feat(adc): support ADC oneshot and continuous on C61

This commit is contained in:
gaoxu
2024-11-06 15:40:44 +08:00
committed by Gao Xu
parent d2c74a6b1e
commit efd04b7709
32 changed files with 1189 additions and 86 deletions

View File

@@ -842,8 +842,10 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
esp_clk_tree_enable_src((soc_module_clk_t)ADC_DIGI_CLK_SRC_DEFAULT, true);
adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT);
#if SOC_ADC_ARBITER_SUPPORTED
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
#endif
adc_atten_t atten = s_atten2_single[channel];
#if SOC_ADC_CALIBRATION_V1_SUPPORTED

View File

@@ -70,7 +70,7 @@ typedef enum {
ADC1_CHANNEL_4, /*!< ADC1 channel 4 is GPIO4 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#elif CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32P4 || CONFIG_IDF_TARGET_ESP32C5 || CONFIG_IDF_TARGET_ESP32C61
#elif CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32P4 || CONFIG_IDF_TARGET_ESP32C5
typedef enum {
ADC1_CHANNEL_0 = 0, /*!< ADC1 channel 0 is GPIO0 */
ADC1_CHANNEL_1, /*!< ADC1 channel 1 is GPIO1 */
@@ -93,6 +93,14 @@ typedef enum {
ADC1_CHANNEL_7, /*!< ADC1 channel 7 is GPIO23 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#elif CONFIG_IDF_TARGET_ESP32C61
typedef enum {
ADC1_CHANNEL_0 = 0, /*!< ADC1 channel 0 is GPIO1 */
ADC1_CHANNEL_1, /*!< ADC1 channel 1 is GPIO3 */
ADC1_CHANNEL_2, /*!< ADC1 channel 2 is GPIO4 */
ADC1_CHANNEL_3, /*!< ADC1 channel 3 is GPIO5 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#endif // CONFIG_IDF_TARGET_*
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3

View File

@@ -21,6 +21,9 @@ components/driver/test_apps/legacy_adc_driver:
- if: IDF_TARGET == "esp32p4"
temporary: true
reason: lack of runners, TODO IDF-9573
- if: IDF_TARGET == "esp32c61"
temporary: true
reason: lack of runners
depends_components:
- efuse
- esp_driver_i2s

View File

@@ -1,2 +1,2 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-C61 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | --------- | -------- | -------- | -------- | -------- |

View File

@@ -81,6 +81,13 @@
#define ADC_TEST_HIGH_VAL 4095
#define ADC_TEST_HIGH_THRESH 200
#elif CONFIG_IDF_TARGET_ESP32C61
#define ADC_TEST_LOW_VAL 2140
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4095
#define ADC_TEST_HIGH_THRESH 200
#endif
//ADC Channels

View File

@@ -8,6 +8,9 @@ components/esp_adc/test_apps/adc:
- if: IDF_TARGET == "esp32p4"
temporary: true
reason: not runners for ESP32P4 ADC # TODO: IDF-9573
- if: IDF_TARGET == "esp32c61"
temporary: true
reason: not runners for ESP32C61 ADC
depends_components:
- esp_adc
- esp_driver_gpio

View File

@@ -1,2 +1,2 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-C61 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | --------- | -------- | -------- | -------- | -------- |

View File

@@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@@ -43,7 +43,7 @@ static const char* TAG = "test_adc_wifi";
static int read_raw;
static int target_value;
static int test_adc_io;
static bool test_list[TEST_NUM] = {1, 1, 0, 0, 1, 0, 1, 0};
static bool test_list[TEST_NUM] = {0, 1, 0, 0, 1, 0, 1, 0};
static void wifi_event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data)
@@ -215,14 +215,14 @@ __attribute__((unused)) static void adc_work_with_wifi(adc_unit_t unit_id, adc_c
TEST_IGNORE_MESSAGE("this test case is ignored due to the critical memory leak of esp_netif and event_loop.");
}
#if CONFIG_IDF_TARGET_ESP32C6
// On ESP32C6, ADC need to call two modem clocks: modem_syscon_ll_enable_fe_80m_clock and modem_syscon_ll_enable_fe_apb_clock.
#if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32C61
// ADC need to call two modem clocks: modem_syscon_ll_enable_fe_80m_clock and modem_syscon_ll_enable_fe_apb_clock.
// Without calling these two clocks, PWDET mode will not take into effect, so ADC readings will be wrong.
TEST_CASE("ADC1 work with WiFi", "[adc]")
{
adc_work_with_wifi(ADC_UNIT_1, ADC1_WIFI_TEST_CHAN0);
}
#endif // CONFIG_IDF_TARGET_ESP32C6
#endif
#if (SOC_ADC_PERIPH_NUM >= 2) && !CONFIG_IDF_TARGET_ESP32C3
// On ESP32C3, ADC2 is no longer supported, due to its HW limitation.

View File

@@ -103,6 +103,14 @@ extern "C" {
#define ADC_TEST_HIGH_VAL_DMA 4095
#define ADC_TEST_HIGH_THRESH 200
#elif CONFIG_IDF_TARGET_ESP32C61
#define ADC_TEST_LOW_VAL 2140
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4095
#define ADC_TEST_HIGH_VAL_DMA 4095
#define ADC_TEST_HIGH_THRESH 200
#endif
/*---------------------------------------------------------------

View File

@@ -17,13 +17,6 @@ if(NOT BOOTLOADER_BUILD)
endif()
# TODO: [ESP32C61] IDF-9304
if(CONFIG_IDF_TARGET_ESP32C61)
list(REMOVE_ITEM srcs
"sar_periph_ctrl.c"
)
endif()
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")
target_sources(${COMPONENT_LIB} PRIVATE "${srcs}")

View File

@@ -0,0 +1,118 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* SAR related peripherals are interdependent. This file
* provides a united control to these registers, as multiple
* components require these controls.
*
* Related peripherals are:
* - ADC
* - PWDET
*/
#include "sdkconfig.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "esp_private/sar_periph_ctrl.h"
#include "esp_private/esp_modem_clock.h"
#include "hal/sar_ctrl_ll.h"
static const char *TAG = "sar_periph_ctrl";
extern portMUX_TYPE rtc_spinlock;
void sar_periph_ctrl_init(void)
{
sar_ctrl_ll_force_power_ctrl_from_pwdet(true);
//Add other periph power control initialisation here
}
void sar_periph_ctrl_power_enable(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
sar_ctrl_ll_force_power_ctrl_from_pwdet(true);
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
void sar_periph_ctrl_power_disable(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
sar_ctrl_ll_force_power_ctrl_from_pwdet(false);
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
/**
* This gets incremented when s_sar_power_acquire() is called,
* and decremented when s_sar_power_release() is called.
* PWDET is powered down when the value reaches zero.
* Should be modified within critical section.
*/
static int s_pwdet_power_on_cnt;
static void s_sar_power_acquire(void)
{
modem_clock_module_enable(PERIPH_MODEM_ADC_COMMON_FE_MODULE);
portENTER_CRITICAL_SAFE(&rtc_spinlock);
s_pwdet_power_on_cnt++;
if (s_pwdet_power_on_cnt == 1) {
sar_ctrl_ll_set_power_mode_from_pwdet(SAR_CTRL_LL_POWER_ON);
}
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
static void s_sar_power_release(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
s_pwdet_power_on_cnt--;
if (s_pwdet_power_on_cnt < 0) {
portEXIT_CRITICAL(&rtc_spinlock);
ESP_LOGE(TAG, "%s called, but s_pwdet_power_on_cnt == 0", __func__);
abort();
} else if (s_pwdet_power_on_cnt == 0) {
sar_ctrl_ll_set_power_mode_from_pwdet(SAR_CTRL_LL_POWER_FSM);
}
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
modem_clock_module_disable(PERIPH_MODEM_ADC_COMMON_FE_MODULE);
}
/*------------------------------------------------------------------------------
* PWDET Power
*----------------------------------------------------------------------------*/
void sar_periph_ctrl_pwdet_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_pwdet_power_release(void)
{
s_sar_power_release();
}
/*------------------------------------------------------------------------------
* ADC Power
*----------------------------------------------------------------------------*/
void sar_periph_ctrl_adc_oneshot_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_adc_oneshot_power_release(void)
{
s_sar_power_release();
}
void sar_periph_ctrl_adc_continuous_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_adc_continuous_power_release(void)
{
s_sar_power_release();
}

View File

@@ -687,7 +687,7 @@ FORCE_INLINE_ATTR void misc_modules_sleep_prepare(uint32_t pd_flags, bool deep_s
#endif
}
#if !CONFIG_IDF_TARGET_ESP32P4 && !CONFIG_IDF_TARGET_ESP32C61
#if !CONFIG_IDF_TARGET_ESP32P4
// TODO: IDF-7370
if (!(deep_sleep && (s_sleep_sub_mode_ref_cnt[ESP_SLEEP_USE_ADC_TSEN_MONITOR_MODE] != 0))){
sar_periph_ctrl_power_disable();
@@ -714,9 +714,7 @@ FORCE_INLINE_ATTR void misc_modules_wake_prepare(uint32_t pd_flags)
#if SOC_USB_SERIAL_JTAG_SUPPORTED && !SOC_USB_SERIAL_JTAG_SUPPORT_LIGHT_SLEEP
sleep_console_usj_pad_restore();
#endif
#if !CONFIG_IDF_TARGET_ESP32C61 // TODO: IDF-9304
sar_periph_ctrl_power_enable();
#endif
#if CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP && SOC_PM_CPU_RETENTION_BY_RTCCNTL
sleep_disable_cpu_retention();
#endif

View File

@@ -566,7 +566,6 @@ static inline void adc_ll_enable_bus_clock(bool enable)
PCR.saradc_conf.saradc_reg_clk_en = enable;
}
#if SOC_RCC_IS_INDEPENDENT
/**
* @brief Enable the ADC function clock
* @param enable true to enable, false to disable
@@ -575,7 +574,6 @@ static inline void adc_ll_enable_func_clock(bool enable)
{
PCR.saradc_clkm_conf.saradc_clkm_en = enable;
}
#endif
/**
* @brief Reset ADC module

View File

@@ -565,7 +565,6 @@ static inline void adc_ll_enable_bus_clock(bool enable)
PCR.saradc_conf.saradc_reg_clk_en = enable;
}
#if SOC_RCC_IS_INDEPENDENT
/**
* @brief Enable the ADC function clock
* @param enable true to enable, false to disable
@@ -574,7 +573,6 @@ static inline void adc_ll_enable_func_clock(bool enable)
{
PCR.saradc_clkm_conf.saradc_clkm_en = enable;
}
#endif
/**
* @brief Reset ADC module

View File

@@ -0,0 +1,800 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stdlib.h>
#include "esp_attr.h"
#include "soc/adc_periph.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/pmu_reg.h"
#include "soc/clk_tree_defs.h"
#include "soc/pcr_struct.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
#include "hal/adc_types_private.h"
#include "hal/regi2c_ctrl.h"
#include "hal/sar_ctrl_ll.h"
#include "soc/regi2c_saradc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
#define ADC_LL_THRES_ALL_INTR_ST_M (SARADC_THRES0_HIGH_INT_ST_M | \
SARADC_THRES1_HIGH_INT_ST_M | \
SARADC_THRES0_LOW_INT_ST_M | \
SARADC_THRES1_LOW_INT_ST_M)
#define ADC_LL_GET_HIGH_THRES_MASK(monitor_id) ((monitor_id == 0) ? SARADC_THRES0_HIGH_INT_ST_M : SARADC_THRES1_HIGH_INT_ST_M)
#define ADC_LL_GET_LOW_THRES_MASK(monitor_id) ((monitor_id == 0) ? SARADC_THRES0_LOW_INT_ST_M : SARADC_THRES1_LOW_INT_ST_M)
/*---------------------------------------------------------------
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA
---------------------------------------------------------------*/
#define ADC_LL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_LL_FSM_START_WAIT_DEFAULT (5)
#define ADC_LL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_LL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT (1)
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
#define ADC_LL_DEFAULT_CONV_LIMIT_EN 0
#define ADC_LL_DEFAULT_CONV_LIMIT_NUM 10
#define ADC_LL_POWER_MANAGE_SUPPORTED 1 //ESP32C61 supported to manage power mode
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_LL_PWDET_CCT_DEFAULT (4)
typedef enum {
ADC_LL_POWER_BY_FSM = SAR_CTRL_LL_POWER_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_LL_POWER_SW_ON = SAR_CTRL_LL_POWER_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_LL_POWER_SW_OFF = SAR_CTRL_LL_POWER_OFF, /*!< ADC XPD controlled by SW. power off. */
} adc_ll_power_t;
typedef enum {
ADC_LL_CTRL_DIG = 0, ///< ADC digital controller
} adc_ll_controller_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* ESP32C61 only support ONLY_ADC1 mode
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
*/
typedef enum {
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
} adc_ll_digi_convert_mode_t;
typedef struct {
union {
struct {
uint8_t atten: 2;
uint8_t channel: 3;
uint8_t unit: 1;
uint8_t reserved: 2;
};
uint8_t val;
};
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
// Internal FSM reset wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_fsm_wait, saradc_rstb_wait, rst_wait);
// Internal FSM start wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_fsm_wait, saradc_xpd_wait, start_wait);
// Internal FSM standby wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_fsm_wait, saradc_standby_wait, standby_wait);
}
/**
* Set adc sample cycle for digital controller.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
/* Peripheral reg i2c has powered up in rtc_init, write directly */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_ctrl, saradc_sar_clk_div, div);
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param meas_num Max conversion number. Range: 0 ~ 255.
*/
static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_ctrl2, saradc_max_meas_num, meas_num);
}
/**
* Enable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param enable true: enable; false: disable
*/
static inline void adc_ll_digi_convert_limit_enable(bool enable)
{
ADC.saradc_ctrl2.saradc_meas_num_limit = enable;
}
/**
* Set adc conversion mode for digital controller.
*
* @note ESP32C61 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
//ESP32C61 only supports ADC_LL_DIGI_CONV_ONLY_ADC1 mode
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 4 items, in which channel selection,
* and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
ADC.saradc_ctrl.saradc_sar_patt_len = patt_len - 1;
}
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 4 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 6;
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0x7) << 2) | ((table.unit & 0x1) << 5);
if (index == 0) {
tab = ADC.saradc_sar_patt_tab1.saradc_sar_patt_tab1; // Read old register value
tab &= (~(0xFC0000 >> offset)); // Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
ADC.saradc_sar_patt_tab1.saradc_sar_patt_tab1 = tab; // Write back
} else {
tab = ADC.saradc_sar_patt_tab2.saradc_sar_patt_tab2; // Read old register value
tab &= (~(0xFC0000 >> offset)); // Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
ADC.saradc_sar_patt_tab2.saradc_sar_patt_tab2 = tab; // Write back
}
}
/**
* Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
ADC.saradc_ctrl.saradc_sar_patt_p_clear = 1;
ADC.saradc_ctrl.saradc_sar_patt_p_clear = 0;
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: 0 ~ 4.
*/
static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
{
ADC.saradc_ctrl.saradc_wait_arb_cycle = cycle;
}
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
ADC.saradc_ctrl2.saradc_sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_UNIT_2
ADC.saradc_ctrl2.saradc_sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Set the interval clock cycle for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
*
* @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
*/
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
{
ADC.saradc_ctrl2.saradc_timer_target = cycle;
}
/**
* Enable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_enable(void)
{
ADC.saradc_ctrl2.saradc_timer_en = 1;
}
/**
* Disable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_disable(void)
{
ADC.saradc_ctrl2.saradc_timer_en = 0;
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.saradc_clkm_conf, saradc_clkm_div_num, div_num);
PCR.saradc_clkm_conf.saradc_clkm_div_b = div_b;
PCR.saradc_clkm_conf.saradc_clkm_div_a = div_a;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
switch (clk_src) {
case ADC_DIGI_CLK_SRC_XTAL:
PCR.saradc_clkm_conf.saradc_clkm_sel = 0;
break;
case ADC_DIGI_CLK_SRC_RC_FAST:
PCR.saradc_clkm_conf.saradc_clkm_sel = 1;
break;
case ADC_DIGI_CLK_SRC_PLL_F80M:
PCR.saradc_clkm_conf.saradc_clkm_sel = 2;
break;
default:
HAL_ASSERT(false && "unsupported clock");
}
// Enable ADC_CTRL_CLK (i.e. digital domain clock)
ADC.saradc_ctrl.saradc_sar_clk_gated = 1;
}
/**
* Disable clock for ADC digital controller.
*/
static inline void adc_ll_digi_controller_clk_disable(void)
{
ADC.saradc_ctrl.saradc_sar_clk_gated = 0;
}
/**
* Reset adc digital controller filter.
*
* @param idx Filter index
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx, adc_unit_t adc_n)
{
(void)adc_n;
ADC.saradc_filter_ctrl0.saradc_adc_filter_reset = 1;
ADC.saradc_filter_ctrl0.saradc_adc_filter_reset = 0;
}
/**
* Set adc digital controller filter coeff.
*
* @param idx filter index
* @param adc_n adc unit
* @param channel adc channel
* @param coeff filter coeff
*/
static inline void adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx, adc_unit_t adc_n, adc_channel_t channel, adc_digi_iir_filter_coeff_t coeff)
{
uint32_t factor_reg_val = 0;
switch (coeff) {
case ADC_DIGI_IIR_FILTER_COEFF_2:
factor_reg_val = 1;
break;
case ADC_DIGI_IIR_FILTER_COEFF_4:
factor_reg_val = 2;
break;
case ADC_DIGI_IIR_FILTER_COEFF_8:
factor_reg_val = 3;
break;
case ADC_DIGI_IIR_FILTER_COEFF_16:
factor_reg_val = 4;
break;
case ADC_DIGI_IIR_FILTER_COEFF_64:
factor_reg_val = 6;
break;
default:
HAL_ASSERT(false);
}
if (idx == ADC_DIGI_IIR_FILTER_0) {
ADC.saradc_filter_ctrl0.saradc_adc_filter_channel0 = ((adc_n + 1) << 3) | (channel & 0x7);
ADC.saradc_filter_ctrl1.saradc_adc_filter_factor0 = factor_reg_val;
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
ADC.saradc_filter_ctrl0.saradc_adc_filter_channel1 = ((adc_n + 1) << 3) | (channel & 0x7);
ADC.saradc_filter_ctrl1.saradc_adc_filter_factor1 = factor_reg_val;
}
}
/**
* Enable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @param idx filter index
* @param adc_n ADC unit
* @param enable Enable / Disable
*/
static inline void adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx, adc_unit_t adc_n, bool enable)
{
(void)adc_n;
if (!enable) {
if (idx == ADC_DIGI_IIR_FILTER_0) {
ADC.saradc_filter_ctrl0.saradc_adc_filter_channel0 = 0xF;
ADC.saradc_filter_ctrl1.saradc_adc_filter_factor0 = 0;
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
ADC.saradc_filter_ctrl0.saradc_adc_filter_channel1 = 0xF;
ADC.saradc_filter_ctrl1.saradc_adc_filter_factor1 = 0;
}
}
//nothing to do to enable, after adc_ll_digi_filter_set_factor, it's enabled.
}
/**
* Set monitor threshold of adc digital controller on specific channel.
*
* @param monitor_id ADC digi monitor unit index.
* @param adc_n Which adc unit the channel belong to.
* @param channel Which channel of adc want to be monitored.
* @param h_thresh High threshold of this monitor.
* @param l_thresh Low threshold of this monitor.
*/
static inline void adc_ll_digi_monitor_set_thres(adc_monitor_id_t monitor_id, adc_unit_t adc_n, uint8_t channel, int32_t h_thresh, int32_t l_thresh)
{
if (monitor_id == ADC_MONITOR_0) {
ADC.saradc_thres0_ctrl.saradc_adc_thres0_channel = (adc_n << 3) | (channel & 0x7);
ADC.saradc_thres0_ctrl.saradc_adc_thres0_high = h_thresh;
ADC.saradc_thres0_ctrl.saradc_adc_thres0_low = l_thresh;
} else { // ADC_MONITOR_1
ADC.saradc_thres1_ctrl.saradc_adc_thres1_channel = (adc_n << 3) | (channel & 0x7);
ADC.saradc_thres1_ctrl.saradc_adc_thres1_high = h_thresh;
ADC.saradc_thres1_ctrl.saradc_adc_thres1_low = l_thresh;
}
}
/**
* Start/Stop monitor of adc digital controller.
*
* @param monitor_id ADC digi monitor unit index.
* @param start 1 for start, 0 for stop
*/
static inline void adc_ll_digi_monitor_user_start(adc_monitor_id_t monitor_id, bool start)
{
if (monitor_id == ADC_MONITOR_0) {
ADC.saradc_thres_ctrl.saradc_adc_thres0_en = start;
} else {
ADC.saradc_thres_ctrl.saradc_adc_thres1_en = start;
}
}
/**
* Enable/disable a intr of adc digital monitor.
*
* @param monitor_id ADC digi monitor unit index.
* @param mode monit mode to enable/disable intr.
* @param enable enable or disable.
*/
static inline void adc_ll_digi_monitor_enable_intr(adc_monitor_id_t monitor_id, adc_monitor_mode_t mode, bool enable)
{
if (monitor_id == ADC_MONITOR_0) {
if (mode == ADC_MONITOR_MODE_HIGH) {
ADC.saradc_int_ena.saradc_adc_thres0_high_int_ena = enable;
} else {
ADC.saradc_int_ena.saradc_adc_thres0_low_int_ena = enable;
}
}
if (monitor_id == ADC_MONITOR_1) {
if (mode == ADC_MONITOR_MODE_HIGH) {
ADC.saradc_int_ena.saradc_adc_thres1_high_int_ena = enable;
} else {
ADC.saradc_int_ena.saradc_adc_thres1_low_int_ena = enable;
}
}
}
/**
* Clear intr raw for adc digi monitors.
*/
__attribute__((always_inline))
static inline void adc_ll_digi_monitor_clear_intr(void)
{
ADC.saradc_int_clr.val |= ADC_LL_THRES_ALL_INTR_ST_M;
}
/**
* Get the address of digi monitor intr statue register.
*
* @return address of register.
*/
__attribute__((always_inline))
static inline volatile const void *adc_ll_digi_monitor_get_intr_status_addr(void)
{
return &ADC.saradc_int_st.val;
}
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_dma_conf, saradc_apb_adc_eof_num, num);
}
/**
* Enable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_enable(void)
{
ADC.saradc_dma_conf.saradc_apb_adc_trans = 1;
}
/**
* Disable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_disable(void)
{
ADC.saradc_dma_conf.saradc_apb_adc_trans = 0;
}
/**
* Reset adc digital controller.
*/
static inline void adc_ll_digi_reset(void)
{
ADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 1;
ADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 0;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
(void)cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
return 0;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* @brief Enable the ADC APB clock
* @param enable true to enable, false to disable
*/
static inline void adc_ll_enable_bus_clock(bool enable)
{
PCR.saradc_conf.saradc_reg_clk_en = enable;
}
/**
* @brief Enable the ADC function clock
* @param enable true to enable, false to disable
*/
static inline void adc_ll_enable_func_clock(bool enable)
{
PCR.saradc_clkm_conf.saradc_clkm_en = enable;
}
/**
* @brief Reset ADC module
*/
static inline void adc_ll_reset_register(void)
{
PCR.saradc_conf.saradc_reg_rst_en = 1;
PCR.saradc_conf.saradc_reg_rst_en = 0;
}
/**
* Set ADC module power management.
*
* @param manage Set ADC power status.
*/
static inline void adc_ll_set_power_manage(adc_unit_t adc_n, adc_ll_power_t manage)
{
(void) adc_n;
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_LL_POWER_SW_ON) {
ADC.saradc_ctrl.saradc_sar_clk_gated = 1;
ADC.saradc_ctrl.saradc_xpd_sar_force = 3;
} else if (manage == ADC_LL_POWER_BY_FSM) {
ADC.saradc_ctrl.saradc_sar_clk_gated = 1;
ADC.saradc_ctrl.saradc_xpd_sar_force = 0;
} else if (manage == ADC_LL_POWER_SW_OFF) {
ADC.saradc_ctrl.saradc_sar_clk_gated = 0;
ADC.saradc_ctrl.saradc_xpd_sar_force = 2;
}
}
__attribute__((always_inline))
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32C61
}
/*---------------------------------------------------------------
Oneshot Read
---------------------------------------------------------------*/
/**
* Set adc output data format for oneshot mode
*
* @note ESP32C61 Oneshot mode only supports 12bit.
* @param adc_n ADC unit.
* @param bits Output data bits width option.
*/
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
{
(void) adc_n;
//ESP32C61 only supports 12bit, leave here for compatibility
HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
{
ADC.saradc_onetime_sample.saradc_onetime_channel = ((adc_n << 3) | channel);
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
{
ADC.saradc_onetime_sample.saradc_onetime_channel = ((adc_n << 3) | 0xF);
}
/**
* Start oneshot conversion by software
*
* @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle,
* otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow.
* This hardware limitation will be removed in future versions.
*/
static inline void adc_oneshot_ll_start(bool val)
{
ADC.saradc_onetime_sample.saradc_onetime_start = val;
}
/**
* Clear the event for each ADCn for Oneshot mode
*
* @param event ADC event
*/
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
{
ADC.saradc_int_clr.val |= event_mask;
}
/**
* Check the event for each ADCn for Oneshot mode
*
* @param event ADC event
*
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_oneshot_ll_get_event(uint32_t event_mask)
{
return (ADC.saradc_int_raw.val & event_mask);
}
/**
* Get the converted value for each ADCn for controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
{
uint32_t ret_val = 0;
if (adc_n == ADC_UNIT_1) {
ret_val = ADC.saradc_sar1data_status.saradc_adc1_data & 0xfff;
} else { // adc_n == ADC_UNIT_2
ret_val = ADC.saradc_sar2data_status.saradc_adc2_data & 0xfff;
}
return ret_val;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 1: The data is correct to use.
* - 0: The data is invalid.
*/
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw_data)
{
(void)adc_n;
return true;
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
{
(void)adc_n;
(void)inv_en;
//For compatibility
}
/**
* Enable oneshot conversion trigger
*
* @param adc_n ADC unit
*/
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
ADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 1;
} else {
ADC.saradc_onetime_sample.saradc_saradc2_onetime_sample = 1;
}
}
/**
* Disable oneshot conversion trigger for all the ADC units
*/
static inline void adc_oneshot_ll_disable_all_unit(void)
{
ADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 0;
ADC.saradc_onetime_sample.saradc_saradc2_onetime_sample = 0;
}
/**
* Set attenuation
*
* @note Attenuation is for all channels
*
* @param adc_n ADC unit
* @param channel ADC channel
* @param atten ADC attenuation
*/
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
(void)adc_n;
(void)channel;
// Attenuation is for all channels, unit and channel are for compatibility
ADC.saradc_onetime_sample.saradc_onetime_atten = atten;
}
/**
* Get the attenuation of a particular channel on ADCn.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
__attribute__((always_inline))
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
(void)adc_n;
(void)channel;
return (adc_atten_t)ADC.saradc_onetime_sample.saradc_onetime_atten;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,73 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* SAR related peripherals are interdependent.
* Related peripherals are:
* - ADC
* - PWDET
*
* All of above peripherals require SAR to work correctly.
* As SAR has some registers that will influence above mentioned peripherals.
* This file gives an abstraction for such registers
*/
#pragma once
#include <stdlib.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/apb_saradc_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define PWDET_LL_SAR_POWER_FORCE_BIT BIT(24)
#define PWDET_LL_SAR_POWER_CNTL_BIT BIT(23)
typedef enum {
SAR_CTRL_LL_POWER_FSM, //SAR power controlled by FSM
SAR_CTRL_LL_POWER_ON, //SAR power on
SAR_CTRL_LL_POWER_OFF, //SAR power off
} sar_ctrl_ll_power_t;
/*---------------------------------------------------------------
SAR power control
---------------------------------------------------------------*/
/**
* @brief Set SAR power mode when controlled by PWDET
*
* @param[in] mode See `sar_ctrl_ll_power_t`
*/
__attribute__((always_inline))
static inline void sar_ctrl_ll_set_power_mode_from_pwdet(sar_ctrl_ll_power_t mode)
{
if (mode == SAR_CTRL_LL_POWER_FSM) {
REG_CLR_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
} else if (mode == SAR_CTRL_LL_POWER_ON) {
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_CNTL_BIT);
} else if (mode == SAR_CTRL_LL_POWER_OFF) {
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
REG_CLR_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_CNTL_BIT);
}
}
/**
* @brief Set SAR power ctrl source
*
* @param[in] force set PWDET as SAR power ctrl source when force is true
*/
static inline void sar_ctrl_ll_force_power_ctrl_from_pwdet(bool force)
{
ADC.saradc_ctrl.saradc_saradc2_pwdet_drv = force;
}
#ifdef __cplusplus
}
#endif

View File

@@ -566,7 +566,6 @@ static inline void adc_ll_enable_bus_clock(bool enable)
PCR.saradc_conf.saradc_reg_clk_en = enable;
}
#if SOC_RCC_IS_INDEPENDENT
/**
* @brief Enable the ADC function clock
* @param enable true to enable, false to disable
@@ -575,7 +574,6 @@ static inline void adc_ll_enable_func_clock(bool enable)
{
PCR.saradc_clkm_conf.saradc_clkm_en = enable;
}
#endif
/**
* @brief Reset ADC module

View File

@@ -214,7 +214,7 @@ typedef struct {
};
} adc_digi_output_data_t;
#elif CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32C5
#elif CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32C5 || CONFIG_IDF_TARGET_ESP32C61
/**
* @brief ADC digital controller (DMA mode) output data format.
* Used to analyze the acquired ADC (DMA) data.

View File

@@ -7,3 +7,11 @@
#pragma once
#define IDF_PERFORMANCE_MAX_ESP_TIMER_GET_TIME_PER_CALL 1300
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_NO_FILTER 5
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_2 5
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_4 5
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_8 5
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_16 5
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_64 5
#define IDF_PERFORMANCE_MAX_ADC_ONESHOT_STD_ATTEN3 5

View File

@@ -0,0 +1,18 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "soc/adc_periph.h"
/* Store IO number corresponding to the ADC channel number. */
const int adc_channel_io_map[SOC_ADC_PERIPH_NUM][SOC_ADC_MAX_CHANNEL_NUM] = {
/* ADC1 */
{
ADC1_CHANNEL_0_GPIO_NUM,
ADC1_CHANNEL_1_GPIO_NUM,
ADC1_CHANNEL_2_GPIO_NUM,
ADC1_CHANNEL_3_GPIO_NUM,
},
};

View File

@@ -3,6 +3,10 @@
# using gen_soc_caps_kconfig.py, do not edit manually
#####################################################
config SOC_ADC_SUPPORTED
bool
default y
config SOC_DEDICATED_GPIO_SUPPORTED
bool
default y
@@ -167,18 +171,90 @@ config SOC_XTAL_SUPPORT_40M
bool
default y
config SOC_ADC_DIG_CTRL_SUPPORTED
bool
default y
config SOC_ADC_DIG_IIR_FILTER_SUPPORTED
bool
default y
config SOC_ADC_MONITOR_SUPPORTED
bool
default y
config SOC_ADC_DMA_SUPPORTED
bool
default y
config SOC_ADC_PERIPH_NUM
int
default 1
bool
default y
config SOC_ADC_MAX_CHANNEL_NUM
int
default 7
default 4
config SOC_ADC_ATTEN_NUM
int
default 4
config SOC_ADC_DIGI_CONTROLLER_NUM
int
default 1
config SOC_ADC_PATT_LEN_MAX
int
default 8
config SOC_ADC_DIGI_MAX_BITWIDTH
int
default 12
config SOC_ADC_DIGI_MIN_BITWIDTH
int
default 12
config SOC_ADC_DIGI_IIR_FILTER_NUM
int
default 2
config SOC_ADC_DIGI_MONITOR_NUM
int
default 2
config SOC_ADC_DIGI_RESULT_BYTES
int
default 4
config SOC_ADC_DIGI_DATA_BYTES_PER_CONV
int
default 4
config SOC_ADC_SAMPLE_FREQ_THRES_HIGH
int
default 83333
config SOC_ADC_SAMPLE_FREQ_THRES_LOW
int
default 611
config SOC_ADC_RTC_MIN_BITWIDTH
int
default 12
config SOC_ADC_RTC_MAX_BITWIDTH
int
default 12
config SOC_ADC_TEMPERATURE_SHARE_INTR
bool
default y
config SOC_ADC_SHARED_POWER
bool
default y
config SOC_APB_BACKUP_DMA
bool
default n

View File

@@ -6,24 +6,14 @@
#pragma once
// TODO: [ESP32-C61] IDF-9302 Check the channel
#define ADC1_GPIO0_CHANNEL 0
#define ADC1_CHANNEL_0_GPIO_NUM 0
#define ADC1_GPIO1_CHANNEL 0
#define ADC1_CHANNEL_0_GPIO_NUM 1
#define ADC1_GPIO1_CHANNEL 1
#define ADC1_CHANNEL_1_GPIO_NUM 1
#define ADC1_GPIO3_CHANNEL 1
#define ADC1_CHANNEL_1_GPIO_NUM 3
#define ADC1_GPIO2_CHANNEL 2
#define ADC1_CHANNEL_2_GPIO_NUM 2
#define ADC1_GPIO4_CHANNEL 2
#define ADC1_CHANNEL_2_GPIO_NUM 4
#define ADC1_GPIO3_CHANNEL 3
#define ADC1_CHANNEL_3_GPIO_NUM 3
#define ADC1_GPIO4_CHANNEL 4
#define ADC1_CHANNEL_4_GPIO_NUM 4
#define ADC1_GPIO5_CHANNEL 5
#define ADC1_CHANNEL_5_GPIO_NUM 5
#define ADC1_GPIO6_CHANNEL 6
#define ADC1_CHANNEL_6_GPIO_NUM 6
#define ADC1_GPIO5_CHANNEL 3
#define ADC1_CHANNEL_3_GPIO_NUM 5

View File

@@ -17,7 +17,7 @@
#pragma once
/*-------------------------- COMMON CAPS ---------------------------------------*/
// \#define SOC_ADC_SUPPORTED 1 //TODO: [ESP32C61] IDF-9302, IDF-9303, IDF-9304
#define SOC_ADC_SUPPORTED 1
#define SOC_DEDICATED_GPIO_SUPPORTED 1
#define SOC_UART_SUPPORTED 1
#define SOC_GDMA_SUPPORTED 1
@@ -67,35 +67,34 @@
/*-------------------------- XTAL CAPS ---------------------------------------*/
#define SOC_XTAL_SUPPORT_40M 1
//TODO: [ESP32C61] IDF-9302, IDF-9303, IDF-9304
/*-------------------------- ADC CAPS -------------------------------*/
/*!< SAR ADC Module*/
// \#define SOC_ADC_DIG_CTRL_SUPPORTED 1
// \#define SOC_ADC_DIG_IIR_FILTER_SUPPORTED 1
// \#define SOC_ADC_MONITOR_SUPPORTED 1
// \#define SOC_ADC_DIG_SUPPORTED_UNIT(UNIT) 1 //Digital controller supported ADC unit
// \#define SOC_ADC_DMA_SUPPORTED 1
#define SOC_ADC_PERIPH_NUM (1U)
#define SOC_ADC_MAX_CHANNEL_NUM (7)
// \#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (7)
// \#define SOC_ADC_ATTEN_NUM (4)
#define SOC_ADC_DIG_CTRL_SUPPORTED 1
#define SOC_ADC_DIG_IIR_FILTER_SUPPORTED 1
#define SOC_ADC_MONITOR_SUPPORTED 1
#define SOC_ADC_DIG_SUPPORTED_UNIT(UNIT) 1 //Digital controller supported ADC unit
#define SOC_ADC_DMA_SUPPORTED 1
#define SOC_ADC_PERIPH_NUM (1)
#define SOC_ADC_MAX_CHANNEL_NUM (4)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (4)
#define SOC_ADC_ATTEN_NUM (4)
// /*!< Digital */
// \#define SOC_ADC_DIGI_CONTROLLER_NUM (1U)
// \#define SOC_ADC_PATT_LEN_MAX (8) /*!< Two pattern tables, each contains 4 items. Each item takes 1 byte */
// \#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
// \#define SOC_ADC_DIGI_MIN_BITWIDTH (12)
// \#define SOC_ADC_DIGI_IIR_FILTER_NUM (2)
// \#define SOC_ADC_DIGI_MONITOR_NUM (2)
// \#define SOC_ADC_DIGI_RESULT_BYTES (4)
// \#define SOC_ADC_DIGI_DATA_BYTES_PER_CONV (4)
// /*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval <= 4095 */
// \#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
// \#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611
/*!< Digital */
#define SOC_ADC_DIGI_CONTROLLER_NUM (1U)
#define SOC_ADC_PATT_LEN_MAX (8) /*!< Two pattern tables, each contains 4 items. Each item takes 1 byte */
#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
#define SOC_ADC_DIGI_MIN_BITWIDTH (12)
#define SOC_ADC_DIGI_IIR_FILTER_NUM (2)
#define SOC_ADC_DIGI_MONITOR_NUM (2)
#define SOC_ADC_DIGI_RESULT_BYTES (4)
#define SOC_ADC_DIGI_DATA_BYTES_PER_CONV (4)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval <= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611
// /*!< RTC */
// \#define SOC_ADC_RTC_MIN_BITWIDTH (12)
// \#define SOC_ADC_RTC_MAX_BITWIDTH (12)
/*!< RTC */
#define SOC_ADC_RTC_MIN_BITWIDTH (12)
#define SOC_ADC_RTC_MAX_BITWIDTH (12)
// /*!< Calibration */ // TODO: [ESP32C61] IDF-9303
// \#define SOC_ADC_CALIBRATION_V1_SUPPORTED (1) /*!< support HW offset calibration version 1*/
@@ -106,7 +105,7 @@
#define SOC_ADC_TEMPERATURE_SHARE_INTR (1)
/*!< ADC power control is shared by PWDET */
// \#define SOC_ADC_SHARED_POWER 1
#define SOC_ADC_SHARED_POWER 1
/*-------------------------- APB BACKUP DMA CAPS -------------------------------*/
#define SOC_APB_BACKUP_DMA (0)

View File

@@ -61,3 +61,4 @@
#define DR_REG_INTPRI_BASE 0x600C5000
#define DR_REG_CACHE_BASE 0x600C8000
#define DR_REG_CLINT_M_BASE 0x20000000
#define PWDET_CONF_REG 0x600A0808

View File

@@ -35,8 +35,6 @@ api-reference/storage/fatfsgen.rst
api-reference/storage/index.rst
api-reference/storage/nvs_partition_parse.rst
api-reference/peripherals/isp.rst
api-reference/peripherals/adc_continuous.rst
api-reference/peripherals/adc_oneshot.rst
api-reference/peripherals/usb_host.rst
api-reference/peripherals/usb_host/usb_host_notes_arch.rst
api-reference/peripherals/usb_host/usb_host_notes_index.rst

View File

@@ -3,7 +3,7 @@ Analog to Digital Converter (ADC) Continuous Mode Driver
:link_to_translation:`zh_CN:[中文]`
{IDF_TARGET_ADC_NUM:default="two", esp32c2="one", esp32c6="one", esp32h2="one", esp32c5="one"}
{IDF_TARGET_ADC_NUM:default="two", esp32c2="one", esp32c6="one", esp32h2="one", esp32c5="one", esp32c61="one"}
Introduction
------------

View File

@@ -23,7 +23,7 @@ The table below provides more information on pin usage, and please note the comm
- Comments
* - GPIO0
- ADC2_CH0
-
- LP_GPIO0
-
@@ -53,7 +53,7 @@ The table below provides more information on pin usage, and please note the comm
-
* - GPIO6
- ADC1_CH5
-
- LP_GPIO6
-

View File

@@ -3,7 +3,7 @@
:link_to_translation:`en:[English]`
{IDF_TARGET_ADC_NUM:default="两", esp32c2="一", esp32c6="一", esp32h2="一", esp32c5="一"}
{IDF_TARGET_ADC_NUM:default="两", esp32c2="一", esp32c6="一", esp32h2="一", esp32c5="一", esp32c61="一"}
简介
------------

View File

@@ -23,7 +23,7 @@
- 注释
* - GPIO0
- ADC2_CH0
-
- LP_GPIO0
-

View File

@@ -14,6 +14,9 @@ examples/peripherals/adc/continuous_read:
- if: IDF_TARGET == "esp32p4"
temporary: true
reason: lack of runners, TODO IDF-9573
- if: IDF_TARGET == "esp32c61"
temporary: true
reason: lack of runner
<<: *adc_dependencies
examples/peripherals/adc/oneshot_read:
@@ -23,6 +26,9 @@ examples/peripherals/adc/oneshot_read:
- if: IDF_TARGET == "esp32p4"
temporary: true
reason: lack of runner, TODO IDF-9573
- if: IDF_TARGET == "esp32c61"
temporary: true
reason: lack of runner
<<: *adc_dependencies
examples/peripherals/analog_comparator:

View File

@@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-C61 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | --------- | -------- | -------- | -------- | -------- |
# ADC DMA Example

View File

@@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-C61 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | --------- | -------- | -------- | -------- | -------- |
# ADC Single Read Example