Added a known answer test inside the HashDRBG that is called when

creating a new instance of a DRBG, at reseed time.
Added a check that the freed DRBG's state actually gets cleared.
This commit is contained in:
John Safranek
2015-06-05 14:46:48 -07:00
parent e461bc72b8
commit 067f11ff34

View File

@ -64,6 +64,7 @@ int wc_RNG_GenerateByte(RNG* rng, byte* b)
}
#if defined(HAVE_HASHDRBG) || defined(NO_RC4)
int wc_FreeRng(RNG* rng)
{
return FreeRng_fips(rng);
@ -170,6 +171,8 @@ typedef struct DRBG {
} DRBG;
static int wc_RNG_HealthTestLocal(int reseed);
/* Hash Derivation Function */
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_df(DRBG* drbg, byte* out, word32 outSz, byte type,
@ -201,8 +204,7 @@ static int Hash_df(DRBG* drbg, byte* out, word32 outSz, byte type,
if (wc_Sha256Update(&sha, (byte*)&bits, sizeof(bits)) != 0)
return DRBG_FAILURE;
/* churning V is the only string that doesn't have
* the type added */
/* churning V is the only string that doesn't have the type added */
if (type != drbgInitV)
if (wc_Sha256Update(&sha, &type, sizeof(type)) != 0)
return DRBG_FAILURE;
@ -350,7 +352,12 @@ static INLINE void array_add(byte* d, word32 dLen, const byte* s, word32 sLen)
}
}
/* Isn't failing the whole library more conservative? The library checks itself
* once, and if there are any contiunous errors, we assume the whole thing is
* dead. */
/* XXX: Need to do a KAT self-test when this is called. 800-90 S11.3.
* We can set the frequency of the retesting, and that'll be when it
* is time to reseed, since we have to test the reseed anyway. */
/* Returns: DRBG_SUCCESS, DRBG_NEED_RESEED, or DRBG_FAILURE */
static int Hash_DRBG_Generate(DRBG* drbg, byte* out, word32 outSz)
{
@ -413,12 +420,15 @@ static int Hash_DRBG_Instantiate(DRBG* drbg, const byte* seed, word32 seedSz,
}
/* Returns: DRBG_SUCCESS */
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_DRBG_Uninstantiate(DRBG* drbg)
{
volatile DRBG clear = {0, 0, {0}, {0}, 0};
ForceZero(drbg, sizeof(DRBG));
return DRBG_SUCCESS;
return (ConstantCompare((byte*)drbg, (byte*)&clear, sizeof(DRBG)) == 0) ?
DRBG_SUCCESS : DRBG_FAILURE;
}
/* End NIST DRBG Code */
@ -430,25 +440,31 @@ int wc_InitRng(RNG* rng)
int ret = BAD_FUNC_ARG;
if (rng != NULL) {
byte entropy[ENTROPY_NONCE_SZ];
if (wc_RNG_HealthTestLocal(0) == 0) {
byte entropy[ENTROPY_NONCE_SZ];
rng->drbg = (struct DRBG*)XMALLOC(sizeof(DRBG), NULL, DYNAMIC_TYPE_RNG);
if (rng->drbg == NULL) {
ret = MEMORY_E;
}
/* This doesn't use a separate nonce. The entropy input will be
* the default size plus the size of the nonce making the seed
* size. */
else if (wc_GenerateSeed(&rng->seed, entropy, ENTROPY_NONCE_SZ) == 0 &&
Hash_DRBG_Instantiate(rng->drbg, entropy, ENTROPY_NONCE_SZ,
NULL, 0) == DRBG_SUCCESS) {
rng->drbg =
(struct DRBG*)XMALLOC(sizeof(DRBG), NULL, DYNAMIC_TYPE_RNG);
if (rng->drbg == NULL) {
ret = MEMORY_E;
}
/* This doesn't use a separate nonce. The entropy input will be
* the default size plus the size of the nonce making the seed
* size. */
else if (wc_GenerateSeed(&rng->seed,
entropy, ENTROPY_NONCE_SZ) == 0 &&
Hash_DRBG_Instantiate(rng->drbg,
entropy, ENTROPY_NONCE_SZ, NULL, 0) == DRBG_SUCCESS) {
ret = Hash_DRBG_Generate(rng->drbg, NULL, 0);
ret = Hash_DRBG_Generate(rng->drbg, NULL, 0);
}
else
ret = DRBG_FAILURE;
ForceZero(entropy, ENTROPY_NONCE_SZ);
}
else
ret = DRBG_FAILURE;
ForceZero(entropy, ENTROPY_NONCE_SZ);
ret = DRBG_CONT_FAILURE;
if (ret == DRBG_SUCCESS) {
rng->status = DRBG_OK;
@ -485,19 +501,24 @@ int wc_RNG_GenerateBlock(RNG* rng, byte* output, word32 sz)
ret = Hash_DRBG_Generate(rng->drbg, output, sz);
if (ret == DRBG_NEED_RESEED) {
byte entropy[ENTROPY_SZ];
if (wc_RNG_HealthTestLocal(1) == 0) {
byte entropy[ENTROPY_SZ];
if (wc_GenerateSeed(&rng->seed, entropy, ENTROPY_SZ) == 0 &&
Hash_DRBG_Reseed(rng->drbg, entropy, ENTROPY_SZ) == DRBG_SUCCESS) {
if (wc_GenerateSeed(&rng->seed, entropy, ENTROPY_SZ) == 0 &&
Hash_DRBG_Reseed(rng->drbg, entropy, ENTROPY_SZ)
== DRBG_SUCCESS) {
ret = Hash_DRBG_Generate(rng->drbg, NULL, 0);
if (ret == DRBG_SUCCESS)
ret = Hash_DRBG_Generate(rng->drbg, output, sz);
ret = Hash_DRBG_Generate(rng->drbg, NULL, 0);
if (ret == DRBG_SUCCESS)
ret = Hash_DRBG_Generate(rng->drbg, output, sz);
}
else
ret = DRBG_FAILURE;
ForceZero(entropy, ENTROPY_SZ);
}
else
ret = DRBG_FAILURE;
ForceZero(entropy, ENTROPY_SZ);
ret = DRBG_CONT_FAILURE;
}
if (ret == DRBG_SUCCESS) {
@ -545,8 +566,8 @@ int wc_FreeRng(RNG* rng)
int wc_RNG_HealthTest(int reseed, const byte* entropyA, word32 entropyASz,
const byte* entropyB, word32 entropyBSz,
byte* output, word32 outputSz)
const byte* entropyB, word32 entropyBSz,
byte* output, word32 outputSz)
{
DRBG drbg;
@ -579,11 +600,91 @@ int wc_RNG_HealthTest(int reseed, const byte* entropyA, word32 entropyASz,
return -1;
}
Hash_DRBG_Uninstantiate(&drbg);
if (Hash_DRBG_Uninstantiate(&drbg) != 0) {
return -1;
}
return 0;
}
const byte entropyA[] = {
0x63, 0x36, 0x33, 0x77, 0xe4, 0x1e, 0x86, 0x46, 0x8d, 0xeb, 0x0a, 0xb4,
0xa8, 0xed, 0x68, 0x3f, 0x6a, 0x13, 0x4e, 0x47, 0xe0, 0x14, 0xc7, 0x00,
0x45, 0x4e, 0x81, 0xe9, 0x53, 0x58, 0xa5, 0x69, 0x80, 0x8a, 0xa3, 0x8f,
0x2a, 0x72, 0xa6, 0x23, 0x59, 0x91, 0x5a, 0x9f, 0x8a, 0x04, 0xca, 0x68
};
const byte reseedEntropyA[] = {
0xe6, 0x2b, 0x8a, 0x8e, 0xe8, 0xf1, 0x41, 0xb6, 0x98, 0x05, 0x66, 0xe3,
0xbf, 0xe3, 0xc0, 0x49, 0x03, 0xda, 0xd4, 0xac, 0x2c, 0xdf, 0x9f, 0x22,
0x80, 0x01, 0x0a, 0x67, 0x39, 0xbc, 0x83, 0xd3
};
const byte outputA[] = {
0x04, 0xee, 0xc6, 0x3b, 0xb2, 0x31, 0xdf, 0x2c, 0x63, 0x0a, 0x1a, 0xfb,
0xe7, 0x24, 0x94, 0x9d, 0x00, 0x5a, 0x58, 0x78, 0x51, 0xe1, 0xaa, 0x79,
0x5e, 0x47, 0x73, 0x47, 0xc8, 0xb0, 0x56, 0x62, 0x1c, 0x18, 0xbd, 0xdc,
0xdd, 0x8d, 0x99, 0xfc, 0x5f, 0xc2, 0xb9, 0x20, 0x53, 0xd8, 0xcf, 0xac,
0xfb, 0x0b, 0xb8, 0x83, 0x12, 0x05, 0xfa, 0xd1, 0xdd, 0xd6, 0xc0, 0x71,
0x31, 0x8a, 0x60, 0x18, 0xf0, 0x3b, 0x73, 0xf5, 0xed, 0xe4, 0xd4, 0xd0,
0x71, 0xf9, 0xde, 0x03, 0xfd, 0x7a, 0xea, 0x10, 0x5d, 0x92, 0x99, 0xb8,
0xaf, 0x99, 0xaa, 0x07, 0x5b, 0xdb, 0x4d, 0xb9, 0xaa, 0x28, 0xc1, 0x8d,
0x17, 0x4b, 0x56, 0xee, 0x2a, 0x01, 0x4d, 0x09, 0x88, 0x96, 0xff, 0x22,
0x82, 0xc9, 0x55, 0xa8, 0x19, 0x69, 0xe0, 0x69, 0xfa, 0x8c, 0xe0, 0x07,
0xa1, 0x80, 0x18, 0x3a, 0x07, 0xdf, 0xae, 0x17
};
const byte entropyB[] = {
0xa6, 0x5a, 0xd0, 0xf3, 0x45, 0xdb, 0x4e, 0x0e, 0xff, 0xe8, 0x75, 0xc3,
0xa2, 0xe7, 0x1f, 0x42, 0xc7, 0x12, 0x9d, 0x62, 0x0f, 0xf5, 0xc1, 0x19,
0xa9, 0xef, 0x55, 0xf0, 0x51, 0x85, 0xe0, 0xfb, 0x85, 0x81, 0xf9, 0x31,
0x75, 0x17, 0x27, 0x6e, 0x06, 0xe9, 0x60, 0x7d, 0xdb, 0xcb, 0xcc, 0x2e
};
const byte outputB[] = {
0xd3, 0xe1, 0x60, 0xc3, 0x5b, 0x99, 0xf3, 0x40, 0xb2, 0x62, 0x82, 0x64,
0xd1, 0x75, 0x10, 0x60, 0xe0, 0x04, 0x5d, 0xa3, 0x83, 0xff, 0x57, 0xa5,
0x7d, 0x73, 0xa6, 0x73, 0xd2, 0xb8, 0xd8, 0x0d, 0xaa, 0xf6, 0xa6, 0xc3,
0x5a, 0x91, 0xbb, 0x45, 0x79, 0xd7, 0x3f, 0xd0, 0xc8, 0xfe, 0xd1, 0x11,
0xb0, 0x39, 0x13, 0x06, 0x82, 0x8a, 0xdf, 0xed, 0x52, 0x8f, 0x01, 0x81,
0x21, 0xb3, 0xfe, 0xbd, 0xc3, 0x43, 0xe7, 0x97, 0xb8, 0x7d, 0xbb, 0x63,
0xdb, 0x13, 0x33, 0xde, 0xd9, 0xd1, 0xec, 0xe1, 0x77, 0xcf, 0xa6, 0xb7,
0x1f, 0xe8, 0xab, 0x1d, 0xa4, 0x66, 0x24, 0xed, 0x64, 0x15, 0xe5, 0x1c,
0xcd, 0xe2, 0xc7, 0xca, 0x86, 0xe2, 0x83, 0x99, 0x0e, 0xea, 0xeb, 0x91,
0x12, 0x04, 0x15, 0x52, 0x8b, 0x22, 0x95, 0x91, 0x02, 0x81, 0xb0, 0x2d,
0xd4, 0x31, 0xf4, 0xc9, 0xf7, 0x04, 0x27, 0xdf
};
static int wc_RNG_HealthTestLocal(int reseed)
{
int ret = 0;
byte check[SHA256_DIGEST_SIZE * 4];
if (reseed) {
ret = wc_RNG_HealthTest(1, entropyA, sizeof(entropyA),
reseedEntropyA, sizeof(reseedEntropyA),
check, sizeof(check));
if (ret == 0) {
if (ConstantCompare(check, outputA, sizeof(check)) != 0)
ret = -1;
}
}
else {
ret = wc_RNG_HealthTest(0, entropyB, sizeof(entropyB),
NULL, 0,
check, sizeof(check));
if (ret == 0) {
if (ConstantCompare(check, outputB, sizeof(check)) != 0)
ret = -1;
}
}
return ret;
}
#else /* HAVE_HASHDRBG || NO_RC4 */
/* Get seed and key cipher */