Merge pull request #2498 from danielinux/stm32wb55

Support for STM32_PKA accelerator
This commit is contained in:
David Garske
2019-10-24 15:41:08 -07:00
committed by GitHub
5 changed files with 555 additions and 8 deletions

View File

@ -134,6 +134,10 @@ ECC Curve Sizes:
#include <wolfssl/wolfcrypt/port/nxp/ksdk_port.h>
#endif
#if defined(WOLFSSL_STM32_PKA)
#include <wolfssl/wolfcrypt/port/st/stm32.h>
#endif
#ifdef WOLFSSL_SP_MATH
#define GEN_MEM_ERR MP_MEM
#elif defined(USE_FAST_MATH)
@ -2448,7 +2452,7 @@ done:
#endif /* !WOLFSSL_SP_MATH || WOLFSSL_PUBLIC_ECC_ADD_DBL */
#if !defined(FREESCALE_LTC_ECC)
#if !defined(FREESCALE_LTC_ECC) && !defined(WOLFSSL_STM32_PKA)
#if !defined(FP_ECC) || !defined(WOLFSSL_SP_MATH)
/**
@ -2941,7 +2945,7 @@ exit:
#endif /* !FP_ECC || !WOLFSSL_SP_MATH */
#endif /* !FREESCALE_LTC_ECC */
#endif /* !FREESCALE_LTC_ECC && !WOLFSSL_STM32_PKA */
/** ECC Fixed Point mulmod global
k The multiplicand
@ -3809,9 +3813,8 @@ int wc_ecc_point_is_at_infinity(ecc_point* p)
return 0;
}
#ifndef WOLFSSL_SP_MATH
/* generate random and ensure its greater than 0 and less than order */
static int wc_ecc_gen_k(WC_RNG* rng, int size, mp_int* k, mp_int* order)
int wc_ecc_gen_k(WC_RNG* rng, int size, mp_int* k, mp_int* order)
{
#ifndef WC_NO_RNG
int err;
@ -3852,7 +3855,6 @@ static int wc_ecc_gen_k(WC_RNG* rng, int size, mp_int* k, mp_int* order)
return NOT_COMPILED_IN;
#endif /* !WC_NO_RNG */
}
#endif /* WOLFSSL_SP_MATH */
#endif /* !WOLFSSL_ATECC508A && !WOLFSSL_CRYPTOCELL */
static WC_INLINE void wc_ecc_reset(ecc_key* key)
@ -4688,6 +4690,11 @@ int wc_ecc_sign_hash(const byte* in, word32 inlen, byte* out, word32 *outlen,
*/
int wc_ecc_sign_hash_ex(const byte* in, word32 inlen, WC_RNG* rng,
ecc_key* key, mp_int *r, mp_int *s)
#if defined(WOLFSSL_STM32_PKA)
{
return stm32_ecc_sign_hash_ex(in, inlen, rng, key, r, s);
}
#else
{
int err = 0;
#ifndef WOLFSSL_SP_MATH
@ -5011,6 +5018,7 @@ int wc_ecc_sign_hash_ex(const byte* in, word32 inlen, WC_RNG* rng,
return err;
}
#endif /* WOLFSSL_STM32_PKA */
#endif /* WOLFSSL_ATECC508A && WOLFSSL_CRYPTOCELL*/
#endif /* HAVE_ECC_SIGN */
@ -5531,8 +5539,14 @@ int wc_ecc_verify_hash(const byte* sig, word32 siglen, const byte* hash,
key The corresponding public ECC key
return MP_OKAY if successful (even if the signature is not valid)
*/
int wc_ecc_verify_hash_ex(mp_int *r, mp_int *s, const byte* hash,
word32 hashlen, int* res, ecc_key* key)
#if defined(WOLFSSL_STM32_PKA)
{
return stm32_ecc_verify_hash_ex(r, s, hash, hashlen, res, key);
}
#else
{
int err;
word32 keySz;
@ -5836,7 +5850,7 @@ int wc_ecc_verify_hash_ex(mp_int *r, mp_int *s, const byte* hash,
if (err == MP_OKAY)
err = mp_copy(key->pubkey.z, mQ->z);
#ifdef FREESCALE_LTC_ECC
#if defined(FREESCALE_LTC_ECC)
/* use PKHA to compute u1*mG + u2*mQ */
if (err == MP_OKAY)
err = wc_ecc_mulmod_ex(u1, mG, mG, curve->Af, curve->prime, 0, key->heap);
@ -5922,6 +5936,7 @@ int wc_ecc_verify_hash_ex(mp_int *r, mp_int *s, const byte* hash,
return err;
}
#endif /* WOLFSSL_STM32_PKA */
#endif /* HAVE_ECC_VERIFY */
#ifdef HAVE_ECC_KEY_IMPORT

View File

@ -361,5 +361,522 @@ int wc_Stm32_Aes_Init(Aes* aes, CRYP_InitTypeDef* cryptInit,
#endif /* WOLFSSL_STM32_CUBEMX */
#endif /* WOLFSSL_AES_DIRECT || HAVE_AESGCM || HAVE_AESCCM */
#endif /* !NO_AES */
#endif /* STM32_CRYPTO */
#ifdef WOLFSSL_STM32_PKA
#include <stdint.h>
#include <stm32wbxx_hal_conf.h>
#include <stm32wbxx_hal_pka.h>
extern PKA_HandleTypeDef hpka;
/* Reverse array in memory (in place) */
#ifdef HAVE_ECC
#include <wolfssl/wolfcrypt/ecc.h>
/* convert from mp_int to STM32 PKA HAL integer, as array of bytes of size sz.
* if mp_int has less bytes than sz, add zero bytes at most significant byte positions.
* This is when for example modulus is 32 bytes (P-256 curve)
* and mp_int has only 31 bytes, we add leading zeros
* so that result array has 32 bytes, same as modulus (sz).
*/
static int stm32_get_from_mp_int(uint8_t *dst, mp_int *a, int sz)
{
int res;
int szbin;
int offset;
if (!a || !dst || (sz < 0))
return -1;
/* check how many bytes are in the mp_int */
szbin = mp_unsigned_bin_size(a);
if ((szbin < 0) || (szbin > sz))
return -1;
/* compute offset from dst */
offset = sz - szbin;
if (offset < 0)
offset = 0;
if (offset > sz)
offset = sz;
/* add leading zeroes */
if (offset)
XMEMSET(dst, 0, offset);
/* convert mp_int to array of bytes */
res = mp_to_unsigned_bin(a, dst + offset);
return res;
}
/* ECC specs in lsbyte at lowest address format for direct use by STM32_PKA PKHA driver functions */
#if defined(HAVE_ECC192) || defined(HAVE_ALL_CURVES)
#define ECC192
#endif
#if defined(HAVE_ECC224) || defined(HAVE_ALL_CURVES)
#define ECC224
#endif
#if !defined(NO_ECC256) || defined(HAVE_ALL_CURVES)
#define ECC256
#endif
#if defined(HAVE_ECC384) || defined(HAVE_ALL_CURVES)
#define ECC384
#endif
/* STM32 PKA supports up to 640bit numbers */
#define STM32_MAX_ECC_SIZE (80)
/* P-192 */
#ifdef ECC192
#define ECC192_KEYSIZE (24)
static const uint8_t stm32_ecc192_prime[ECC192_KEYSIZE] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
static const uint32_t stm32_ecc192_coef_sign = 1U;
static const uint8_t stm32_ecc192_coef[ECC192_KEYSIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03
};
static const uint8_t stm32_ecc192_pointX[ECC192_KEYSIZE] = {
0x18, 0x8D, 0xA8, 0x0E, 0xB0, 0x30, 0x90, 0xF6,
0x7C, 0xBF, 0x20, 0xEB, 0x43, 0xA1, 0x88, 0x00,
0xF4, 0xFF, 0x0A, 0xFD, 0x82, 0xFF, 0x10, 0x12
};
const uint8_t stm32_ecc192_pointY[ECC192_KEYSIZE] = {
0x07, 0x19, 0x2B, 0x95, 0xFF, 0xC8, 0xDA, 0x78,
0x63, 0x10, 0x11, 0xED, 0x6B, 0x24, 0xCD, 0xD5,
0x73, 0xF9, 0x77, 0xA1, 0x1E, 0x79, 0x48, 0x11
};
const uint8_t stm32_ecc192_order[ECC192_KEYSIZE] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x99, 0xDE, 0xF8, 0x36,
0x14, 0x6B, 0xC9, 0xB1, 0xB4, 0xD2, 0x28, 0x31
};
const uint32_t stm32_ecc192_cofactor = 1U;
#endif /* ECC192 */
/* P-224 */
#ifdef ECC224
#define ECC224_KEYSIZE (28)
static const uint8_t stm32_ecc224_prime[ECC224_KEYSIZE] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01
};
static const uint32_t stm32_ecc224_coef_sign = 1U;
static const uint8_t stm32_ecc224_coef[ECC224_KEYSIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x03
};
static const uint8_t stm32_ecc224_pointX[ECC224_KEYSIZE] = {
0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F,
0x32, 0x13, 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3,
0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6,
0x11, 0x5C, 0x1D, 0x21
};
const uint8_t stm32_ecc224_pointY[ECC224_KEYSIZE] = {
0xBD, 0x37, 0x63, 0x88, 0xB5, 0xF7, 0x23, 0xFB,
0x4C, 0x22, 0xDF, 0xE6, 0xCD, 0x43, 0x75, 0xA0,
0x5A, 0x07, 0x47, 0x64, 0x44, 0xD5, 0x81, 0x99,
0x85, 0x00, 0x7E, 0x34
};
const uint8_t stm32_ecc224_order[ECC224_KEYSIZE] = {
};
const uint32_t stm32_ecc224_cofactor = 1U;
#endif /* ECC224 */
/* P-256 */
#ifdef ECC256
#define ECC256_KEYSIZE (32)
static const uint8_t stm32_ecc256_prime[ECC256_KEYSIZE] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
static const uint32_t stm32_ecc256_coef_sign = 1U;
static const uint8_t stm32_ecc256_coef[ECC256_KEYSIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03
};
static const uint8_t stm32_ecc256_pointX[ECC256_KEYSIZE] = {
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96
};
const uint8_t stm32_ecc256_pointY[ECC256_KEYSIZE] = {
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b,
0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5
};
const uint8_t stm32_ecc256_order[ECC256_KEYSIZE] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84,
0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51
};
const uint32_t stm32_ecc256_cofactor = 1U;
#endif /* ECC256 */
/* P-384 */
#ifdef ECC384
#define ECC384_KEYSIZE (48)
static const uint8_t stm32_ecc384_prime[ECC384_KEYSIZE] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF
};
static const uint32_t stm32_ecc384_coef_sign = 1U;
static const uint8_t stm32_ecc384_coef[ECC384_KEYSIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03
};
static const uint8_t stm32_ecc384_pointX[ECC384_KEYSIZE] = {
0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37,
0x8E, 0xB1, 0xC7, 0x1E, 0xF3, 0x20, 0xAD, 0x74,
0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38,
0x55, 0x02, 0xF2, 0x5D, 0xBF, 0x55, 0x29, 0x6C,
0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7,
};
const uint8_t stm32_ecc384_pointY[ECC384_KEYSIZE] = {
0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F,
0x5D, 0x9E, 0x98, 0xBF, 0x92, 0x92, 0xDC, 0x29,
0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C,
0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0,
0x0A, 0x60, 0xB1, 0xCE, 0x1D, 0x7E, 0x81, 0x9D,
0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F,
};
const uint8_t stm32_ecc384_order[ECC384_KEYSIZE] = {
};
const uint32_t stm32_ecc384_cofactor = 1U;
#endif /* ECC384 */
static int stm32_get_ecc_specs(const uint8_t **prime, const uint8_t **coef,
const uint32_t **coef_sign, const uint8_t **GenPointX, const uint8_t **GenPointY,
const uint8_t **order, int size)
{
switch(size) {
case 32:
*prime = stm32_ecc256_prime;
*coef = stm32_ecc256_coef;
*GenPointX = stm32_ecc256_pointX;
*GenPointY = stm32_ecc256_pointY;
*coef_sign = &stm32_ecc256_coef_sign;
*order = stm32_ecc256_order;
break;
#ifdef ECC224
case 28:
*prime = stm32_ecc224_prime;
*coef = stm32_ecc224_coef;
*GenPointX = stm32_ecc224_pointX;
*GenPointY = stm32_ecc224_pointY;
*coef_sign = &stm32_ecc224_coef;
break;
#endif
#ifdef ECC192
case 24:
(uint8_t)*prime = stm32_ecc192_prime;
*coef = stm32_ecc192_coef;
*GenPointX = stm32_ecc192_pointX;
*GenPointY = stm32_ecc192_pointY;
*coef_sign = &stm32_ecc192_coef;
break;
#endif
#ifdef ECC384
case 48:
*prime = stm32_ecc384_prime;
*coef = stm32_ecc384_coef;
*GenPointX = stm32_ecc384_pointX;
*GenPointY = stm32_ecc384_pointY;
*coef_sign = &stm32_ecc384_coef;
break;
#endif
default:
return -1;
}
return 0;
}
/**
Perform a point multiplication (timing resistant)
k The scalar to multiply by
G The base point
R [out] Destination for kG
modulus The modulus of the field the ECC curve is in
map Boolean whether to map back to affine or not
(1==map, 0 == leave in projective)
return MP_OKAY on success
*/
int wc_ecc_mulmod_ex(mp_int *k, ecc_point *G, ecc_point *R, mp_int* a,
mp_int *modulus, int map, void* heap)
{
PKA_ECCMulInTypeDef pka_mul;
PKA_ECCMulOutTypeDef pka_mul_res;
uint8_t size;
int szModulus;
int szkbin;
int status;
int res;
uint8_t Gxbin[STM32_MAX_ECC_SIZE];
uint8_t Gybin[STM32_MAX_ECC_SIZE];
uint8_t kbin[STM32_MAX_ECC_SIZE];
uint8_t PtXbin[STM32_MAX_ECC_SIZE];
uint8_t PtYbin[STM32_MAX_ECC_SIZE];
const uint8_t *prime, *coef, *gen_x, *gen_y, *order;
const uint32_t *coef_sign;
(void)a;
(void)heap;
XMEMSET(&pka_mul, 0x00, sizeof(PKA_ECCMulInTypeDef));
XMEMSET(&pka_mul_res, 0x00, sizeof(PKA_ECCMulOutTypeDef));
pka_mul_res.ptX = PtXbin;
pka_mul_res.ptY = PtYbin;
if (k == NULL || G == NULL || R == NULL || modulus == NULL) {
return ECC_BAD_ARG_E;
}
szModulus = mp_unsigned_bin_size(modulus);
szkbin = mp_unsigned_bin_size(k);
res = stm32_get_from_mp_int(kbin, k, szkbin);
if (res == MP_OKAY)
res = stm32_get_from_mp_int(Gxbin, G->x, szModulus);
if (res == MP_OKAY)
res = stm32_get_from_mp_int(Gybin, G->y, szModulus);
if (res != MP_OKAY)
return res;
size = (uint8_t)szModulus;
/* find STM32_PKA friendly parameters for the selected curve */
if (0 != stm32_get_ecc_specs(&prime, &coef, &coef_sign, &gen_x, &gen_y, &order, size)) {
return ECC_BAD_ARG_E;
}
(void)order;
pka_mul.modulusSize = szModulus;
pka_mul.coefSign = *coef_sign;
pka_mul.coefA = coef;
pka_mul.modulus = prime;
pka_mul.pointX = Gxbin;
pka_mul.pointY = Gybin;
pka_mul.scalarMulSize = size;
pka_mul.scalarMul = kbin;
status = HAL_PKA_ECCMul(&hpka, &pka_mul, HAL_MAX_DELAY);
if (status != HAL_OK) {
return WC_HW_E;
}
pka_mul_res.ptX = Gxbin;
pka_mul_res.ptY = Gybin;
HAL_PKA_ECCMul_GetResult(&hpka, &pka_mul_res);
res = mp_read_unsigned_bin(R->x, Gxbin, size);
if (res == MP_OKAY) {
res = mp_read_unsigned_bin(R->y, Gybin, size);
#ifndef WOLFSSL_SP_MATH
/* if k is negative, we compute the multiplication with abs(-k)
* with result (x, y) and modify the result to (x, -y)
*/
R->y->sign = k->sign;
#endif
}
if (res == MP_OKAY)
res = mp_set(R->z, 1);
HAL_PKA_RAMReset(&hpka);
return res;
}
int stm32_ecc_verify_hash_ex(mp_int *r, mp_int *s, const byte* hash,
word32 hashlen, int* res, ecc_key* key)
{
PKA_ECDSAVerifInTypeDef pka_ecc;
uint8_t size;
int szModulus;
int szrbin;
int status;
uint8_t Rbin[STM32_MAX_ECC_SIZE];
uint8_t Sbin[STM32_MAX_ECC_SIZE];
uint8_t Qxbin[STM32_MAX_ECC_SIZE];
uint8_t Qybin[STM32_MAX_ECC_SIZE];
uint8_t Hashbin[STM32_MAX_ECC_SIZE];
uint8_t privKeybin[STM32_MAX_ECC_SIZE];
const uint8_t *prime, *coef, *gen_x, *gen_y, *order;
const uint32_t *coef_sign;
XMEMSET(&pka_ecc, 0x00, sizeof(PKA_ECDSAVerifInTypeDef));
if (r == NULL || s == NULL || hash == NULL || res == NULL || key == NULL) {
return ECC_BAD_ARG_E;
}
*res = 0;
szModulus = mp_unsigned_bin_size(key->pubkey.x);
szrbin = mp_unsigned_bin_size(r);
status = stm32_get_from_mp_int(Rbin, r, szrbin);
if (status == MP_OKAY)
status = stm32_get_from_mp_int(Sbin, s, szrbin);
if (status == MP_OKAY)
status = stm32_get_from_mp_int(Qxbin, key->pubkey.x, szModulus);
if (status == MP_OKAY)
status = stm32_get_from_mp_int(Qybin, key->pubkey.y, szModulus);
if (status == MP_OKAY)
status = stm32_get_from_mp_int(privKeybin, &key->k, szModulus);
if (status != MP_OKAY)
return status;
size = (uint8_t)szModulus;
/* find parameters for the selected curve */
if (0 != stm32_get_ecc_specs(&prime, &coef, &coef_sign, &gen_x, &gen_y, &order, size)) {
return ECC_BAD_ARG_E;
}
pka_ecc.primeOrderSize = size;
pka_ecc.modulusSize = size;
pka_ecc.coefSign = *coef_sign;
pka_ecc.coef = coef;
pka_ecc.modulus = prime;
pka_ecc.basePointX = gen_x;
pka_ecc.basePointY = gen_y;
pka_ecc.primeOrder = order;
pka_ecc.pPubKeyCurvePtX = Qxbin;
pka_ecc.pPubKeyCurvePtY = Qybin;
pka_ecc.RSign = Rbin;
pka_ecc.SSign = Sbin;
XMEMSET(Hashbin, 0, STM32_MAX_ECC_SIZE);
XMEMCPY(Hashbin + (size - hashlen), hash, hashlen);
pka_ecc.hash = Hashbin;
status = HAL_PKA_ECDSAVerif(&hpka, &pka_ecc, HAL_MAX_DELAY);
if (status != HAL_OK) {
HAL_PKA_RAMReset(&hpka);
return WC_HW_E;
}
*res = HAL_PKA_ECDSAVerif_IsValidSignature(&hpka);
HAL_PKA_RAMReset(&hpka);
return status;
}
int stm32_ecc_sign_hash_ex(const byte* hash, word32 hashlen, WC_RNG* rng,
ecc_key* key, mp_int *r, mp_int *s)
{
PKA_ECDSASignInTypeDef pka_ecc;
PKA_ECDSASignOutTypeDef pka_ecc_out;
int size;
int szrbin;
int status;
mp_int gen_k;
mp_int order_mp;
uint8_t Keybin[STM32_MAX_ECC_SIZE];
uint8_t Intbin[STM32_MAX_ECC_SIZE];
uint8_t Rbin[STM32_MAX_ECC_SIZE];
uint8_t Sbin[STM32_MAX_ECC_SIZE];
uint8_t Hashbin[STM32_MAX_ECC_SIZE];
const uint8_t *prime, *coef, *gen_x, *gen_y, *order;
const uint32_t *coef_sign;
XMEMSET(&pka_ecc, 0x00, sizeof(PKA_ECDSASignInTypeDef));
XMEMSET(&pka_ecc, 0x00, sizeof(PKA_ECDSASignOutTypeDef));
if (r == NULL || s == NULL || hash == NULL || key == NULL) {
return ECC_BAD_ARG_E;
}
mp_init(&gen_k);
mp_init(&order_mp);
size = mp_unsigned_bin_size(key->pubkey.x);
status = stm32_get_from_mp_int(Keybin, &key->k, size);
if (status != MP_OKAY)
return status;
/* find parameters for the selected curve */
if (0 != stm32_get_ecc_specs(&prime, &coef, &coef_sign, &gen_x, &gen_y, &order, size)) {
return ECC_BAD_ARG_E;
}
status = mp_read_unsigned_bin(&order_mp, order, size);
if (status == MP_OKAY)
status = wc_ecc_gen_k(rng, size, &gen_k, &order_mp);
if (status == MP_OKAY)
status = stm32_get_from_mp_int(Intbin, &gen_k, size);
if (status != MP_OKAY)
return status;
pka_ecc.primeOrderSize = size;
pka_ecc.modulusSize = size;
pka_ecc.coefSign = *coef_sign;
pka_ecc.coef = coef;
pka_ecc.modulus = prime;
pka_ecc.basePointX = gen_x;
pka_ecc.basePointY = gen_y;
pka_ecc.primeOrder = order;
XMEMSET(Hashbin, 0, STM32_MAX_ECC_SIZE);
XMEMCPY(Hashbin + (size - hashlen), hash, hashlen);
pka_ecc.hash = Hashbin;
pka_ecc.integer = Intbin;
pka_ecc.privateKey = Keybin;
/* Assign R, S static buffers */
pka_ecc_out.RSign = Rbin;
pka_ecc_out.SSign = Sbin;
status = HAL_PKA_ECDSASign(&hpka, &pka_ecc, HAL_MAX_DELAY);
if (status != HAL_OK) {
HAL_PKA_RAMReset(&hpka);
return WC_HW_E;
}
HAL_PKA_ECDSASign_GetResult(&hpka, &pka_ecc_out, NULL);
status = mp_read_unsigned_bin(r, pka_ecc_out.RSign, size);
if (status == MP_OKAY)
status = mp_read_unsigned_bin(s, pka_ecc_out.SSign, size);
HAL_PKA_RAMReset(&hpka);
return status;
}
#endif /* HAVE_ECC */
#endif /* WOLFSSL_STM32_PKA */

View File

@ -18439,7 +18439,7 @@ int ecc_test(void)
goto done;
}
#endif
#if !defined(WOLFSSL_ATECC508A)
#if !defined(WOLFSSL_ATECC508A) && !defined(WOLFSSL_STM32_PKA)
ret = ecc_test_make_pub(&rng);
if (ret != 0) {
printf("ecc_test_make_pub failed!: %d\n", ret);

View File

@ -711,6 +711,8 @@ WOLFSSL_API int wc_ecc_curve_cache_init(void);
WOLFSSL_API void wc_ecc_curve_cache_free(void);
#endif
WOLFSSL_API
int wc_ecc_gen_k(WC_RNG* rng, int size, mp_int* k, mp_int* order);
#ifdef __cplusplus
} /* extern "C" */

View File

@ -25,8 +25,12 @@
/* Generic STM32 Hashing and Crypto Functions */
/* Supports CubeMX HAL or Standard Peripheral Library */
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/types.h>
#if defined(WOLFSSL_STM32_PKA)
#include <wolfssl/wolfcrypt/ecc.h>
#endif
#ifdef STM32_HASH
@ -127,5 +131,14 @@ int wc_Stm32_Hash_Final(STM32_HASH_Context* stmCtx, word32 algo,
#endif /* STM32_CRYPTO */
#ifdef WOLFSSL_STM32_PKA
int stm32_ecc_verify_hash_ex(mp_int *r, mp_int *s, const byte* hash,
word32 hashlen, int* res, ecc_key* key);
int stm32_ecc_sign_hash_ex(const byte* hash, word32 hashlen, WC_RNG* rng,
ecc_key* key, mp_int *r, mp_int *s);
#endif
#endif /* _WOLFPORT_STM32_H_ */