Compare commits

..

1 Commits

Author SHA1 Message Date
nobody
d944c6538f This commit was manufactured by cvs2svn to create tag
'Version_1_21_0'.

[SVN r9525]
2001-03-09 14:58:07 +00:00
34 changed files with 2062 additions and 2362 deletions

View File

@@ -100,7 +100,7 @@ Assignment
</UL>
<h3>See also</h3>
<a href="http://www.sgi.com/tech/stl/DefaultConstructible.html">DefaultConstructible</A>
<a href="http://www.sgi.com/Technology/STL/DefaultConstructible.html">DefaultConstructible</A>
and
<A href="./CopyConstructible.html">CopyConstructible</A>

View File

@@ -11,7 +11,7 @@
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<Title>Copy Constructible</Title>
<Title>CopyConstructible</Title>
</HEAD>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
@@ -19,10 +19,10 @@
ALT="C++ Boost" width="277" height="86">
<!--end header-->
<BR Clear>
<H1>Copy Constructible</H1>
<H1>CopyConstructible</H1>
<h3>Description</h3>
A type is Copy Constructible if it is possible to copy objects of that
A type is CopyConstructible if it is possible to copy objects of that
type.
<h3>Notation</h3>
@@ -32,7 +32,7 @@ type.
<tt>T</tt>
</TD>
<TD VAlign=top>
is type that is a model of Copy Constructible
is type that is a model of CopyConstructible
</TD>
</TR>
@@ -194,9 +194,9 @@ denotes the address of <tt>u</tt>
<h3>See also</h3>
<A
href="http://www.sgi.com/tech/stl/DefaultConstructible.html">Default Constructible</A>
href="http://www.sgi.com/Technology/STL/DefaultConstructible.html">DefaultConstructible</A>
and
<A hrefa="./Assignable.html">Assignable</A>
<A href="http://www.sgi.com/Technology/STL/Assignable.html">Assignable</A>
<br>
<HR>

View File

@@ -196,7 +196,7 @@ satisfies the definition of a <i>partial ordering</i>. The definition of
a <i>strict weak ordering</i> is stricter, and the definition of a
<i>total ordering</i> is stricter still.
<h3>See also</h3>
<A href="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</A>, <A href="http://www.sgi.com/tech/stl/StrictWeakOrdering.html">StrictWeakOrdering</A>
<A href="http://www.sgi.com/Technology/STL/EqualityComparable.html">EqualityComparable</A>, <A href="http://www.sgi.com/Technology/STL/StrictWeakOrdering.html">StrictWeakOrdering</A>

View File

@@ -21,21 +21,21 @@
<H2>
<A NAME="concept:MultiPassInputIterator"></A>
Multi-Pass Input Iterator
MultiPassInputIterator
</H2>
This concept is a refinement of <a
href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
href="http://www.sgi.com/Technology/STL/InputIterator.html">InputIterator</a>,
adding the requirements that the iterator can be used to make multiple
passes through a range, and that if <TT>it1 == it2</TT> and
<TT>it1</TT> is dereferenceable then <TT>++it1 == ++it2</TT>. The
Multi-Pass Input Iterator is very similar to the <a
href="http://www.sgi.com/tech/stl/ForwardIterator.hmtl">Forward Iterator</a>. The
MultiPassInputIterator is very similar to the <a
href="http://www.sgi.com/Technology/STL/ForwardIterator.hmtl">ForwardIterator</a>. The
only difference is that a <a
href="http://www.sgi.com/tech/stl/ForwardIterator.hmtl">Forward Iterator</a>
href="http://www.sgi.com/Technology/STL/ForwardIterator.hmtl">ForwardIterator</a>
requires the <TT>reference</TT> type to be <TT>value_type&amp;</TT>, whereas
MultiPassInputIterator is like <a
href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
href="http://www.sgi.com/Technology/STL/InputIterator.html">InputIterator</a>
in that the <TT>reference</TT> type merely has to be convertible to
<TT>value_type</TT>.
@@ -44,29 +44,29 @@ in that the <TT>reference</TT> type merely has to be convertible to
comments by Valentin Bonnard:
<p> I think that introducing Multi-Pass Input Iterator isn't the right
solution. Do you also want to define Multi-Pass Bidirectionnal Iterator
and Multi-Pass Random Access Iterator ? I don't, definitly. It only
<p> I think that introducing MultiPassInputIterator isn't the right
solution. Do you also want to define MultiPassBidirectionnalIterator
and MultiPassRandomAccessIterator ? I don't, definitly. It only
confuses the issue. The problem lies into the existing hierarchy of
iterators, which mixes movabillity, modifiabillity and lvalue-ness,
and these are clearly independant.
<p> The terms Forward, Bidirectionnal and Random Access are about
<p> The terms Forward, Bidirectionnal and RandomAccess are about
movabillity and shouldn't be used to mean anything else. In a
completly orthogonal way, iterators can be immutable, mutable, or
neither. Lvalueness of iterators is also orthogonal with
immutabillity. With these clean concepts, your Multi-Pass Input Iterator
is just called a Forward Iterator.
immutabillity. With these clean concepts, your MultiPassInputIterator
is just called a ForwardIterator.
<p>
Other translations are:<br>
std::Forward Iterator -> ForwardIterator & Lvalue Iterator<br>
std::Bidirectionnal Iterator -> Bidirectionnal Iterator & Lvalue Iterator<br>
std::Random Access Iterator -> Random Access Iterator & Lvalue Iterator<br>
std::ForwardIterator -> ForwardIterator & LvalueIterator<br>
std::BidirectionnalIterator -> BidirectionnalIterator & LvalueIterator<br>
std::RandomAccessIterator -> RandomAccessIterator & LvalueIterator<br>
<p>
Note that in practice the only operation not allowed on my
Forward Iterator which is allowed on std::Forward Iterator is
ForwardIterator which is allowed on std::ForwardIterator is
<tt>&*it</tt>. I think that <tt>&*</tt> is rarely needed in generic code.
<p>
@@ -75,9 +75,9 @@ reply by Jeremy Siek:
<p>
The above analysis by Valentin is right on. Of course, there is
the problem with backward compatibility. The current STL implementations
are based on the old definition of Forward Iterator. The right course
of action is to get Forward Iterator, etc. changed in the C++ standard.
Once that is done we can drop Multi-Pass Input Iterator.
are based on the old definition of ForwardIterator. The right course
of action is to get ForwardIterator, etc. changed in the C++ standard.
Once that is done we can drop MultiPassInputIterator.
<br>

View File

@@ -5,7 +5,7 @@
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Call Traits</title>
</head>
@@ -751,7 +751,7 @@ Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org/">www.boost.org</a>, and the boost
discussion list at <a href="http://www.yahoogroups.com/list/boost">www.yahoogroups.com/list/boost</a>.</p>
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
<p>.</p>

View File

@@ -365,8 +365,6 @@ template struct call_traits_test<int[2], true>;
#ifdef BOOST_MSVC
unsigned int expected_failures = 10;
#elif defined(__SUNPRO_CC)
unsigned int expected_failures = 11;
#elif defined(__BORLANDC__)
unsigned int expected_failures = 2;
#elif defined(__GNUC__)
@@ -377,4 +375,3 @@ unsigned int expected_failures = 0;

View File

@@ -1,31 +0,0 @@
// Boost checked_delete test program ---------------------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 May 01 Initial version (Beman Dawes)
#include <boost/utility.hpp> // for checked_delete
// This program demonstrates compiler errors when trying to delete an
// incomplete type.
namespace
{
class Incomplete;
}
int main()
{
Incomplete * p;
boost::checked_delete(p); // should cause compile time error
Incomplete ** pa;
boost::checked_array_delete(pa); // should cause compile time error
return 0;
} // main

View File

@@ -6,15 +6,14 @@ content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Header </title>
<boost/compressed_pair.hpp>
<title>Header <boost/compressed_pair.hpp></title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
vlink="#800080">
<h2><img src="../../c++boost.gif" width="276" height="86">Header
&lt;<a href="../../boost/detail/compressed_pair.hpp">boost/compressed_pair.hpp</a>&gt;</h2>
&lt;<a href="../../boost/detail/call_traits.hpp">boost/compressed_pair.hpp</a>&gt;</h2>
<p>All of the contents of &lt;boost/compressed_pair.hpp&gt; are
defined inside namespace boost.</p>
@@ -42,8 +41,6 @@ public:
explicit compressed_pair(first_param_type x);
explicit compressed_pair(second_param_type y);
compressed_pair&amp; operator=(const compressed_pair&amp;);
first_reference first();
first_const_reference first() const;
@@ -64,19 +61,17 @@ constructor, and this constructor initialises both values in the
pair to the passed value.</p>
<p>Note that compressed_pair can not be instantiated if either of
the template arguments is a union type, unless there is compiler
support for boost::is_union, or if boost::is_union is specialised
for the union type.</p>
the template arguments is an enumerator type, unless there is
compiler support for boost::is_enum, or if boost::is_enum is
specialised for the enumerator type.</p>
<p>Finally, a word of caution for Visual C++ 6 users: if either
argument is an empty type, then assigning to that member will
produce memory corruption, unless the empty type has a &quot;do
nothing&quot; assignment operator defined. This is due to a bug
in the way VC6 generates implicit assignment operators.</p>
<p>Finally, compressed_pair requires compiler support for partial
specialisation of class templates - without that support
compressed_pair behaves just like std::pair.</p>
<hr>
<p>Revised 08 May 2001</p>
<p>Revised 08 March 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this
@@ -90,8 +85,7 @@ Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org">www.boost.org</a>, and the boost
discussion list at <a
href="http://www.yahoogroups.com/list/boost">www.yahoogroups.com/list/boost</a>.</p>
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
<p>&nbsp;</p>
</body>

View File

@@ -15,8 +15,6 @@
#include <boost/compressed_pair.hpp>
#include <boost/type_traits/type_traits_test.hpp>
#define BOOST_INCLUDE_MAIN
#include <boost/test/test_tools.hpp>
using namespace boost;
@@ -56,346 +54,101 @@ struct non_empty2
{ return a.i == b.i; }
};
#ifdef __GNUC__
using std::swap;
#endif
template <class T1, class T2>
struct compressed_pair_tester
int main(int argc, char *argv[ ])
{
// define the types we need:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
// define our test proc:
static void test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4);
};
compressed_pair<int, double> cp1(1, 1.3);
assert(cp1.first() == 1);
assert(cp1.second() == 1.3);
compressed_pair<int, double> cp1b(2, 2.3);
assert(cp1b.first() == 2);
assert(cp1b.second() == 2.3);
swap(cp1, cp1b);
assert(cp1b.first() == 1);
assert(cp1b.second() == 1.3);
assert(cp1.first() == 2);
assert(cp1.second() == 2.3);
compressed_pair<non_empty1, non_empty2> cp1c(non_empty1(9));
assert(cp1c.second() == non_empty2());
assert(cp1c.first() == non_empty1(9));
compressed_pair<non_empty1, non_empty2> cp1d(non_empty2(9));
assert(cp1d.second() == non_empty2(9));
assert(cp1d.first() == non_empty1());
template <class T1, class T2>
void compressed_pair_tester<T1, T2>::test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4)
{
#ifndef __GNUC__
// gcc 2.90 can't cope with function scope using
// declarations, and generates an internal compiler error...
using std::swap;
compressed_pair<int, double> cp1e(cp1);
compressed_pair<empty_UDT, int> cp2(2);
assert(cp2.second() == 2);
compressed_pair<int, empty_UDT> cp3(1);
assert(cp3.first() ==1);
compressed_pair<empty_UDT, empty_UDT> cp4;
compressed_pair<empty_UDT, empty_POD_UDT> cp5;
compressed_pair<int, empty_UDT> cp9(empty_UDT());
compressed_pair<int, empty_UDT> cp10(1);
assert(cp10.first() == 1);
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
int i = 0;
compressed_pair<int&, int&> cp6(i,i);
assert(cp6.first() == i);
assert(cp6.second() == i);
assert(&cp6.first() == &i);
assert(&cp6.second() == &i);
compressed_pair<int, double[2]> cp7;
cp7.first();
double* pd = cp7.second();
#endif
// default construct:
boost::compressed_pair<T1,T2> cp1;
// first param construct:
boost::compressed_pair<T1,T2> cp2(p1);
cp2.second() = p2;
BOOST_TEST(cp2.first() == p1);
BOOST_TEST(cp2.second() == p2);
// second param construct:
boost::compressed_pair<T1,T2> cp3(p2);
cp3.first() = p1;
BOOST_TEST(cp3.second() == p2);
BOOST_TEST(cp3.first() == p1);
// both param construct:
boost::compressed_pair<T1,T2> cp4(p1, p2);
BOOST_TEST(cp4.first() == p1);
BOOST_TEST(cp4.second() == p2);
boost::compressed_pair<T1,T2> cp5(p3, p4);
BOOST_TEST(cp5.first() == p3);
BOOST_TEST(cp5.second() == p4);
// check const members:
const boost::compressed_pair<T1,T2>& cpr1 = cp4;
BOOST_TEST(cpr1.first() == p1);
BOOST_TEST(cpr1.second() == p2);
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, int>) < sizeof(std::pair<empty_UDT, int>)))
soft_value_test(true, (sizeof(compressed_pair<int, empty_UDT>) < sizeof(std::pair<int, empty_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, empty_UDT>) < sizeof(std::pair<empty_UDT, empty_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, empty_POD_UDT>) < sizeof(std::pair<empty_UDT, empty_POD_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, compressed_pair<empty_POD_UDT, int> >) < sizeof(std::pair<empty_UDT, std::pair<empty_POD_UDT, int> >)))
// copy construct:
boost::compressed_pair<T1,T2> cp6(cp4);
BOOST_TEST(cp6.first() == p1);
BOOST_TEST(cp6.second() == p2);
// assignment:
cp1 = cp4;
BOOST_TEST(cp1.first() == p1);
BOOST_TEST(cp1.second() == p2);
cp1 = cp5;
BOOST_TEST(cp1.first() == p3);
BOOST_TEST(cp1.second() == p4);
// swap:
cp4.swap(cp5);
BOOST_TEST(cp4.first() == p3);
BOOST_TEST(cp4.second() == p4);
BOOST_TEST(cp5.first() == p1);
BOOST_TEST(cp5.second() == p2);
swap(cp4,cp5);
BOOST_TEST(cp4.first() == p1);
BOOST_TEST(cp4.second() == p2);
BOOST_TEST(cp5.first() == p3);
BOOST_TEST(cp5.second() == p4);
return check_result(argc, argv);
}
//
// tests for case where one or both
// parameters are reference types:
//
template <class T1, class T2>
struct compressed_pair_reference_tester
{
// define the types we need:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
// define our test proc:
static void test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4);
};
template <class T1, class T2>
void compressed_pair_reference_tester<T1, T2>::test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4)
{
#ifndef __GNUC__
// gcc 2.90 can't cope with function scope using
// declarations, and generates an internal compiler error...
using std::swap;
// instanciate some compressed pairs:
#ifdef __MWERKS__
template class compressed_pair<int, double>;
template class compressed_pair<int, int>;
template class compressed_pair<empty_UDT, int>;
template class compressed_pair<int, empty_UDT>;
template class compressed_pair<empty_UDT, empty_UDT>;
template class compressed_pair<empty_UDT, empty_POD_UDT>;
#else
template class boost::compressed_pair<int, double>;
template class boost::compressed_pair<int, int>;
template class boost::compressed_pair<empty_UDT, int>;
template class boost::compressed_pair<int, empty_UDT>;
template class boost::compressed_pair<empty_UDT, empty_UDT>;
template class boost::compressed_pair<empty_UDT, empty_POD_UDT>;
#endif
// both param construct:
boost::compressed_pair<T1,T2> cp4(p1, p2);
BOOST_TEST(cp4.first() == p1);
BOOST_TEST(cp4.second() == p2);
boost::compressed_pair<T1,T2> cp5(p3, p4);
BOOST_TEST(cp5.first() == p3);
BOOST_TEST(cp5.second() == p4);
// check const members:
const boost::compressed_pair<T1,T2>& cpr1 = cp4;
BOOST_TEST(cpr1.first() == p1);
BOOST_TEST(cpr1.second() == p2);
// copy construct:
boost::compressed_pair<T1,T2> cp6(cp4);
BOOST_TEST(cp6.first() == p1);
BOOST_TEST(cp6.second() == p2);
// assignment:
// VC6 bug:
// When second() is an empty class, VC6 performs the
// assignment by doing a memcpy - even though the empty
// class is really a zero sized base class, the result
// is that the memory of first() gets trampled over.
// Similar arguments apply to the case that first() is
// an empty base class.
// Strangely the problem is dependent upon the compiler
// settings - some generate the problem others do not.
cp4.first() = p3;
cp4.second() = p4;
BOOST_TEST(cp4.first() == p3);
BOOST_TEST(cp4.second() == p4);
}
//
// supplimentary tests for case where first arg only is a reference type:
//
template <class T1, class T2>
struct compressed_pair_reference1_tester
{
// define the types we need:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
// define our test proc:
static void test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4);
};
template <class T1, class T2>
void compressed_pair_reference1_tester<T1, T2>::test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4)
{
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// first param construct:
boost::compressed_pair<T1,T2> cp2(p1);
cp2.second() = p2;
BOOST_TEST(cp2.first() == p1);
BOOST_TEST(cp2.second() == p2);
#ifndef __MWERKS__
//
// now some for which only a few specific members can be instantiated,
// first references:
template double& compressed_pair<double, int&>::first();
template int& compressed_pair<double, int&>::second();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int&>::compressed_pair(int&);
#endif
}
template compressed_pair<double, int&>::compressed_pair(call_traits<double>::param_type,int&);
//
// supplimentary tests for case where second arg only is a reference type:
//
template <class T1, class T2>
struct compressed_pair_reference2_tester
{
// define the types we need:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
// define our test proc:
static void test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4);
};
template <class T1, class T2>
void compressed_pair_reference2_tester<T1, T2>::test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4)
{
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// second param construct:
boost::compressed_pair<T1,T2> cp3(p2);
cp3.first() = p1;
BOOST_TEST(cp3.second() == p2);
BOOST_TEST(cp3.first() == p1);
// and then arrays:
#ifndef __BORLANDC__
template call_traits<int[2]>::reference compressed_pair<double, int[2]>::second();
#endif
}
//
// tests for where one or the other parameter is an array:
//
template <class T1, class T2>
struct compressed_pair_array1_tester
{
// define the types we need:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
// define our test proc:
static void test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4);
};
template <class T1, class T2>
void compressed_pair_array1_tester<T1, T2>::test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4)
{
// default construct:
boost::compressed_pair<T1,T2> cp1;
// second param construct:
boost::compressed_pair<T1,T2> cp3(p2);
cp3.first()[0] = p1[0];
BOOST_TEST(cp3.second() == p2);
BOOST_TEST(cp3.first()[0] == p1[0]);
// check const members:
const boost::compressed_pair<T1,T2>& cpr1 = cp3;
BOOST_TEST(cpr1.first()[0] == p1[0]);
BOOST_TEST(cpr1.second() == p2);
BOOST_TEST(sizeof(T1) == sizeof(cp1.first()));
}
template <class T1, class T2>
struct compressed_pair_array2_tester
{
// define the types we need:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
// define our test proc:
static void test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4);
};
template <class T1, class T2>
void compressed_pair_array2_tester<T1, T2>::test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4)
{
// default construct:
boost::compressed_pair<T1,T2> cp1;
// first param construct:
boost::compressed_pair<T1,T2> cp2(p1);
cp2.second()[0] = p2[0];
BOOST_TEST(cp2.first() == p1);
BOOST_TEST(cp2.second()[0] == p2[0]);
// check const members:
const boost::compressed_pair<T1,T2>& cpr1 = cp2;
BOOST_TEST(cpr1.first() == p1);
BOOST_TEST(cpr1.second()[0] == p2[0]);
BOOST_TEST(sizeof(T2) == sizeof(cp1.second()));
}
template <class T1, class T2>
struct compressed_pair_array_tester
{
// define the types we need:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
// define our test proc:
static void test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4);
};
template <class T1, class T2>
void compressed_pair_array_tester<T1, T2>::test(first_param_type p1, second_param_type p2, first_param_type p3, second_param_type p4)
{
// default construct:
boost::compressed_pair<T1,T2> cp1;
cp1.first()[0] = p1[0];
cp1.second()[0] = p2[0];
BOOST_TEST(cp1.first()[0] == p1[0]);
BOOST_TEST(cp1.second()[0] == p2[0]);
// check const members:
const boost::compressed_pair<T1,T2>& cpr1 = cp1;
BOOST_TEST(cpr1.first()[0] == p1[0]);
BOOST_TEST(cpr1.second()[0] == p2[0]);
BOOST_TEST(sizeof(T1) == sizeof(cp1.first()));
BOOST_TEST(sizeof(T2) == sizeof(cp1.second()));
}
int test_main(int argc, char *argv[ ])
{
// declare some variables to pass to the tester:
non_empty1 ne1(2);
non_empty1 ne2(3);
non_empty2 ne3(4);
non_empty2 ne4(5);
empty_POD_UDT e1;
empty_UDT e2;
// T1 != T2, both non-empty
compressed_pair_tester<non_empty1,non_empty2>::test(ne1, ne3, ne2, ne4);
// T1 != T2, T2 empty
compressed_pair_tester<non_empty1,empty_POD_UDT>::test(ne1, e1, ne2, e1);
// T1 != T2, T1 empty
compressed_pair_tester<empty_POD_UDT,non_empty2>::test(e1, ne3, e1, ne4);
// T1 != T2, both empty
compressed_pair_tester<empty_POD_UDT,empty_UDT>::test(e1, e2, e1, e2);
// T1 == T2, both non-empty
compressed_pair_tester<non_empty1,non_empty1>::test(ne1, ne1, ne2, ne2);
// T1 == T2, both empty
compressed_pair_tester<empty_UDT,empty_UDT>::test(e2, e2, e2, e2);
// test references:
// T1 != T2, both non-empty
compressed_pair_reference_tester<non_empty1&,non_empty2>::test(ne1, ne3, ne2, ne4);
compressed_pair_reference_tester<non_empty1,non_empty2&>::test(ne1, ne3, ne2, ne4);
compressed_pair_reference1_tester<non_empty1&,non_empty2>::test(ne1, ne3, ne2, ne4);
compressed_pair_reference2_tester<non_empty1,non_empty2&>::test(ne1, ne3, ne2, ne4);
// T1 != T2, T2 empty
compressed_pair_reference_tester<non_empty1&,empty_POD_UDT>::test(ne1, e1, ne2, e1);
compressed_pair_reference1_tester<non_empty1&,empty_POD_UDT>::test(ne1, e1, ne2, e1);
// T1 != T2, T1 empty
compressed_pair_reference_tester<empty_POD_UDT,non_empty2&>::test(e1, ne3, e1, ne4);
compressed_pair_reference2_tester<empty_POD_UDT,non_empty2&>::test(e1, ne3, e1, ne4);
// T1 == T2, both non-empty
compressed_pair_reference_tester<non_empty1&,non_empty1&>::test(ne1, ne1, ne2, ne2);
// tests arrays:
non_empty1 nea1[2];
non_empty1 nea2[2];
non_empty2 nea3[2];
non_empty2 nea4[2];
nea1[0] = non_empty1(5);
nea2[0] = non_empty1(6);
nea3[0] = non_empty2(7);
nea4[0] = non_empty2(8);
// T1 != T2, both non-empty
compressed_pair_array1_tester<non_empty1[2],non_empty2>::test(nea1, ne3, nea2, ne4);
compressed_pair_array2_tester<non_empty1,non_empty2[2]>::test(ne1, nea3, ne2, nea4);
compressed_pair_array_tester<non_empty1[2],non_empty2[2]>::test(nea1, nea3, nea2, nea4);
// T1 != T2, T2 empty
compressed_pair_array1_tester<non_empty1[2],empty_POD_UDT>::test(nea1, e1, nea2, e1);
// T1 != T2, T1 empty
compressed_pair_array2_tester<empty_POD_UDT,non_empty2[2]>::test(e1, nea3, e1, nea4);
// T1 == T2, both non-empty
compressed_pair_array_tester<non_empty1[2],non_empty1[2]>::test(nea1, nea1, nea2, nea2);
return 0;
}
template call_traits<double>::reference compressed_pair<double, int[2]>::first();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int[2]>::compressed_pair(call_traits<double>::param_type);
#endif
template compressed_pair<double, int[2]>::compressed_pair();
#endif // __MWERKS__
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
unsigned int expected_failures = 0;

View File

@@ -308,7 +308,7 @@ implementation, the <tt>difference_type</tt> for any variable-length signed
integer type <tt>T</tt> is <tt>T</tt> itself.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->08 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14892" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14390" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;

View File

@@ -0,0 +1,23 @@
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// See boost/detail/call_traits.hpp and boost/detail/ob_call_traits.hpp
// for full copyright notices.
#ifndef BOOST_CALL_TRAITS_HPP
#define BOOST_CALL_TRAITS_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#include <boost/detail/ob_call_traits.hpp>
#else
#include <boost/detail/call_traits.hpp>
#endif
#endif // BOOST_CALL_TRAITS_HPP

View File

@@ -0,0 +1,23 @@
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// See boost/detail/compressed_pair.hpp and boost/detail/ob_compressed_pair.hpp
// for full copyright notices.
#ifndef BOOST_COMPRESSED_PAIR_HPP
#define BOOST_COMPRESSED_PAIR_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#include <boost/detail/ob_compressed_pair.hpp>
#else
#include <boost/detail/compressed_pair.hpp>
#endif
#endif // BOOST_COMPRESSED_PAIR_HPP

View File

@@ -0,0 +1,141 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// call_traits: defines typedefs for function usage
// (see libs/utility/call_traits.htm)
/* Release notes:
23rd July 2000:
Fixed array specialization. (JM)
Added Borland specific fixes for reference types
(issue raised by Steve Cleary).
*/
#ifndef BOOST_DETAIL_CALL_TRAITS_HPP
#define BOOST_DETAIL_CALL_TRAITS_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifndef BOOST_ARITHMETIC_TYPE_TRAITS_HPP
#include <boost/type_traits/arithmetic_traits.hpp>
#endif
#ifndef BOOST_COMPOSITE_TYPE_TRAITS_HPP
#include <boost/type_traits/composite_traits.hpp>
#endif
namespace boost{
namespace detail{
template <typename T, bool isp, bool b1, bool b2>
struct ct_imp
{
typedef const T& param_type;
};
template <typename T, bool isp>
struct ct_imp<T, isp, true, true>
{
typedef T const param_type;
};
template <typename T, bool b1, bool b2>
struct ct_imp<T, true, b1, b2>
{
typedef T const param_type;
};
}
template <typename T>
struct call_traits
{
public:
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
//
// C++ Builder workaround: we should be able to define a compile time
// constant and pass that as a single template parameter to ct_imp<T,bool>,
// however compiler bugs prevent this - instead pass three bool's to
// ct_imp<T,bool,bool,bool> and add an extra partial specialisation
// of ct_imp to handle the logic. (JM)
typedef typename detail::ct_imp<T, ::boost::is_pointer<typename remove_const<T>::type>::value, ::boost::is_arithmetic<typename remove_const<T>::type>::value, sizeof(T) <= sizeof(void*)>::param_type param_type;
};
template <typename T>
struct call_traits<T&>
{
typedef T& value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T& param_type; // hh removed const
};
#if defined(__BORLANDC__) && (__BORLANDC__ <= 0x551)
// these are illegal specialisations; cv-qualifies applied to
// references have no effect according to [8.3.2p1],
// C++ Builder requires them though as it treats cv-qualified
// references as distinct types...
template <typename T>
struct call_traits<T&const>
{
typedef T& value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T& param_type; // hh removed const
};
template <typename T>
struct call_traits<T&volatile>
{
typedef T& value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T& param_type; // hh removed const
};
template <typename T>
struct call_traits<T&const volatile>
{
typedef T& value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T& param_type; // hh removed const
};
#endif
template <typename T, std::size_t N>
struct call_traits<T [N]>
{
private:
typedef T array_type[N];
public:
// degrades array to pointer:
typedef const T* value_type;
typedef array_type& reference;
typedef const array_type& const_reference;
typedef const T* const param_type;
};
template <typename T, std::size_t N>
struct call_traits<const T [N]>
{
private:
typedef const T array_type[N];
public:
// degrades array to pointer:
typedef const T* value_type;
typedef array_type& reference;
typedef const array_type& const_reference;
typedef const T* const param_type;
};
}
#endif // BOOST_DETAIL_CALL_TRAITS_HPP

View File

@@ -0,0 +1,428 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// compressed_pair: pair that "compresses" empty members
// (see libs/utility/compressed_pair.htm)
//
// JM changes 25 Jan 2000:
// Removed default arguments from compressed_pair_switch to get
// C++ Builder 4 to accept them
// rewriten swap to get gcc and C++ builder to compile.
// added partial specialisations for case T1 == T2 to avoid duplicate constructor defs.
#ifndef BOOST_DETAIL_COMPRESSED_PAIR_HPP
#define BOOST_DETAIL_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>
#endif
namespace boost
{
// compressed_pair
namespace details
{
// JM altered 26 Jan 2000:
template <class T1, class T2, bool IsSame, bool FirstEmpty, bool SecondEmpty>
struct compressed_pair_switch;
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, false, false>
{static const int value = 0;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, true, true>
{static const int value = 3;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, true, false>
{static const int value = 1;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, false, true>
{static const int value = 2;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, true, true, true>
{static const int value = 4;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, true, false, false>
{static const int value = 5;};
template <class T1, class T2, int Version> class compressed_pair_imp;
#ifdef __GNUC__
// workaround for GCC (JM):
using std::swap;
#endif
//
// can't call unqualified swap from within classname::swap
// as Koenig lookup rules will find only the classname::swap
// member function not the global declaration, so use cp_swap
// as a forwarding function (JM):
template <typename T>
inline void cp_swap(T& t1, T& t2)
{
#ifndef __GNUC__
using std::swap;
#endif
swap(t1, t2);
}
// 0 derive from neither
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 0>
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_(x) {}
explicit compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp& y)
{
cp_swap(first_, y.first_);
cp_swap(second_, y.second_);
}
private:
first_type first_;
second_type second_;
};
// 1 derive from T1
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 1>
: private T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_type(x) {}
explicit compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp& y)
{
// no need to swap empty base class:
cp_swap(second_, y.second_);
}
private:
second_type second_;
};
// 2 derive from T2
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 2>
: private T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: second_type(y), first_(x) {}
explicit compressed_pair_imp(first_param_type x)
: first_(x) {}
explicit compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
void swap(compressed_pair_imp& y)
{
// no need to swap empty base class:
cp_swap(first_, y.first_);
}
private:
first_type first_;
};
// 3 derive from T1 and T2
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 3>
: private T1,
private T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_type(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_type(x) {}
explicit compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
//
// no need to swap empty bases:
void swap(compressed_pair_imp&) {}
};
// JM
// 4 T1 == T2, T1 and T2 both empty
// Note does not actually store an instance of T2 at all -
// but reuses T1 base class for both first() and second().
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 4>
: private T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type)
: first_type(x) {}
explicit compressed_pair_imp(first_param_type x)
: first_type(x) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
void swap(compressed_pair_imp&) {}
private:
};
// 5 T1 == T2 and are not empty: //JM
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 5>
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_(x), second_(x) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp<T1, T2, 5>& y)
{
cp_swap(first_, y.first_);
cp_swap(second_, y.second_);
}
private:
first_type first_;
second_type second_;
};
} // details
template <class T1, class T2>
class compressed_pair
: private ::boost::details::compressed_pair_imp<T1, T2,
::boost::details::compressed_pair_switch<
T1,
T2,
::boost::is_same<typename remove_cv<T1>::type, typename remove_cv<T2>::type>::value,
::boost::is_empty<T1>::value,
::boost::is_empty<T2>::value>::value>
{
private:
typedef details::compressed_pair_imp<T1, T2,
::boost::details::compressed_pair_switch<
T1,
T2,
::boost::is_same<typename remove_cv<T1>::type, typename remove_cv<T2>::type>::value,
::boost::is_empty<T1>::value,
::boost::is_empty<T2>::value>::value> base;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y) : base(x, y) {}
explicit compressed_pair(first_param_type x) : base(x) {}
explicit compressed_pair(second_param_type y) : base(y) {}
first_reference first() {return base::first();}
first_const_reference first() const {return base::first();}
second_reference second() {return base::second();}
second_const_reference second() const {return base::second();}
void swap(compressed_pair& y) { base::swap(y); }
};
// JM
// Partial specialisation for case where T1 == T2:
//
template <class T>
class compressed_pair<T, T>
: private details::compressed_pair_imp<T, T,
::boost::details::compressed_pair_switch<
T,
T,
::boost::is_same<typename remove_cv<T>::type, typename remove_cv<T>::type>::value,
::boost::is_empty<T>::value,
::boost::is_empty<T>::value>::value>
{
private:
typedef details::compressed_pair_imp<T, T,
::boost::details::compressed_pair_switch<
T,
T,
::boost::is_same<typename remove_cv<T>::type, typename remove_cv<T>::type>::value,
::boost::is_empty<T>::value,
::boost::is_empty<T>::value>::value> base;
public:
typedef T first_type;
typedef T second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y) : base(x, y) {}
explicit compressed_pair(first_param_type x) : base(x) {}
first_reference first() {return base::first();}
first_const_reference first() const {return base::first();}
second_reference second() {return base::second();}
second_const_reference second() const {return base::second();}
void swap(compressed_pair& y) { base::swap(y); }
};
template <class T1, class T2>
inline
void
swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
} // boost
#endif // BOOST_DETAIL_COMPRESSED_PAIR_HPP

View File

@@ -0,0 +1,128 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
//
// Crippled version for crippled compilers:
// see libs/utility/call_traits.htm
//
/* Release notes:
01st October 2000:
Fixed call_traits on VC6, using "poor man's partial specialisation",
using ideas taken from "Generative programming" by Krzysztof Czarnecki
& Ulrich Eisenecker.
*/
#ifndef BOOST_OB_CALL_TRAITS_HPP
#define BOOST_OB_CALL_TRAITS_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifndef BOOST_ARITHMETIC_TYPE_TRAITS_HPP
#include <boost/type_traits/arithmetic_traits.hpp>
#endif
#ifndef BOOST_COMPOSITE_TYPE_TRAITS_HPP
#include <boost/type_traits/composite_traits.hpp>
#endif
namespace boost{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation:
//
namespace detail{
template <class T>
struct standard_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
template <class T>
struct simple_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T param_type;
};
template <class T>
struct reference_call_traits
{
typedef T value_type;
typedef T reference;
typedef T const_reference;
typedef T param_type;
};
template <bool simple, bool reference>
struct call_traits_chooser
{
template <class T>
struct rebind
{
typedef standard_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<true, false>
{
template <class T>
struct rebind
{
typedef simple_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<false, true>
{
template <class T>
struct rebind
{
typedef reference_call_traits<T> type;
};
};
} // namespace detail
template <typename T>
struct call_traits
{
private:
typedef detail::call_traits_chooser<(is_pointer<T>::value || is_arithmetic<T>::value) && sizeof(T) <= sizeof(void*), is_reference<T>::value> chooser;
typedef typename chooser::template rebind<T> bound_type;
typedef typename bound_type::type call_traits_type;
public:
typedef typename call_traits_type::value_type value_type;
typedef typename call_traits_type::reference reference;
typedef typename call_traits_type::const_reference const_reference;
typedef typename call_traits_type::param_type param_type;
};
#else
//
// sorry call_traits is completely non-functional
// blame your broken compiler:
//
template <typename T>
struct call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
#endif // member templates
}
#endif // BOOST_OB_CALL_TRAITS_HPP

View File

@@ -0,0 +1,509 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// see libs/utility/compressed_pair.hpp
//
/* Release notes:
20 Jan 2001:
Fixed obvious bugs (David Abrahams)
07 Oct 2000:
Added better single argument constructor support.
03 Oct 2000:
Added VC6 support (JM).
23rd July 2000:
Additional comments added. (JM)
Jan 2000:
Original version: this version crippled for use with crippled compilers
- John Maddock Jan 2000.
*/
#ifndef BOOST_OB_COMPRESSED_PAIR_HPP
#define BOOST_OB_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>
#endif
namespace boost
{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation. Note that due to
// problems with overload resolution with VC6
// each of the compressed_pair versions that follow
// have one template single-argument constructor
// in place of two specific constructors:
//
template <class T1, class T2>
class compressed_pair;
namespace detail{
template <class A, class T1, class T2>
struct best_conversion_traits
{
typedef char one;
typedef char (&two)[2];
static A a;
static one test(T1);
static two test(T2);
enum { value = sizeof(test(a)) };
};
template <int>
struct init_one;
template <>
struct init_one<1>
{
template <class A, class T1, class T2>
static void init(const A& a, T1* p1, T2*)
{
*p1 = a;
}
};
template <>
struct init_one<2>
{
template <class A, class T1, class T2>
static void init(const A& a, T1*, T2* p2)
{
*p2 = a;
}
};
// T1 != T2, both non-empty
template <class T1, class T2>
class compressed_pair_0
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_0() : _first(), _second() {}
compressed_pair_0(first_param_type x, second_param_type y) : _first(x), _second(y) {}
template <class A>
explicit compressed_pair_0(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, &_second);
}
compressed_pair_0(const ::boost::compressed_pair<T1,T2>& x)
: _first(x.first()), _second(x.second()) {}
#if 0
compressed_pair_0& operator=(const compressed_pair_0& x) {
cout << "assigning compressed pair 0" << endl;
_first = x._first;
_second = x._second;
cout << "finished assigning compressed pair 0" << endl;
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_0& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
// T1 != T2, T2 empty
template <class T1, class T2>
class compressed_pair_1 : T2
{
private:
T1 _first;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_1() : T2(), _first() {}
compressed_pair_1(first_param_type x, second_param_type y) : T2(y), _first(x) {}
template <class A>
explicit compressed_pair_1(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, static_cast<T2*>(this));
}
compressed_pair_1(const ::boost::compressed_pair<T1,T2>& x)
: T2(x.second()), _first(x.first()) {}
#ifdef BOOST_MSVC
// Total weirdness. If the assignment to _first is moved after
// the call to the inherited operator=, then this breaks graph/test/graph.cpp
// by way of iterator_adaptor.
compressed_pair_1& operator=(const compressed_pair_1& x) {
_first = x._first;
T2::operator=(x);
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_1& y)
{
// no need to swap empty base class:
using std::swap;
swap(_first, y._first);
}
};
// T1 != T2, T1 empty
template <class T1, class T2>
class compressed_pair_2 : T1
{
private:
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_2() : T1(), _second() {}
compressed_pair_2(first_param_type x, second_param_type y) : T1(x), _second(y) {}
template <class A>
explicit compressed_pair_2(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), &_second);
}
compressed_pair_2(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), _second(x.second()) {}
#if 0
compressed_pair_2& operator=(const compressed_pair_2& x) {
cout << "assigning compressed pair 2" << endl;
T1::operator=(x);
_second = x._second;
cout << "finished assigning compressed pair 2" << endl;
return *this;
}
#endif
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_2& y)
{
// no need to swap empty base class:
using std::swap;
swap(_second, y._second);
}
};
// T1 != T2, both empty
template <class T1, class T2>
class compressed_pair_3 : T1, T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_3() : T1(), T2() {}
compressed_pair_3(first_param_type x, second_param_type y) : T1(x), T2(y) {}
template <class A>
explicit compressed_pair_3(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), static_cast<T2*>(this));
}
compressed_pair_3(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), T2(x.second()) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_3& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, and empty
template <class T1, class T2>
class compressed_pair_4 : T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_4() : T1() {}
compressed_pair_4(first_param_type x, second_param_type) : T1(x) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_4(first_param_type x) : T1(x) {}
compressed_pair_4(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()){}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_4& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, not empty
template <class T1, class T2>
class compressed_pair_5
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_5() : _first(), _second() {}
compressed_pair_5(first_param_type x, second_param_type y) : _first(x), _second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_5(first_param_type x) : _first(x), _second(x) {}
compressed_pair_5(const ::boost::compressed_pair<T1,T2>& c)
: _first(c.first()), _second(c.second()) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_5& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <bool e1, bool e2, bool same>
struct compressed_pair_chooser
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_0<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_1<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, false, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_2<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_3<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_4<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, false, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_5<T1, T2> type;
};
};
template <class T1, class T2>
struct compressed_pair_traits
{
private:
typedef compressed_pair_chooser<is_empty<T1>::value, is_empty<T2>::value, is_same<T1,T2>::value> chooser;
typedef typename chooser::template rebind<T1, T2> bound_type;
public:
typedef typename bound_type::type type;
};
} // namespace detail
template <class T1, class T2>
class compressed_pair : public detail::compressed_pair_traits<T1, T2>::type
{
private:
typedef typename detail::compressed_pair_traits<T1, T2>::type base_type;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base_type() {}
compressed_pair(first_param_type x, second_param_type y) : base_type(x, y) {}
template <class A>
explicit compressed_pair(const A& x) : base_type(x){}
first_reference first() { return base_type::first(); }
first_const_reference first() const { return base_type::first(); }
second_reference second() { return base_type::second(); }
second_const_reference second() const { return base_type::second(); }
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#else
// no partial specialisation, no member templates:
template <class T1, class T2>
class compressed_pair
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : _first(), _second() {}
compressed_pair(first_param_type x, second_param_type y) : _first(x), _second(y) {}
explicit compressed_pair(first_param_type x) : _first(x), _second() {}
// can't define this in case T1 == T2:
// explicit compressed_pair(second_param_type y) : _first(), _second(y) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#endif
} // boost
#endif // BOOST_OB_COMPRESSED_PAIR_HPP

565
include/boost/operators.hpp Normal file
View File

@@ -0,0 +1,565 @@
// Boost operators.hpp header file ----------------------------------------//
// (C) Copyright David Abrahams 1999. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 11 Feb 01 Fixed bugs in the iterator helpers which prevented explicitly
// supplied arguments from actually being used (Dave Abrahams)
// 04 Jul 00 Fixed NO_OPERATORS_IN_NAMESPACE bugs, major cleanup and
// refactoring of compiler workarounds, additional documentation
// (Alexy Gurtovoy and Mark Rodgers with some help and prompting from
// Dave Abrahams)
// 28 Jun 00 General cleanup and integration of bugfixes from Mark Rodgers and
// Jeremy Siek (Dave Abrahams)
// 20 Jun 00 Changes to accommodate Borland C++Builder 4 and Borland C++ 5.5
// (Mark Rodgers)
// 20 Jun 00 Minor fixes to the prior revision (Aleksey Gurtovoy)
// 10 Jun 00 Support for the base class chaining technique was added
// (Aleksey Gurtovoy). See documentation and the comments below
// for the details.
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
// 18 Nov 99 Change name "divideable" to "dividable", remove unnecessary
// specializations of dividable, subtractable, modable (Ed Brey)
// 17 Nov 99 Add comments (Beman Dawes)
// Remove unnecessary specialization of operators<> (Ed Brey)
// 15 Nov 99 Fix less_than_comparable<T,U> second operand type for first two
// operators.(Beman Dawes)
// 12 Nov 99 Add operators templates (Ed Brey)
// 11 Nov 99 Add single template parameter version for compilers without
// partial specialization (Beman Dawes)
// 10 Nov 99 Initial version
// 10 Jun 00:
// An additional optional template parameter was added to most of
// operator templates to support the base class chaining technique (see
// documentation for the details). Unfortunately, a straightforward
// implementation of this change would have broken compatibility with the
// previous version of the library by making it impossible to use the same
// template name (e.g. 'addable') for both the 1- and 2-argument versions of
// an operator template. This implementation solves the backward-compatibility
// issue at the cost of some simplicity.
//
// One of the complications is an existence of special auxiliary class template
// 'is_chained_base<>' (see 'detail' namespace below), which is used
// to determine whether its template parameter is a library's operator template
// or not. You have to specialize 'is_chained_base<>' for each new
// operator template you add to the library.
//
// However, most of the non-trivial implementation details are hidden behind
// several local macros defined below, and as soon as you understand them,
// you understand the whole library implementation.
#ifndef BOOST_OPERATORS_HPP
#define BOOST_OPERATORS_HPP
#include <boost/config.hpp>
#include <boost/iterator.hpp>
#if defined(__sgi) && !defined(__GNUC__)
#pragma set woff 1234
#endif
#if defined(BOOST_MSVC)
# pragma warning( disable : 4284 ) // complaint about return type of
#endif // operator-> not begin a UDT
namespace boost {
namespace detail {
class empty_base {};
} // namespace detail
} // namespace boost
// In this section we supply the xxxx1 and xxxx2 forms of the operator
// templates, which are explicitly targeted at the 1-type-argument and
// 2-type-argument operator forms, respectively. Some compilers get confused
// when inline friend functions are overloaded in namespaces other than the
// global namespace. When BOOST_NO_OPERATORS_IN_NAMESPACE is defined, all of
// these templates must go in the global namespace.
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost
{
#endif
// Basic operator classes (contributed by Dave Abrahams) ------------------//
// Note that friend functions defined in a class are implicitly inline.
// See the C++ std, 11.4 [class.friend] paragraph 5
template <class T, class U, class B = ::boost::detail::empty_base>
struct less_than_comparable2 : B
{
friend bool operator<=(const T& x, const U& y) { return !(x > y); }
friend bool operator>=(const T& x, const U& y) { return !(x < y); }
friend bool operator>(const U& x, const T& y) { return y < x; }
friend bool operator<(const U& x, const T& y) { return y > x; }
friend bool operator<=(const U& x, const T& y) { return !(y < x); }
friend bool operator>=(const U& x, const T& y) { return !(y > x); }
};
template <class T, class B = ::boost::detail::empty_base>
struct less_than_comparable1 : B
{
friend bool operator>(const T& x, const T& y) { return y < x; }
friend bool operator<=(const T& x, const T& y) { return !(y < x); }
friend bool operator>=(const T& x, const T& y) { return !(x < y); }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct equality_comparable2 : B
{
friend bool operator==(const U& y, const T& x) { return x == y; }
friend bool operator!=(const U& y, const T& x) { return !(x == y); }
friend bool operator!=(const T& y, const U& x) { return !(y == x); }
};
template <class T, class B = ::boost::detail::empty_base>
struct equality_comparable1 : B
{
friend bool operator!=(const T& x, const T& y) { return !(x == y); }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct multipliable2 : B
{
friend T operator*(T x, const U& y) { return x *= y; }
friend T operator*(const U& y, T x) { return x *= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct multipliable1 : B
{
friend T operator*(T x, const T& y) { return x *= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct addable2 : B
{
friend T operator+(T x, const U& y) { return x += y; }
friend T operator+(const U& y, T x) { return x += y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct addable1 : B
{
friend T operator+(T x, const T& y) { return x += y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct subtractable2 : B
{
friend T operator-(T x, const U& y) { return x -= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct subtractable1 : B
{
friend T operator-(T x, const T& y) { return x -= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct dividable2 : B
{
friend T operator/(T x, const U& y) { return x /= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct dividable1 : B
{
friend T operator/(T x, const T& y) { return x /= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct modable2 : B
{
friend T operator%(T x, const U& y) { return x %= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct modable1 : B
{
friend T operator%(T x, const T& y) { return x %= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct xorable2 : B
{
friend T operator^(T x, const U& y) { return x ^= y; }
friend T operator^(const U& y, T x) { return x ^= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct xorable1 : B
{
friend T operator^(T x, const T& y) { return x ^= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct andable2 : B
{
friend T operator&(T x, const U& y) { return x &= y; }
friend T operator&(const U& y, T x) { return x &= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct andable1 : B
{
friend T operator&(T x, const T& y) { return x &= y; }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct orable2 : B
{
friend T operator|(T x, const U& y) { return x |= y; }
friend T operator|(const U& y, T x) { return x |= y; }
};
template <class T, class B = ::boost::detail::empty_base>
struct orable1 : B
{
friend T operator|(T x, const T& y) { return x |= y; }
};
// incrementable and decrementable contributed by Jeremy Siek
template <class T, class B = ::boost::detail::empty_base>
struct incrementable : B
{
friend T operator++(T& x, int)
{
incrementable_type tmp(x);
++x;
return tmp;
}
private: // The use of this typedef works around a Borland bug
typedef T incrementable_type;
};
template <class T, class B = ::boost::detail::empty_base>
struct decrementable : B
{
friend T operator--(T& x, int)
{
decrementable_type tmp(x);
--x;
return tmp;
}
private: // The use of this typedef works around a Borland bug
typedef T decrementable_type;
};
// Iterator operator classes (contributed by Jeremy Siek) ------------------//
template <class T, class P, class B = ::boost::detail::empty_base>
struct dereferenceable : B
{
P operator->() const
{
return &*static_cast<const T&>(*this);
}
};
template <class T, class I, class R, class B = ::boost::detail::empty_base>
struct indexable : B
{
R operator[](I n) const
{
return *(static_cast<const T&>(*this) + n);
}
};
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
} // namespace boost
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
// BOOST_IMPORT_TEMPLATE1/BOOST_IMPORT_TEMPLATE2 -
//
// When BOOST_NO_OPERATORS_IN_NAMESPACE is defined we need a way to import an
// operator template into the boost namespace. BOOST_IMPORT_TEMPLATE1 is used
// for one-argument forms of operator templates; BOOST_IMPORT_TEMPLATE2 for
// two-argument forms. Note that these macros expect to be invoked from within
// boost.
#if defined(BOOST_NO_OPERATORS_IN_NAMESPACE)
# if defined(BOOST_NO_USING_TEMPLATE)
// Because a Borland C++ 5.5 bug prevents a using declaration from working,
// we are forced to use inheritance for that compiler.
# define BOOST_IMPORT_TEMPLATE2(template_name) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, U, B> {};
# define BOOST_IMPORT_TEMPLATE1(template_name) \
template <class T, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, B> {};
# else
// Otherwise, bring the names in with a using-declaration to avoid
// stressing the compiler
# define BOOST_IMPORT_TEMPLATE2(template_name) using ::template_name;
# define BOOST_IMPORT_TEMPLATE1(template_name) using ::template_name;
# endif // BOOST_NO_USING_TEMPLATE
#else // !BOOST_NO_OPERATORS_IN_NAMESPACE
// The template is already in boost so we have nothing to do.
# define BOOST_IMPORT_TEMPLATE2(template_name)
# define BOOST_IMPORT_TEMPLATE1(template_name)
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
//
// Here's where we put it all together, defining the xxxx forms of the templates
// in namespace boost. We also define specializations of is_chained_base<> for
// the xxxx, xxxx1, and xxxx2 templates, importing them into boost:: as
// neccessary.
//
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
// is_chained_base<> - a traits class used to distinguish whether an operator
// template argument is being used for base class chaining, or is specifying a
// 2nd argument type.
namespace boost {
// A type parameter is used instead of a plain bool because Borland's compiler
// didn't cope well with the more obvious non-type template parameter.
namespace detail {
struct true_t {};
struct false_t {};
} // namespace detail
// Unspecialized version assumes that most types are not being used for base
// class chaining. We specialize for the operator templates defined in this
// library.
template<class T> struct is_chained_base {
typedef ::boost::detail::false_t value;
};
} // namespace boost
// Import a 2-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
BOOST_IMPORT_TEMPLATE2(template_name2) \
template<class T, class U, class B> \
struct is_chained_base< ::boost::template_name2<T, U, B> > { \
typedef ::boost::detail::true_t value; \
};
// Import a 1-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE1(template_name1) \
BOOST_IMPORT_TEMPLATE1(template_name1) \
template<class T, class B> \
struct is_chained_base< ::boost::template_name1<T, B> > { \
typedef ::boost::detail::true_t value; \
};
// BOOST_OPERATOR_TEMPLATE(template_name) defines template_name<> such that it
// can be used for specifying both 1-argument and 2-argument forms. Requires the
// existence of two previously defined class templates named '<template_name>1'
// and '<template_name>2' which must implement the corresponding 1- and 2-
// argument forms.
//
// The template type parameter O == is_chained_base<U>::value is used to
// distinguish whether the 2nd argument to <template_name> is being used for
// base class chaining from another boost operator template or is describing a
// 2nd operand type. O == true_t only when U is actually an another operator
// template from the library. Partial specialization is used to select an
// implementation in terms of either '<template_name>1' or '<template_name>2'.
//
# define BOOST_OPERATOR_TEMPLATE(template_name) \
template <class T \
,class U = T \
,class B = ::boost::detail::empty_base \
,class O = typename is_chained_base<U>::value \
> \
struct template_name : template_name##2<T, U, B> {}; \
\
template<class T, class U, class B> \
struct template_name<T, U, B, ::boost::detail::true_t> \
: template_name##1<T, U> {}; \
\
template <class T, class B> \
struct template_name<T, T, B, ::boost::detail::false_t> \
: template_name##1<T, B> {}; \
\
template<class T, class U, class B, class O> \
struct is_chained_base< ::boost::template_name<T, U, B, O> > { \
typedef ::boost::detail::true_t value; \
}; \
\
BOOST_OPERATOR_TEMPLATE2(template_name##2) \
BOOST_OPERATOR_TEMPLATE1(template_name##1)
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
BOOST_IMPORT_TEMPLATE2(template_name2)
# define BOOST_OPERATOR_TEMPLATE1(template_name1) \
BOOST_IMPORT_TEMPLATE1(template_name1)
// In this case we can only assume that template_name<> is equivalent to the
// more commonly needed template_name1<> form.
# define BOOST_OPERATOR_TEMPLATE(template_name) \
template <class T, class B = ::boost::detail::empty_base> \
struct template_name : template_name##1<T, B> {};
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace boost {
BOOST_OPERATOR_TEMPLATE(less_than_comparable)
BOOST_OPERATOR_TEMPLATE(equality_comparable)
BOOST_OPERATOR_TEMPLATE(multipliable)
BOOST_OPERATOR_TEMPLATE(addable)
BOOST_OPERATOR_TEMPLATE(subtractable)
BOOST_OPERATOR_TEMPLATE(dividable)
BOOST_OPERATOR_TEMPLATE(modable)
BOOST_OPERATOR_TEMPLATE(xorable)
BOOST_OPERATOR_TEMPLATE(andable)
BOOST_OPERATOR_TEMPLATE(orable)
BOOST_OPERATOR_TEMPLATE1(incrementable)
BOOST_OPERATOR_TEMPLATE1(decrementable)
BOOST_OPERATOR_TEMPLATE2(dereferenceable)
// indexable doesn't follow the patterns above (it has 4 template arguments), so
// we just write out the compiler hacks explicitly.
#ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
# ifdef BOOST_NO_USING_TEMPLATE
template <class T, class I, class R, class B = ::boost::detail::empty_base>
struct indexable : ::indexable<T,I,R,B> {};
# else
using ::indexable;
# endif
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, class I, class R, class B>
struct is_chained_base< ::boost::indexable<T, I, R, B> > {
typedef ::boost::detail::true_t operator_template_type;
};
#endif
#undef BOOST_OPERATOR_TEMPLATE
#undef BOOST_OPERATOR_TEMPLATE2
#undef BOOST_OPERATOR_TEMPLATE1
#undef BOOST_IMPORT_TEMPLATE1
#undef BOOST_IMPORT_TEMPLATE2
// The following 'operators' classes can only be used portably if the derived class
// declares ALL of the required member operators.
template <class T, class U>
struct operators2
: less_than_comparable2<T,U
, equality_comparable2<T,U
, addable2<T,U
, subtractable2<T,U
, multipliable2<T,U
, dividable2<T,U
, modable2<T,U
, orable2<T,U
, andable2<T,U
, xorable2<T,U
> > > > > > > > > > {};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, class U = T>
struct operators : operators2<T, U> {};
template <class T> struct operators<T, T>
#else
template <class T> struct operators
#endif
: less_than_comparable<T
, equality_comparable<T
, addable<T
, subtractable<T
, multipliable<T
, dividable<T
, modable<T
, orable<T
, andable<T
, xorable<T
, incrementable<T
, decrementable<T
> > > > > > > > > > > > {};
// Iterator helper classes (contributed by Jeremy Siek) -------------------//
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct forward_iterator_helper
: equality_comparable<T
, incrementable<T
, dereferenceable<T,P
, boost::iterator<std::forward_iterator_tag,V,D,P,R
> > > > {};
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct bidirectional_iterator_helper
: equality_comparable<T
, incrementable<T
, decrementable<T
, dereferenceable<T,P
, boost::iterator<std::bidirectional_iterator_tag,V,D,P,R
> > > > > {};
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct random_access_iterator_helper
: equality_comparable<T
, less_than_comparable<T
, incrementable<T
, decrementable<T
, dereferenceable<T,P
, addable2<T,D
, subtractable2<T,D
, indexable<T,D,R
, boost::iterator<std::random_access_iterator_tag,V,D,P,R
> > > > > > > > >
{
#ifndef __BORLANDC__
friend D requires_difference_operator(const T& x, const T& y) {
return x - y;
}
#endif
}; // random_access_iterator_helper
} // namespace boost
#if defined(__sgi) && !defined(__GNUC__)
#pragma reset woff 1234
#endif
#endif // BOOST_OPERATORS_HPP

96
include/boost/utility.hpp Normal file
View File

@@ -0,0 +1,96 @@
// boost utility.hpp header file -------------------------------------------//
// (C) Copyright boost.org 1999. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org for most recent version including documentation.
// Classes appear in alphabetical order
// Revision History
// 26 Jan 00 protected noncopyable destructor added (Miki Jovanovic)
// 10 Dec 99 next() and prior() templates added (Dave Abrahams)
// 30 Aug 99 moved cast templates to cast.hpp (Beman Dawes)
// 3 Aug 99 cast templates added
// 20 Jul 99 name changed to utility.hpp
// 9 Jun 99 protected noncopyable default ctor
// 2 Jun 99 Initial Version. Class noncopyable only contents (Dave Abrahams)
#ifndef BOOST_UTILITY_HPP
#define BOOST_UTILITY_HPP
#include <boost/config.hpp>
#include <cstddef> // for size_t
#include <utility> // for std::pair
namespace boost
{
// next() and prior() template functions -----------------------------------//
// Helper functions for classes like bidirectional iterators not supporting
// operator+ and operator-.
//
// Usage:
// const std::list<T>::iterator p = get_some_iterator();
// const std::list<T>::iterator prev = boost::prior(p);
// Contributed by Dave Abrahams
template <class T>
T next(T x) { return ++x; }
template <class T>
T prior(T x) { return --x; }
// class noncopyable -------------------------------------------------------//
// Private copy constructor and copy assignment ensure classes derived from
// class noncopyable cannot be copied.
// Contributed by Dave Abrahams
class noncopyable
{
protected:
noncopyable(){}
~noncopyable(){}
private: // emphasize the following members are private
noncopyable( const noncopyable& );
const noncopyable& operator=( const noncopyable& );
}; // noncopyable
// class tied -------------------------------------------------------//
// A helper for conveniently assigning the two values from a pair
// into separate variables. The idea for this comes from Jaakko J<>rvi's
// Binder/Lambda Library.
// Constributed by Jeremy Siek
template <class A, class B>
class tied {
public:
inline tied(A& a, B& b) : _a(a), _b(b) { }
template <class U, class V>
inline tied& operator=(const std::pair<U,V>& p) {
_a = p.first;
_b = p.second;
return *this;
}
protected:
A& _a;
B& _b;
};
template <class A, class B>
inline tied<A,B> tie(A& a, B& b) { return tied<A,B>(a, b); }
} // namespace boost
#endif // BOOST_UTILITY_HPP

View File

@@ -422,7 +422,7 @@ a,b,c,d,e,f,g,
<hr>
<p>Revised
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->08 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14892" -->
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14390" -->
<p>&copy; Copyright Jeremy Siek and David Abrahams 2001. Permission to

View File

@@ -29,7 +29,8 @@ int main(int, char*[])
// Example of using indirect_iterator_pair_generator
typedef boost::indirect_iterator_pair_generator<char**, char> PairGen;
typedef boost::indirect_iterator_pair_generator<char**,
char, char*, char&, const char*, const char&> PairGen;
char mutable_characters[N];
char* pointers_to_mutable_chars[N];

View File

@@ -170,8 +170,7 @@ struct iterator_adaptor;
<td>The <tt>value_type</tt> of the resulting iterator, unless const. If
Value is <tt>const X</tt> the
<tt>value_type</tt> will be (<i>non-</i><tt>const</tt>) <tt>X</tt><a href=
"#1">[1]</a>. If the <tt>value_type</tt> you wish to use is an abstract
base class see note <a href="#5">[5]</a>.<br>
"#1">[1]</a>.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BaseType&gt;::value_type</tt> <a href=
"#2">[2]</a>
@@ -311,13 +310,13 @@ iterator_adaptor&lt;foo_iterator, foo_policies,
<th>Required for Iterator Categories
<tr>
<td><tt>initialize</tt>
<td><tt>dereference</tt>
<td>optionally modify base iterator during iterator construction
<td>returns an element of the iterator's <tt>reference</tt> type
<td><tt>*p</tt>, <tt>p[n]</tt>
<td>constructors
<td rowspan="4"><a href=
<td rowspan="3"><a href=
"http://www.sgi.com/tech/stl/InputIterator.html">Input</a>/ <a href=
"http://www.sgi.com/tech/stl/OutputIterator.html">Output</a>/ <a href=
"http://www.sgi.com/tech/stl/ForwardIterator.html">Forward</a>/ <a
@@ -326,15 +325,6 @@ iterator_adaptor&lt;foo_iterator, foo_policies,
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access</a>
<tr>
<td><tt>dereference</tt>
<td>returns an element of the iterator's <tt>reference</tt> type
<td><tt>*p</tt>, <tt>p[n]</tt>
<tr>
<td><tt>equal</tt>
@@ -414,10 +404,6 @@ iterator_adaptor&lt;foo_iterator, foo_policies,
<pre>
struct <a name="default_iterator_policies">default_iterator_policies</a>
{
template &lt;class BaseType&gt;
void initialize(BaseType&amp;)
{ }
template &lt;class Reference, class BaseType&gt;
Reference dereference(type&lt;Reference&gt;, const BaseType&amp; x) const
{ return *x; }
@@ -843,24 +829,10 @@ bool operator==(const iterator_adaptor&lt;B1,P,V1,R1,P1,C,D&gt;&amp;,
returning a reference could cause serious memory problems due to the
reference being bound to a temporary object whose lifetime ends inside of
the <tt>operator[]</tt>.
<p><a name="5">[5]</a>
The <tt>value_type</tt> of an iterator may not be
an abstract base class, however many common uses of iterators
never need the <tt>value_type</tt>, only the <tt>reference</tt> type.
If you wish to create such an iterator adaptor, use a dummy
type such as <tt>char</tt> for the <tt>Value</tt> parameter,
and use a reference to your abstract base class for
the <tt>Reference</tt> parameter. Note that such an iterator
does not fulfill the C++ standards requirements for a
<a href= "http://www.sgi.com/tech/stl/ForwardIterator.html">
Forward Iterator</a>, so you will need to use a less restrictive
iterator category such as <tt>std::input_iterator_tag</tt>.
<hr>
<p>Revised
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->19 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14895" -->
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->09 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14894" -->
<p>&copy; Copyright Dave Abrahams and Jeremy Siek 2001. Permission to copy,

View File

@@ -585,7 +585,7 @@ complicated than the old one, we think it's worth it to make the library more
useful in real world. Alexy Gurtovoy contributed the code which supports the new
usage idiom while allowing the library remain backward-compatible.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->10 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14373" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Sep 2000<!--webbot bot="Timestamp" endspan i-checksum="14938" --></p>
<p><EFBFBD> Copyright David Abrahams and Beman Dawes 1999-2000. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided &quot;as

View File

@@ -371,7 +371,7 @@ Betty
</pre>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->08 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14892" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14390" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;

View File

@@ -312,7 +312,7 @@ simply use <tt>reverse_iterator_generator</tt> twice!<br><br>
<p>Revised
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->08 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14892" -->
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14390" -->
<p>&copy; Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell

View File

@@ -64,7 +64,7 @@ pair of iterators is assigned to the iterator variables <TT>i</TT> and
<P>
Here is another example that uses <TT>tie()</TT> for handling operations with <a
href="http://www.sgi.com/tech/stl/set.html"><TT>std::set</TT></a>.
href="http://www.sgi.com/Technology/STL/set.html"><TT>std::set</TT></a>.
<P>
<PRE>

View File

@@ -1,75 +0,0 @@
# -*- makefile -*-
DVIPS = dvips
LATEX = pdflatex
LATEXOUT = pdf
RESULT = pdf
#LATEX = latex
#LATEXOUT = dvi
#RESULT = ps
.SUFFIXES: .tex .dvi .ps .pdf .c .lg .eps
.c.lg:
lgrind -i -o $*.lg -a -lc++ $*.c
.eps.pdf:
epstopdf $*.eps
.tex.pdf:
@ if test ! -f $*.ind; then echo "" > $*.ind; fi
@ $(LATEX) $*
@ if ( grep 'Writing index file' $*.log > /dev/null ); \
then makeindex $* ; $(LATEX) $* ; fi
@ if ( grep 'LaTeX Warning: Label(s) may' $*.log > /dev/null ); \
then $(LATEX) $* ; fi
@ if ( grep 'LaTeX Warning: Citation' $*.log > /dev/null ); \
then bibtex $* ; $(LATEX) $* ; fi
@ if ( grep 'LaTeX Warning: Label(s) may' $*.log > /dev/null ); \
then $(LATEX) $* ; fi
@ if ( grep 'LaTeX Warning: Label(s) may' $*.log > /dev/null ); \
then $(LATEX) $* ; fi
@ if ( grep 'LaTeX Warning: Label(s) may' $*.log > /dev/null ); \
then $(LATEX) $* ; fi
.dvi.ps:
$(DVIPS) -o $*.ps $*
.ps.pdf:
distill -v -maxsubsetpct 99 -subsetfonts on -pairs $*.ps $*.pdf
SRCCODE =
#
# Default rule
#
default: iter-adaptor.$(RESULT)
#
# LaTeX stuff
#
TEX = iter-adaptor.tex
iter-adaptor.dvi: $(TEX) $(SRCCODELG)
iter-adaptor.ps: iter-adaptor.dvi
iter-adaptor.pdf: $(PDFPICT) $(TEX) $(SRCCODELG)
dist: iter-adaptor.ps iter-adaptor.pdf
mkdir -p iter-adaptor
cp $(TEX) $(SRCCODELG) $(EPS) $(PS) \
iter-adaptor.bbl iter-adaptor.ps iter-adaptor.pdf \
iter-adaptor
tar cvf - ./iter-adaptor | gzip > iter-adaptor.tar.gz
#
# Standard rules
#
clean:
/bin/rm -f *.dvi *.o *.ps *.pdf *.log *.blg *.bbl *.aux *~ *.out *.ind

View File

@@ -1,36 +0,0 @@
\usepackage{times}
\newif\ifpdf
\ifx\pdfoutput\undefined
\pdffalse
\else
\pdfoutput=1
\pdftrue
\fi
\ifpdf
\usepackage[
pdftex,
colorlinks=true,
linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue
]{hyperref}
\fi
\ifpdf
\newcommand{\concept}[1]{\hyperref[concept:#1]{\textsf{#1}}}
\newcommand{\stlconcept}[1]{\href{http://www.sgi.com/tech/stl/#1.html}{\textsf{#1}}}
\newcommand{\link}[2]{\hyperref[#1]{#2}}
\else
\newcommand{\concept}[1]{\textsf{#1}}
\newcommand{\stlconcept}[1]{\textsf{#1}}
\newcommand{\href}[2]{#2}
\newcommand{\link}[2]{#2}
\fi
\newcommand{\code}[1]{{\small \texttt{#1}}}
\newcommand{\Note}[1]{\marginpar{\begin{flushleft}%
{%%\tiny %%\footnotesize
{\bf Note:} #1}%
\end{flushleft}}}

File diff suppressed because it is too large Load Diff

View File

@@ -1,102 +0,0 @@
% Paper Formatting according to requirements of Net.Objectdays 2000
\LoadClass[10pt]{article}
\pagestyle{empty}
% ---------------------------------------------------------------------
\textheight193mm
\textwidth122mm
\oddsidemargin44mm
\hoffset-1in \voffset-1in
\topmargin52mm
\headsep0pt
\headheight0pt
% ---------------------------------------------------------------------
\renewcommand\maketitle{\par
\begingroup
\renewcommand\thefootnote{\@fnsymbol\c@footnote}%
\def\@makefnmark{\rlap{\@textsuperscript{\normalfont\@thefnmark}}}%
\long\def\@makefntext##1{\parindent 1em\noindent
\hb@xt@1.8em{%
\hss\@textsuperscript{\normalfont\@thefnmark}}##1}%
\if@twocolumn
\ifnum \col@number=\@ne
\@maketitle
\else
\twocolumn[\@maketitle]%
\fi
\else
\newpage
\global\@topnum\z@ % Prevents figures from going at top of page.
\@maketitle
\fi
\thispagestyle{empty}\@thanks
\endgroup
\setcounter{footnote}{0}%
\global\let\thanks\relax
\global\let\maketitle\relax
\global\let\@maketitle\relax
\global\let\@thanks\@empty
\global\let\@author\@empty
\global\let\@date\@empty
\global\let\@title\@empty
\global\let\title\relax
\global\let\author\relax
\global\let\date\relax
\global\let\and\relax
}
\date{}
\def\@maketitle{%
\newpage
\null
\vskip 2em%
\begin{center}%
\let \footnote \thanks
{\Large \textbf{\@title} \par}%
\vskip 1.5em%
{\large
\lineskip .5em%
{\normalsize
\begin{tabular}[t]{c}%
\@author
\end{tabular}\par}}%
\vskip 1em%
{\large \@date}%
\end{center}%
\par
\vskip 1.5em}
\renewcommand\section{\@startsection {section}{1}{\z@}%
{-3.5ex \@plus -1ex \@minus -.2ex}%
{2.3ex \@plus.2ex}%
{\normalfont\large\bfseries}}
\renewcommand\subsection{\@startsection{subsection}{2}{\z@}%
{-3.25ex\@plus -1ex \@minus -.2ex}%
{1.5ex \@plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%
{-3.25ex\@plus -1ex \@minus -.2ex}%
{1.5ex \@plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}%
{3.25ex \@plus1ex \@minus.2ex}%
{-1em}%
{\normalfont\normalsize\bfseries}}
\renewcommand\subparagraph{\@startsection{subparagraph}{5}{\parindent}%
{3.25ex \@plus1ex \@minus .2ex}%
{-1em}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\figurename}{Fig}
\renewcommand{\tablename}{Tab}
\long\def\@makecaption#1#2{%
\vskip\abovecaptionskip
\sbox\@tempboxa{{\small\textbf{#1.} #2}}%
\ifdim \wd\@tempboxa >\hsize
{\small\textbf{#1.} #2}\par
\else
\global \@minipagefalse
\hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
\fi
\vskip\belowcaptionskip}
\renewenvironment{abstract}
{\list{}{\leftmargin1cm\rightmargin\leftmargin}%
\item\relax{\small \textbf{Abstract.}}}
{\endlist}

View File

@@ -1,124 +0,0 @@
@TechReport{stepa.lee-1994:the.s:TR,
author = "A. A. Stepanov and M. Lee",
title = "{The Standard Template Library}",
institution = "ISO Programming Language C++ Project",
year = "1994",
number = "X3J16/94-0095, WG21/N0482",
month = may,
}
@Book{ austern99:_gener_progr_stl,
author = "Matthew H. Austern",
title = "Generic Programming and the {STL}",
publisher = "Addison-Wesley",
year = 1999,
series = "Professional computing series"
}
@Book{koenig97:_rumin_cpp,
author = {Andrew Koenig and Barbara Moo},
title = {Ruminations on {C++}},
publisher = {Addison Wesley},
year = 1997
}
@Book{iso98:_cpp_final_draft_standard,
author = "International Organization for Standardization
(ISO)",
title = "ISO/IEC Final Draft International Standard 14882:
Programming Language C++",
year = 1998,
address = "1 rue de Varemb\'e, Case postale 56, CH-1211
Gen\`eve 20, Switzerland"
}
@Book{alexandrescu01:_modern_cpp_design,
author = {Andrei Alexandrescu},
title = {Modern {C++} Design},
publisher = {Addison Wesley},
year = 2001
}
@BOOK { Barton94,
AUTHOR = "John Barton and Lee Nackman",
TITLE = "Scientific and Engineering {C++}",
PUBLISHER = "Addison-Wesley",
YEAR = 1994
}
@Book{gamma95:_design_patterns,
author = {Erich Gamma and Richard Helm and Ralph Johnson and John Vlissides},
title = {Design Patterns: Elements of Reusable Object-Oriented Software},
publisher = {Addison-Welsey},
year = 1995,
series = {Professional Computing}
}
@Book{stroustrup00:_cpp_prog_lang,
author = {Bjarne Stroustrup},
title = {The {C++} Programming Language},
publisher = {Addison-Wesley},
year = 2000,
edition = {Special}
}
@Article{alexandrescu98:_compound_iters,
author = {Andrei Alexandrescu},
title = {Compound iterators of {STL}},
journal = {{C/C++} Users Journal},
year = 1998,
volume = 16,
number = 10,
pages = {79-82},
month = October
}
@Article{becker98:_smart_iteraters,
author = {Thomas Becker},
title = {Smart Iterators and STL},
journal = {{C/C++} Users Journal},
year = 1998,
volume = 16,
number = 9,
month = {September}
}
@InBook{siek99:_scitools,
author = {Jeremy G. Siek and Andrew Lumsdaine},
title = {Modern Software Tools for Scientific Computing},
chapter = {A Modern Framework for Portable High Performance
Numerical Linear Algebra},
publisher = {Birkhauser},
year = 1999,
}
@TechReport{siek01:_improved_iter_cat,
author = {Jeremy Siek},
title = {Improved Iterator Categories and Requirements},
institution = {ISO IEC JTC1/SC22/WG21 - C++},
year = 2001,
number = {N1297}
}
@Book{mehlhorn99:_leda,
author = {K. Mehlhorn and St. N\"aher},
title = {The LEDA Platform of Combinatorial and Geometric Computing},
publisher = {Cambridge University Press},
year = 1999
}
@Book{ knu94:sgb,
author = {D. E. Knuth},
title = {Stanford GraphBase: a platform for combinatorial computing},
publisher = {ACM Press},
year = {1994}
}
@Misc{czarnecki00:_named_param,
author = {Krzysztof Czarnecki and Ulrich Eisenecker},
title = {Named Parameters for Configuration Generators},
howpublished = {http://www.generative-programming.org/namedparams/},
year = 2000
}

View File

@@ -1,249 +0,0 @@
@InProceedings{TMPW00:Eisenecker,
AUTHOR = "Ulrich W. Eisenecker and Frank Blinn and Krzysztof Czarnecki",
TITLE = "A Solution to the Constructor-Problem of Mixin-Based Programming in {C++}",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"Mixin-Based Programming in C++ is a powerful programming style
based on the parameterized inheritance idiom and the composition
of C++ templates. Type expressions describing specific inheritance
hierarchies can be composed either automatically using generative
programming idioms in C++ or manually. Unfortunately, the mixin-based
C++ programming techniques published to date do not adequately support
optional and alternative mixin classes with constructors expecting
varying numbers of arguments, which are common in practice. This
is because the varying base class constructors do not provide a
uniform interface on which the constructors of the derived classes
could rely. This paper discusses several partial solutions to this
problem that were proposed to date and presents a new, complete
solution. The new solution uses generative programming techniques to
automatically generate the appropriate constructors, and this way it
avoids the overhead and clumsiness of instantiating composed mixin
classes in the client code using the partial solutions. In fact,
the new solution allows users to instantiate automatically composed
mixin classes with the simplicity of instantiating concrete classes
from traditional class hierarchies. Finally, the new solution does
not suffer from the scalability problems of the partial solutions."
}
@InProceedings{TMPW00:Berti,
AUTHOR = "Guntram Berti",
TITLE = "Generic Components for Grid Data Structures and Algorithms with {C++}",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"Grids are fundamental data structures for representing
geometric structures or their subdivisions. We propose a strategy
for decoupling algorithms working on grids from the details of
grid representations, using a generic programming approach in C++.
Functionality of grid data structures is captured by a small set of
primitives, divided into combinatorial and geometric ones. Special
attention is paid to the generic implementation of grid functions, which
correspond to the notion of mappings from grid elements (e. g. vertices)
to entities of a given type. Experiments indicate that the overhead
of the generic formulation is low and can be completely eliminated in
some cases."
}
@InProceedings{TMPW00:Veldhuizen,
AUTHOR = "Todd L. Veldhuizen",
TITLE = "Five compilation models for {C++} templates",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"This paper proposes an alternate structure for C++ compilers.
Type analysis is removed from the compiler and replaced with a
`type system library' which is treated as source code by the
compiler. Type computations are embedded in the intermediate
language of the compiler, and partial evaluation is used to drive
type analysis and template instantiation. By making simple changes to
the behavior of the partial evaluator, a wide range of compilation
models is achieved, each with a distinct tradeoff of compile time, code
size, and code speed. These models range from pure dynamic typing --
ideal for scripting C++ -- to profile-directed template instantiation.
This approach may solve several serious problems in compiling C++:
it achieves separate compilation of templates, allows template
code to be distributed in binary form by deferring template instantiation
until run time, and reduces the code bloat associated with
templates."
}
@InProceedings{TMPW00:Baus,
AUTHOR = "Christopher Baus and Thomas Becker",
TITLE = "Custom Iterators for the {STL}",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"We discuss several kinds of custom iterators for use with the STL
that are substantially different from the iterators that come with
the STL. We present class templates that implement these custom
iterators in a generic manner."
}
@InProceedings{TMPW00:Weiser,
AUTHOR = "Martin Weiser and Gary Powell",
TITLE = "The {View Template Library}",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"Views are container adaptors providing access to different
on the fly generated representations of the data in the container they
are applied to. The concept fits nicely into the framework defined by
the STL. This paper explains design, usage, and implementation of the
View Template Library, the currently most advanced implementation of
the views concept."
}
@InProceedings{TMPW00:Striegnitz,
AUTHOR = "J{\"o}rg Striegnitz and Stephen A. Smith",
TITLE = "An Expression Template aware Lambda Function",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"Template libraries such as the STL contain several generic algorithms
that expect functions as arguments and thereby cause frequent use of
function objects. User-defined function objects are awkward because
they must be declared as a class in namespace scope before they may
be used. In this paper, we describe a lambda function for C++, which
allows users to define function objects on the fly, without writing class
declarations. We show that, by using expression templates, the lambda
function can be implemented without hurting the runtime performance of a
program. Expression templates can also help to overcome the performance
penalties that may arise when using expressions over user-defined
types. Thus, we based our approach on PETE which is a framework
that simplifies the addition of expression template functionality to
user-defined classes."
}
@InProceedings{TMPW00:McNamara,
AUTHOR = "Brian McNamara and Yannis Smaragdakis",
TITLE = "Static Interfaces in {C++}",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"We present an extensible framework for defining and
using ``static interfaces'' in C++. Static interfaces are especially
useful as constraints on template parameters. That is, in addition to the
usual template $class T$, template definitions can specify that T ``isa''
Foo, for some static interface named Foo. These ``isa-constraints'' can be
based on either inheritance (named conformance: T publicly inherits Foo),
members (structural conformance: T has these member functions with these
signatures), or both. The constraint mechanism imposes no space or time
overheads at runtime; virtual functions are conspicuously absent from
our framework.
We demonstrate two key utilities of static interfaces. First,
constraints enable better error messages with template code. By applying
static interfaces as constraints, instantiating a template with the
wrong type is an error that can be caught at the instantiation point,
rather than later (typically in the bowels of the implementation).
Authors of template classes and template functions can also dispatch
``custom error messages'' to report named constraint violations by
clients, making debugging easier. We show examples of the improvement of
error messages when constraints are applied to STL code.
Second, constraints enable automatic compile-time dispatch of different
implementations of class or function templates based on the named
conformance properties of the template types. For example, $Set<T>$ can be
written to automatically choose the most efficient implementation: use a
hashtable implementation if ``T isa Hashable'', or else a binary search
tree if ``T isa LessThanComparable'' , or else a linked-list if merely ``T
isa EqualityComparable''. This dispatch can be completely hidden from
clients of Set, who just use $Set<T>$ as usual."
}
@InProceedings{TMPW00:Siek,
AUTHOR = "Jeremy Siek and Andrew Lumsdaine",
TITLE = "Concept Checking: Binding Parametric Polymorphism in {C++}",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"Generic programming in C++ is characterized by the use of template
parameters to represent abstract data types (or ``concepts'').
However, the C++ language itself does not provide a mechanism for
explicitly handling concepts. As a result, it can be difficult to
insure that a concrete type meets the requirements of the concept it
is supposed to represent. Error messages resulting from incorrect
use of a concrete type can be particularly difficult to decipher.
In this paper we present techniques to check parameters in generic
C++ libraries. Our techniques use standard C++ and introduce no
run-time overhead."
}
@InProceedings{TMPW00:Kuehl,
AUTHOR = "Dietmar K{\"u}hl",
TITLE = "{STL} and {OO} Don't Easily Mix",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/",
ABSTRACT =
"The STL is a powerful tool for many kinds of processing. Unfortunately,
using polymorphic objects with the STL seems not to work: Polymorphic
objects stored in STL containers either get sliced (i.e. only the base
part is copied or assigned but not the derived part) or, when storing
pointers to them instead, are not destroyed. Applying algorithms to
such containers often results in the wrong thing or complex predicate
objects are needed. This article shows how to overcome at least some
of these problems using some adaptors and also outlines a possible
implementation of STL for better integration with polymorphic objects.
The improved integration just acknowledges the distinction between the
object and the entity used to maintain it."
}
@InProceedings{TMPW00:Eichelberger,
AUTHOR = "H. Eichelberger and J. Wolff v. Gudenberg",
TITLE = "{UML} Description of the {STL}",
BOOKTITLE = "First Workshop on {C++} Template Programming,
Erfurt, Germany",
MONTH = "October 10",
YEAR = "2000",
URL = "http://oonumerics.org/tmpw00/eichelberger.pdf",
ABSTRACT =
"In this paper we show how the specification of the
Standard Template Library STL and its implementation can be described
by UML diagrams. We define appropriate stereotypes to
describe STL concepts like containers, iterators, function
objects and global algorithms. For the graphical description of the
implementation of the STL we extend the UML metamodel."
}

View File

@@ -71,11 +71,8 @@ public:
<p>
The following is an example of how to use the
<tt>transform_iterator_generator</tt> class to iterate through a range
of numbers, multiplying each of them by 2 when they are dereferenced.
The <tt>boost::binder1st</tt> class is used instead of the standard
one because tranform iterator requires the function object to be
Default Constructible.
<tt>transform_iterator_generator</tt> class to iterate through a range of
numbers, multiplying each of them by 2 when they are dereferenced.
<p>
<PRE>
@@ -83,18 +80,16 @@ Default Constructible.
#include &lt;iostream&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
// definition of class boost::binder1st and function boost::bind1st() ...
int
main(int, char*[])
{
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
typedef boost::binder1st&lt; std::multiplies&lt;int&gt; &gt; Function;
typedef std::binder1st&lt; std::multiplies&lt;int&gt; &gt; Function;
typedef boost::transform_iterator_generator&lt;Function, int*&gt;::type doubling_iterator;
doubling_iterator i(x, boost::bind1st(std::multiplies&lt;int&gt;(), 2)),
i_end(x + sizeof(x)/sizeof(int), boost::bind1st(std::multiplies&lt;int&gt;(), 2));
doubling_iterator i(x, std::bind1st(std::multiplies&lt;int&gt;(), 2)),
i_end(x + sizeof(x)/sizeof(int), std::bind1st(std::multiplies&lt;int&gt;(), 2));
std::cout &lt;&lt; "multiplying the array by 2:" &lt;&lt; std::endl;
while (i != i_end)
@@ -116,17 +111,14 @@ The output from this part is:
</TR>
<TR>
<TD><a
href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a></TD>
<TD><a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a></TD>
<TD>The function object that transforms each element in the iterator
range. The <tt>argument_type</tt> of the function object must match
the value type of the base iterator. The <tt>result_type</tt> of the
function object will be the resulting iterator's
<tt>value_type</tt>. If you want the resulting iterator to behave as
an iterator, the result of the function should be solely a function of
its argument. Also, the function object must be <a
href="http://www.sgi.com/tech/stl/DefaultConstructible.html"> Default
Constructible</a> (which many of the standard function objects are not).</TD>
its argument.</TD>
</TR>
<TR>
@@ -181,8 +173,8 @@ function to add four to each element of the array.
<pre>
std::cout << "adding 4 to each element in the array:" << std::endl;
std::copy(boost::make_transform_iterator(x, boost::bind1st(std::plus<int>(), 4)),
boost::make_transform_iterator(x + N, boost::bind1st(std::plus<int>(), 4)),
std::copy(boost::make_transform_iterator(x, std::bind1st(std::plus<int>(), 4)),
boost::make_transform_iterator(x + N, std::bind1st(std::plus<int>(), 4)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
@@ -211,7 +203,7 @@ iterator always returns by-value.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->29 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14896" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->09 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14894" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;

View File

@@ -9,38 +9,6 @@
#include <iostream>
#include <boost/iterator_adaptors.hpp>
// What a bummer. We can't use std::binder1st with transform iterator
// because it does not have a default constructor. Here's a version
// that does.
namespace boost {
template <class Operation>
class binder1st
: public std::unary_function<typename Operation::second_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::first_argument_type value;
public:
binder1st() { } // this had to be added!
binder1st(const Operation& x,
const typename Operation::first_argument_type& y)
: op(x), value(y) {}
typename Operation::result_type
operator()(const typename Operation::second_argument_type& x) const {
return op(value, x);
}
};
template <class Operation, class T>
inline binder1st<Operation> bind1st(const Operation& op, const T& x) {
typedef typename Operation::first_argument_type arg1_type;
return binder1st<Operation>(op, arg1_type(x));
}
} // namespace boost
int
main(int, char*[])
{
@@ -52,11 +20,11 @@ main(int, char*[])
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
const int N = sizeof(x)/sizeof(int);
typedef boost::binder1st< std::multiplies<int> > Function;
typedef std::binder1st< std::multiplies<int> > Function;
typedef boost::transform_iterator_generator<Function, int*>::type doubling_iterator;
doubling_iterator i(x, boost::bind1st(std::multiplies<int>(), 2)),
i_end(x + N, boost::bind1st(std::multiplies<int>(), 2));
doubling_iterator i(x, std::bind1st(std::multiplies<int>(), 2)),
i_end(x + N, std::bind1st(std::multiplies<int>(), 2));
std::cout << "multiplying the array by 2:" << std::endl;
while (i != i_end)
@@ -65,8 +33,8 @@ main(int, char*[])
std::cout << "adding 4 to each element in the array:" << std::endl;
std::copy(boost::make_transform_iterator(x, boost::bind1st(std::plus<int>(), 4)),
boost::make_transform_iterator(x + N, boost::bind1st(std::plus<int>(), 4)),
std::copy(boost::make_transform_iterator(x, std::bind1st(std::plus<int>(), 4)),
boost::make_transform_iterator(x + N, std::bind1st(std::plus<int>(), 4)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;

View File

@@ -16,50 +16,10 @@
<h2>Contents</h2>
<ul>
<li>Function templates <a href="#checked_delete">checked_delete() and
checked_array_delete()</a></li>
<li>Function templates <a href="#functions next">next() and prior()</a></li>
<li>Class <a href="#Class noncopyable">noncopyable</a></li>
<li>Function template <a href="tie.html">tie()</a> and supporting class tied.</li>
</ul>
<h2> Function templates <a name="checked_delete">checked_delete</a>() and
checked_array_delete()</h2>
<p>Deletion of a pointer to an incomplete type is an unsafe programming practice
because there is no way for the compiler to verify that the destructor is indeed
trivial.&nbsp; The checked_delete() and checked_array_delete() function
templates simply <b>delete</b> or <b>delete[]</b> their argument, but also
require that their argument be a complete type.&nbsp; They issue an appropriate
compiler error diagnostic if that requirement is not met.&nbsp; A typical
implementation is shown; other implementations may vary:</p>
<pre> template&lt; typename T &gt;
inline void checked_delete(T const volatile * x)
{
BOOST_STATIC_ASSERT( sizeof(T) ); // assert type complete at point
// of instantiation
delete x;
}
template&lt; typename T &gt;
inline void checked_array_delete(T const volatile * x)
{
BOOST_STATIC_ASSERT( sizeof(T) ); // assert type complete at point
// of instantiation
delete [] x;
}</pre>
<p>Contributed by Beman Dawes, based on a suggestion from Dave Abrahams,
generalizing an idea from Vladimir Prus, with comments from Rainer Deyke, John
Maddock, and others.</p>
<h3>Background</h3>
<p>The C++ Standard specifies that delete on a pointer to an incomplete types is
undefined behavior if the type has a non-trivial destructor in&nbsp; [expr.delete]
5.3.5 paragraph.&nbsp; No diagnostic is required.&nbsp; Some but not all
compilers issue warnings if the type is incomplete at point of deletion.</p>
<h2> <a name="functions next">Function</a> templates next() and prior()</h2>
<p>Certain data types, such as the C++ Standard Library's forward and
@@ -131,11 +91,9 @@ emphasize that it is to be used only as a base class.&nbsp; Dave Abrahams notes
concern about the effect on compiler optimization of adding (even trivial inline)
destructor declarations. He says &quot;Probably this concern is misplaced, because
noncopyable will be used mostly for classes which own resources and thus have non-trivial destruction semantics.&quot;</p>
<h2>Function template tie()</h2>
<p>See <a href="tie.html">separate documentation</a>.</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan
-->22 May, 2001<!--webbot bot="Timestamp" endspan i-checksum="13960"
-->28 February, 2001<!--webbot bot="Timestamp" endspan i-checksum="40412"
-->
</p>
<p><EFBFBD> Copyright boost.org 1999. Permission to copy, use, modify, sell and