Files
qt-creator/src/libs/utils/algorithm.h

1270 lines
40 KiB
C
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt Creator.
**
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 as published by the Free Software
** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
****************************************************************************/
#pragma once
#include "predicates.h"
#include "optional.h"
#include <qcompilerdetection.h> // for Q_REQUIRED_RESULT
#include <algorithm>
#include <map>
#include <memory>
#include <set>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <QObject>
#include <QSet>
#include <QStringList>
#include <memory>
#include <type_traits>
namespace Utils
{
/////////////////////////
// anyOf
/////////////////////////
template<typename T, typename F>
bool anyOf(const T &container, F predicate);
template<typename T, typename R, typename S>
bool anyOf(const T &container, R (S::*predicate)() const);
template<typename T, typename R, typename S>
bool anyOf(const T &container, R S::*member);
/////////////////////////
// count
/////////////////////////
template<typename T, typename F>
int count(const T &container, F predicate);
/////////////////////////
// allOf
/////////////////////////
template<typename T, typename F>
bool allOf(const T &container, F predicate);
/////////////////////////
// erase
/////////////////////////
template<typename T, typename F>
void erase(T &container, F predicate);
/////////////////////////
// contains
/////////////////////////
template<typename T, typename F>
bool contains(const T &container, F function);
template<typename T, typename R, typename S>
bool contains(const T &container, R (S::*function)() const);
template<typename C, typename R, typename S>
bool contains(const C &container, R S::*member);
/////////////////////////
// findOr
/////////////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT typename C::value_type findOr(const C &container,
typename C::value_type other,
F function);
template<typename T, typename R, typename S>
Q_REQUIRED_RESULT typename T::value_type findOr(const T &container,
typename T::value_type other,
R (S::*function)() const);
template<typename T, typename R, typename S>
Q_REQUIRED_RESULT typename T::value_type findOr(const T &container,
typename T::value_type other,
R S::*member);
/////////////////////////
// findOrDefault
/////////////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT typename std::enable_if_t<std::is_copy_assignable<typename C::value_type>::value,
typename C::value_type>
findOrDefault(const C &container, F function);
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT typename std::enable_if_t<std::is_copy_assignable<typename C::value_type>::value,
typename C::value_type>
findOrDefault(const C &container, R (S::*function)() const);
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT typename std::enable_if_t<std::is_copy_assignable<typename C::value_type>::value,
typename C::value_type>
findOrDefault(const C &container, R S::*member);
/////////////////////////
// indexOf
/////////////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT int indexOf(const C &container, F function);
/////////////////////////
// maxElementOr
/////////////////////////
template<typename T>
typename T::value_type maxElementOr(const T &container, typename T::value_type other);
/////////////////////////
// filtered
/////////////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT C filtered(const C &container, F predicate);
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT C filtered(const C &container, R (S::*predicate)() const);
/////////////////////////
// partition
/////////////////////////
// Recommended usage:
// C hit;
// C miss;
// std::tie(hit, miss) = Utils::partition(container, predicate);
template<typename C, typename F>
Q_REQUIRED_RESULT std::tuple<C, C> partition(const C &container, F predicate);
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT std::tuple<C, C> partition(const C &container, R (S::*predicate)() const);
/////////////////////////
// filteredUnique
/////////////////////////
template<typename C>
Q_REQUIRED_RESULT C filteredUnique(const C &container);
/////////////////////////
// qobject_container_cast
/////////////////////////
template<class T, template<typename> class Container, typename Base>
Container<T> qobject_container_cast(const Container<Base> &container);
/////////////////////////
// static_container_cast
/////////////////////////
template<class T, template<typename> class Container, typename Base>
Container<T> static_container_cast(const Container<Base> &container);
/////////////////////////
// sort
/////////////////////////
template<typename Container>
inline void sort(Container &container);
template<typename Container, typename Predicate>
inline void sort(Container &container, Predicate p);
template<typename Container, typename R, typename S>
inline void sort(Container &container, R S::*member);
template<typename Container, typename R, typename S>
inline void sort(Container &container, R (S::*function)() const);
/////////////////////////
// reverseForeach
/////////////////////////
template<typename Container, typename Op>
inline void reverseForeach(const Container &c, const Op &operation);
/////////////////////////
// toReferences
/////////////////////////
template<template<typename...> class ResultContainer, typename SourceContainer>
auto toReferences(SourceContainer &sources);
template<typename SourceContainer>
auto toReferences(SourceContainer &sources);
/////////////////////////
// toConstReferences
/////////////////////////
template<template<typename...> class ResultContainer, typename SourceContainer>
auto toConstReferences(const SourceContainer &sources);
template<typename SourceContainer>
auto toConstReferences(const SourceContainer &sources);
/////////////////////////
// take
/////////////////////////
template<class C, typename P>
Q_REQUIRED_RESULT optional<typename C::value_type> take(C &container, P predicate);
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT decltype(auto) take(C &container, R S::*member);
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT decltype(auto) take(C &container, R (S::*function)() const);
/////////////////////////
// setUnionMerge
/////////////////////////
// Works like std::set_union but provides a merge function for items that match
// !(a > b) && !(b > a) which normally means that there is an "equal" match.
// It uses iterators to support move_iterators.
template<class InputIt1, class InputIt2, class OutputIt, class Merge, class Compare>
OutputIt setUnionMerge(InputIt1 first1,
InputIt1 last1,
InputIt2 first2,
InputIt2 last2,
OutputIt d_first,
Merge merge,
Compare comp);
template<class InputIt1, class InputIt2, class OutputIt, class Merge>
OutputIt setUnionMerge(
InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, OutputIt d_first, Merge merge);
template<class OutputContainer, class InputContainer1, class InputContainer2, class Merge, class Compare>
OutputContainer setUnionMerge(InputContainer1 &&input1,
InputContainer2 &&input2,
Merge merge,
Compare comp);
template<class OutputContainer, class InputContainer1, class InputContainer2, class Merge>
OutputContainer setUnionMerge(InputContainer1 &&input1, InputContainer2 &&input2, Merge merge);
/////////////////////////
// usize / ssize
/////////////////////////
template<typename Container>
std::make_unsigned_t<typename Container::size_type> usize(Container container);
template<typename Container>
std::make_signed_t<typename Container::size_type> ssize(Container container);
/////////////////////////
// setUnion
/////////////////////////
template<typename InputIterator1, typename InputIterator2, typename OutputIterator, typename Compare>
OutputIterator set_union(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result,
Compare comp);
template<typename InputIterator1, typename InputIterator2, typename OutputIterator>
OutputIterator set_union(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result);
/////////////////////////
// transform
/////////////////////////
// function without result type deduction:
template<typename ResultContainer, // complete result container type
typename SC, // input container type
typename F> // function type
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, F function);
// function with result type deduction:
template<template<typename> class C, // result container type
typename SC, // input container type
typename F, // function type
typename Value = typename std::decay_t<SC>::value_type,
typename Result = std::decay_t<std::result_of_t<F(Value &)>>,
typename ResultContainer = C<Result>>
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, F function);
template<template<typename, typename> class C, // result container type
typename SC, // input container type
typename F, // function type
typename Value = typename std::decay_t<SC>::value_type,
typename Result = std::decay_t<std::result_of_t<F(Value &)>>,
typename ResultContainer = C<Result, std::allocator<Result>>>
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, F function);
// member function without result type deduction:
template<template<typename...> class C, // result container type
typename SC, // input container type
typename R,
typename S>
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, R (S::*p)() const);
// member function with result type deduction:
template<typename ResultContainer, // complete result container type
typename SC, // input container type
typename R,
typename S>
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, R (S::*p)() const);
// member without result type deduction:
template<typename ResultContainer, // complete result container type
typename SC, // input container
typename R,
typename S>
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, R S::*p);
// member with result type deduction:
template<template<typename...> class C, // result container
typename SC, // input container
typename R,
typename S>
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, R S::*p);
// same container types for input and output, const input
// function:
template<template<typename...> class C, // container type
typename F, // function type
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT decltype(auto) transform(const C<CArgs...> &container, F function);
// same container types for input and output, const input
// member function:
template<template<typename...> class C, // container type
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT decltype(auto) transform(const C<CArgs...> &container, R (S::*p)() const);
// same container types for input and output, const input
// members:
template<template<typename...> class C, // container
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT decltype(auto) transform(const C<CArgs...> &container, R S::*p);
// same container types for input and output, non-const input
// function:
template<template<typename...> class C, // container type
typename F, // function type
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT decltype(auto) transform(C<CArgs...> &container, F function);
// same container types for input and output, non-const input
// member function:
template<template<typename...> class C, // container type
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT decltype(auto) transform(C<CArgs...> &container, R (S::*p)() const);
// same container types for input and output, non-const input
// members:
template<template<typename...> class C, // container
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT decltype(auto) transform(C<CArgs...> &container, R S::*p);
/////////////////////////////////////////////////////////////////////////////
//////// Implementations //////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
//////////////////
// anyOf
/////////////////
template<typename T, typename F>
bool anyOf(const T &container, F predicate)
{
return std::any_of(std::begin(container), std::end(container), predicate);
}
// anyOf taking a member function pointer
template<typename T, typename R, typename S>
bool anyOf(const T &container, R (S::*predicate)() const)
{
return std::any_of(std::begin(container), std::end(container), std::mem_fn(predicate));
}
// anyOf taking a member pointer
template<typename T, typename R, typename S>
bool anyOf(const T &container, R S::*member)
{
return std::any_of(std::begin(container), std::end(container), std::mem_fn(member));
}
//////////////////
// count
/////////////////
template<typename T, typename F>
int count(const T &container, F predicate)
{
return std::count_if(std::begin(container), std::end(container), predicate);
}
//////////////////
// allOf
/////////////////
template<typename T, typename F>
bool allOf(const T &container, F predicate)
{
return std::all_of(std::begin(container), std::end(container), predicate);
}
//////////////////
// erase
/////////////////
template<typename T, typename F>
void erase(T &container, F predicate)
{
container.erase(std::remove_if(std::begin(container), std::end(container), predicate),
std::end(container));
}
//////////////////
// contains
/////////////////
template<typename T, typename F>
bool contains(const T &container, F function)
{
return anyOf(container, function);
}
template<typename T, typename R, typename S>
bool contains(const T &container, R (S::*function)() const)
{
return anyOf(container, function);
}
template<typename C, typename R, typename S>
bool contains(const C &container, R S::*member)
{
return anyOf(container, std::mem_fn(member));
}
//////////////////
// findOr
/////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT
typename C::value_type findOr(const C &container, typename C::value_type other, F function)
{
typename C::const_iterator begin = std::begin(container);
typename C::const_iterator end = std::end(container);
typename C::const_iterator it = std::find_if(begin, end, function);
return it == end ? other : *it;
}
template<typename T, typename R, typename S>
Q_REQUIRED_RESULT
typename T::value_type findOr(const T &container, typename T::value_type other, R (S::*function)() const)
{
return findOr(container, other, std::mem_fn(function));
}
template<typename T, typename R, typename S>
Q_REQUIRED_RESULT
typename T::value_type findOr(const T &container, typename T::value_type other, R S::*member)
{
return findOr(container, other, std::mem_fn(member));
}
//////////////////
// findOrDefault
//////////////////
// Default implementation:
template<typename C, typename F>
Q_REQUIRED_RESULT
typename std::enable_if_t<std::is_copy_assignable<typename C::value_type>::value, typename C::value_type>
findOrDefault(const C &container, F function)
{
return findOr(container, typename C::value_type(), function);
}
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT
typename std::enable_if_t<std::is_copy_assignable<typename C::value_type>::value, typename C::value_type>
findOrDefault(const C &container, R (S::*function)() const)
{
return findOr(container, typename C::value_type(), std::mem_fn(function));
}
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT
typename std::enable_if_t<std::is_copy_assignable<typename C::value_type>::value, typename C::value_type>
findOrDefault(const C &container, R S::*member)
{
return findOr(container, typename C::value_type(), std::mem_fn(member));
}
//////////////////
// index of:
//////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT
int indexOf(const C& container, F function)
{
typename C::const_iterator begin = std::begin(container);
typename C::const_iterator end = std::end(container);
typename C::const_iterator it = std::find_if(begin, end, function);
return it == end ? -1 : std::distance(begin, it);
}
//////////////////
// max element
//////////////////
template<typename T>
typename T::value_type maxElementOr(const T &container, typename T::value_type other)
{
typename T::const_iterator begin = std::begin(container);
typename T::const_iterator end = std::end(container);
typename T::const_iterator it = std::max_element(begin, end);
if (it == end)
return other;
return *it;
}
//////////////////
// transform
/////////////////
namespace {
/////////////////
// helper code for transform to use back_inserter and thus push_back for everything
// and insert for QSet<>
//
// SetInsertIterator, straight from the standard for insert_iterator
// just without the additional parameter to insert
template <class Container>
class SetInsertIterator :
public std::iterator<std::output_iterator_tag,void,void,void,void>
{
protected:
Container *container;
public:
using container_type = Container;
explicit SetInsertIterator (Container &x)
: container(&x) {}
SetInsertIterator<Container> &operator=(const typename Container::value_type &value)
{ container->insert(value); return *this; }
SetInsertIterator<Container> &operator= (typename Container::value_type &&value)
{ container->insert(std::move(value)); return *this; }
SetInsertIterator<Container >&operator*()
{ return *this; }
SetInsertIterator<Container> &operator++()
{ return *this; }
SetInsertIterator<Container> operator++(int)
{ return *this; }
};
// for QMap / QHash, inserting a std::pair / QPair
template <class Container>
class MapInsertIterator :
public std::iterator<std::output_iterator_tag,void,void,void,void>
{
protected:
Container *container;
public:
using container_type = Container;
explicit MapInsertIterator (Container &x)
: container(&x) {}
MapInsertIterator<Container> &operator=(const std::pair<const typename Container::key_type, typename Container::mapped_type> &value)
{ container->insert(value.first, value.second); return *this; }
MapInsertIterator<Container> &operator=(const QPair<typename Container::key_type, typename Container::mapped_type> &value)
{ container->insert(value.first, value.second); return *this; }
MapInsertIterator<Container >&operator*()
{ return *this; }
MapInsertIterator<Container> &operator++()
{ return *this; }
MapInsertIterator<Container> operator++(int)
{ return *this; }
};
// inserter helper function, returns a std::back_inserter for most containers
// and is overloaded for QSet<> and other containers without push_back, returning custom inserters
template<typename C>
inline std::back_insert_iterator<C>
inserter(C &container)
{
return std::back_inserter(container);
}
template<typename X>
inline SetInsertIterator<QSet<X>>
inserter(QSet<X> &container)
{
return SetInsertIterator<QSet<X>>(container);
}
template<typename K, typename C, typename A>
inline SetInsertIterator<std::set<K, C, A>>
inserter(std::set<K, C, A> &container)
{
return SetInsertIterator<std::set<K, C, A>>(container);
}
template<typename K, typename H, typename C, typename A>
inline SetInsertIterator<std::unordered_set<K, H, C, A>>
inserter(std::unordered_set<K, H, C, A> &container)
{
return SetInsertIterator<std::unordered_set<K, H, C, A>>(container);
}
template<typename K, typename V, typename C, typename A>
inline SetInsertIterator<std::map<K, V, C, A>>
inserter(std::map<K, V, C, A> &container)
{
return SetInsertIterator<std::map<K, V, C, A>>(container);
}
template<typename K, typename V, typename H, typename C, typename A>
inline SetInsertIterator<std::unordered_map<K, V, H, C, A>>
inserter(std::unordered_map<K, V, H, C, A> &container)
{
return SetInsertIterator<std::unordered_map<K, V, H, C, A>>(container);
}
template<typename K, typename V>
inline MapInsertIterator<QMap<K, V>>
inserter(QMap<K, V> &container)
{
return MapInsertIterator<QMap<K, V>>(container);
}
template<typename K, typename V>
inline MapInsertIterator<QHash<K, V>>
inserter(QHash<K, V> &container)
{
return MapInsertIterator<QHash<K, V>>(container);
}
// Helper code for container.reserve that makes it possible to effectively disable it for
// specific cases
// default: do reserve
// Template arguments are more specific than the second version below, so this is tried first
template<template<typename...> class C, typename... CArgs,
typename = decltype(&C<CArgs...>::reserve)>
void reserve(C<CArgs...> &c, typename C<CArgs...>::size_type s)
{
c.reserve(s);
}
// containers that don't have reserve()
template<typename C>
void reserve(C &, typename C::size_type) { }
} // anonymous
// --------------------------------------------------------------------
// Different containers for input and output:
// --------------------------------------------------------------------
// different container types for input and output, e.g. transforming a QList into a QSet
// function without result type deduction:
template<typename ResultContainer, // complete result container type
typename SC, // input container type
typename F> // function type
Q_REQUIRED_RESULT
decltype(auto) transform(SC &&container, F function)
{
ResultContainer result;
reserve(result, typename ResultContainer::size_type(container.size()));
std::transform(std::begin(container), std::end(container), inserter(result), function);
return result;
}
// function with result type deduction:
template<template<typename> class C, // result container type
typename SC, // input container type
typename F, // function type
typename Value,
typename Result,
typename ResultContainer>
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, F function)
{
return transform<ResultContainer>(std::forward<SC>(container), function);
}
template<template<typename, typename> class C, // result container type
typename SC, // input container type
typename F, // function type
typename Value,
typename Result,
typename ResultContainer>
Q_REQUIRED_RESULT decltype(auto) transform(SC &&container, F function)
{
return transform<ResultContainer>(std::forward<SC>(container), function);
}
// member function without result type deduction:
template<template<typename...> class C, // result container type
typename SC, // input container type
typename R,
typename S>
Q_REQUIRED_RESULT
decltype(auto) transform(SC &&container, R (S::*p)() const)
{
return transform<C>(std::forward<SC>(container), std::mem_fn(p));
}
// member function with result type deduction:
template<typename ResultContainer, // complete result container type
typename SC, // input container type
typename R,
typename S>
Q_REQUIRED_RESULT
decltype(auto) transform(SC &&container, R (S::*p)() const)
{
return transform<ResultContainer>(std::forward<SC>(container), std::mem_fn(p));
}
// member without result type deduction:
template<typename ResultContainer, // complete result container type
typename SC, // input container
typename R,
typename S>
Q_REQUIRED_RESULT
decltype(auto) transform(SC &&container, R S::*p)
{
return transform<ResultContainer>(std::forward<SC>(container), std::mem_fn(p));
}
// member with result type deduction:
template<template<typename...> class C, // result container
typename SC, // input container
typename R,
typename S>
Q_REQUIRED_RESULT
decltype(auto) transform(SC &&container, R S::*p)
{
return transform<C>(std::forward<SC>(container), std::mem_fn(p));
}
// same container types for input and output, const input
// function:
template<template<typename...> class C, // container type
typename F, // function type
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(const C<CArgs...> &container, F function)
{
return transform<C, const C<CArgs...> &>(container, function);
}
// member function:
template<template<typename...> class C, // container type
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(const C<CArgs...> &container, R (S::*p)() const)
{
return transform<C, const C<CArgs...> &>(container, std::mem_fn(p));
}
// members:
template<template<typename...> class C, // container
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(const C<CArgs...> &container, R S::*p)
{
return transform<C, const C<CArgs...> &>(container, std::mem_fn(p));
}
// same container types for input and output, non-const input
// function:
template<template<typename...> class C, // container type
typename F, // function type
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(C<CArgs...> &container, F function)
{
return transform<C, C<CArgs...> &>(container, function);
}
// member function:
template<template<typename...> class C, // container type
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(C<CArgs...> &container, R (S::*p)() const)
{
return transform<C, C<CArgs...> &>(container, std::mem_fn(p));
}
// members:
template<template<typename...> class C, // container
typename R,
typename S,
typename... CArgs> // Arguments to SC
Q_REQUIRED_RESULT
decltype(auto) transform(C<CArgs...> &container, R S::*p)
{
return transform<C, C<CArgs...> &>(container, std::mem_fn(p));
}
// Specialization for QStringList:
template<template<typename...> class C = QList, // result container
typename F> // Arguments to C
Q_REQUIRED_RESULT
decltype(auto) transform(const QStringList &container, F function)
{
return transform<C, const QList<QString> &>(static_cast<QList<QString>>(container), function);
}
// member function:
template<template<typename...> class C = QList, // result container type
typename R,
typename S>
Q_REQUIRED_RESULT
decltype(auto) transform(const QStringList &container, R (S::*p)() const)
{
return transform<C, const QList<QString> &>(static_cast<QList<QString>>(container), std::mem_fn(p));
}
// members:
template<template<typename...> class C = QList, // result container
typename R,
typename S>
Q_REQUIRED_RESULT
decltype(auto) transform(const QStringList &container, R S::*p)
{
return transform<C, const QList<QString> &>(static_cast<QList<QString>>(container), std::mem_fn(p));
}
//////////////////
// filtered
/////////////////
template<typename C, typename F>
Q_REQUIRED_RESULT
C filtered(const C &container, F predicate)
{
C out;
std::copy_if(std::begin(container), std::end(container),
inserter(out), predicate);
return out;
}
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT
C filtered(const C &container, R (S::*predicate)() const)
{
C out;
std::copy_if(std::begin(container), std::end(container),
inserter(out), std::mem_fn(predicate));
return out;
}
//////////////////
// partition
/////////////////
// Recommended usage:
// C hit;
// C miss;
// std::tie(hit, miss) = Utils::partition(container, predicate);
template<typename C, typename F>
Q_REQUIRED_RESULT
std::tuple<C, C> partition(const C &container, F predicate)
{
C hit;
C miss;
auto hitIns = inserter(hit);
auto missIns = inserter(miss);
for (auto i : container) {
if (predicate(i))
hitIns = i;
else
missIns = i;
}
return std::make_tuple(hit, miss);
}
template<typename C, typename R, typename S>
Q_REQUIRED_RESULT
std::tuple<C, C> partition(const C &container, R (S::*predicate)() const)
{
return partition(container, std::mem_fn(predicate));
}
//////////////////
// filteredUnique
/////////////////
template<typename C>
Q_REQUIRED_RESULT
C filteredUnique(const C &container)
{
C result;
auto ins = inserter(result);
QSet<typename C::value_type> seen;
int setSize = 0;
auto endIt = std::end(container);
for (auto it = std::begin(container); it != endIt; ++it) {
seen.insert(*it);
if (setSize == seen.size()) // unchanged size => was already seen
continue;
++setSize;
ins = *it;
}
return result;
}
//////////////////
// qobject_container_cast
/////////////////
template <class T, template<typename> class Container, typename Base>
Container<T> qobject_container_cast(const Container<Base> &container)
{
Container<T> result;
auto ins = inserter(result);
for (Base val : container) {
if (T target = qobject_cast<T>(val))
ins = target;
}
return result;
}
//////////////////
// static_container_cast
/////////////////
template <class T, template<typename> class Container, typename Base>
Container<T> static_container_cast(const Container<Base> &container)
{
Container<T> result;
reserve(result, container.size());
auto ins = inserter(result);
for (Base val : container)
ins = static_cast<T>(val);
return result;
}
//////////////////
// sort
/////////////////
template <typename Container>
inline void sort(Container &container)
{
std::sort(std::begin(container), std::end(container));
}
template <typename Container, typename Predicate>
inline void sort(Container &container, Predicate p)
{
std::sort(std::begin(container), std::end(container), p);
}
// pointer to member
template <typename Container, typename R, typename S>
inline void sort(Container &container, R S::*member)
{
auto f = std::mem_fn(member);
using const_ref = typename Container::const_reference;
std::sort(std::begin(container), std::end(container),
[&f](const_ref a, const_ref b) {
return f(a) < f(b);
});
}
// pointer to member function
template <typename Container, typename R, typename S>
inline void sort(Container &container, R (S::*function)() const)
{
auto f = std::mem_fn(function);
using const_ref = typename Container::const_reference;
std::sort(std::begin(container), std::end(container),
[&f](const_ref a, const_ref b) {
return f(a) < f(b);
});
}
//////////////////
// reverseForeach
/////////////////
template <typename Container, typename Op>
inline void reverseForeach(const Container &c, const Op &operation)
{
auto rend = c.rend();
for (auto it = c.rbegin(); it != rend; ++it)
operation(*it);
}
//////////////////
// toReferences
/////////////////
template <template<typename...> class ResultContainer,
typename SourceContainer>
auto toReferences(SourceContainer &sources)
{
return transform<ResultContainer>(sources, [] (auto &value) { return std::ref(value); });
}
template <typename SourceContainer>
auto toReferences(SourceContainer &sources)
{
return transform(sources, [] (auto &value) { return std::ref(value); });
}
//////////////////
// toConstReferences
/////////////////
template <template<typename...> class ResultContainer,
typename SourceContainer>
auto toConstReferences(const SourceContainer &sources)
{
return transform<ResultContainer>(sources, [] (const auto &value) { return std::cref(value); });
}
template <typename SourceContainer>
auto toConstReferences(const SourceContainer &sources)
{
return transform(sources, [] (const auto &value) { return std::cref(value); });
}
//////////////////
// take:
/////////////////
template<class C, typename P>
Q_REQUIRED_RESULT optional<typename C::value_type> take(C &container, P predicate)
{
const auto end = std::end(container);
const auto it = std::find_if(std::begin(container), end, predicate);
if (it == end)
return nullopt;
optional<typename C::value_type> result = Utils::make_optional(std::move(*it));
container.erase(it);
return result;
}
// pointer to member
template <typename C, typename R, typename S>
Q_REQUIRED_RESULT decltype(auto) take(C &container, R S::*member)
{
return take(container, std::mem_fn(member));
}
// pointer to member function
template <typename C, typename R, typename S>
Q_REQUIRED_RESULT decltype(auto) take(C &container, R (S::*function)() const)
{
return take(container, std::mem_fn(function));
}
//////////////////
// setUnionMerge: Works like std::set_union but provides a merge function for items that match
// !(a > b) && !(b > a) which normally means that there is an "equal" match.
// It uses iterators to support move_iterators.
/////////////////
template<class InputIt1,
class InputIt2,
class OutputIt,
class Merge,
class Compare>
OutputIt setUnionMerge(InputIt1 first1,
InputIt1 last1,
InputIt2 first2,
InputIt2 last2,
OutputIt d_first,
Merge merge,
Compare comp)
{
for (; first1 != last1; ++d_first) {
if (first2 == last2)
return std::copy(first1, last1, d_first);
if (comp(*first2, *first1)) {
*d_first = *first2++;
} else {
if (comp(*first1, *first2)) {
*d_first = *first1;
} else {
*d_first = merge(*first1, *first2);
++first2;
}
++first1;
}
}
return std::copy(first2, last2, d_first);
}
template<class InputIt1,
class InputIt2,
class OutputIt,
class Merge>
OutputIt setUnionMerge(InputIt1 first1,
InputIt1 last1,
InputIt2 first2,
InputIt2 last2,
OutputIt d_first,
Merge merge)
{
return setUnionMerge(first1,
last1,
first2,
last2,
d_first,
merge,
std::less<std::decay_t<decltype(*first1)>>{});
}
template<class OutputContainer,
class InputContainer1,
class InputContainer2,
class Merge,
class Compare>
OutputContainer setUnionMerge(InputContainer1 &&input1,
InputContainer2 &&input2,
Merge merge,
Compare comp)
{
OutputContainer results;
results.reserve(input1.size() + input2.size());
setUnionMerge(std::make_move_iterator(std::begin(input1)),
std::make_move_iterator(std::end(input1)),
std::make_move_iterator(std::begin(input2)),
std::make_move_iterator(std::end(input2)),
std::back_inserter(results),
merge,
comp);
return results;
}
template<class OutputContainer,
class InputContainer1,
class InputContainer2,
class Merge>
OutputContainer setUnionMerge(InputContainer1 &&input1,
InputContainer2 &&input2,
Merge merge)
{
return setUnionMerge<OutputContainer>(std::forward<InputContainer1>(input1),
std::forward<InputContainer2>(input2),
merge,
std::less<std::decay_t<decltype(*std::begin(input1))>>{});
}
template<typename Container>
std::make_unsigned_t<typename Container::size_type> usize(Container container)
{
return static_cast<std::make_unsigned_t<typename Container::size_type>>(container.size());
}
template<typename Container>
std::make_signed_t<typename Container::size_type> ssize(Container container)
{
return static_cast<std::make_signed_t<typename Container::size_type>>(container.size());
}
template<typename Compare>
struct CompareIter
{
Compare compare;
explicit constexpr CompareIter(Compare compare)
: compare(std::move(compare))
{}
template<typename Iterator1, typename Iterator2>
constexpr bool operator()(Iterator1 it1, Iterator2 it2)
{
return bool(compare(*it1, *it2));
}
};
template<typename InputIterator1, typename InputIterator2, typename OutputIterator, typename Compare>
OutputIterator set_union_impl(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result,
Compare comp)
{
auto compare = CompareIter<Compare>(comp);
while (first1 != last1 && first2 != last2) {
if (compare(first1, first2)) {
*result = *first1;
++first1;
} else if (compare(first2, first1)) {
*result = *first2;
++first2;
} else {
*result = *first1;
++first1;
++first2;
}
++result;
}
return std::copy(first2, last2, std::copy(first1, last1, result));
}
template<typename InputIterator1, typename InputIterator2, typename OutputIterator, typename Compare>
OutputIterator set_union(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result,
Compare comp)
{
return Utils::set_union_impl(first1, last1, first2, last2, result, comp);
}
template<typename InputIterator1, typename InputIterator2, typename OutputIterator>
OutputIterator set_union(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result)
{
return Utils::set_union_impl(
first1, last1, first2, last2, result, std::less<typename InputIterator1::value_type>{});
}
// Replacement for deprecated Qt functionality
template <class T>
QSet<T> toSet(const QList<T> &list)
{
#if (QT_VERSION <= QT_VERSION_CHECK(5, 13, 0))
return list.toSet();
#else
return QSet<T>(list.begin(), list.end());
#endif
}
template <class T>
QList<T> toList(const QSet<T> &set)
{
#if (QT_VERSION <= QT_VERSION_CHECK(5, 13, 0))
return set.toList();
#else
return QList<T>(set.begin(), set.end());
#endif
}
} // namespace Utils