" << endl;
_first = x._first;
_second = x._second;
cout << "finished assigning compressed pair 0" << endl;
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_0& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
// T1 != T2, T2 empty
template <class T1, class T2>
class compressed_pair_1 : T2
{
private:
T1 _first;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_1() : T2(), _first() {}
compressed_pair_1(first_param_type x, second_param_type y) : T2(y), _first(x) {}
template <class A>
explicit compressed_pair_1(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, static_cast<T2*>(this));
}
compressed_pair_1(const ::boost::compressed_pair<T1,T2>& x)
: T2(x.second()), _first(x.first()) {}
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300
// Total weirdness. If the assignment to _first is moved after
// the call to the inherited operator=, then this breaks graph/test/graph.cpp
// by way of iterator_adaptor.
compressed_pair_1& operator=(const compressed_pair_1& x) {
_first = x._first;
T2::operator=(x);
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_1& y)
{
// no need to swap empty base class:
using std::swap;
swap(_first, y._first);
}
};
// T1 != T2, T1 empty
template <class T1, class T2>
class compressed_pair_2 : T1
{
private:
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_2() : T1(), _second() {}
compressed_pair_2(first_param_type x, second_param_type y) : T1(x), _second(y) {}
template <class A>
explicit compressed_pair_2(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), &_second);
}
compressed_pair_2(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), _second(x.second()) {}
#if 0
compressed_pair_2& operator=(const compressed_pair_2& x) {
cout << "assigning compressed pair 2" << endl;
T1::operator=(x);
_second = x._second;
cout << "finished assigning compressed pair 2" << endl;
return *this;
}
#endif
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_2& y)
{
// no need to swap empty base class:
using std::swap;
swap(_second, y._second);
}
};
// T1 != T2, both empty
template <class T1, class T2>
class compressed_pair_3 : T1, T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_3() : T1(), T2() {}
compressed_pair_3(first_param_type x, second_param_type y) : T1(x), T2(y) {}
template <class A>
explicit compressed_pair_3(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), static_cast<T2*>(this));
}
compressed_pair_3(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), T2(x.second()) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_3& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, and empty
template <class T1, class T2>
class compressed_pair_4 : T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_4() : T1() {}
compressed_pair_4(first_param_type x, second_param_type y) : T1(x), m_second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_4(first_param_type x) : T1(x), m_second(x) {}
compressed_pair_4(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), m_second(x.second()) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return m_second; }
second_const_reference second() const { return m_second; }
void swap(compressed_pair_4& y)
{
// no need to swap empty base classes:
}
private:
T2 m_second;
};
// T1 == T2, not empty
template <class T1, class T2>
class compressed_pair_5
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_5() : _first(), _second() {}
compressed_pair_5(first_param_type x, second_param_type y) : _first(x), _second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_5(first_param_type x) : _first(x), _second(x) {}
compressed_pair_5(const ::boost::compressed_pair<T1,T2>& c)
: _first(c.first()), _second(c.second()) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_5& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <bool e1, bool e2, bool same>
struct compressed_pair_chooser
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_0<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_1<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, false, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_2<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_3<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_4<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, false, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_5<T1, T2> type;
};
};
template <class T1, class T2>
struct compressed_pair_traits
{
private:
typedef compressed_pair_chooser<is_empty<T1>::value, is_empty<T2>::value, is_same<T1,T2>::value> chooser;
typedef typename chooser::template rebind<T1, T2> bound_type;
public:
typedef typename bound_type::type type;
};
} // namespace detail
template <class T1, class T2>
class compressed_pair : public detail::compressed_pair_traits<T1, T2>::type
{
private:
typedef typename detail::compressed_pair_traits<T1, T2>::type base_type;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base_type() {}
compressed_pair(first_param_type x, second_param_type y) : base_type(x, y) {}
template <class A>
explicit compressed_pair(const A& x) : base_type(x){}
first_reference first() { return base_type::first(); }
first_const_reference first() const { return base_type::first(); }
second_reference second() { return base_type::second(); }
second_const_reference second() const { return base_type::second(); }
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#else
// no partial specialisation, no member templates:
template <class T1, class T2>
class compressed_pair
@ -72,7 +500,11 @@ inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
x.swap(y);
}
#endif
} // boost
#endif // BOOST_OB_COMPRESSED_PAIR_HPP

View File

@ -1,559 +0,0 @@
// Boost operators.hpp header file ----------------------------------------//
// (C) Copyright David Abrahams 1999. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 04 Jul 00 Fixed NO_OPERATORS_IN_NAMESPACE bugs, major cleanup and
// refactoring of compiler workarounds, additional documentation
// (Alexy Gurtovoy and Mark Rodgers with some help and prompting from
// Dave Abrahams)
// 28 Jun 00 General cleanup and integration of bugfixes from Mark Rodgers and
// Jeremy Siek (Dave Abrahams)
// 20 Jun 00 Changes to accommodate Borland C++Builder 4 and Borland C++ 5.5
// (Mark Rodgers)
// 20 Jun 00 Minor fixes to the prior revision (Aleksey Gurtovoy)
// 10 Jun 00 Support for the base class chaining technique was added
// (Aleksey Gurtovoy). See documentation and the comments below
// for the details.
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
// 18 Nov 99 Change name "divideable" to "dividable", remove unnecessary
// specializations of dividable, subtractable, modable (Ed Brey)
// 17 Nov 99 Add comments (Beman Dawes)
// Remove unnecessary specialization of operators<> (Ed Brey)
// 15 Nov 99 Fix less_than_comparable<T,U> second operand type for first two
// operators.(Beman Dawes)
// 12 Nov 99 Add operators templates (Ed Brey)
// 11 Nov 99 Add single template parameter version for compilers without
// partial specialization (Beman Dawes)
// 10 Nov 99 Initial version
// 10 Jun 00:
// An additional optional template parameter was added to most of
// operator templates to support the base class chaining technique (see
// documentation for the details). Unfortunately, a straightforward
// implementation of this change would have broken compatibility with the
// previous version of the library by making it impossible to use the same
// template name (e.g. 'addable') for both the 1- and 2-argument versions of
// an operator template. This implementation solves the backward-compatibility
// issue at the cost of some simplicity.
//
// One of the complications is an existence of special auxiliary class template
// 'is_chained_base<>' (see 'detail' namespace below), which is used
// to determine whether its template parameter is a library's operator template
// or not. You have to specialize 'is_chained_base<>' for each new
// operator template you add to the library.
//
// However, most of the non-trivial implementation details are hidden behind
// several local macros defined below, and as soon as you understand them,
// you understand the whole library implementation.
#ifndef BOOST_OPERATORS_HPP
#define BOOST_OPERATORS_HPP
#include <boost/config.hpp>
#include <boost/iterator.hpp>
#if defined(__sgi) && !defined(__GNUC__)
#pragma set woff 1234
#endif
namespace boost {
namespace detail {
class empty_base {};
} // namespace detail
} // namespace boost
// In this section we supply the xxxx1 and xxxx2 forms of the operator
// templates, which are explicitly targeted at the 1-type-argument and
// 2-type-argument operator forms, respectively. Some compilers get confused
// when inline friend functions are overloaded in namespaces other than the
// global namespace. When BOOST_NO_OPERATORS_IN_NAMESPACE is defined, all of
// these templates must go in the global namespace.
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost
{
#endif
// Basic operator classes (contributed by Dave Abrahams) ------------------//
// Note that friend functions defined in a class are implicitly inline.
// See the C++ std, 11.4 [class.friend] paragraph 5
template <class T, class U, class B = ::boost::detail::empty_base>
struct less_than_comparable2 : B
{
friend bool operator<=(const T& x, const U& y) { return !(x > y); }
friend bool operator>=(const T& x, const U& y) { return !(x < y); }
friend bool operator>(const U& x, const T& y) { return y < x; }
friend bool operator<(const U& x, const T& y) { return y > x; }
friend bool operator<=(const U& x, const T& y) { return !(y < x); }
friend bool operator>=(const U& x, const T& y) { return !(y > x); }
};
template <class T, class B = ::boost::detail::empty_base>
struct less_than_comparable1 : B
{
friend bool operator>(const T& x, const T& y) { return y < x; }
friend bool operator<=(const T& x, const T& y) { return !(y < x); }
friend bool operator>=(const T& x, const T& y) { return !(x < y); }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct equality_comparable2 : B
{
friend bool operator==(const U& y, const T& x) { return x == y; }
friend bool operator!=(const U& y, const T& x) { return !(x == y); }
friend bool operator!=(const T& y, const U& x) { return !(y == x); }
};
template <class T, class B = ::boost::detail::empty_base>
struct equality_comparable1 : B
{
friend bool operator!=(const T& x, const T& y) { return !(x == y); }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct multipliable2 : B
{
friend T operator*(T x, const U& y) { return x *= y; }
friend T operator*(const U& y, T x) { return x *= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct multipliable1 : B
{
friend T operator*(T x, const T& y) { return x *= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct addable2 : B
{
friend T operator+(T x, const U& y) { return x += y; }
friend T operator+(const U& y, T x) { return x += y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct addable1 : B
{
friend T operator+(T x, const T& y) { return x += y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct subtractable2 : B
{
friend T operator-(T x, const U& y) { return x -= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct subtractable1 : B
{
friend T operator-(T x, const T& y) { return x -= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct dividable2 : B
{
friend T operator/(T x, const U& y) { return x /= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct dividable1 : B
{
friend T operator/(T x, const T& y) { return x /= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct modable2 : B
{
friend T operator%(T x, const U& y) { return x %= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct modable1 : B
{
friend T operator%(T x, const T& y) { return x %= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct xorable2 : B
{
friend T operator^(T x, const U& y) { return x ^= y; }
friend T operator^(const U& y, T x) { return x ^= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct xorable1 : B
{
friend T operator^(T x, const T& y) { return x ^= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct andable2 : B
{
friend T operator&(T x, const U& y) { return x &= y; }
friend T operator&(const U& y, T x) { return x &= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct andable1 : B
{
friend T operator&(T x, const T& y) { return x &= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct orable2 : B
{
friend T operator|(T x, const U& y) { return x |= y; }
friend T operator|(const U& y, T x) { return x |= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct orable1 : B
{
friend T operator|(T x, const T& y) { return x |= y; }
};
// incrementable and decrementable contributed by Jeremy Siek
template <class T, class B = ::boost::detail::empty_base>
struct incrementable : B
{
friend T operator++(T& x, int)
{
incrementable_type tmp(x);
++x;
return tmp;
}
private: // The use of this typedef works around a Borland bug
typedef T incrementable_type;
};
template <class T, class B = ::boost::detail::empty_base>
struct decrementable : B
{
friend T operator--(T& x, int)
{
decrementable_type tmp(x);
--x;
return tmp;
}
private: // The use of this typedef works around a Borland bug
typedef T decrementable_type;
};
// Iterator operator classes (contributed by Jeremy Siek) ------------------//
template <class T, class P, class B = ::boost::detail::empty_base>
struct dereferenceable : B
{
P operator->() const
{
return &*static_cast<const T&>(*this);
}
};
template <class T, class I, class R, class B = ::boost::detail::empty_base>
struct indexable : B
{
R operator[](I n) const
{
return *(static_cast<const T&>(*this) + n);
}
};
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
} // namespace boost
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
// BOOST_IMPORT_TEMPLATE1/BOOST_IMPORT_TEMPLATE2 -
//
// When BOOST_NO_OPERATORS_IN_NAMESPACE is defined we need a way to import an
// operator template into the boost namespace. BOOST_IMPORT_TEMPLATE1 is used
// for one-argument forms of operator templates; BOOST_IMPORT_TEMPLATE2 for
// two-argument forms. Note that these macros expect to be invoked from within
// boost.
#if defined(BOOST_NO_OPERATORS_IN_NAMESPACE)
# if defined(BOOST_NO_USING_TEMPLATE)
// Because a Borland C++ 5.5 bug prevents a using declaration from working,
// we are forced to use inheritance for that compiler.
# define BOOST_IMPORT_TEMPLATE2(template_name) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, U, B> {};
# define BOOST_IMPORT_TEMPLATE1(template_name) \
template <class T, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, B> {};
# else
// Otherwise, bring the names in with a using-declaration to avoid
// stressing the compiler
# define BOOST_IMPORT_TEMPLATE2(template_name) using ::template_name;
# define BOOST_IMPORT_TEMPLATE1(template_name) using ::template_name;
# endif // BOOST_NO_USING_TEMPLATE
#else // !BOOST_NO_OPERATORS_IN_NAMESPACE
// The template is already in boost so we have nothing to do.
# define BOOST_IMPORT_TEMPLATE2(template_name)
# define BOOST_IMPORT_TEMPLATE1(template_name)
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
//
// Here's where we put it all together, defining the xxxx forms of the templates
// in namespace boost. We also define specializations of is_chained_base<> for
// the xxxx, xxxx1, and xxxx2 templates, importing them into boost:: as
// neccessary.
//
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
// is_chained_base<> - a traits class used to distinguish whether an operator
// template argument is being used for base class chaining, or is specifying a
// 2nd argument type.
namespace boost {
// A type parameter is used instead of a plain bool because Borland's compiler
// didn't cope well with the more obvious non-type template parameter.
namespace detail {
struct true_t {};
struct false_t {};
} // namespace detail
// Unspecialized version assumes that most types are not being used for base
// class chaining. We specialize for the operator templates defined in this
// library.
template<class T> struct is_chained_base {
typedef ::boost::detail::false_t value;
};
} // namespace boost
// Import a 2-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
BOOST_IMPORT_TEMPLATE2(template_name2) \
template<class T, class U, class B> \
struct is_chained_base< ::boost::template_name2<T, U, B> > { \
typedef ::boost::detail::true_t value; \
};
// Import a 1-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE1(template_name1) \
BOOST_IMPORT_TEMPLATE1(template_name1) \
template<class T, class B> \
struct is_chained_base< ::boost::template_name1<T, B> > { \
typedef ::boost::detail::true_t value; \
};
// BOOST_OPERATOR_TEMPLATE(template_name) defines template_name<> such that it
// can be used for specifying both 1-argument and 2-argument forms. Requires the
// existence of two previously defined class templates named '<template_name>1'
// and '<template_name>2' which must implement the corresponding 1- and 2-
// argument forms.
//
// The template type parameter O == is_chained_base<U>::value is used to
// distinguish whether the 2nd argument to <template_name> is being used for
// base class chaining from another boost operator template or is describing a
// 2nd operand type. O == true_t only when U is actually an another operator
// template from the library. Partial specialization is used to select an
// implementation in terms of either '<template_name>1' or '<template_name>2'.
//
# define BOOST_OPERATOR_TEMPLATE(template_name) \
template <class T \
,class U = T \
,class B = ::boost::detail::empty_base \
,class O = typename is_chained_base<U>::value \
> \
struct template_name : template_name##2<T, U, B> {}; \
\
template<class T, class U, class B> \
struct template_name<T, U, B, ::boost::detail::true_t> \
: template_name##1<T, U> {}; \
\
template <class T, class B> \
struct template_name<T, T, B, ::boost::detail::false_t> \
: template_name##1<T, B> {}; \
\
template<class T, class U, class B, class O> \
struct is_chained_base< ::boost::template_name<T, U, B, O> > { \
typedef ::boost::detail::true_t value; \
}; \
\
BOOST_OPERATOR_TEMPLATE2(template_name##2) \
BOOST_OPERATOR_TEMPLATE1(template_name##1)
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
BOOST_IMPORT_TEMPLATE2(template_name2)
# define BOOST_OPERATOR_TEMPLATE1(template_name1) \
BOOST_IMPORT_TEMPLATE1(template_name1)
// In this case we can only assume that template_name<> is equivalent to the
// more commonly needed template_name1<> form.
# define BOOST_OPERATOR_TEMPLATE(template_name) \
template <class T, class B = ::boost::detail::empty_base> \
struct template_name : template_name##1<T, B> {};
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace boost {
BOOST_OPERATOR_TEMPLATE(less_than_comparable)
BOOST_OPERATOR_TEMPLATE(equality_comparable)
BOOST_OPERATOR_TEMPLATE(multipliable)
BOOST_OPERATOR_TEMPLATE(addable)
BOOST_OPERATOR_TEMPLATE(subtractable)
BOOST_OPERATOR_TEMPLATE(dividable)
BOOST_OPERATOR_TEMPLATE(modable)
BOOST_OPERATOR_TEMPLATE(xorable)
BOOST_OPERATOR_TEMPLATE(andable)
BOOST_OPERATOR_TEMPLATE(orable)
BOOST_OPERATOR_TEMPLATE1(incrementable)
BOOST_OPERATOR_TEMPLATE1(decrementable)
BOOST_OPERATOR_TEMPLATE2(dereferenceable)
// indexable doesn't follow the patterns above (it has 4 template arguments), so
// we just write out the compiler hacks explicitly.
#ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
# ifdef BOOST_NO_USING_TEMPLATE
template <class T, class I, class R, class B = ::boost::detail::empty_base>
struct indexable : ::indexable<T,I,R,B> {};
# else
using ::indexable;
# endif
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, class I, class R, class B>
struct is_chained_base< ::boost::indexable<T, I, R, B> > {
typedef ::boost::detail::true_t operator_template_type;
};
#endif
#undef BOOST_OPERATOR_TEMPLATE
#undef BOOST_OPERATOR_TEMPLATE2
#undef BOOST_OPERATOR_TEMPLATE1
#undef BOOST_IMPORT_TEMPLATE1
#undef BOOST_IMPORT_TEMPLATE2
// The following 'operators' classes can only be used portably if the derived class
// declares ALL of the required member operators.
template <class T, class U>
struct operators2
: less_than_comparable2<T,U
, equality_comparable2<T,U
, addable2<T,U
, subtractable2<T,U
, multipliable2<T,U
, dividable2<T,U
, modable2<T,U
, orable2<T,U
, andable2<T,U
, xorable2<T,U
> > > > > > > > > > {};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, class U = T>
struct operators : operators2<T, U> {};
template <class T> struct operators<T, T>
#else
template <class T> struct operators
#endif
: less_than_comparable<T
, equality_comparable<T
, addable<T
, subtractable<T
, multipliable<T
, dividable<T
, modable<T
, orable<T
, andable<T
, xorable<T
, incrementable<T
, decrementable<T
> > > > > > > > > > > > {};
// Iterator helper classes (contributed by Jeremy Siek) -------------------//
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct forward_iterator_helper
: equality_comparable<T
, incrementable<T
, dereferenceable<T,P
, boost::iterator<std::forward_iterator_tag, V, D
> > > > {};
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct bidirectional_iterator_helper
: equality_comparable<T
, incrementable<T
, decrementable<T
, dereferenceable<T,P
, boost::iterator<std::bidirectional_iterator_tag, V, D
> > > > > {};
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct random_access_iterator_helper
: equality_comparable<T
, less_than_comparable<T
, incrementable<T
, decrementable<T
, dereferenceable<T,P
, addable2<T,D
, subtractable2<T,D
, indexable<T,D,R
, boost::iterator<std::random_access_iterator_tag, V, D
> > > > > > > > >
{
#ifndef __BORLANDC__
friend D requires_difference_operator(const T& x, const T& y) {
return x - y;
}
#endif
}; // random_access_iterator_helper
} // namespace boost
#if defined(__sgi) && !defined(__GNUC__)
#pragma reset woff 1234
#endif
#endif // BOOST_OPERATORS_HPP

View File

@ -1,96 +0,0 @@
// boost utility.hpp header file -------------------------------------------//
// (C) Copyright boost.org 1999. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org for most recent version including documentation.
// Classes appear in alphabetical order
// Revision History
// 26 Jan 00 protected noncopyable destructor added (Miki Jovanovic)
// 10 Dec 99 next() and prior() templates added (Dave Abrahams)
// 30 Aug 99 moved cast templates to cast.hpp (Beman Dawes)
// 3 Aug 99 cast templates added
// 20 Jul 99 name changed to utility.hpp
// 9 Jun 99 protected noncopyable default ctor
// 2 Jun 99 Initial Version. Class noncopyable only contents (Dave Abrahams)
#ifndef BOOST_UTILITY_HPP
#define BOOST_UTILITY_HPP
#include <boost/config.hpp>
#include <cstddef> // for size_t
#include <utility> // for std::pair
namespace boost
{
// next() and prior() template functions -----------------------------------//
// Helper functions for classes like bidirectional iterators not supporting
// operator+ and operator-.
//
// Usage:
// const std::list<T>::iterator p = get_some_iterator();
// const std::list<T>::iterator prev = boost::prior(p);
// Contributed by Dave Abrahams
template <class T>
T next(T x) { return ++x; }
template <class T>
T prior(T x) { return --x; }
// class noncopyable -------------------------------------------------------//
// Private copy constructor and copy assignment ensure classes derived from
// class noncopyable cannot be copied.
// Contributed by Dave Abrahams
class noncopyable
{
protected:
noncopyable(){}
~noncopyable(){}
private: // emphasize the following members are private
noncopyable( const noncopyable& );
const noncopyable& operator=( const noncopyable& );
}; // noncopyable
// class tied -------------------------------------------------------//
// A helper for conveniently assigning the two values from a pair
// into separate variables. The idea for this comes from Jaakko J<>rvi's
// Binder/Lambda Library.
// Constributed by Jeremy Siek
template <class A, class B>
class tied {
public:
inline tied(A& a, B& b) : _a(a), _b(b) { }
template <class U, class V>
inline tied& operator=(const std::pair<U,V>& p) {
_a = p.first;
_b = p.second;
return *this;
}
protected:
A& _a;
B& _b;
};
template <class A, class B>
inline tied<A,B> tie(A& a, B& b) { return tied<A,B>(a, b); }
} // namespace boost
#endif // BOOST_UTILITY_HPP

View File

@ -1,72 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost Utility Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table border="1" cellpadding="2" bgcolor="#007F7F">
<tr>
<td bgcolor="#FFFFFF"><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86"></td>
<td><a href="../../index.htm"><font color="#FFFFFF" size="4" face="Arial">Home</font></a></td>
<td><a href="../../libraries.htm"><font color="#FFFFFF" size="4" face="Arial">Libraries</font></a></td>
<td><a href="../../people.htm"><font color="#FFFFFF" size="4" face="Arial">People</font></a></td>
<td><a href="../../more/faq.htm"><font color="#FFFFFF" size="4" face="Arial">FAQ</font></a></td>
<td><a href="../../more/index.htm"><font color="#FFFFFF" size="4" face="Arial">More</font></a></td>
</tr>
</table>
<h1>Boost Utility Library</h1>
<table border="1" cellpadding="5">
<tr>
<td><b><i>Header</i></b></td>
<td><b><i>Contents</i></b></td>
</tr>
<tr>
<td><a href="../../boost/utility.hpp"><code>boost/utility.hpp<br>
</code></a><a href="utility.htm">[Documentation]</a></td>
<td>Class <b>noncopyable</b> plus <b>next()</b> and <b>prior()</b> template
functions.</td>
</tr>
<tr>
<td><a href="../../boost/cast.hpp"><code>boost/cast.hpp</code></a><br>
<a href="cast.htm">[Documentation]</a></td>
<td><b>polymorphic_cast</b>, <b>implicit_cast</b>, and <b>numeric_cast</b>
function templates.
<p><i>[Beta.]</i></p>
</td>
</tr>
<tr>
<td><a href="../../boost/operators.hpp">boost/operators.hpp</a><br>
<a href="operators.htm">[Documentation]</a></td>
<td>Templates <b>equality_comparable</b>, <b>less_than_comparable</b>, <b>addable</b>,
and the like ease the task of defining comparison and arithmetic
operators, and iterators.</td>
</tr>
<tr>
<td><a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a><br>
[<a href="type_traits.htm">Documentation</a>]</td>
<td>Template classes that describe the fundamental properties of a type. [<a href="c++_type_traits.htm">DDJ
Article &quot;C++ type traits&quot;</a>]</td>
</tr>
<tr>
<td><a href="../../boost/detail/call_traits.hpp">boost/call_traits.hpp</a><br>
[<a href="call_traits.htm">Documentation</a>]</td>
<td>Template class call_traits&lt;T&gt;, that defines types used for passing
parameters to and from a proceedure.</td>
</tr>
<tr>
<td><a href="../../boost/detail/compressed_pair.hpp">boost/compressed_pair.hpp</a><br>
[<a href="compressed_pair.htm">Documentation</a>]</td>
<td>Template class compressed_pait&lt;T1, T2&gt; which pairs two values
using the empty member optimisation where appropriate.</td>
</tr>
</table>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->27 July 2000<!--webbot bot="Timestamp" endspan i-checksum="18770" --></p>
</body>
</html>

View File

@ -1,45 +0,0 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <functional>
#include <algorithm>
#include <iostream>
#include <boost/iterator_adaptors.hpp>
int
main(int, char*[])
{
// This is a simple example of using the transform_iterators class to
// generate iterators that multiply the value returned by dereferencing
// the iterator. In this case we are multiplying by 2.
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
typedef std::binder1st< std::multiplies<int> > Function;
typedef boost::transform_iterator<Function, int*,
boost::iterator<std::random_access_iterator_tag, int>
>::type doubling_iterator;
doubling_iterator i(x, std::bind1st(std::multiplies<int>(), 2)),
i_end(x + sizeof(x)/sizeof(int), std::bind1st(std::multiplies<int>(), 2));
std::cout << "multiplying the array by 2:" << std::endl;
while (i != i_end)
std::cout << *i++ << " ";
std::cout << std::endl;
// Here is an example of counting from 0 to 5 using the integer_range class.
boost::integer_range<int> r(0,5);
std::cout << "counting to from 0 to 4:" << std::endl;
std::copy(r.begin(), r.end(), std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}

View File

@ -1,629 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Header boost/iterator_adaptors.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="center" width="277" height="86">
<h1>Header
<a href="../../boost/pending/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a></h1>
<p>The file <tt>boost/iterator_adaptors.hpp</tt>
includes the main <tt>iterator_adaptors</tt> class and several other classes
for constructing commonly used iterator adaptors.</p>
<ul>
<li><a href="#iterator_adaptors"><tt>iterator_adaptors</tt></a>.
<li><a href="#iterator_adaptor"><tt>iterator_adaptor</tt></a>.
<li><a href="#transform_iterator"><tt>transform_iterator</tt></a>
<li><a href="#indirect_iterators"><tt>indirect_iterators</tt></a>
<li><a href="#reverse_iterators"><tt>reverse_iterators</tt></a>
<li><a href="#integer_range"><tt>integer_range</tt></a>
</ul>
<!-- put in something about Andrei Alexandrescu's contribution? -->
<p><a href="http://www.boost.org/people/dave_abrahams.htm">Dave
Abrahams</a> started the library, coming up with the idea to use
policy classes and how to handle the const/non-const iterator
interactions. He also contributed the <tt>indirect_iterators</tt> and
<tt>reverse_iterators</tt> classes.<br>
<a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a>
contributed <tt>transform_iterator</tt>, <tt>integer_range</tt>,
and this documentation.
<h3><a name="iterator_adaptors">The Iterator Adaptors Class</a></h3>
Implementing standard conforming iterators is a non-trivial task.
There are some fine-points such as iterator/const_iterator
interactions and there are the myriad of operators that should be
implemented but are easily forgotten such as
<tt>operator-&gt;()</tt>. The purpose of the
<tt>iterator_adaptors</tt> class is to make it easier to implement an
iterator class, and even easier to extend and adapt existing iterator
types. The <tt>iterator_adaptors</tt> class itself is not an adaptor
class but a <i>type generator</i>. It generates a pair of adaptor classes,
one class for the mutable iterator and one class for the const
iterator. The definition of the <tt>iterator_adaptors</tt> class is as
follows:
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class Iterator,
class ConstIterator,
class Traits = std::iterator_traits&lt;Iterator&gt;,
class ConstTraits = std::iterator_traits&lt;ConstIterator&gt;,
class Policies = default_iterator_policies&gt;
struct iterator_adaptors
{
typedef ... iterator;
typedef ... const_iterator;
};
</PRE></TD></TABLE>
<p>The <tt>Iterator</tt> and <tt>ConstIterator</tt> template parameters
are the iterator types that you want to adapt. The <tt>Traits</tt> and
<tt>ConstTraits</tt> must be iterator traits classes. The traits
parameters default to the specialization of the
<tt>std::iterator_traits</tt> class for the adapted iterators. If you
want the traits for your new iterator adaptor (<tt>value_type</tt>,
<tt>iterator_category</tt>, etc.) to be the same as the adapted
iterator then use the default, otherwise create your own traits
classes and pass them in <a href="#1">[1]</a>.
<p>The <tt>Policies</tt> class that you pass in will become the heart of
the iterator adaptor. The policy class determines how your new adaptor
class will behave. The <tt>Policies</tt> class must implement 3, 4, or
7 of the core iterator operations depending on whether you wish the
new iterator adaptor class to be a
<a href="http://www.sgi.com/Technology/STL/ForwardIterator.html">
ForwardIterator</a>,
<a href="http://www.sgi.com/Technology/STL/BidirectionalIterator.html">
BidirectionalIterator</a>, or <a
href="http://www.sgi.com/Technology/STL/RandomAccessIterator.html">
RandomAccessIterator</a>. Make sure that the
<tt>iterator_category</tt> type of the traits class you pass in
matches the category of iterator that you want to create. The default
policy class, <tt>default_iterator_policies</tt>, implements all 7 of
the core operations in the usual way. If you wish to create an
iterator adaptor that only changes a few of the iterator's behaviors,
then you can have your new policy class inherit from
<tt>default_iterator_policies</tt> to avoid retyping the usual
behaviours. You should also look at <tt>default_iterator_policies</tt>
as the &quot;boiler-plate&quot; for your own policy classes. The
following is definition of the <tt>default_iterator_policies</tt>
class:
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
struct default_iterator_policies
{
// required for a ForwardIterator
template &lt;class Reference, class Iterator&gt;
Reference dereference(type&lt;Reference&gt;, const Iterator& x) const
{ return *x; }
template &lt;class Iterator&gt;
void increment(Iterator& x) const
{ ++x; }
template &lt;class Iterator1, class Iterator2&gt;
bool equal(Iterator1& x, Iterator2& y) const
{ return x == y; }
// required for a BidirectionalIterator
template &lt;class Iterator&gt;
void decrement(Iterator& x) const
{ --x; }
// required for a RandomAccessIterator
template &lt;class Iterator, class DifferenceType&gt;
void advance(Iterator& x, DifferenceType n) const
{ x += n; }
template &lt;class Difference, class Iterator1, class Iterator2&gt;
Difference distance(type&lt;Difference&gt;, Iterator1& x, Iterator2& y) const
{ return y - x; }
template &lt;class Iterator1, class Iterator2&gt;
bool less(Iterator1& x, Iterator2& y) const
{ return x &lt; y; }
};
</PRE></TD></TABLE>
<p>
The generated iterator adaptor types will have the following
constructors.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
<i>iterator</i>(const Iterator& i, const Policies& p = Policies())
<i>const_iterator</i>(const ConstIterator& i, const Policies& p = Policies())
</PRE></TD></TABLE>
<h3><a name="iterator_adaptor">The Iterator Adaptor Class</a></h3>
This is the class used inside of the <tt>iterator_adaptors</tt> type
generator. Use this class directly (instead of using
<tt>iterator_adaptors</tt>) when there is no difference between the
const and non-const versions of the iterator type. Often this is
because there is only a const (read-only) version of the iterator, as
is the case for <tt>std::set</tt>'s iterators. Use the same type for
the <tt>Iterator</tt> and <tt>NonconstIterator</tt> template
arguments.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class Iterator,
class Policies = default_iterator_policies,
class NonconstIterator = Iterator,
class Traits = std::iterator_traits&lt;Iterator&gt; &gt;
struct iterator_adaptor;
</PRE></TD></TABLE>
<p>
Next we will look at some iterator adaptors that are examples of how
to use the iterator adaptors class, and that are useful iterator
adaptors in their own right.
<h3><a name="transform_iterator">The Transform Iterator Class</a></h3>
It is often useful to automatically apply some function to the value
returned by dereferencing (<tt>operator*()</tt>) an iterator. The
<tt>transform_iterators</tt> class makes it easy to create an iterator
adaptor that does just that.
First let us consider what the <tt>Policies</tt> class for the transform
iterator should look like. We are only changing one of the iterator
behaviours, so we will inherit from
<tt>default_iterator_policies</tt>. In addition, we will need a
function object to apply, so we will have a template parameter and a
data member for the function object. The function will take one
argument (the dereferenced value) and we will need to know the
<tt>result_type</tt> of the function, so <a
href="http://www.sgi.com/Technology/STL/AdaptableUnaryFunction.html">
AdaptableUnaryFunction</a> is the corrent concept to choose for the
function object type. Now for the heart of our iterator adaptor, we
implement the <tt>dereference</tt> method, applying the function
object to <tt>*i</tt>. The <tt>type&lt;Reference&gt;</tt> class is
there to tell you what the reference type of the iterator is, which is
handy when writing generic iterator adaptors such as this one <a
href="#2">[2]</a>.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class AdaptableUnaryFunction&gt;
struct transform_iterator_policies : public default_iterator_policies
{
transform_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template &lt;class Reference, class Iterator&gt;
Reference dereference(type&lt;Reference&gt;, const Iterator& i) const
{ return m_f(*i); }
AdaptableUnaryFunction m_f;
};
</PRE></TD></TABLE>
Next we need to create the traits class for our new iterator. In some
situations you may need to create a separate traits class for the
const and non-const iterator types, but here a single traits class
will do. The <tt>value_type</tt> and <tt>reference</tt> type of our
transform iterator will be the <tt>result_type</tt> of the function
object. The <tt>difference_type</tt> and <tt>iterator_category</tt>
will be the same as the adapted iterator.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class AdaptableUnaryFunction, class IteratorTraits&gt;
struct transform_iterator_traits {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef value_type reference;
typedef value_type* pointer;
typedef typename IteratorTraits::difference_type difference_type;
typedef typename IteratorTraits::iterator_category iterator_category;
};
</PRE></TD></TABLE>
The final step is to use the <tt>iterator_adaptor</tt> class to
construct our transform iterator. We will use the single iterator
adaptor version because we will not need to create both a mutable and
const version of the transform iterator. The transform iterator is
inherently a read-only iterator. The nicest way to package up our new
transform iterator is to create a type generator similar to
<tt>iterator_adaptor</tt>. The first template parameter will be the
type of the function object. The second parameter will be the adapted
iterator type. The third parameter is the trait class for
the adapted iterator. Inside the <tt>transform_iterators</tt> class
we use the <tt>transform_iterator_traits</tt> class defined above to
create the traits class for the new transform iterator. We then use
the <tt>iterator_adaptor</tt> class to extract the generated
iterator adaptor type.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class AdaptableUnaryFunction,
class Iterator,
class Traits = std::iterator_traits&lt;Iterator&gt;
&gt;
struct transform_iterator
{
typedef transform_iterator_traits&lt;AdaptableUnaryFunction,Traits&gt;
TransTraits;
typedef iterator_adaptor&lt;Iterator, TransTraits,
transform_iterator_policies&lt;AdaptableUnaryFunction&gt; &gt;::type type;
};
</PRE></TD></TABLE>
<p>
The following is a simple example of how to use the
<tt>transform_iterators</tt> class to iterate through a range of
numbers, multiplying each of them by 2 when they are dereferenced.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
#include &lt;functional&gt;
#include &lt;iostream&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
int
main(int, char*[])
{
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
typedef std::binder1st&lt; std::multiplies&lt;int&gt; &gt; Function;
typedef boost::transform_iterator&lt;Function, int*,
boost::iterator&lt;std::random_access_iterator_tag, int&gt;
&gt;::type doubling_iterator;
doubling_iterator i(x, std::bind1st(std::multiplies&lt;int&gt;(), 2)),
i_end(x + sizeof(x)/sizeof(int), std::bind1st(std::multiplies&lt;int&gt;(), 2));
std::cout &lt;&lt; "multiplying the array by 2:" &lt;&lt; std::endl;
while (i != i_end)
std::cout &lt;&lt; *i++ &lt;&lt; " ";
std::cout &lt;&lt; std::endl;
return 0;
}
</PRE></TD></TABLE>
<h3><a name="indirect_iterators">The Indirect Iterators Class</a></h3>
It is not all that uncommon to create data structures that consist of
pointers to pointers. For such a structure it might be nice to have an
iterator that applies a double-dereference inside the
<tt>operator*()</tt>. The implementation of this is similar to the
<tt>transform_iterators</tt><a href="#3">[3]</a>. We first create a
policies class which does a double-dereference in the
<tt>dereference()</tt> method. We then create a traits class, this
time also including a template parameter for the traits of the second
level iterators as well as the first. Lastly we wrap this up in the
type generator <tt>indirect_iterators</tt>, using
<tt>iterator_adaptors</tt> to do most of the work.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
struct indirect_iterator_policies : public default_iterator_policies
{
template &lt;class Reference, class Iterator&gt;
Reference dereference(type&lt;Reference&gt;, const Iterator& x) const
{ return **x; }
};
template &lt;class IndirectIterator,
class IndirectTraits = std::iterator_traits&lt;IndirectIterator&gt;,
class Traits =
std::iterator_traits&lt;typename IndirectTraits::value_type&gt;
&gt;
struct indirect_traits
{
typedef typename IndirectTraits::difference_type difference_type;
typedef typename Traits::value_type value_type;
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
typedef typename IndirectTraits::iterator_category iterator_category;
};
template &lt;class IndirectIterator, class ConstIndirectIterator,
class IndirectTraits =
std::iterator_traits&lt;IndirectIterator&gt;,
class ConstIndirectTraits =
std::iterator_traits&lt;ConstIndirectIterator&gt;,
class Traits =
std::iterator_traits&lt;typename IndirectTraits::value_type&gt;
&gt;
struct indirect_iterators
{
typedef typename IndirectTraits::value_type Iterator;
typedef typename Traits::value_type ValueType;
typedef iterator_adaptors&lt;IndirectIterator, ConstIndirectIterator,
indirect_traits&lt;IndirectIterator, IndirectTraits, Traits&gt;,
indirect_traits&lt;ConstIndirectIterator, ConstIndirectTraits, Traits&gt;,
indirect_iterator_policies
&gt; Adaptors;
typedef typename Adaptors::iterator iterator;
typedef typename Adaptors::const_iterator const_iterator;
};
</PRE></TD></TABLE>
<h3><a name="reverse_iterators">The Reverse Iterators Class</a></h3>
<p>
Yes, there is already a <tt>reverse_iterator</tt> adaptor class
defined in the C++ Standard, but using the <tt>iterator_adaptors</tt>
class we can re-implement this classic adaptor in a more succinct and
elegant fashion. Also, this makes for a good example of using
<tt>iterator_adaptors</tt> that is in familiar territory.
<p>
The first step is to create the <tt>Policies</tt> class. As in the
<tt>std::reverse_iterator</tt> class, we need to flip all the
operations of the iterator. Increment will become decrement, advancing
by <tt>n</tt> will become retreating by <tt>n</tt>, etc.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
struct reverse_iterator_policies
{
template &lt;class Reference, class Iterator&gt;
Reference dereference(type&lt;Reference&gt;, const Iterator& x) const
{ return *boost::prior(x); }
// this is equivalent to { Iterator tmp = x; return *--tmp; }
template &lt;class Iterator&gt;
void increment(Iterator& x) const
{ --x; }
template &lt;class Iterator&gt;
void decrement(Iterator& x) const
{ ++x; }
template &lt;class Iterator, class DifferenceType&gt;
void advance(Iterator& x, DifferenceType n) const
{ x -= n; }
template &lt;class Difference, class Iterator1, class Iterator2&gt;
Difference distance(type&lt;Difference&gt;, Iterator1& x, Iterator2& y) const
{ return x - y; }
template &lt;class Iterator1, class Iterator2&gt;
bool equal(Iterator1& x, Iterator2& y) const
{ return x == y; }
template &lt;class Iterator1, class Iterator2&gt;
bool less(Iterator1& x, Iterator2& y) const
{ return y &lt; x; }
};
</PRE></TD></TABLE>
Since the traits of the reverse iterator adaptor will be the same as
the adapted iterator's traits, we do not need to create new traits
classes as was the case for <tt>transform_iterator</tt>. We can skip to
the final stage of creating a type generator class for our reverse
iterators using the <tt>iterator_adaptor</tt> class.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class Iterator, class ConstIterator,
class Traits = std::iterator_traits&lt;Iterator&gt;,
class ConstTraits = std::iterator_traits&lt;ConstIterator&gt;
&gt;
struct reverse_iterators
{
typedef iterator_adaptors&lt;Iterator,ConstIterator,Traits,ConstTraits,
reverse_iterator_policies&gt; Adaptor;
typedef typename Adaptor::iterator iterator;
typedef typename Adaptor::const_iterator const_iterator;
};
</PRE></TD></TABLE>
A typical use of the <tt>reverse_iterators</tt> class is in
user-defined container types. You can use the
<tt>reverse_iterators</tt> class to generate the reverse iterators for
your container.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
class my_container {
...
typedef ... iterator;
typedef ... const_iterator;
typedef reverse_iterators&lt;iterator, const_iterator&gt; RevIters;
typedef typename RevIters::iterator reverse_iterator;
typedef typename RevIters::const_iterator const_reverse_iterator;
...
};
</PRE></TD></TABLE>
<h3><a name="integer_range">The Integer Range Class</a></h3>
The <tt>iterator_adaptors</tt> class can not only be used for adapting
iterators, but it can also be used to take a non-iterator type and use
it to build an iterator. An especially simple example of this is
turning an integer type into an iterator, a counting iterator. The
builtin integer types of C++ are almost iterators. They have
<tt>operator++()</tt>, <tt>operator--()</tt>, etc. The one operator
they are lacking is the <tt>operator*()</tt>, which we will want to
simply return the current value of the integer. The following few
lines of code implement the policy and traits class for the counting
iterator.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
struct counting_iterator_policies : public default_iterator_policies
{
template &lt;class IntegerType&gt;
IntegerType dereference(type&lt;IntegerType&gt;, const IntegerType& i) const
{ return i; }
};
template &lt;class IntegerType&gt;
struct counting_iterator_traits {
typedef IntegerType value_type;
typedef IntegerType reference;
typedef value_type* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
};
</PRE></TD></TABLE>
Typically we will want to count the integers in some range, so a nice
interface would be to have a fake container that represents the range
of integers. The following is the definition of such a class called
<tt>integer_range</tt>.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class IntegerType&gt;
struct integer_range {
typedef typename iterator_adaptor&lt;IntegerType,
counting_iterator_traits&lt;IntegerType&gt;,
counting_iterator_policies &gt;::type iterator;
typedef iterator const_iterator;
typedef IntegerType value_type;
typedef std::ptrdiff_t difference_type;
typedef IntegerType reference;
typedef IntegerType* pointer;
typedef IntegerType size_type;
integer_range(IntegerType start, IntegerType finish)
: m_start(start), m_finish(finish) { }
iterator begin() const { return iterator(m_start); }
iterator end() const { return iterator(m_finish); }
size_type size() const { return m_finish - m_start; }
bool empty() const { return m_finish == m_start; }
void swap(integer_range& x) {
std::swap(m_start, x.m_start);
std::swap(m_finish, x.m_finish);
}
protected:
IntegerType m_start, m_finish;
};
</PRE></TD></TABLE>
<p>
The following is an example of how to use the
<tt>integer_range</tt> class to count from 0 to 4.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
boost::integer_range&lt;int&gt; r(0,5);
cout &lt;&lt; "counting to from 0 to 4:" &lt;&lt; endl;
std::copy(r.begin(), r.end(), ostream_iterator&lt;int&gt;(cout, " "));
cout &lt;&lt; endl;
</PRE></TD></TABLE>
<h3>Challenge</h3>
<p>
There is an unlimited number of ways the the
<tt>iterator_adaptors</tt> class can be used to create iterators. One
interesting exercise would be to re-implement the iterators of
<tt>std::list</tt> and <tt>std::slist</tt> using
<tt>iterator_adaptors</tt>, where the adapted <tt>Iterator</tt> types
would be node pointers.
<h3>Notes</h3>
<p>
<a name="1">[1]</a>
If your compiler does not support partial specialization and hence
does not have a working <tt>std::iterator_traits</tt> class, you will
not be able to use the defaults and will need to supply your own
<tt>Traits</tt> and <tt>ConstTraits</tt> classes.
<p>
<a name="2">[2]</a>
The reference type could also be obtained from
<tt>std::iterator_traits</tt>, but that is not portable on compilers
that do not support partial specialization.
<p>
<a name="3">[3]</a>
It would have been more elegant to implement <tt>indirect_iterators</tt>
using <tt>transform_iterators</tt>, but for subtle reasons that would require
the use of <tt>boost::remove_cv</tt> which is not portable.
<h3>Implementation Notes</h3>
The code is somewhat complicated because there are three iterator
adaptor class: <tt>forward_iterator_adaptor</tt>,
<tt>bidirectional_iterator_adaptor</tt>, and
<tt>random_access_iterator_adaptor</tt>. The alternative would be to
just have one iterator adaptor equivalent to the
<tt>random_access_iterator_adaptor</tt>. The reason for going with
the three adaptors is that according to 14.5.3p5 in the C++ Standard,
friend functions defined inside a template class body are instantiated
when the template class is instantiated. This means that if we only
used the one iterator adaptor, then if the adapted iterator did not
meet all of the requirements for a
<a href="http://www.sgi.com/Technology/STL/RandomAccessIterator.html">
RandomAccessIterator</a> then a compiler error should occur. Many
current compilers in fact do not instantiate the friend functions
unless used, so we could get away with the one iterator adaptor in
most cases. However, out of respect for the standard this implementation
uses the three adaptors.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->17 Jun 2000<!--webbot bot="Timestamp" endspan i-checksum="15055" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>

View File

@ -1,169 +0,0 @@
// Demonstrate and test boost/operators.hpp on std::iterators --------------//
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
#include <string>
#include <iostream>
using namespace std;
#include <boost/operators.hpp>
using namespace boost;
template <class T, class R, class P>
struct test_iter
: public boost::random_access_iterator_helper<
test_iter<T,R,P>, T, std::ptrdiff_t, P, R>
{
typedef test_iter self;
typedef R Reference;
typedef std::ptrdiff_t Distance;
public:
test_iter(T* i) : _i(i) { }
test_iter(const self& x) : _i(x._i) { }
self& operator=(const self& x) { _i = x._i; return *this; }
Reference operator*() const { return *_i; }
self& operator++() { ++_i; return *this; }
self& operator--() { --_i; return *this; }
self& operator+=(Distance n) { _i += n; return *this; }
self& operator-=(Distance n) { _i -= n; return *this; }
bool operator==(const self& x) const { return _i == x._i; }
bool operator<(const self& x) const { return _i < x._i; }
friend Distance operator-(const self& x, const self& y) {
return x._i - y._i;
}
protected:
T* _i;
};
int
main()
{
string array[] = { "apple", "orange", "pear", "peach", "grape", "plum" };
{
test_iter<string,string&,string*> i = array,
ie = array + sizeof(array)/sizeof(string);
// Tests for all of the operators added by random_access_iterator_helper
// test i++
while (i != ie)
cout << *i++ << " ";
cout << endl;
i = array;
// test i--
while (ie != i) {
ie--;
cout << *ie << " ";
}
cout << endl;
ie = array + sizeof(array)/sizeof(string);
// test i->m
while (i != ie) {
cout << i->size() << " ";
++i;
}
cout << endl;
i = array;
// test i + n
while (i < ie) {
cout << *i << " ";
i = i + 2;
}
cout << endl;
i = array;
// test n + i
while (i < ie) {
cout << *i << " ";
i = ptrdiff_t(2) + i;
}
cout << endl;
i = array;
// test i - n
while (ie > i) {
ie = ie - 2;
cout << *ie << " ";
}
cout << endl;
ie = array + sizeof(array)/sizeof(string);
// test i[n]
for (std::size_t j = 0; j < sizeof(array)/sizeof(string); ++j)
cout << i[j] << " ";
cout << endl;
}
{
test_iter<string, const string&, const string*> i = array,
ie = array + sizeof(array)/sizeof(string);
// Tests for all of the operators added by random_access_iterator_helper
// test i++
while (i != ie)
cout << *i++ << " ";
cout << endl;
i = array;
// test i--
while (ie != i) {
ie--;
cout << *ie << " ";
}
cout << endl;
ie = array + sizeof(array)/sizeof(string);
// test i->m
while (i != ie) {
cout << i->size() << " ";
++i;
}
cout << endl;
i = array;
// test i + n
while (i < ie) {
cout << *i << " ";
i = i + 2;
}
cout << endl;
i = array;
// test n + i
while (i < ie) {
cout << *i << " ";
i = ptrdiff_t(2) + i;
}
cout << endl;
i = array;
// test i - n
while (ie > i) {
ie = ie - 2;
cout << *ie << " ";
}
cout << endl;
ie = array + sizeof(array)/sizeof(string);
// test i[n]
for (std::size_t j = 0; j < sizeof(array)/sizeof(string); ++j)
cout << i[j] << " ";
cout << endl;
}
return 0;
}

View File

@ -1,38 +0,0 @@
// boost class noncopyable test program ------------------------------------//
// (C) Copyright boost.org 1999. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 9 Jun 99 Add unnamed namespace
// 2 Jun 99 Initial Version
#include <boost/utility.hpp>
#include <iostream>
// This program demonstrates compiler errors resulting from trying to copy
// construct or copy assign a class object derived from class noncopyable.
namespace
{
class DontTreadOnMe : boost::noncopyable
{
public:
DontTreadOnMe() { std::cout << "defanged!" << std::endl; }
}; // DontTreadOnMe
} // unnamed namespace
int main()
{
DontTreadOnMe object1;
DontTreadOnMe object2(object1);
object1 = object2;
return 0;
} // main

View File

@ -1,598 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Header boost/operators.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" width="277" height="86">Header
<a href="../../boost/operators.hpp">boost/operators.hpp</a></h1>
<p>Header <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>
supplies (in namespace boost) several sets of templates:</p>
<ul>
<li><a href="#Arithmetic">Arithmetic operators</a>.
<li><a href="#deref and helpers">Dereference operators and iterator helpers.</a></li>
</ul>
<p>These templates define many global operators in terms of a minimal number of
fundamental operators.</p>
<h1><a name="Arithmetic">Arithmetic</a> Operators</h1>
<p>If, for example, you declare a class like this:</p>
<blockquote>
<pre>class MyInt : boost::operators&lt;MyInt&gt;
{
bool operator&lt;(const MyInt&amp; x) const;
bool operator==(const MyInt&amp; x) const;
MyInt&amp; operator+=(const MyInt&amp; x);
MyInt&amp; operator-=(const MyInt&amp; x);
MyInt&amp; operator*=(const MyInt&amp; x);
MyInt&amp; operator/=(const MyInt&amp; x);
MyInt&amp; operator%=(const MyInt&amp; x);
MyInt&amp; operator|=(const MyInt&amp; x);
MyInt&amp; operator&amp;=(const MyInt&amp; x);
MyInt&amp; operator^=(const MyInt&amp; x);
MyInt&amp; operator++();
MyInt&amp; operator--();
};</pre>
</blockquote>
<p>then the <code>operators&lt;&gt;</code> template adds more than a dozen
additional operators, such as operator&gt;, &lt;=, &gt;=, and +.&nbsp; <a href="#two_arg">Two-argument
forms</a> of the templates are also provided to allow interaction with other
types.</p>
<p><a href="http://www.boost.org/people/dave_abrahams.htm">Dave Abrahams</a>
started the library and contributed the arithmetic operators in <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>.<br>
<a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a>
contributed the <a href="#deref and helpers">dereference operators and iterator
helpers</a> in <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>.<br>
<a href="http://www.boost.org/people/aleksey_gurtovoy.htm">Aleksey Gurtovoy</a>
contributed the code to support <a href="#chaining">base class chaining</a>
while remaining backward-compatible with old versions of the library.<br>
<a href="http://www.boost.org/people/beman_dawes.html">Beman Dawes</a>
contributed <a href="http://www.boost.org/libs/utility/operators_test.cpp">test_operators.cpp</a>.</p>
<h2>Rationale</h2>
<p>Overloaded operators for class types typically occur in groups. If you can
write <code>x + y</code>, you probably also want to be able to write <code>x +=
y</code>. If you can write <code>x &lt; y,</code> you also want <code>x &gt; y,
x &gt;= y,</code> and <code>x &lt;= y</code>. Moreover, unless your class has
really surprising behavior, some of these related operators can be defined in
terms of others (e.g. <code>x &gt;= y <b>&lt;=&gt;</b> !(x &lt; y)</code>).
Replicating this boilerplate for multiple classes is both tedious and
error-prone. The <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>
templates help by generating operators for you at namespace scope based on other
operators you've defined in your class.</p>
<a name="two_arg">
<h2>Two-Argument Template Forms</h2>
</a>
<p>The arguments to a binary operator commonly have identical types, but it is
not unusual to want to define operators which combine different types. For <a href="#usage">example</a>,
one might want to multiply a mathematical vector by a scalar. The two-argument
template forms of the arithmetic operator templates are supplied for this
purpose. When applying the two-argument form of a template, the desired return
type of the operators typically determines which of the two types in question
should be derived from the operator template. For example, if the result of <code>T&nbsp;+&nbsp;U</code>
is of type <code>T</code>, then <code>T</code> (not <code>U</code>) should be
derived from <code>addable&lt;T,U&gt;</code>. The comparison templates <code><a href="#less_than_comparable">less_than_comparable&lt;&gt;</a></code>
and <code><a href="#equality_comparable">equality_comparable&lt;&gt;</a></code>
are exceptions to this guideline, since the return type of the operators they
define is <code>bool</code>.</p>
<p>On compilers which do not support partial specialization, the two-argument
forms must be specified by using the names shown below with the trailing <code>'2'</code>.
The single-argument forms with the trailing <code>'1'</code> are provided for
symmetry and to enable certain applications of the <a href="#chaining">base
class chaining</a> technique.</p>
<h2>Arithmetic operators table</h2>
<p>The requirements for the types used to instantiate operator templates are
specified in terms of expressions which must be valid and by the return type of
the expression. In the following table <code>t</code> and <code>t1</code> are
values of type <code>T</code>, and <code>u</code> is a value of type <code>U</code>.
Every template in the library other than <a href="#operators"><code>operators&lt;&gt;</code></a>
and <a href="#operators"><code>operators2&lt;&gt;</code></a> has an additional
optional template parameter <code>B</code> which is not shown in the table, but
is explained <a href="#chaining">below</a></p>
<table cellpadding="5" border="1">
<tbody>
<tr>
<td><b>template</b></td>
<td><b>template will supply</b></td>
<td><b>Requirements</b></td>
</tr>
<a name="operators">
<tr>
<td><code>operators&lt;T&gt;</code></td>
<td>All the other &lt;T&gt; templates in this table.</td>
<td>All the &lt;T&gt; requirements in this table.</td>
<tr>
<td><code>operators&lt;T,U&gt;<br>
operators2&lt;T,U&gt;</code></td>
<td>All the other &lt;T,U&gt; templates in this table, plus incrementable&lt;T&gt;
and decrementable&lt;T&gt;.</td>
<td><b>All</b> the &lt;T,U&gt; requirements in this table</a><a href="#portability">*</a>,
plus incrementable&lt;T&gt; and decrementable&lt;T&gt;.</td>
</tr>
<a name="less_than_comparable">
<tr>
<td><code>less_than_comparable&lt;T&gt;<br>
less_than_comparable1&lt;T&gt;</code></td>
<td><code>bool operator&gt;(const T&amp;, const T&amp;)&nbsp;<br>
bool operator&lt;=(const T&amp;, const T&amp;)<br>
bool operator&gt;=(const T&amp;, const T&amp;)</code></td>
<td><code>t&lt;t1</code>. Return convertible to bool</td>
<tr>
<td><code>less_than_comparable&lt;T,U&gt;<br>
less_than_comparable2&lt;T,U&gt;</code></td>
<td><code>bool operator&lt;=(const T&amp;, const U&amp;)<br>
bool operator&gt;=(const T&amp;, const U&amp;)<br>
bool operator&gt;(const U&amp;, const T&amp;)&nbsp;<br>
bool operator&lt;(const U&amp;, const T&amp;)&nbsp;<br>
bool operator&lt;=(const U&amp;, const T&amp;)<br>
bool operator&gt;=(const U&amp;, const T&amp;)</code></td>
<td><code>t&lt;u</code>. Return convertible to bool<br>
<code>t&gt;u</code>. Return convertible to bool</td>
</tr>
</a><a name="equality_comparable">
<tr>
<td><code>equality_comparable&lt;T&gt;<br>
equality_comparable1&lt;T&gt;</code></td>
<td><code>bool operator!=(const T&amp;, const T&amp;)</code></td>
<td><code>t==t1</code>. Return convertible to bool</td>
<tr>
<td><code>equality_comparable&lt;T,U&gt;<br>
equality_comparable2&lt;T,U&gt;</code></td>
<td><code>friend bool operator==(const U&amp;, const T&amp;)<br>
friend bool operator!=(const U&amp;, const T&amp;)<br>
friend bool operator!=( const T&amp;, const U&amp;)</code></td>
<td><code>t==u</code>. Return convertible to bool</td>
</tr>
</a>
<tr>
<td><code>addable&lt;T&gt;<br>
addable1&lt;T&gt;</code></td>
<td><code>T operator+(T, const T&amp;)</code></td>
<td><code>t+=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>addable&lt;T,U&gt;<br>
addable2&lt;T,U&gt;</code></td>
<td><code>T operator+(T, const U&amp;)<br>
T operator+(const U&amp;, T )</code></td>
<td><code>t+=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>subtractable&lt;T&gt;<br>
subtractable1&lt;T&gt;</code></td>
<td><code>T operator-(T, const T&amp;)</code></td>
<td><code>t-=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>subtractable&lt;T,U&gt;<br>
subtractable2&lt;T,U&gt;</code></td>
<td><code>T operator-(T, const U&amp;)</code></td>
<td><code>t-=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>multipliable&lt;T&gt;<br>
multipliable1&lt;T&gt;</code></td>
<td><code>T operator*(T, const T&amp;)</code></td>
<td><code>t*=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>multipliable&lt;T,U&gt;<br>
multipliable2&lt;T,U&gt;</code></td>
<td><code>T operator*(T, const U&amp;)<br>
T operator*(const U&amp;, T )</code></td>
<td><code>t*=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>dividable&lt;T&gt;<br>
dividable1&lt;T&gt;</code></td>
<td><code>T operator/(T, const T&amp;)</code></td>
<td><code>t/=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>dividable&lt;T,U&gt;<br>
dividable2&lt;T,U&gt;</code></td>
<td><code>T operator/(T, const U&amp;)</code></td>
<td><code>t/=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>modable&lt;T&gt;<br>
modable1&lt;T&gt;</code></td>
<td><code>T operator%(T, const T&amp;)</code></td>
<td><code>t%=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>modable&lt;T,U&gt;<br>
modable2&lt;T,U&gt;</code></td>
<td><code>T operator%(T, const U&amp;)</code></td>
<td><code>t%=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>orable&lt;T&gt;<br>
orable1&lt;T&gt;</code></td>
<td><code>T operator|(T, const T&amp;)</code></td>
<td><code>t|=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>orable&lt;T,U&gt;<br>
orable2&lt;T,U&gt;</code></td>
<td><code>T operator|(T, const U&amp;)<br>
T operator|(const U&amp;, T )</code></td>
<td><code>t|=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>andable&lt;T&gt;<br>
andable1&lt;T&gt;</code></td>
<td><code>T operator&amp;(T, const T&amp;)</code></td>
<td><code>t&amp;=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>andable&lt;T,U&gt;<br>
andable2&lt;T,U&gt;</code></td>
<td><code>T operator&amp;(T, const U&amp;)<br>
T operator&amp;(const U&amp;, T)</code></td>
<td><code>t&amp;=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>xorable&lt;T&gt;<br>
xorable1&lt;T&gt;</code></td>
<td><code>T operator^(T, const T&amp;)</code></td>
<td><code>t^=t1</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>xorable&lt;T,U&gt;<br>
xorable2&lt;T,U&gt;</code></td>
<td><code>T operator^(T, const U&amp;)<br>
T operator^(const U&amp;, T )</code></td>
<td><code>t^=u</code>. Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>incrementable&lt;T&gt;<br>
incrementable1&lt;T&gt;</code></td>
<td><code>T operator++(T&amp; x, int)</code></td>
<td><code>T temp(x); ++x; return temp;</code><br>
Return convertible to <code>T</code></td>
</tr>
<tr>
<td><code>decrementable&lt;T&gt;<br>
decrementable1&lt;T&gt;</code></td>
<td><code>T operator--(T&amp; x, int)</code></td>
<td><code>T temp(x); --x; return temp;</code><br>
Return convertible to <code>T</code></td>
</tr>
</tbody>
</table>
<br>
<b><a name="portability">Portability Note:</a></b> many compilers (e.g. MSVC6.3,
GCC 2.95.2) will not enforce the requirements in this table unless the
operations which depend on them are actually used. This is not
standard-conforming behavior. If you are trying to write portable code it is
important not to rely on this bug. In particular, it would be convenient to
derive all your classes which need binary operators from the <a href="#operators"><code>operators&lt;&gt;</code></a>
and <a href="#operators"><code>operators2&lt;&gt;</code></a> templates,
regardless of whether they implement all the requirements in the table. Even if
this works with your compiler today, it may not work tomorrow.
<h2><a name="chaining">Base Class Chaining</a> and Object Size</h2>
<p>Every template listed in the table except <a href="#operators"><code>operators&lt;&gt;</code></a>
and <a href="#operators"><code>operators2&lt;&gt;</code></a> has an additional
optional template parameter <code>B</code>.&nbsp; If supplied, <code>B</code>
must be a class type; the resulting class will be publicly derived from B. This
can be used to avoid the object size bloat commonly associated with multiple
empty base classes (see the <a href="#old_lib_note">note for users of older
versions</a> below for more details). To provide support for several groups of
operators, use the additional parameter to chain operator templates into a
single-base class hierarchy, as in the following <a href="#usage">example</a>.</p>
<p><b>Caveat:</b> to chain to a base class which is <i>not</i> a boost operator
template when using the <a href="#two_arg">single-argument form</a><a> of a
boost operator template, you must specify the operator template with the
trailing <code>'1'</code> in its name. Otherwise the library will assume you
mean to define a binary operation combining the class you intend to use as a
base class and the class you're deriving.</p>
<p><b>Borland users</b>: even single-inheritance seems to cause an increase in
object size in some cases. If you are not defining a template, you may get
better object-size performance by avoiding derivation altogether, and instead
explicitly instantiating the operator template as follows:
<pre>
class myclass // lose the inheritance...
{
//...
};
// explicitly instantiate the operators I need.
template class less_than_comparable&lt;myclass&gt;;
template class equality_comparable&lt;myclass&gt;;
template class incrementable&lt;myclass&gt;;
template class decrementable&lt;myclass&gt;;
template class addable&lt;myclass,long&gt;;
template class subtractable&lt;myclass,long&gt;;
</pre>
</a><a name="usage">
<h2>Usage example</h2>
</a>
<pre>template &lt;class T&gt;
class point // note: private inheritance is OK here!
: boost::addable&lt; point&lt;T&gt; // point + point
, boost::subtractable&lt; point&lt;T&gt; // point - point
, boost::dividable2&lt; point&lt;T&gt;, T // point / T
, boost::multipliable2&lt; point&lt;T&gt;, T // point * T, T * point
&gt; &gt; &gt; &gt;
{
public:
point(T, T);
T x() const;
T y() const;
point operator+=(const point&amp;);
// point operator+(point, const point&amp;) automatically
// generated by addable.
point operator-=(const point&amp;);
// point operator-(point, const point&amp;) automatically
// generated by subtractable.
point operator*=(T);
// point operator*(point, const T&amp;) and
// point operator*(const T&amp;, point) auto-generated
// by multipliable.
point operator/=(T);
// point operator/(point, const T&amp;) auto-generated
// by dividable.
private:
T x_;
T y_;
};
// now use the point&lt;&gt; class:
template &lt;class T&gt;
T length(const point&lt;T&gt; p)
{
return sqrt(p.x()*p.x() + p.y()*p.y());
}
const point&lt;float&gt; right(0, 1);
const point&lt;float&gt; up(1, 0);
const point&lt;float&gt; pi_over_4 = up + right;
const point&lt;float&gt; pi_over_4_normalized = pi_over_4 / length(pi_over_4);</pre>
<h2>Arithmetic operators demonstration and test program</h2>
<p>The <a href="http://www.boost.org/libs/utility/operators_test.cpp">operators_test.cpp</a>
program demonstrates the use of the arithmetic operator templates, and can also
be used to verify correct operation.</p>
<p>The test program has been compiled and run successfully with:&nbsp;</p>
<ul>
<li>GCC 2.95.2
<li>GCC 2.95.2 / STLport 4.0b8.
<li>Metrowerks Codewarrior 5.3
<li>KAI C++ 3.3
<li>Microsoft Visual C++ 6.0 SP3.
<li>Microsoft Visual C++ 6.0 SP3 / STLport 4.0b8.</li>
</ul>
<h1><a name="deref and helpers">Dereference</a> operators and iterator helpers</h1>
<p>The <a href="#Iterator helpers">iterator helper</a> templates ease the task
of creating a custom iterator. Similar to arithmetic types, a complete iterator
has many operators that are &quot;redundant&quot; and can be implemented in
terms of the core set of operators.</p>
<p>The <a href="#dereference">dereference operators</a> were motivated by the <a href="#Iterator helpers">iterator
helpers</a>, but are often useful in non-iterator contexts as well. Many of the
redundant iterator operators are also arithmetic operators, so the iterator
helper classes borrow many of the operators defined above. In fact, only two new
operators need to be defined! (the pointer-to-member <code>operator-&gt;</code>
and the subscript <code>operator[]</code>). </PP>
<h3>Notation</h3>
<table>
<tbody>
<tr>
<td valign="top"><code>T</code></td>
<td valign="top">is the user-defined type for which the operations are
being supplied.</td>
</tr>
<tr>
<td valign="top"><code>V</code></td>
<td valign="top">is the type which the resulting <code>dereferenceable</code>
type &quot;points to&quot;, or the <code>value_type</code> of the custom
iterator.</td>
</tr>
<tr>
<td valign="top"><code>D</code></td>
<td valign="top">is the type used to index the resulting <code>indexable</code>
type or the <code>difference_type</code> of the custom iterator.</td>
</tr>
<tr>
<td valign="top"><code>P</code></td>
<td valign="top">is a type which can be dereferenced to access <code>V</code>,
or the <code>pointer</code> type of the custom iterator.</td>
</tr>
<tr>
<td valign="top"><code>R</code></td>
<td valign="top">is the type returned by indexing the <code>indexable</code>
type or the <code>reference</code> type of the custom iterator.</td>
</tr>
<tr>
<td valign="top"><code>i</code></td>
<td valign="top">is short for <code>static_cast&lt;const T&amp;&gt;(*this)</code>,
where <code>this</code> is a pointer to the helper class.<br>
Another words, <code>i</code> should be an object of the custom iterator
type.</td>
</tr>
<tr>
<td valign="top"><code>x,x1,x2</code></td>
<td valign="top">are objects of type <code>T</code>.</td>
</tr>
<tr>
<td valign="top"><code>n</code></td>
<td valign="top">is an object of type <code>D</code>.</td>
</tr>
</tbody>
</table>
<p>The requirements for the types used to instantiate the dereference operators
and iterator helpers are specified in terms of expressions which must be valid
and their return type.&nbsp;</p>
<h2><a name="dereference">Dereference operators</a></h2>
<p>The dereference operator templates in this table all accept an optional
template parameter (not shown) to be used for <a href="#chaining">base class
chaining</a>.
<table cellpadding="5" border="1">
<tbody>
<tr>
<td><b>template</b></td>
<td><b>template will supply</b></td>
<td><b>Requirements</b></td>
</tr>
<tr>
<td><code>dereferenceable&lt;T,P&gt;</code></td>
<td><code>P operator-&gt;() const</code></td>
<td><code>(&amp;*i.)</code>. Return convertible to <code>P</code>.</td>
</tr>
<tr>
<td><code>indexable&lt;T,D,R&gt;</code></td>
<td><code>R operator[](D n) const</code></td>
<td><code>*(i + n)</code>. Return of type <code>R</code>.</td>
</tr>
</tbody>
</table>
<h2><a name="Iterator helpers">Iterator</a> helpers</h2>
<p>There are three separate iterator helper classes, each for a different
category of iterator. Here is a summary of the core set of operators that the
custom iterator must define, and the extra operators that are created by the
helper classes. For convenience, the helper classes also fill in all of the
typedef's required of iterators by the C++ standard (<code>iterator_category</code>,
<code>value_type</code>, etc.).</p>
<table cellpadding="5" border="1" valign="top">
<tbody>
<tr>
<td><b>template</b></td>
<td><b>template will supply</b></td>
<td><b>Requirements</b></td>
</tr>
<tr>
<td><code>forward_iterator_helper</code><br>
<code>&lt;T,V,D,P,R&gt;</code></td>
<td><code>bool operator!=(const T&amp; x1, const T&amp; x2)</code><br>
<code>T operator++(T&amp; x, int)</code><br>
<code>V* operator-&gt;() const</code><br>
</td>
<td><code>x1==x2</code>. Return convertible to bool<br>
<code>T temp(x); ++x; return temp;</code><br>
<code>(&amp;*i.)</code>. Return convertible to <code>V*</code>.</td>
</tr>
<tr>
<td><code>bidirectional_iterator_helper</code><br>
<code>&lt;T,V,D,P,R&gt;</code></td>
<td>Same as above, plus<br>
<code>T operator--(T&amp; x, int)</code></td>
<td>Same as above, plus<br>
<code>T temp(x); --x; return temp;</code></td>
</tr>
<tr>
<td><code>random_access_iterator_helper</code><br>
<code>&lt;T,V,D,P,R&gt;</code></td>
<td>Same as above, plus<br>
<code>T operator+(T x, const D&amp;)<br>
T operator+(const D&amp; n, T x)<br>
T operator-(T x, const D&amp; n)<br>
R operator[](D n) const<br>
bool operator&gt;(const T&amp; x1, const T&amp; x2)&nbsp;<br>
bool operator&lt;=(const T&amp; x1, const T&amp; x2)<br>
bool operator&gt;=(const T&amp; x1, const T&amp; x2)</code></td>
<td>Same as above, plus<br>
<code>x+=n</code>. Return convertible to <code>T</code><br>
<code>x-=n</code>. Return convertible to <code>T</code><br>
<code>x1&lt;x2</code>. Return convertible to bool<br>
And to satisfy <a href="http://www.sgi.com/Technology/STL/RandomAccessIterator.html">RandomAccessIterator</a>:<br>
<code>x1-x2</code>. Return convertible to <code>D</code></td>
</tr>
</tbody>
</table>
<h2>Iterator demonstration and test program</h2>
<p>The <a href="http://www.boost.org/libs/utility/iterators_test.cpp">iterators_test.cpp</a>
program demonstrates the use of the iterator templates, and can also be used to
verify correct operation. The following is the custom iterator defined in the
test program. It demonstrates a correct (though trivial) implementation of the
core operations that must be defined in order for the iterator helpers to
&quot;fill in&quot; the rest of the iterator operations.</p>
<blockquote>
<pre>template &lt;class T, class R, class P&gt;
struct test_iter
: public boost::random_access_iterator_helper&lt;
test_iter&lt;T,R,P&gt;, T, std::ptrdiff_t, P, R&gt;
{
typedef test_iter self;
typedef R Reference;
typedef std::ptrdiff_t Distance;
public:
test_iter(T* i) : _i(i) { }
test_iter(const self&amp; x) : _i(x._i) { }
self&amp; operator=(const self&amp; x) { _i = x._i; return *this; }
Reference operator*() const { return *_i; }
self&amp; operator++() { ++_i; return *this; }
self&amp; operator--() { --_i; return *this; }
self&amp; operator+=(Distance n) { _i += n; return *this; }
self&amp; operator-=(Distance n) { _i -= n; return *this; }
bool operator==(const self&amp; x) const { return _i == x._i; }
bool operator&lt;(const self&amp; x) const { return _i &lt; x._i; }
friend Distance operator-(const self&amp; x, const self&amp; y) {
return x._i - y._i;
}
protected:
T* _i;
};</pre>
</blockquote>
<p>It has been compiled and run successfully with:</p>
<ul>
<li>GCC 2.95.2
<li>Metrowerks Codewarrior 5.2
<li>Microsoft Visual C++ 6.0 SP3</li>
</ul>
<p><a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a>
contributed the iterator operators and helpers.&nbsp; He also contributed <a href="http://www.boost.org/libs/utility/iterators_test.cpp">iterators_test.cpp</a>.&nbsp;</p>
<hr>
<h2><a name="old_lib_note">Note for users of older versions</a></h2>
<p>The <a href="#chaining">changes in the library interface and recommended
usage</a> were motivated by some practical issues described below. The new
version of the library is still backward-compatible with the former one (so
you're not <i>forced</i> change any existing code), but the old usage is
deprecated. Though it was arguably simpler and more intuitive than using <a href="#chaining">base
class chaining</a>, it has been discovered that the old practice of deriving
from multiple operator templates can cause the resulting classes to be much
larger than they should be. Most modern C++ compilers significantly bloat the
size of classes derived from multiple empty base classes, even though the base
classes themselves have no state. For instance, the size of <code>point&lt;int&gt;</code>
from the <a href="#usage">example</a> above was 12-24 bytes on various compilers
for the Win32 platform, instead of the expected 8 bytes.
<p>Strictly speaking, it was not the library's fault - the language rules allow
the compiler to apply the empty base class optimization in that situation. In
principle an arbitrary number of empty base classes can be allocated at the same
offset, provided that none of them have a common ancestor (see section 10.5 [class.derived],
par. 5 of the standard). But the language definition also doesn't <i>require</i>
implementations to do the optimization, and few if any of today's compilers
implement it when multiple inheritance is involved. What's worse, it is very
unlikely that implementors will adopt it as a future enhancement to existing
compilers, because it would break binary compatibility between code generated by
two different versions of the same compiler. As Matt Austern said, &quot;One of
the few times when you have the freedom to do this sort of thing is when you're
targeting a new architecture...&quot;. On the other hand, many common compilers
will use the empty base optimization for single inheritance hierarchies.</p>
<p>Given the importance of the issue for the users of the library (which aims to
be useful for writing light-weight classes like <code>MyInt</code> or <code>point&lt;&gt;</code>),
and the forces described above, we decided to change the library interface so
that the object size bloat could be eliminated even on compilers that support
only the simplest form of the empty base class optimization. The current library
interface is the result of those changes. Though the new usage is a bit more
complicated than the old one, we think it's worth it to make the library more
useful in real world. Alexy Gurtovoy contributed the code which supports the new
usage idiom while allowing the library remain backward-compatible.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->03 Aug 2000<!--webbot bot="Timestamp" endspan i-checksum="14750" -->
</p>
<p><EFBFBD> Copyright David Abrahams and Beman Dawes 1999-2000. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided &quot;as
is&quot; without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>

View File

@ -1,481 +0,0 @@
// Demonstrate and test boost/operators.hpp -------------------------------//
// (C) Copyright Beman Dawes 1999. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 04 Jun 00 Added regression test for a bug I found (David Abrahams)
// 17 Jun 00 Fix for broken compilers (Aleksey Gurtovoy)
// ?? ??? 00 Major update to randomly test all one- and two- argument forms by
// wrapping integral types and comparing the results of operations to
// the results for the raw types (David Abrahams)
// 12 Dec 99 Minor update, output confirmation message.
// 15 Nov 99 Initial version
#include <boost/operators.hpp>
#include <cassert>
#include <iostream>
#include <boost/min_rand.hpp>
namespace
{
// avoiding a template version of true_value so as to not confuse VC++
int true_value(int x) { return x; }
long true_value(long x) { return x; }
signed char true_value(signed char x) { return x; }
unsigned int true_value(unsigned int x) { return x; }
unsigned long true_value(unsigned long x) { return x; }
unsigned char true_value(unsigned char x) { return x; }
// The use of operators<> here tended to obscure interactions with certain
// compiler bugs
template <class T>
class Wrapped1 : boost::operators<Wrapped1<T> >
{
public:
explicit Wrapped1( T v = T() ) : _value(v) {}
T value() const { return _value; }
bool operator<(const Wrapped1& x) const { return _value < x._value; }
bool operator==(const Wrapped1& x) const { return _value == x._value; }
Wrapped1& operator+=(const Wrapped1& x)
{ _value += x._value; return *this; }
Wrapped1& operator-=(const Wrapped1& x)
{ _value -= x._value; return *this; }
Wrapped1& operator*=(const Wrapped1& x)
{ _value *= x._value; return *this; }
Wrapped1& operator/=(const Wrapped1& x)
{ _value /= x._value; return *this; }
Wrapped1& operator%=(const Wrapped1& x)
{ _value %= x._value; return *this; }
Wrapped1& operator|=(const Wrapped1& x)
{ _value |= x._value; return *this; }
Wrapped1& operator&=(const Wrapped1& x)
{ _value &= x._value; return *this; }
Wrapped1& operator^=(const Wrapped1& x)
{ _value ^= x._value; return *this; }
Wrapped1& operator++() { ++_value; return *this; }
Wrapped1& operator--() { --_value; return *this; }
private:
T _value;
};
template <class T>
T true_value(Wrapped1<T> x) { return x.value(); }
template <class T, class U>
class Wrapped2 :
boost::operators<Wrapped2<T, U> >,
boost::operators2<Wrapped2<T, U>, U>
{
public:
explicit Wrapped2( T v = T() ) : _value(v) {}
T value() const { return _value; }
bool operator<(const Wrapped2& x) const { return _value < x._value; }
bool operator==(const Wrapped2& x) const { return _value == x._value; }
Wrapped2& operator+=(const Wrapped2& x)
{ _value += x._value; return *this; }
Wrapped2& operator-=(const Wrapped2& x)
{ _value -= x._value; return *this; }
Wrapped2& operator*=(const Wrapped2& x)
{ _value *= x._value; return *this; }
Wrapped2& operator/=(const Wrapped2& x)
{ _value /= x._value; return *this; }
Wrapped2& operator%=(const Wrapped2& x)
{ _value %= x._value; return *this; }
Wrapped2& operator|=(const Wrapped2& x)
{ _value |= x._value; return *this; }
Wrapped2& operator&=(const Wrapped2& x)
{ _value &= x._value; return *this; }
Wrapped2& operator^=(const Wrapped2& x)
{ _value ^= x._value; return *this; }
Wrapped2& operator++() { ++_value; return *this; }
Wrapped2& operator--() { --_value; return *this; }
bool operator<(U u) const { return _value < u; }
bool operator>(U u) const { return _value > u; }
bool operator==(U u) const { return _value == u; }
Wrapped2& operator+=(U u) { _value += u; return *this; }
Wrapped2& operator-=(U u) { _value -= u; return *this; }
Wrapped2& operator*=(U u) { _value *= u; return *this; }
Wrapped2& operator/=(U u) { _value /= u; return *this; }
Wrapped2& operator%=(U u) { _value %= u; return *this; }
Wrapped2& operator|=(U u) { _value |= u; return *this; }
Wrapped2& operator&=(U u) { _value &= u; return *this; }
Wrapped2& operator^=(U u) { _value ^= u; return *this; }
private:
T _value;
};
template <class T, class U>
T true_value(Wrapped2<T,U> x) { return x.value(); }
// MyInt uses only the single template-argument form of all_operators<>
typedef Wrapped1<int> MyInt;
typedef Wrapped2<long, long> MyLong;
template <class X1, class Y1, class X2, class Y2>
void sanity_check(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
assert(true_value(y1) == true_value(y2));
assert(true_value(x1) == true_value(x2));
}
template <class X1, class Y1, class X2, class Y2>
void test_less_than_comparable_aux(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
assert((x1 < y1) == (x2 < y2));
assert((x1 <= y1) == (x2 <= y2));
assert((x1 >= y1) == (x2 >= y2));
assert((x1 > y1) == (x2 > y2));
}
template <class X1, class Y1, class X2, class Y2>
void test_less_than_comparable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
test_less_than_comparable_aux(x1, y1, x2, y2);
test_less_than_comparable_aux(y1, x1, y2, x2);
}
template <class X1, class Y1, class X2, class Y2>
void test_equality_comparable_aux(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
assert((x1 == y1) == (x2 == y2));
assert((x1 != y1) == (x2 != y2));
}
template <class X1, class Y1, class X2, class Y2>
void test_equality_comparable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
test_equality_comparable_aux(x1, y1, x2, y2);
test_equality_comparable_aux(y1, x1, y2, x2);
}
template <class X1, class Y1, class X2, class Y2>
void test_multipliable_aux(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
assert((x1 * y1).value() == (x2 * y2));
}
template <class X1, class Y1, class X2, class Y2>
void test_multipliable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
test_multipliable_aux(x1, y1, x2, y2);
test_multipliable_aux(y1, x1, y2, x2);
}
template <class X1, class Y1, class X2, class Y2>
void test_addable_aux(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
assert((x1 + y1).value() == (x2 + y2));
}
template <class X1, class Y1, class X2, class Y2>
void test_addable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
test_addable_aux(x1, y1, x2, y2);
test_addable_aux(y1, x1, y2, x2);
}
template <class X1, class Y1, class X2, class Y2>
void test_subtractable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
assert((x1 - y1).value() == x2 - y2);
}
template <class X1, class Y1, class X2, class Y2>
void test_dividable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
if (y2 != 0)
assert((x1 / y1).value() == x2 / y2);
}
template <class X1, class Y1, class X2, class Y2>
void test_modable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
if (y2 != 0)
assert((x1 / y1).value() == x2 / y2);
}
template <class X1, class Y1, class X2, class Y2>
void test_xorable_aux(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
assert((x1 ^ y1).value() == (x2 ^ y2));
}
template <class X1, class Y1, class X2, class Y2>
void test_xorable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
test_xorable_aux(x1, y1, x2, y2);
test_xorable_aux(y1, x1, y2, x2);
}
template <class X1, class Y1, class X2, class Y2>
void test_andable_aux(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
assert((x1 & y1).value() == (x2 & y2));
}
template <class X1, class Y1, class X2, class Y2>
void test_andable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
test_andable_aux(x1, y1, x2, y2);
test_andable_aux(y1, x1, y2, x2);
}
template <class X1, class Y1, class X2, class Y2>
void test_orable_aux(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
assert((x1 | y1).value() == (x2 | y2));
}
template <class X1, class Y1, class X2, class Y2>
void test_orable(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
sanity_check(x1, y1, x2, y2);
test_orable_aux(x1, y1, x2, y2);
test_orable_aux(y1, x1, y2, x2);
}
template <class X1, class X2>
void test_incrementable(X1 x1, X2 x2)
{
sanity_check(x1, x1, x2, x2);
assert(x1++.value() == x2++);
assert(x1.value() == x2);
}
template <class X1, class X2>
void test_decrementable(X1 x1, X2 x2)
{
sanity_check(x1, x1, x2, x2);
assert(x1--.value() == x2--);
assert(x1.value() == x2);
}
template <class X1, class Y1, class X2, class Y2>
void test_all(X1 x1, Y1 y1, X2 x2, Y2 y2)
{
test_less_than_comparable(x1, y1, x2, y2);
test_equality_comparable(x1, y1, x2, y2);
test_multipliable(x1, y1, x2, y2);
test_addable(x1, y1, x2, y2);
test_subtractable(x1, y1, x2, y2);
test_dividable(x1, y1, x2, y2);
test_modable(x1, y1, x2, y2);
test_xorable(x1, y1, x2, y2);
test_andable(x1, y1, x2, y2);
test_orable(x1, y1, x2, y2);
test_incrementable(x1, x2);
test_decrementable(x1, x2);
}
template <class Big, class Small>
struct tester
{
void operator()(boost::min_rand& randomizer) const
{
Big b1 = Big(randomizer());
Big b2 = Big(randomizer());
Small s = Small(randomizer());
test_all(Wrapped1<Big>(b1), Wrapped1<Big>(b2), b1, b2);
test_all(Wrapped2<Big, Small>(b1), s, b1, s);
}
};
// added as a regression test. We had a bug which this uncovered.
struct Point
: boost::addable<Point,
boost::subtractable<Point> >
{
Point( int h, int v ) : h(h), v(v) {}
Point() :h(0), v(0) {}
const Point& operator+=( const Point& rhs ) { h += rhs.h; v += rhs.v; return *this; }
const Point& operator-=( const Point& rhs ) { h -= rhs.h; v -= rhs.v; return *this; }
int h;
int v;
};
} // unnamed namespace
// workaround for MSVC bug; for some reasons the compiler doesn't instantiate
// inherited operator templates at the moment it must, so the following
// explicit instantiations force it to do that.
#if defined(BOOST_MSVC) && (_MSC_VER <= 1200)
template Wrapped1<int>;
template Wrapped1<long>;
template Wrapped1<unsigned int>;
template Wrapped1<unsigned long>;
template Wrapped2<int, int>;
template Wrapped2<int, signed char>;
template Wrapped2<long, signed char>;
template Wrapped2<long, int>;
template Wrapped2<long, long>;
template Wrapped2<unsigned int, unsigned int>;
template Wrapped2<unsigned int, unsigned char>;
template Wrapped2<unsigned long, unsigned int>;
template Wrapped2<unsigned long, unsigned char>;
template Wrapped2<unsigned long, unsigned long>;
#endif
#ifdef NDEBUG
#error This program is pointless when NDEBUG disables assert()!
#endif
int main()
{
// Regression test.
Point x;
x = x + Point(3, 4);
x = x - Point(3, 4);
for (int n = 0; n < 10000; ++n)
{
boost::min_rand r;
tester<long, int>()(r);
tester<long, signed char>()(r);
tester<long, long>()(r);
tester<int, int>()(r);
tester<int, signed char>()(r);
tester<unsigned long, unsigned int>()(r);
tester<unsigned long, unsigned char>()(r);
tester<unsigned long, unsigned long>()(r);
tester<unsigned int, unsigned int>()(r);
tester<unsigned int, unsigned char>()(r);
}
MyInt i1(1);
MyInt i2(2);
MyInt i;
assert( i1.value() == 1 );
assert( i2.value() == 2 );
assert( i.value() == 0 );
i = i2;
assert( i.value() == 2 );
assert( i2 == i );
assert( i1 != i2 );
assert( i1 < i2 );
assert( i1 <= i2 );
assert( i <= i2 );
assert( i2 > i1 );
assert( i2 >= i1 );
assert( i2 >= i );
i = i1 + i2; assert( i.value() == 3 );
i = i + i2; assert( i.value() == 5 );
i = i - i1; assert( i.value() == 4 );
i = i * i2; assert( i.value() == 8 );
i = i / i2; assert( i.value() == 4 );
i = i % (i - i1); assert( i.value() == 1 );
i = i2 + i2; assert( i.value() == 4 );
i = i1 | i2 | i; assert( i.value() == 7 );
i = i & i2; assert( i.value() == 2 );
i = i + i1; assert( i.value() == 3 );
i = i ^ i1; assert( i.value() == 2 );
i = (i+i1)*(i2|i1); assert( i.value() == 9 );
MyLong j1(1);
MyLong j2(2);
MyLong j;
assert( j1.value() == 1 );
assert( j2.value() == 2 );
assert( j.value() == 0 );
j = j2;
assert( j.value() == 2 );
assert( j2 == j );
assert( 2 == j );
assert( j2 == 2 );
assert( j == j2 );
assert( j1 != j2 );
assert( j1 != 2 );
assert( 1 != j2 );
assert( j1 < j2 );
assert( 1 < j2 );
assert( j1 < 2 );
assert( j1 <= j2 );
assert( 1 <= j2 );
assert( j1 <= j );
assert( j <= j2 );
assert( 2 <= j2 );
assert( j <= 2 );
assert( j2 > j1 );
assert( 2 > j1 );
assert( j2 > 1 );
assert( j2 >= j1 );
assert( 2 >= j1 );
assert( j2 >= 1 );
assert( j2 >= j );
assert( 2 >= j );
assert( j2 >= 2 );
assert( (j1 + 2) == 3 );
assert( (1 + j2) == 3 );
j = j1 + j2; assert( j.value() == 3 );
assert( (j + 2) == 5 );
assert( (3 + j2) == 5 );
j = j + j2; assert( j.value() == 5 );
assert( (j - 1) == 4 );
j = j - j1; assert( j.value() == 4 );
assert( (j * 2) == 8 );
assert( (4 * j2) == 8 );
j = j * j2; assert( j.value() == 8 );
assert( (j / 2) == 4 );
j = j / j2; assert( j.value() == 4 );
assert( (j % 3) == 1 );
j = j % (j - j1); assert( j.value() == 1 );
j = j2 + j2; assert( j.value() == 4 );
assert( (1 | j2 | j) == 7 );
assert( (j1 | 2 | j) == 7 );
assert( (j1 | j2 | 4) == 7 );
j = j1 | j2 | j; assert( j.value() == 7 );
assert( (7 & j2) == 2 );
assert( (j & 2) == 2 );
j = j & j2; assert( j.value() == 2 );
j = j | j1; assert( j.value() == 3 );
assert( (3 ^ j1) == 2 );
assert( (j ^ 1) == 2 );
j = j ^ j1; assert( j.value() == 2 );
j = (j+j1)*(j2|j1); assert( j.value() == 9 );
std::cout << "0 errors detected\n";
return 0;
}

138
tie.html
View File

@ -1,138 +0,0 @@
<HTML>
<!--
-- Copyright (c) Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. We make no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<Title>Boost Tie</Title>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost">
<BR Clear>
<H1><A NAME="sec:tie"></A>
<TT>tie</TT>
</H1>
<P>
<PRE>
template &lt;class A, class B&gt;
tied&lt;A,B&gt; tie(A&amp; a, B&amp; b);
</PRE>
<P>
This is a utility function that makes it more convenient to work with
a function which returns a pair. The effect of the <TT>tie()</TT>
function is to allow the assignment of the two values of the pair to
two separate variables. The idea for this comes from Jaakko
J&#228;rvi's Binders&nbsp;[<A
HREF="bibliography.html#jaakko_tuple_assign">1</A>].
<P>
<H3>Where Defined</H3>
<P>
<a href="../../boost/utility.hpp"><TT>boost/utility.hpp</TT></a>
<P>
<H3>Example</H3>
<P>
An example of using the <TT>tie()</TT> function with the
<TT>vertices()</TT> function, which returns a pair of
type <TT>std::pair&lt;vertex_iterator,vertex_iterator&gt;</TT>. The
pair of iterators is assigned to the iterator variables <TT>i</TT> and
<TT>end</TT>.
<P>
<PRE>
graph_traits&lt; adjacency_list&lt;&gt; &gt;::vertex_iterator i, end;
for(tie(i,end) = vertices(G); i != end; ++i)
// ...
</PRE>
<P>
Here is another example that uses <TT>tie()</TT> for handling
operaitons with <a
href="http://www.sgi.com/Technology/STL/set.html"><TT>std::set</TT></a>.
<P>
<PRE>
#include &lt;set&gt;
#include &lt;algorithm&gt;
#include &lt;iostream&gt;
#include &lt;boost/utility.hpp&gt;
int
main(int, char*[])
{
{
typedef std::set&lt;int&gt; SetT;
SetT::iterator i, end;
bool inserted;
int vals[5] = { 5, 2, 4, 9, 1 };
SetT s(vals, vals + 5);
// Using tie() with a return value of pair&lt;iterator,bool&gt;
int new_vals[2] = { 3, 9 };
for (int k = 0; k &lt; 2; ++k) {
boost::tie(i,inserted) = s.insert(new_vals[k]);
if (!inserted)
std::cout &lt;&lt; *i &lt;&lt; " was already in the set." &lt;&lt; std::endl;
else
std::cout &lt;&lt; *i &lt;&lt; " successfully inserted." &lt;&lt; std::endl;
}
}
{
int* i, *end;
int vals[6] = { 5, 2, 4, 4, 9, 1 };
std::sort(vals, vals + 6);
// Using tie() with a return value of pair&lt;iterator,iterator&gt;
boost::tie(i,end) = std::equal_range(vals, vals + 6, 4);
std::cout &lt;&lt; "There were " &lt;&lt; std::distance(i,end)
&lt;&lt; " occurances of " &lt;&lt; *i &lt;&lt; "." &lt;&lt; std::endl;
// Footnote: of course one would normally just use std::count()
// to get this information, but that would spoil the example :)
}
return 0;
}
</PRE>
The output is:
<PRE>
3 successfully inserted.
9 was already in the set.
There were 2 occurances of 4.
</PRE>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF=http://www.boost.org/people/jeremy_siek.htm>Jeremy Siek</A>,
Univ.of Notre Dame (<A
HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)<br>
<A HREF=http://www.lsc.nd.edu/~llee1>Lie-Quan Lee</A>, Univ.of Notre Dame (<A HREF="mailto:llee1@lsc.nd.edu">llee1@lsc.nd.edu</A>)<br>
<A HREF=http://www.lsc.nd.edu/~lums>Andrew Lumsdaine</A>,
Univ.of Notre Dame (<A
HREF="mailto:lums@lsc.nd.edu">lums@lsc.nd.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>

View File

@ -1,61 +0,0 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// This is an example demonstrating how to use the tie() function.
// The purpose of tie() is to make it easiery to deal with std::pair
// return values.
//
// Contributed by Jeremy Siek
//
// Sample output
//
// 3 successfully inserted.
// 9 was already in the set.
// There were 2 occurances of 4.
#include <set>
#include <algorithm>
#include <iostream>
#include <boost/utility.hpp>
int
main(int, char*[])
{
{
typedef std::set<int> SetT;
SetT::iterator i, end;
bool inserted;
int vals[5] = { 5, 2, 4, 9, 1 };
SetT s(vals, vals + 5);
// Using tie() with a return value of pair<iterator,bool>
int new_vals[2] = { 3, 9 };
for (int k = 0; k < 2; ++k) {
boost::tie(i,inserted) = s.insert(new_vals[k]);
if (!inserted)
std::cout << *i << " was already in the set." << std::endl;
else
std::cout << *i << " successfully inserted." << std::endl;
}
}
{
int* i, *end;
int vals[6] = { 5, 2, 4, 4, 9, 1 };
std::sort(vals, vals + 6);
// Using tie() with a return value of pair<iterator,iterator>
boost::tie(i,end) = std::equal_range(vals, vals + 6, 4);
std::cout << "There were " << std::distance(i,end)
<< " occurances of " << *i << "." << std::endl;
// Footnote: of course one would normally just use std::count()
// to get this information, but that would spoil the example :)
}
return 0;
}

View File

@ -1,626 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Type Traits</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<h1><img src="../../c++boost.gif" width="276" height="86">Header
&lt;<a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a>&gt;</h1>
<p>The contents of &lt;boost/type_traits.hpp&gt; are declared in
namespace boost.</p>
<p>The file &lt;<a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a>&gt;
contains various template classes that describe the fundamental
properties of a type; each class represents a single type
property or a single type transformation. This documentation is
divided up into the following sections:</p>
<pre><a href="#fop">Fundamental type operations</a>
<a href="#fp">Fundamental type properties</a>
<a href="#misc">Miscellaneous</a>
<code> </code><a href="#cv">cv-Qualifiers</a>
<code> </code><a href="#ft">Fundamental Types</a>
<code> </code><a href="#ct">Compound Types</a>
<code> </code><a href="#ot">Object/Scalar Types</a>
<a href="#cs">Compiler Support Information</a>
<a href="#ec">Example Code</a></pre>
<h2><a name="fop"></a>Fundamental type operations</h2>
<p>Usage: &quot;class_name&lt;T&gt;::type&quot; performs
indicated transformation on type T.</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="45%"><p align="center">Expression.</p>
</td>
<td valign="top" width="45%"><p align="center">Description.</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_volatile&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level volatile qualifier removed. For
example &quot;volatile int&quot; would become &quot;int&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_const&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level const qualifier removed. For
example &quot;const int&quot; would become &quot;int&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_cv&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level cv-qualifiers removed. For example
&quot;const int&quot; would become &quot;int&quot;, and
&quot;volatile double&quot; would become &quot;double&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_reference&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is a reference type
then removes the reference, otherwise leaves T unchanged.
For example &quot;int&amp;&quot; becomes &quot;int&quot;
but &quot;int*&quot; remains unchanged.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>add_reference&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is a reference type
then leaves T unchanged, otherwise converts T to a
reference type. For example &quot;int&amp;&quot; remains
unchanged, but &quot;double&quot; becomes &quot;double&amp;&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_bounds&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is an array type then
removes the top level array qualifier from T, otherwise
leaves T unchanged. For example &quot;int[2][3]&quot;
becomes &quot;int[3]&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h2><a name="fp"></a>Fundamental type properties</h2>
<p>Usage: &quot;class_name&lt;T&gt;::value&quot; is true if
indicated property is true, false otherwise. (Note that class_name&lt;T&gt;::value
is always defined as a compile time constant).</p>
<h3><a name="misc"></a>Miscellaneous</h3>
<table border="1" cellspacing="1" width="100%">
<tr>
<td width="37%"><p align="center">Expression</p>
</td>
<td width="36%"><p align="center">Description</p>
</td>
<td width="27%"><p align="center">Compiler</p>
</td>
</tr>
<tr>
<td width="37%"><div align="center"><center><pre><code>is_same&lt;T,U&gt;::value</code></pre>
</center></div></td>
<td width="36%"><p align="center">True if T and U are the
same type.</p>
</td>
<td width="27%"><p align="center">P</p>
</td>
</tr>
<tr>
<td width="37%"><div align="center"><center><pre>is_convertible&lt;T,U&gt;::value</pre>
</center></div></td>
<td width="36%"><p align="center">True if type T is
convertible to type U.</p>
</td>
<td width="27%">&nbsp;</td>
</tr>
<tr>
<td width="37%"><div align="center"><center><pre>alignment_of&lt;T&gt;::value</pre>
</center></div></td>
<td width="36%"><p align="center">An integral value
representing the minimum alignment requirements of type T
(strictly speaking defines a multiple of the type's
alignment requirement; for all compilers tested so far
however it does return the actual alignment).</p>
</td>
<td width="27%">&nbsp;</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="cv"></a>cv-Qualifiers</h3>
<p>The following classes determine what cv-qualifiers are present
on a type (see 3.93).</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="37%"><p align="center">Expression.</p>
</td>
<td valign="top" width="37%"><p align="center">Description.</p>
</td>
<td valign="top" width="27%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="37%"><code>is_const&lt;T&gt;::value</code></td>
<td valign="top" width="37%">True if type T is top-level
const qualified.</td>
<td valign="top" width="27%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="37%"><code>is_volatile&lt;T&gt;::value</code></td>
<td valign="top" width="37%">True if type T is top-level
volatile qualified.</td>
<td valign="top" width="27%"><p align="center">P</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ft"></a>Fundamental Types</h3>
<p>The following will only ever be true for cv-unqualified types;
these are closely based on the section 3.9 of the C++ Standard.</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="45%"><p align="center">Expression.</p>
</td>
<td valign="top" width="45%"><p align="center">Description.</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_void&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is void.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is one of the
standard unsigned integral types (3.9.1 p3) - unsigned
char, unsigned short, unsigned int, and unsigned long.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_signed_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is one of the
standard signed integral types (3.9.1 p2) - signed char,
short, int, and long.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
integral type(3.9.1 p7) - T is either char, wchar_t, bool
or either is_standard_signed_integral&lt;T&gt;::value or
is_standard_integral&lt;T&gt;::value is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is one of the
standard floating point types(3.9.1 p8) - float, double
or long double.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type(3.9.1 p8) - implies is_standard_integral
or is_standard_float is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type or if T is void.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True for compiler specific
unsigned integral types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_signed_integral&lt;T&gt;&gt;:value</code></td>
<td valign="top" width="45%">True for compiler specific
signed integral types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_unsigned_integral&lt;T&gt;::value
or is_extension_signed_integral&lt;T&gt;::value is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True for compiler specific
floating point types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_integral&lt;T&gt;::value
or is_extension_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>&nbsp;is_extension_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_arithmetic&lt;T&gt;::value
or is_void&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>&nbsp;is_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_unsigned_integral&lt;T&gt;::value
or is_extention_unsigned_integral&lt;T&gt;::value are
true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_signed_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_signed_integral&lt;T&gt;::value
or is_extention_signed_integral&lt;T&gt;&gt;::value are
true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_integral&lt;T&gt;::value
or is_extention_integral&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_float&lt;T&gt;::value
or is_extention_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_integral&lt;T&gt;::value
or is_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_arithmetic&lt;T&gt;::value
or is_void&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ct"></a>Compound Types</h3>
<p>The following will only ever be true for cv-unqualified types,
as defined by the Standard.&nbsp;</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="45%"><p align="center">Expression</p>
</td>
<td valign="top" width="45%"><p align="center">Description</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_array&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an array type.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_pointer&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a regular
pointer type - including function pointers - but
excluding pointers to member functions (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_member_pointer&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a pointer to a
non-static class member (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_reference&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a reference
type (3.9.2 p1 and 8.3.2).</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_class&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a class or
struct type.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_union&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a union type.</td>
<td valign="top" width="33%"><p align="center">C</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_enum&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an enumerator
type.</td>
<td valign="top" width="33%"><p align="center">C</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_compound&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is any of the
above compound types.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ot"></a>Object/Scalar Types</h3>
<p>The following ignore any top level cv-qualifiers: if <code>class_name&lt;T&gt;::value</code>
is true then <code>class_name&lt;cv-qualified-T&gt;::value</code>
will also be true.</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="45%"><p align="center">Expression</p>
</td>
<td valign="top" width="45%"><p align="center">Description</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_object&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is not a reference
type, or a (possibly cv-qualified) void type.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type, an enumerated type, a pointer or a
member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an extentions
arithmetic type, an enumerated type, a pointer or a
member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an arithmetic
type, an enumerated type, a pointer or a member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_POD&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a &quot;Plain
Old Data&quot; type (see 3.9 p2&amp;p3). Note that
although this requires compiler support to be correct in
all cases, if T is a scalar or an array of scalars then
we can correctly define T as a POD.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_empty&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an empty struct
or class. If the compiler implements the &quot;zero sized
empty base classes&quot; optimisation, then is_empty will
correctly guess whether T is empty. Relies upon is_class
to determine whether T is a class type. Screens out enum
types by using is_convertible&lt;T,int&gt;, this means
that empty classes that overload operator int(), will not
be classified as empty.</td>
<td valign="top" width="33%"><p align="center">PCD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_constructor&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
default constructor - that is T() is equivalent to memset.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_copy&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial copy
constructor - that is T(const T&amp;) is equivalent to
memcpy.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_assign&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
assignment operator - that is if T::operator=(const T&amp;)
is equivalent to memcpy.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_destructor&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
destructor - that is if T::~T() has no effect.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h2><a name="cs"></a>Compiler Support Information</h2>
<p>The legends used in the tables above have the following
meanings:</p>
<table border="0" cellpadding="7" cellspacing="0" width="480">
<tr>
<td valign="top" width="50%"><p align="center">P</p>
</td>
<td valign="top" width="90%">Denotes that the class
requires support for partial specialisation of class
templates to work correctly.</td>
</tr>
<tr>
<td valign="top" width="50%"><p align="center">C</p>
</td>
<td valign="top" width="90%">Denotes that direct compiler
support for that traits class is required.</td>
</tr>
<tr>
<td valign="top" width="50%"><p align="center">D</p>
</td>
<td valign="top" width="90%">Denotes that the traits
class is dependent upon a class that requires direct
compiler support.</td>
</tr>
</table>
<p>&nbsp;</p>
<p>For those classes that are marked with a D or C, if compiler
support is not provided, this type trait may return &quot;false&quot;
when the correct value is actually &quot;true&quot;. The single
exception to this rule is &quot;is_class&quot;, which attempts to
guess whether or not T is really a class, and may return &quot;true&quot;
when the correct value is actually &quot;false&quot;. This can
happen if: T is a union, T is an enum, or T is a compiler-supplied
scalar type that is not specialised for in these type traits.</p>
<p><i>If there is no compiler support</i>, to ensure that these
traits <i>always</i> return the correct values, specialise 'is_enum'
for each user-defined enumeration type, 'is_union' for each user-defined
union type, 'is_empty' for each user-defined empty composite type,
and 'is_POD' for each user-defined POD type. The 'has_*' traits
should also be specialized if the user-defined type has those
traits and is <i>not</i> a POD.</p>
<p>The following rules are automatically enforced:</p>
<p>is_enum implies is_POD</p>
<p>is_POD implies has_*</p>
<p>This means, for example, if you have an empty POD-struct, just
specialize is_empty and is_POD, which will cause all the has_* to
also return true.</p>
<h2><a name="ec"></a>Example code</h2>
<p>Type-traits comes with two sample programs: <a
href="type_traits_test.cpp">type_traits_test.cpp</a> tests the
type traits classes - mostly this is a test of your compiler's
support for the concepts used in the type traits implementation,
while <a href="algo_opt_examples.cpp">algo_opt_examples.cpp</a>
uses the type traits classes to &quot;optimise&quot; some
familiar standard library algorithms.</p>
<p>There are four algorithm examples in algo_opt_examples.cpp:</p>
<table border="0" cellpadding="7" cellspacing="0" width="638">
<tr>
<td valign="top" width="50%"><pre>opt::copy</pre>
</td>
<td valign="top" width="50%">If the copy operation can be
performed using memcpy then does so, otherwise uses a
regular element by element copy (<i>c.f.</i> std::copy).</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::fill</pre>
</td>
<td valign="top" width="50%">If the fill operation can be
performed by memset, then does so, otherwise uses a
regular element by element assign. Also uses call_traits
to optimise how the parameters can be passed (<i>c.f.</i>
std::fill).</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::destroy_array</pre>
</td>
<td valign="top" width="50%">If the type in the array has
a trivial destructor then does nothing, otherwise calls
destructors for all elements in the array - this
algorithm is the reverse of std::uninitialized_copy / std::uninitialized_fill.</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::iter_swap</pre>
</td>
<td valign="top" width="50%">Determines whether the
iterator is a proxy-iterator: if it is then does a &quot;slow
and safe&quot; swap, otherwise calls std::swap on the
assumption that std::swap may be specialised for the
iterated type.</td>
</tr>
</table>
<p>&nbsp;</p>
<hr>
<p>Revised 08<sup>th</sup> March 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
&quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</p>
<p>Based on contributions by Steve Cleary, Beman Dawes, Howard
Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org/">www.boost.org</a>, and the boost
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
</body>
</html>

View File

@ -1,595 +0,0 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/type_traits.hpp>
/* Release notes:
31st July 2000:
Added extra tests for is_empty, is_convertible, alignment_of.
23rd July 2000:
Removed all call_traits tests to call_traits_test.cpp
Removed all compressed_pair tests to compressed_pair_tests.cpp
Improved tests macros
Tidied up specialistions of type_types classes for test cases.
*/
#include <iostream>
#include <typeinfo>
#include <boost/type_traits.hpp>
#include "type_traits_test.hpp"
using namespace boost;
// Since there is no compiler support, we should specialize:
// is_enum for all enumerations (is_enum implies is_POD)
// is_union for all unions
// is_empty for all empty composites
// is_POD for all PODs (except enums) (is_POD implies has_*)
// has_* for any UDT that has that trait and is not POD
enum enum_UDT{ one, two, three };
struct UDT
{
UDT();
~UDT();
UDT(const UDT&);
UDT& operator=(const UDT&);
int i;
void f1();
int f2();
int f3(int);
int f4(int, float);
};
struct POD_UDT { int x; };
struct empty_UDT{ ~empty_UDT(){}; };
struct empty_POD_UDT{};
union union_UDT
{
int x;
double y;
~union_UDT();
};
union POD_union_UDT
{
int x;
double y;
};
union empty_union_UDT
{
~empty_union_UDT();
};
union empty_POD_union_UDT{};
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
namespace boost {
template <> struct is_enum<enum_UDT>
{ static const bool value = true; };
template <> struct is_POD<POD_UDT>
{ static const bool value = true; };
// this type is not POD, so we have to specialize the has_* individually
template <> struct has_trivial_constructor<empty_UDT>
{ static const bool value = true; };
template <> struct has_trivial_copy<empty_UDT>
{ static const bool value = true; };
template <> struct has_trivial_assign<empty_UDT>
{ static const bool value = true; };
template <> struct is_POD<empty_POD_UDT>
{ static const bool value = true; };
template <> struct is_union<union_UDT>
{ static const bool value = true; };
template <> struct is_union<POD_union_UDT>
{ static const bool value = true; };
template <> struct is_POD<POD_union_UDT>
{ static const bool value = true; };
template <> struct is_union<empty_union_UDT>
{ static const bool value = true; };
// this type is not POD, so we have to specialize the has_* individually
template <> struct has_trivial_constructor<empty_union_UDT>
{ static const bool value = true; };
template <> struct has_trivial_copy<empty_union_UDT>
{ static const bool value = true; };
template <> struct has_trivial_assign<empty_union_UDT>
{ static const bool value = true; };
template <> struct is_union<empty_POD_union_UDT>
{ static const bool value = true; };
template <> struct is_POD<empty_POD_union_UDT>
{ static const bool value = true; };
}
#else
namespace boost {
template <> struct is_enum<enum_UDT>
{ enum{ value = true }; };
template <> struct is_POD<POD_UDT>
{ enum{ value = true }; };
// this type is not POD, so we have to specialize the has_* individually
template <> struct has_trivial_constructor<empty_UDT>
{ enum{ value = true }; };
template <> struct has_trivial_copy<empty_UDT>
{ enum{ value = true }; };
template <> struct has_trivial_assign<empty_UDT>
{ enum{ value = true }; };
template <> struct is_POD<empty_POD_UDT>
{ enum{ value = true }; };
template <> struct is_union<union_UDT>
{ enum{ value = true }; };
template <> struct is_union<POD_union_UDT>
{ enum{ value = true }; };
template <> struct is_POD<POD_union_UDT>
{ enum{ value = true }; };
template <> struct is_union<empty_union_UDT>
{ enum{ value = true }; };
// this type is not POD, so we have to specialize the has_* individually
template <> struct has_trivial_constructor<empty_union_UDT>
{ enum{ value = true }; };
template <> struct has_trivial_copy<empty_union_UDT>
{ enum{ value = true }; };
template <> struct has_trivial_assign<empty_union_UDT>
{ enum{ value = true }; };
template <> struct is_union<empty_POD_union_UDT>
{ enum{ value = true }; };
template <> struct is_POD<empty_POD_union_UDT>
{ enum{ value = true }; };
}
#endif
class Base { };
class Deriverd : public Base { };
class NonDerived { };
enum enum1
{
one_,two_
};
enum enum2
{
three_,four_
};
struct VB
{
virtual ~VB(){};
};
struct VD : VB
{
~VD(){};
};
// Steve: All comments that I (Steve Cleary) have added below are prefixed with
// "Steve:" The failures that BCB4 has on the tests are due to Borland's
// not considering cv-qual's as a part of the type -- they are considered
// compiler hints only. These failures should be fixed before long.
int main()
{
std::cout << "Checking type operations..." << std::endl << std::endl;
// cv-qualifiers applied to reference types should have no effect
// declare these here for later use with is_reference and remove_reference:
typedef int& r_type;
typedef const r_type cr_type;
type_test(int, remove_reference<int>::type)
type_test(const int, remove_reference<const int>::type)
type_test(int, remove_reference<int&>::type)
type_test(const int, remove_reference<const int&>::type)
type_test(volatile int, remove_reference<volatile int&>::type)
type_test(int, remove_reference<cr_type>::type)
type_test(int, remove_const<const int>::type)
// Steve: fails on BCB4
type_test(volatile int, remove_const<volatile int>::type)
// Steve: fails on BCB4
type_test(volatile int, remove_const<const volatile int>::type)
type_test(int, remove_const<int>::type)
type_test(int*, remove_const<int* const>::type)
type_test(int, remove_volatile<volatile int>::type)
// Steve: fails on BCB4
type_test(const int, remove_volatile<const int>::type)
// Steve: fails on BCB4
type_test(const int, remove_volatile<const volatile int>::type)
type_test(int, remove_volatile<int>::type)
type_test(int*, remove_volatile<int* volatile>::type)
type_test(int, remove_cv<volatile int>::type)
type_test(int, remove_cv<const int>::type)
type_test(int, remove_cv<const volatile int>::type)
type_test(int, remove_cv<int>::type)
type_test(int*, remove_cv<int* volatile>::type)
type_test(int*, remove_cv<int* const>::type)
type_test(int*, remove_cv<int* const volatile>::type)
type_test(const int *, remove_cv<const int * const>::type)
type_test(int, remove_bounds<int>::type)
type_test(int*, remove_bounds<int*>::type)
type_test(int, remove_bounds<int[3]>::type)
type_test(int[3], remove_bounds<int[2][3]>::type)
std::cout << std::endl << "Checking type properties..." << std::endl << std::endl;
value_test(true, (is_same<int, int>::value))
value_test(false, (is_same<int, const int>::value))
value_test(false, (is_same<int, int&>::value))
value_test(false, (is_same<int*, const int*>::value))
value_test(false, (is_same<int*, int*const>::value))
value_test(false, (is_same<int, int[2]>::value))
value_test(false, is_const<int>::value)
value_test(true, is_const<const int>::value)
value_test(false, is_const<volatile int>::value)
value_test(true, is_const<const volatile int>::value)
value_test(false, is_volatile<int>::value)
value_test(false, is_volatile<const int>::value)
value_test(true, is_volatile<volatile int>::value)
value_test(true, is_volatile<const volatile int>::value)
value_test(true, is_void<void>::value)
// Steve: fails on BCB4
// JM: but looks as though it should according to [3.9.3p1]?
//value_test(false, is_void<const void>::value)
value_test(false, is_void<int>::value)
value_test(false, is_standard_unsigned_integral<UDT>::value)
value_test(false, is_standard_unsigned_integral<void>::value)
value_test(false, is_standard_unsigned_integral<bool>::value)
value_test(false, is_standard_unsigned_integral<char>::value)
value_test(false, is_standard_unsigned_integral<signed char>::value)
value_test(true, is_standard_unsigned_integral<unsigned char>::value)
value_test(false, is_standard_unsigned_integral<wchar_t>::value)
value_test(false, is_standard_unsigned_integral<short>::value)
value_test(true, is_standard_unsigned_integral<unsigned short>::value)
value_test(false, is_standard_unsigned_integral<int>::value)
value_test(true, is_standard_unsigned_integral<unsigned int>::value)
value_test(false, is_standard_unsigned_integral<long>::value)
value_test(true, is_standard_unsigned_integral<unsigned long>::value)
value_test(false, is_standard_unsigned_integral<float>::value)
value_test(false, is_standard_unsigned_integral<double>::value)
value_test(false, is_standard_unsigned_integral<long double>::value)
#ifdef ULLONG_MAX
value_test(false, is_standard_unsigned_integral<long long>::value)
value_test(false, is_standard_unsigned_integral<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(false, is_standard_unsigned_integral<__int64>::value)
value_test(false, is_standard_unsigned_integral<unsigned __int64>::value)
#endif
value_test(false, is_standard_signed_integral<UDT>::value)
value_test(false, is_standard_signed_integral<void>::value)
value_test(false, is_standard_signed_integral<bool>::value)
value_test(false, is_standard_signed_integral<char>::value)
value_test(true, is_standard_signed_integral<signed char>::value)
value_test(false, is_standard_signed_integral<unsigned char>::value)
value_test(false, is_standard_signed_integral<wchar_t>::value)
value_test(true, is_standard_signed_integral<short>::value)
value_test(false, is_standard_signed_integral<unsigned short>::value)
value_test(true, is_standard_signed_integral<int>::value)
value_test(false, is_standard_signed_integral<unsigned int>::value)
value_test(true, is_standard_signed_integral<long>::value)
value_test(false, is_standard_signed_integral<unsigned long>::value)
value_test(false, is_standard_signed_integral<float>::value)
value_test(false, is_standard_signed_integral<double>::value)
value_test(false, is_standard_signed_integral<long double>::value)
#ifdef ULLONG_MAX
value_test(false, is_standard_signed_integral<long long>::value)
value_test(false, is_standard_signed_integral<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(false, is_standard_signed_integral<__int64>::value)
value_test(false, is_standard_signed_integral<unsigned __int64>::value)
#endif
value_test(false, is_standard_arithmetic<UDT>::value)
value_test(false, is_standard_arithmetic<void>::value)
value_test(true, is_standard_arithmetic<bool>::value)
value_test(true, is_standard_arithmetic<char>::value)
value_test(true, is_standard_arithmetic<signed char>::value)
value_test(true, is_standard_arithmetic<unsigned char>::value)
value_test(true, is_standard_arithmetic<wchar_t>::value)
value_test(true, is_standard_arithmetic<short>::value)
value_test(true, is_standard_arithmetic<unsigned short>::value)
value_test(true, is_standard_arithmetic<int>::value)
value_test(true, is_standard_arithmetic<unsigned int>::value)
value_test(true, is_standard_arithmetic<long>::value)
value_test(true, is_standard_arithmetic<unsigned long>::value)
value_test(true, is_standard_arithmetic<float>::value)
value_test(true, is_standard_arithmetic<double>::value)
value_test(true, is_standard_arithmetic<long double>::value)
#ifdef ULLONG_MAX
value_test(false, is_standard_arithmetic<long long>::value)
value_test(false, is_standard_arithmetic<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(false, is_standard_arithmetic<__int64>::value)
value_test(false, is_standard_arithmetic<unsigned __int64>::value)
#endif
value_test(false, is_standard_fundamental<UDT>::value)
value_test(true, is_standard_fundamental<void>::value)
value_test(true, is_standard_fundamental<bool>::value)
value_test(true, is_standard_fundamental<char>::value)
value_test(true, is_standard_fundamental<signed char>::value)
value_test(true, is_standard_fundamental<unsigned char>::value)
value_test(true, is_standard_fundamental<wchar_t>::value)
value_test(true, is_standard_fundamental<short>::value)
value_test(true, is_standard_fundamental<unsigned short>::value)
value_test(true, is_standard_fundamental<int>::value)
value_test(true, is_standard_fundamental<unsigned int>::value)
value_test(true, is_standard_fundamental<long>::value)
value_test(true, is_standard_fundamental<unsigned long>::value)
value_test(true, is_standard_fundamental<float>::value)
value_test(true, is_standard_fundamental<double>::value)
value_test(true, is_standard_fundamental<long double>::value)
#ifdef ULLONG_MAX
value_test(false, is_standard_fundamental<long long>::value)
value_test(false, is_standard_fundamental<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(false, is_standard_fundamental<__int64>::value)
value_test(false, is_standard_fundamental<unsigned __int64>::value)
#endif
value_test(false, is_arithmetic<UDT>::value)
value_test(true, is_arithmetic<char>::value)
value_test(true, is_arithmetic<signed char>::value)
value_test(true, is_arithmetic<unsigned char>::value)
value_test(true, is_arithmetic<wchar_t>::value)
value_test(true, is_arithmetic<short>::value)
value_test(true, is_arithmetic<unsigned short>::value)
value_test(true, is_arithmetic<int>::value)
value_test(true, is_arithmetic<unsigned int>::value)
value_test(true, is_arithmetic<long>::value)
value_test(true, is_arithmetic<unsigned long>::value)
value_test(true, is_arithmetic<float>::value)
value_test(true, is_arithmetic<double>::value)
value_test(true, is_arithmetic<long double>::value)
value_test(true, is_arithmetic<bool>::value)
#ifdef ULLONG_MAX
value_test(true, is_arithmetic<long long>::value)
value_test(true, is_arithmetic<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(true, is_arithmetic<__int64>::value)
value_test(true, is_arithmetic<unsigned __int64>::value)
#endif
value_test(false, is_array<int>::value)
value_test(false, is_array<int*>::value)
value_test(true, is_array<int[2]>::value)
value_test(true, is_array<int[2][3]>::value)
value_test(true, is_array<UDT[2]>::value)
typedef void(*f1)();
typedef int(*f2)(int);
typedef int(*f3)(int, bool);
typedef void (UDT::*mf1)();
typedef int (UDT::*mf2)();
typedef int (UDT::*mf3)(int);
typedef int (UDT::*mf4)(int, float);
value_test(false, is_pointer<int>::value)
value_test(false, is_pointer<int&>::value)
value_test(true, is_pointer<int*>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*const>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*volatile>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*const volatile>::value)
value_test(true, is_pointer<f1>::value)
value_test(true, is_pointer<f2>::value)
value_test(true, is_pointer<f3>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3
value_test(false, is_pointer<mf1>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3
value_test(false, is_pointer<mf2>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3
value_test(false, is_pointer<mf3>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3
value_test(false, is_pointer<mf4>::value)
value_test(false, is_reference<bool>::value)
value_test(true, is_reference<int&>::value)
value_test(true, is_reference<const int&>::value)
value_test(true, is_reference<volatile int &>::value)
value_test(true, is_reference<r_type>::value)
value_test(true, is_reference<cr_type>::value)
value_test(false, is_class<int>::value)
value_test(false, is_class<const int>::value)
value_test(false, is_class<volatile int>::value)
value_test(false, is_class<int*>::value)
value_test(false, is_class<int* const>::value)
value_test(false, is_class<int[2]>::value)
value_test(false, is_class<int&>::value)
value_test(false, is_class<mf4>::value)
value_test(false, is_class<f1>::value)
value_test(false, is_class<enum_UDT>::value)
value_test(true, is_class<UDT>::value)
value_test(true, is_class<UDT const>::value)
value_test(true, is_class<UDT volatile>::value)
value_test(true, is_class<empty_UDT>::value)
value_test(true, is_class<std::iostream>::value)
value_test(false, is_class<UDT*>::value)
value_test(false, is_class<UDT[2]>::value)
value_test(false, is_class<UDT&>::value)
value_test(true, is_object<int>::value)
value_test(true, is_object<UDT>::value)
value_test(false, is_object<int&>::value)
value_test(false, is_object<void>::value)
value_test(true, is_standard_scalar<int>::value)
value_test(true, is_extension_scalar<void*>::value)
value_test(false, is_enum<int>::value)
value_test(true, is_enum<enum_UDT>::value)
value_test(false, is_member_pointer<f1>::value)
value_test(false, is_member_pointer<f2>::value)
value_test(false, is_member_pointer<f3>::value)
value_test(true, is_member_pointer<mf1>::value)
value_test(true, is_member_pointer<mf2>::value)
value_test(true, is_member_pointer<mf3>::value)
value_test(true, is_member_pointer<mf4>::value)
value_test(false, is_empty<int>::value)
value_test(false, is_empty<int*>::value)
value_test(false, is_empty<int&>::value)
#ifdef __MWERKS__
// apparent compiler bug causes this to fail to compile:
value_fail(false, is_empty<int[2]>::value)
#else
value_test(false, is_empty<int[2]>::value)
#endif
value_test(false, is_empty<f1>::value)
value_test(false, is_empty<mf1>::value)
value_test(false, is_empty<UDT>::value)
value_test(true, is_empty<empty_UDT>::value)
value_test(true, is_empty<empty_POD_UDT>::value)
value_test(true, is_empty<empty_union_UDT>::value)
value_test(false, is_empty<enum_UDT>::value)
value_test(true, has_trivial_constructor<int>::value)
value_test(true, has_trivial_constructor<int*>::value)
value_test(true, has_trivial_constructor<int*const>::value)
value_test(true, has_trivial_constructor<const int>::value)
value_test(true, has_trivial_constructor<volatile int>::value)
value_test(true, has_trivial_constructor<int[2]>::value)
value_test(true, has_trivial_constructor<int[3][2]>::value)
value_test(true, has_trivial_constructor<int[2][4][5][6][3]>::value)
value_test(true, has_trivial_constructor<f1>::value)
value_test(true, has_trivial_constructor<mf2>::value)
value_test(false, has_trivial_constructor<UDT>::value)
value_test(true, has_trivial_constructor<empty_UDT>::value)
value_test(true, has_trivial_constructor<enum_UDT>::value)
value_test(true, has_trivial_copy<int>::value)
value_test(true, has_trivial_copy<int*>::value)
value_test(true, has_trivial_copy<int*const>::value)
value_test(true, has_trivial_copy<const int>::value)
// Steve: was 'false' -- should be 'true' via 3.9p3, 3.9p10
value_test(true, has_trivial_copy<volatile int>::value)
value_test(true, has_trivial_copy<int[2]>::value)
value_test(true, has_trivial_copy<int[3][2]>::value)
value_test(true, has_trivial_copy<int[2][4][5][6][3]>::value)
value_test(true, has_trivial_copy<f1>::value)
value_test(true, has_trivial_copy<mf2>::value)
value_test(false, has_trivial_copy<UDT>::value)
value_test(true, has_trivial_copy<empty_UDT>::value)
value_test(true, has_trivial_copy<enum_UDT>::value)
value_test(true, has_trivial_assign<int>::value)
value_test(true, has_trivial_assign<int*>::value)
value_test(true, has_trivial_assign<int*const>::value)
value_test(true, has_trivial_assign<const int>::value)
// Steve: was 'false' -- should be 'true' via 3.9p3, 3.9p10
value_test(true, has_trivial_assign<volatile int>::value)
value_test(true, has_trivial_assign<int[2]>::value)
value_test(true, has_trivial_assign<int[3][2]>::value)
value_test(true, has_trivial_assign<int[2][4][5][6][3]>::value)
value_test(true, has_trivial_assign<f1>::value)
value_test(true, has_trivial_assign<mf2>::value)
value_test(false, has_trivial_assign<UDT>::value)
value_test(true, has_trivial_assign<empty_UDT>::value)
value_test(true, has_trivial_assign<enum_UDT>::value)
value_test(true, has_trivial_destructor<int>::value)
value_test(true, has_trivial_destructor<int*>::value)
value_test(true, has_trivial_destructor<int*const>::value)
value_test(true, has_trivial_destructor<const int>::value)
value_test(true, has_trivial_destructor<volatile int>::value)
value_test(true, has_trivial_destructor<int[2]>::value)
value_test(true, has_trivial_destructor<int[3][2]>::value)
value_test(true, has_trivial_destructor<int[2][4][5][6][3]>::value)
value_test(true, has_trivial_destructor<f1>::value)
value_test(true, has_trivial_destructor<mf2>::value)
value_test(false, has_trivial_destructor<UDT>::value)
value_test(false, has_trivial_destructor<empty_UDT>::value)
value_test(true, has_trivial_destructor<enum_UDT>::value)
value_test(true, is_POD<int>::value)
value_test(true, is_POD<int*>::value)
// Steve: was 'true', should be 'false', via 3.9p10
value_test(false, is_POD<int&>::value)
value_test(true, is_POD<int*const>::value)
value_test(true, is_POD<const int>::value)
// Steve: was 'false', should be 'true', via 3.9p10
value_test(true, is_POD<volatile int>::value)
// Steve: was 'true', should be 'false', via 3.9p10
value_test(false, is_POD<const int&>::value)
value_test(true, is_POD<int[2]>::value)
value_test(true, is_POD<int[3][2]>::value)
value_test(true, is_POD<int[2][4][5][6][3]>::value)
value_test(true, is_POD<f1>::value)
value_test(true, is_POD<mf2>::value)
value_test(false, is_POD<UDT>::value)
value_test(false, is_POD<empty_UDT>::value)
value_test(true, is_POD<enum_UDT>::value)
value_test(true, (boost::is_convertible<Deriverd,Base>::value));
value_test(true, (boost::is_convertible<Deriverd,Deriverd>::value));
value_test(true, (boost::is_convertible<Base,Base>::value));
value_test(false, (boost::is_convertible<Base,Deriverd>::value));
value_test(true, (boost::is_convertible<Deriverd,Deriverd>::value));
value_test(false, (boost::is_convertible<NonDerived,Base>::value));
//value_test(false, (boost::is_convertible<boost::noncopyable, boost::noncopyable>::value));
value_test(true, (boost::is_convertible<float,int>::value));
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_test(false, (boost::is_convertible<float,void>::value));
value_test(false, (boost::is_convertible<void,float>::value));
value_test(true, (boost::is_convertible<void,void>::value));
#endif
value_test(true, (boost::is_convertible<enum1, int>::value));
value_test(true, (boost::is_convertible<Deriverd*, Base*>::value));
value_test(false, (boost::is_convertible<Base*, Deriverd*>::value));
value_test(true, (boost::is_convertible<Deriverd&, Base&>::value));
value_test(false, (boost::is_convertible<Base&, Deriverd&>::value));
value_test(true, (boost::is_convertible<const Deriverd*, const Base*>::value));
value_test(false, (boost::is_convertible<const Base*, const Deriverd*>::value));
value_test(true, (boost::is_convertible<const Deriverd&, const Base&>::value));
value_test(false, (boost::is_convertible<const Base&, const Deriverd&>::value));
value_test(false, (boost::is_convertible<const int *, int*>::value));
value_test(false, (boost::is_convertible<const int&, int&>::value));
value_test(false, (boost::is_convertible<int*, int[2]>::value));
value_test(false, (boost::is_convertible<const int*, int[3]>::value));
value_test(true, (boost::is_convertible<const int&, int>::value));
value_test(true, (boost::is_convertible<int(&)[4], const int*>::value));
value_test(true, (boost::is_convertible<int(&)(int), int(*)(int)>::value));
value_test(true, (boost::is_convertible<int *, const int*>::value));
value_test(true, (boost::is_convertible<int&, const int&>::value));
value_test(true, (boost::is_convertible<int[2], int*>::value));
value_test(true, (boost::is_convertible<int[2], const int*>::value));
value_test(false, (boost::is_convertible<const int[2], int*>::value));
align_test(int);
align_test(char);
align_test(double);
align_test(int[4]);
align_test(int(*)(int));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
align_test(char&);
align_test(char (&)(int));
align_test(char(&)[4]);
#endif
align_test(int*);
//align_test(const int);
align_test(VB);
align_test(VD);
std::cout << std::endl << test_count << " tests completed (" << failures << " failures)... press any key to exit";
std::cin.get();
return failures;
}

View File

@ -1,106 +0,0 @@
// boost::compressed_pair test program
// (C) Copyright John Maddock 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// common test code for type_traits_test.cpp/call_traits_test.cpp/compressed_pair_test.cpp
#ifndef BOOST_TYPE_TRAITS_TEST_HPP
#define BOOST_TYPE_TRAITS_TEST_HPP
//
// this one is here just to suppress warnings:
//
template <class T>
bool do_compare(T i, T j)
{
return i == j;
}
//
// this one is to verify that a constant is indeed a
// constant-integral-expression:
//
template <int>
struct ct_checker
{
};
#define BOOST_DO_JOIN( X, Y ) BOOST_DO_JOIN2(X,Y)
#define BOOST_DO_JOIN2(X, Y) X ## Y
#define BOOST_JOIN( X, Y ) BOOST_DO_JOIN( X, Y )
#define value_test(v, x) ++test_count;\
typedef ct_checker<(x)> BOOST_JOIN(this_is_a_compile_time_check_, __LINE__);\
if(!do_compare((int)v,(int)x)){++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;}
#define value_fail(v, x) ++test_count; ++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#define type_test(v, x) ++test_count;\
if(do_compare(boost::is_same<v, x>::value, false)){\
++failures; \
std::cout << "checking type of " << #x << "...failed" << std::endl; \
std::cout << " expected type was " << #v << std::endl; \
std::cout << " " << typeid(boost::is_same<v, x>).name() << "::value is false" << std::endl; }
#else
#define type_test(v, x) ++test_count;\
if(typeid(v) != typeid(x)){\
++failures; \
std::cout << "checking type of " << #x << "...failed" << std::endl; \
std::cout << " expected type was " << #v << std::endl; \
std::cout << " " << "typeid(" #v ") != typeid(" #x ")" << std::endl; }
#endif
template <class T>
struct test_align
{
struct padded
{
char c;
T t;
};
static void do_it()
{
padded p;
unsigned a = reinterpret_cast<char*>(&(p.t)) - reinterpret_cast<char*>(&p);
value_test(a, boost::alignment_of<T>::value);
}
};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T>
struct test_align<T&>
{
static void do_it()
{
//
// we can't do the usual test because we can't take the address
// of a reference, so check that the result is the same as for a
// pointer type instead:
value_test(boost::alignment_of<T*>::value, boost::alignment_of<T&>::value);
}
};
#endif
#define align_test(T) test_align<T>::do_it()
//
// define tests here
unsigned failures = 0;
unsigned test_count = 0;
//
// turn off some warnings:
#ifdef __BORLANDC__
#pragma option -w-8004
#endif
#ifdef BOOST_MSVC
#pragma warning (disable: 4018)
#endif
#endif // BOOST_TYPE_TRAITS_TEST_HPP

View File

@ -1,103 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Header boost/utility.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" WIDTH="277" HEIGHT="86">Header
<a href="../../boost/utility.hpp">boost/utility.hpp</a></h1>
<p>The entire contents of the header <code><a href="../../boost/utility.hpp">&lt;boost/utility.hpp&gt;</a></code>
are in <code>namespace boost</code>.</p>
<h2>Contents</h2>
<ul>
<li>Template functions <a href="#functions next">next() and prior()</a></li>
<li>Class <a href="#Class noncopyable">noncopyable</a></li>
</ul>
<h2>Template <a name="functions next">functions next</a>() and prior()</h2>
<p>Certain data types, such as the C++ Standard Library's forward and
bidirectional iterators, do not provide addition and subtraction via operator+()
or operator-().&nbsp; This means that non-modifying computation of the next or
prior value requires a temporary, even though operator++() or operator--() is
provided.&nbsp; It also means that writing code like <code>itr+1</code> inside a
template restricts the iterator category to random access iterators.</p>
<p>The next() and prior() functions provide a simple way around these problems:</p>
<blockquote>
<pre>template &lt;class T&gt;
T next(T x) { return ++x; }
template &lt;class X&gt;
T prior(T x) { return --x; }</pre>
</blockquote>
<p>Usage is simple:</p>
<blockquote>
<pre>const std::list&lt;T&gt;::iterator p = get_some_iterator();
const std::list&lt;T&gt;::iterator prev = boost::prior(p);</pre>
</blockquote>
<p>Contributed by <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>.</p>
<h2><a name="Class noncopyable">Class noncopyable</a></h2>
<p>Class <strong>noncopyable</strong> is a base class.&nbsp; Derive your own class from <strong>noncopyable</strong>
when you want to prohibit copy construction and copy assignment.</p>
<p>Some objects, particularly those which hold complex resources like files or
network connections, have no sensible copy semantics.&nbsp; Sometimes there are
possible copy semantics, but these would be of very limited usefulness and be
very difficult to implement correctly.&nbsp; Sometimes you're implementing a class that doesn't need to be copied
just yet and you don't want to take the time to write the appropriate functions.&nbsp;
Deriving from <b> noncopyable</b> will prevent the otherwise implicitly-generated
functions (which don't have the proper semantics) from becoming a trap for other programmers.</p>
<p>The traditional way to deal with these is to declare a private copy constructor and copy assignment, and then
document why this is done.&nbsp; But deriving from <b>noncopyable</b> is simpler
and clearer, and doesn't require additional documentation.</p>
<p>The program <a href="noncopyable_test.cpp">noncopyable_test.cpp</a> can be
used to verify class <b>noncopyable</b> works as expected. It has have been run successfully under
GCC 2.95, Metrowerks
CodeWarrior 5.0, and Microsoft Visual C++ 6.0 sp 3.</p>
<p>Contributed by <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>.</p>
<h3>Example</h3>
<blockquote>
<pre>// inside one of your own headers ...
#include &lt;boost/utility.hpp&gt;
class ResourceLadenFileSystem : noncopyable {
...</pre>
</blockquote>
<h3>Rationale</h3>
<p>Class noncopyable has protected constructor and destructor members to
emphasize that it is to be used only as a base class.&nbsp; Dave Abrahams notes
concern about the effect on compiler optimization of adding (even trivial inline)
destructor declarations. He says &quot;Probably this concern is misplaced, because
noncopyable will be used mostly for classes which own resources and thus have non-trivial destruction semantics.&quot;</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan
-->26 January, 2000<!--webbot bot="Timestamp" endspan i-checksum="38194"
-->
</p>
<p><EFBFBD> Copyright boost.org 1999. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided &quot;as is&quot; without express or
implied warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>