forked from wolfSSL/wolfssl
initial implementation of RC2-ECB
This commit is contained in:
@@ -97,6 +97,23 @@ masking and clearing memory logic.
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef WC_RC2
|
||||
|
||||
/* This routine performs a left circular arithmetic shift of <x> by <y> value */
|
||||
WC_STATIC WC_INLINE word16 rotlFixed16(word16 x, word16 y)
|
||||
{
|
||||
return (x << y) | (x >> (sizeof(y) * 8 - y));
|
||||
}
|
||||
|
||||
|
||||
/* This routine performs a right circular arithmetic shift of <x> by <y> value */
|
||||
WC_STATIC WC_INLINE word16 rotrFixed16(word16 x, word16 y)
|
||||
{
|
||||
return (x >> y) | (x << (sizeof(y) * 8 - y));
|
||||
}
|
||||
|
||||
#endif /* WC_RC2 */
|
||||
|
||||
/* This routine performs a byte swap of 32-bit word value. */
|
||||
WC_STATIC WC_INLINE word32 ByteReverseWord32(word32 value)
|
||||
{
|
||||
|
@@ -22,7 +22,7 @@
|
||||
/*
|
||||
|
||||
DESCRIPTION
|
||||
This library provides the interface to the RC2 encryption algorithm.
|
||||
This library provides the interface to the RC2 encryption algorithm (RFC 2268)
|
||||
|
||||
*/
|
||||
#ifdef HAVE_CONFIG_H
|
||||
@@ -33,11 +33,251 @@ This library provides the interface to the RC2 encryption algorithm.
|
||||
|
||||
#ifdef WC_RC2
|
||||
|
||||
#ifdef NO_INLINE
|
||||
#include <wolfssl/wolfcrypt/misc.h>
|
||||
#else
|
||||
#define WOLFSSL_MISC_INCLUDED
|
||||
#include <wolfcrypt/src/misc.c>
|
||||
#endif
|
||||
|
||||
#include <wolfssl/wolfcrypt/rc2.h>
|
||||
#include <wolfssl/wolfcrypt/error-crypt.h>
|
||||
|
||||
/* Table based on value of PI, defined in RFC 2268 */
|
||||
static const byte pitable[256] = {
|
||||
0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed,
|
||||
0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
|
||||
0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
|
||||
0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
|
||||
0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13,
|
||||
0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
|
||||
0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b,
|
||||
0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
|
||||
0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
|
||||
0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
|
||||
0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1,
|
||||
0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
|
||||
0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57,
|
||||
0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
|
||||
0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
|
||||
0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
|
||||
0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7,
|
||||
0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
|
||||
0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74,
|
||||
0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
|
||||
0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
|
||||
0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
|
||||
0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a,
|
||||
0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
|
||||
0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae,
|
||||
0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
|
||||
0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
|
||||
0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
|
||||
0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0,
|
||||
0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
|
||||
0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77,
|
||||
0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad
|
||||
};
|
||||
|
||||
/**
|
||||
Set RC2 key, performing key expansion operation
|
||||
rc2 RC2 structure to load expanded key into
|
||||
key User key, up to 64 bytes
|
||||
length Length of key, octets
|
||||
bits Effective RC2 key length in bits (max 1024 bits)
|
||||
return 0 on success, negative on error
|
||||
*/
|
||||
int wc_Rc2SetKey(RC2* rc2, const byte* key, word32 length, word32 bits)
|
||||
{
|
||||
int i;
|
||||
unsigned int T8, TM;
|
||||
byte* L = NULL;
|
||||
|
||||
if (rc2 == NULL || key == NULL) {
|
||||
return BAD_FUNC_ARG;
|
||||
}
|
||||
|
||||
if (length == 0 || length > 128 || bits == 0 || bits > 1024) {
|
||||
return WC_KEY_SIZE_E;
|
||||
}
|
||||
|
||||
rc2->keylen = length;
|
||||
L = (byte*)rc2->key;
|
||||
XMEMCPY(L, key, length);
|
||||
|
||||
/* compute effective key length in bytes (T8) */
|
||||
T8 = (bits + 7) >> 3;
|
||||
|
||||
/* TM mask has 8 - (8*T8 - T1) least significant bits set */
|
||||
TM = 0xff >> (8*T8 - bits);
|
||||
|
||||
/* key expansion */
|
||||
for (i = length; i < RC2_MAX_KEY_SIZE; i++) {
|
||||
L[i] = pitable[(L[i-1] + L[i-length]) & 255];
|
||||
}
|
||||
|
||||
L[RC2_MAX_KEY_SIZE - T8] = pitable[L[RC2_MAX_KEY_SIZE - T8] & TM];
|
||||
|
||||
for (i = RC2_MAX_KEY_SIZE-T8-1; i >= 0; i--) {
|
||||
L[i] = pitable[L[i+1] ^ L[i+T8]];
|
||||
}
|
||||
|
||||
/* store key into 16-bit word format */
|
||||
for (i = 0; i < RC2_MAX_KEY_SIZE/2; i++) {
|
||||
rc2->key[i] = (word16)L[2*i] + ((word16)L[2*i+1] << 8);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
RC2 ECB encrypt operation on one single RC2_BLOCK_SIZE block.
|
||||
rc2 Initialized RC2 structure
|
||||
out [out] Destination for the encrypted ciphertext
|
||||
in Input plaintext to be encrypted
|
||||
sz Size of the output buffer, out
|
||||
return 0 on success, negative on error
|
||||
*/
|
||||
int wc_Rc2EcbEncrypt(RC2* rc2, byte* out, const byte* in, word32 sz)
|
||||
{
|
||||
int i, j = 0;
|
||||
word16 r10, r32, r54, r76;
|
||||
word16* key;
|
||||
|
||||
if (rc2 == NULL || out == NULL || in == NULL) {
|
||||
return BAD_FUNC_ARG;
|
||||
}
|
||||
key = rc2->key;
|
||||
|
||||
if (sz != RC2_BLOCK_SIZE) {
|
||||
return BUFFER_E;
|
||||
}
|
||||
|
||||
r10 = (in[1] << 8) | in[0]; /* R[0] */
|
||||
r32 = (in[3] << 8) | in[2]; /* R[1] */
|
||||
r54 = (in[5] << 8) | in[4]; /* R[2] */
|
||||
r76 = (in[7] << 8) | in[6]; /* R[3] */
|
||||
|
||||
for (i = 0; i < 16; i++) {
|
||||
j = i * 4;
|
||||
|
||||
/* mixing round */
|
||||
r10 = r10 + key[j] + (r76 & r54) + (~r76 & r32);
|
||||
r10 = rotlFixed16(r10, 1);
|
||||
|
||||
r32 = r32 + key[j+1] + (r10 & r76) + (~r10 & r54);
|
||||
r32 = rotlFixed16(r32, 2);
|
||||
|
||||
r54 = r54 + key[j+2] + (r32 & r10) + (~r32 & r76);
|
||||
r54 = rotlFixed16(r54, 3);
|
||||
|
||||
r76 = r76 + key[j+3] + (r54 & r32) + (~r54 & r10);
|
||||
r76 = rotlFixed16(r76, 5);
|
||||
|
||||
/* mashing round on loop 5, 11 */
|
||||
if (i == 4 || i == 10) {
|
||||
r10 = r10 + key[r76 & 63];
|
||||
r32 = r32 + key[r10 & 63];
|
||||
r54 = r54 + key[r32 & 63];
|
||||
r76 = r76 + key[r54 & 63];
|
||||
}
|
||||
}
|
||||
|
||||
out[0] = (byte)r10;
|
||||
out[1] = (byte)(r10 >> 8);
|
||||
out[2] = (byte)r32;
|
||||
out[3] = (byte)(r32 >> 8);
|
||||
out[4] = (byte)r54;
|
||||
out[5] = (byte)(r54 >> 8);
|
||||
out[6] = (byte)r76;
|
||||
out[7] = (byte)(r76 >> 8);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
RC2 ECB decrypt operation on one single RC2_BLOCK_SIZE block.
|
||||
rc2 Initialized RC2 structure
|
||||
out [out] Destination for decrypted plaintext
|
||||
in Input ciphertext to be decrypted
|
||||
sz Size of the output buffer, out
|
||||
return 0 on success, negative on error
|
||||
*/
|
||||
int wc_Rc2EcbDecrypt(RC2* rc2, byte* out, const byte* in, word32 sz)
|
||||
{
|
||||
int i, j = 63;
|
||||
word16 r0, r1, r2, r3;
|
||||
word16* key;
|
||||
|
||||
if (rc2 == NULL || out == NULL || in == NULL) {
|
||||
return BAD_FUNC_ARG;
|
||||
}
|
||||
key = rc2->key;
|
||||
|
||||
if (sz != RC2_BLOCK_SIZE) {
|
||||
return BUFFER_E;
|
||||
}
|
||||
|
||||
r0 = (in[1] << 8) | in[0];
|
||||
r1 = (in[3] << 8) | in[2];
|
||||
r2 = (in[5] << 8) | in[4];
|
||||
r3 = (in[7] << 8) | in[6];
|
||||
|
||||
for (i = 16; i > 0; i--) {
|
||||
j = 4*i - 1;
|
||||
|
||||
r3 = rotrFixed16(r3, 5);
|
||||
r3 = r3 - key[j] - (r2 & r1) - (~r2 & r0);
|
||||
|
||||
r2 = rotrFixed16(r2, 3);
|
||||
r2 = r2 - key[j-1] - (r1 & r0) - (~r1 & r3);
|
||||
|
||||
r1 = rotrFixed16(r1, 2);
|
||||
r1 = r1 - key[j-2] - (r0 & r3) - (~r0 & r2);
|
||||
|
||||
r0 = rotrFixed16(r0, 1);
|
||||
r0 = r0 - key[j-3] - (r3 & r2) - (~r3 & r1);
|
||||
|
||||
if (i == 12 || i == 6) {
|
||||
r3 = r3 - key[r2 & 63];
|
||||
r2 = r2 - key[r1 & 63];
|
||||
r1 = r1 - key[r0 & 63];
|
||||
r0 = r0 - key[r3 & 63];
|
||||
}
|
||||
}
|
||||
|
||||
out[0] = (byte)r0;
|
||||
out[1] = (byte)(r0 >> 8);
|
||||
out[2] = (byte)r1;
|
||||
out[3] = (byte)(r1 >> 8);
|
||||
out[4] = (byte)r2;
|
||||
out[5] = (byte)(r2 >> 8);
|
||||
out[6] = (byte)r3;
|
||||
out[7] = (byte)(r3 >> 8);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int wc_Rc2CbcEncrypt(RC2* rc2, byte* out, const byte* in, word32 sz)
|
||||
{
|
||||
/* STUB */
|
||||
(void)rc2;
|
||||
(void)out;
|
||||
(void)in;
|
||||
(void)sz;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int wc_Rc2CbcDecrypt(RC2* rc2, byte* out, const byte* in, word32 sz)
|
||||
{
|
||||
/* STUB */
|
||||
(void)rc2;
|
||||
(void)out;
|
||||
(void)in;
|
||||
(void)sz;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
#endif /* WC_RC2 */
|
||||
|
||||
|
@@ -139,6 +139,7 @@ _Pragma("GCC diagnostic ignored \"-Wunused-function\"");
|
||||
#include <wolfssl/wolfcrypt/sha.h>
|
||||
#include <wolfssl/wolfcrypt/sha256.h>
|
||||
#include <wolfssl/wolfcrypt/sha512.h>
|
||||
#include <wolfssl/wolfcrypt/rc2.h>
|
||||
#include <wolfssl/wolfcrypt/arc4.h>
|
||||
#if defined(WC_NO_RNG)
|
||||
#include <wolfssl/wolfcrypt/integer.h>
|
||||
@@ -308,6 +309,7 @@ static int hmac_sha3_test(void);
|
||||
static int hkdf_test(void);
|
||||
static int x963kdf_test(void);
|
||||
static int arc4_test(void);
|
||||
static int rc2_test(void);
|
||||
static int hc128_test(void);
|
||||
static int rabbit_test(void);
|
||||
static int chacha_test(void);
|
||||
@@ -829,6 +831,13 @@ initDefaultName();
|
||||
test_pass("GMAC test passed!\n");
|
||||
#endif
|
||||
|
||||
#ifdef WC_RC2
|
||||
if ( (ret = rc2_test()) != 0)
|
||||
return err_sys("RC2 test failed!\n", ret);
|
||||
else
|
||||
test_pass("RC2 test passed!\n");
|
||||
#endif
|
||||
|
||||
#ifndef NO_RC4
|
||||
if ( (ret = arc4_test()) != 0)
|
||||
return err_sys("ARC4 test failed!\n", ret);
|
||||
@@ -4259,6 +4268,146 @@ static int hmac_sha3_test(void)
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef WC_RC2
|
||||
typedef struct rc2TestVector {
|
||||
const char* input;
|
||||
const char* output;
|
||||
const char* key;
|
||||
int inLen;
|
||||
int outLen;
|
||||
int keyLen;
|
||||
int effectiveKeyBits;
|
||||
} rc2TestVector;
|
||||
|
||||
int rc2_test(void)
|
||||
{
|
||||
int ret = 0;
|
||||
byte cipher[RC2_BLOCK_SIZE];
|
||||
byte plain[RC2_BLOCK_SIZE];
|
||||
|
||||
rc2TestVector a, b, c, d, e, f, g, h;
|
||||
rc2TestVector test_rc2[8];
|
||||
|
||||
int times = sizeof(test_rc2) / sizeof(rc2TestVector), i;
|
||||
|
||||
a.input = "\x00\x00\x00\x00\x00\x00\x00\x00";
|
||||
a.output = "\xeb\xb7\x73\xf9\x93\x27\x8e\xff";
|
||||
a.key = "\x00\x00\x00\x00\x00\x00\x00\x00";
|
||||
a.inLen = RC2_BLOCK_SIZE;
|
||||
a.outLen = RC2_BLOCK_SIZE;
|
||||
a.keyLen = 8;
|
||||
a.effectiveKeyBits = 63;
|
||||
|
||||
b.input = "\xff\xff\xff\xff\xff\xff\xff\xff";
|
||||
b.output = "\x27\x8b\x27\xe4\x2e\x2f\x0d\x49";
|
||||
b.key = "\xff\xff\xff\xff\xff\xff\xff\xff";
|
||||
b.inLen = RC2_BLOCK_SIZE;
|
||||
b.outLen = RC2_BLOCK_SIZE;
|
||||
b.keyLen = 8;
|
||||
b.effectiveKeyBits = 64;
|
||||
|
||||
c.input = "\x10\x00\x00\x00\x00\x00\x00\x01";
|
||||
c.output = "\x30\x64\x9e\xdf\x9b\xe7\xd2\xc2";
|
||||
c.key = "\x30\x00\x00\x00\x00\x00\x00\x00";
|
||||
c.inLen = RC2_BLOCK_SIZE;
|
||||
c.outLen = RC2_BLOCK_SIZE;
|
||||
c.keyLen = 8;
|
||||
c.effectiveKeyBits = 64;
|
||||
|
||||
d.input = "\x00\x00\x00\x00\x00\x00\x00\x00";
|
||||
d.output = "\x61\xa8\xa2\x44\xad\xac\xcc\xf0";
|
||||
d.key = "\x88";
|
||||
d.inLen = RC2_BLOCK_SIZE;
|
||||
d.outLen = RC2_BLOCK_SIZE;
|
||||
d.keyLen = 1;
|
||||
d.effectiveKeyBits = 64;
|
||||
|
||||
e.input = "\x00\x00\x00\x00\x00\x00\x00\x00";
|
||||
e.output = "\x6c\xcf\x43\x08\x97\x4c\x26\x7f";
|
||||
e.key = "\x88\xbc\xa9\x0e\x90\x87\x5a";
|
||||
e.inLen = RC2_BLOCK_SIZE;
|
||||
e.outLen = RC2_BLOCK_SIZE;
|
||||
e.keyLen = 7;
|
||||
e.effectiveKeyBits = 64;
|
||||
|
||||
f.input = "\x00\x00\x00\x00\x00\x00\x00\x00";
|
||||
f.output = "\x1a\x80\x7d\x27\x2b\xbe\x5d\xb1";
|
||||
f.key = "\x88\xbc\xa9\x0e\x90\x87\x5a\x7f"
|
||||
"\x0f\x79\xc3\x84\x62\x7b\xaf\xb2";
|
||||
f.inLen = RC2_BLOCK_SIZE;
|
||||
f.outLen = RC2_BLOCK_SIZE;
|
||||
f.keyLen = 16;
|
||||
f.effectiveKeyBits = 64;
|
||||
|
||||
g.input = "\x00\x00\x00\x00\x00\x00\x00\x00";
|
||||
g.output = "\x22\x69\x55\x2a\xb0\xf8\x5c\xa6";
|
||||
g.key = "\x88\xbc\xa9\x0e\x90\x87\x5a\x7f"
|
||||
"\x0f\x79\xc3\x84\x62\x7b\xaf\xb2";
|
||||
g.inLen = RC2_BLOCK_SIZE;
|
||||
g.outLen = RC2_BLOCK_SIZE;
|
||||
g.keyLen = 16;
|
||||
g.effectiveKeyBits = 128;
|
||||
|
||||
h.input = "\x00\x00\x00\x00\x00\x00\x00\x00";
|
||||
h.output = "\x5b\x78\xd3\xa4\x3d\xff\xf1\xf1";
|
||||
h.key = "\x88\xbc\xa9\x0e\x90\x87\x5a\x7f"
|
||||
"\x0f\x79\xc3\x84\x62\x7b\xaf\xb2"
|
||||
"\x16\xf8\x0a\x6f\x85\x92\x05\x84"
|
||||
"\xc4\x2f\xce\xb0\xbe\x25\x5d\xaf"
|
||||
"\x1e";
|
||||
h.inLen = RC2_BLOCK_SIZE;
|
||||
h.outLen = RC2_BLOCK_SIZE;
|
||||
h.keyLen = 33;
|
||||
h.effectiveKeyBits = 129;
|
||||
|
||||
test_rc2[0] = a;
|
||||
test_rc2[1] = b;
|
||||
test_rc2[2] = c;
|
||||
test_rc2[3] = d;
|
||||
test_rc2[4] = e;
|
||||
test_rc2[5] = f;
|
||||
test_rc2[6] = g;
|
||||
test_rc2[7] = h;
|
||||
|
||||
for (i = 0; i < times; ++i) {
|
||||
RC2 enc;
|
||||
|
||||
XMEMSET(cipher, 0, RC2_BLOCK_SIZE);
|
||||
XMEMSET(plain, 0, RC2_BLOCK_SIZE);
|
||||
|
||||
ret = wc_Rc2SetKey(&enc, (byte*)test_rc2[i].key, test_rc2[i].keyLen,
|
||||
test_rc2[i].effectiveKeyBits);
|
||||
if (ret != 0) {
|
||||
return -4106;
|
||||
}
|
||||
|
||||
/* ECB encrypt */
|
||||
ret = wc_Rc2EcbEncrypt(&enc, cipher, (byte*)test_rc2[i].input,
|
||||
(word32)test_rc2[i].outLen);
|
||||
if (ret != 0) {
|
||||
return -4107;
|
||||
}
|
||||
|
||||
if (XMEMCMP(cipher, test_rc2[i].output, test_rc2[i].outLen)) {
|
||||
return -4108;
|
||||
}
|
||||
|
||||
/* ECB decrypt */
|
||||
ret = wc_Rc2EcbDecrypt(&enc, plain, cipher, RC2_BLOCK_SIZE);
|
||||
if (ret != 0) {
|
||||
return -4109;
|
||||
}
|
||||
|
||||
if (XMEMCMP(plain, test_rc2[i].input, RC2_BLOCK_SIZE)) {
|
||||
return -4110;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifndef NO_RC4
|
||||
static int arc4_test(void)
|
||||
{
|
||||
|
@@ -43,6 +43,13 @@ word32 rotlFixed(word32, word32);
|
||||
WOLFSSL_LOCAL
|
||||
word32 rotrFixed(word32, word32);
|
||||
|
||||
#ifdef WC_RC2
|
||||
WOLFSSL_LOCAL
|
||||
word16 rotlFixed16(word16, word16);
|
||||
WOLFSSL_LOCAL
|
||||
word16 rotrFixed16(word16, word16);
|
||||
#endif
|
||||
|
||||
WOLFSSL_LOCAL
|
||||
word32 ByteReverseWord32(word32);
|
||||
WOLFSSL_LOCAL
|
||||
|
@@ -30,8 +30,26 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
enum {
|
||||
RC2_MAX_KEY_SIZE = 128, /* max effective key size, octets */
|
||||
RC2_BLOCK_SIZE = 8
|
||||
};
|
||||
|
||||
/* RC2 encryption and decryption */
|
||||
typedef struct RC2 {
|
||||
word32 keylen;
|
||||
ALIGN16 word16 key[RC2_MAX_KEY_SIZE/2];
|
||||
} RC2;
|
||||
|
||||
WOLFSSL_API int wc_Rc2SetKey(RC2*, const byte*, word32, word32);
|
||||
WOLFSSL_API int wc_Rc2EcbEncrypt(RC2* rc2, byte* out,
|
||||
const byte* in, word32 sz);
|
||||
WOLFSSL_API int wc_Rc2EcbDecrypt(RC2* rc2, byte* out,
|
||||
const byte* in, word32 sz);
|
||||
WOLFSSL_API int wc_Rc2CbcEncrypt(RC2* rc2, byte* out,
|
||||
const byte* in, word32 sz);
|
||||
WOLFSSL_API int wc_Rc2CbcDecrypt(RC2* rc2, byte* out,
|
||||
const byte* in, word32 sz);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
|
Reference in New Issue
Block a user