clang-format on new examples

This commit is contained in:
Mateusz Pusz
2020-01-14 12:50:30 +01:00
parent 1c4624303e
commit 15e656aba6
4 changed files with 311 additions and 325 deletions

View File

@ -1,101 +1,99 @@
#include <units/physical/si/acceleration.h>
#include <units/physical/si/length.h>
#include <units/physical/si/volume.h>
#include <units/physical/si/time.h>
#include <units/physical/si/force.h>
#include <units/physical/si/mass.h>
#include <units/physical/si/density.h>
#include <units/physical/si/force.h>
#include <units/physical/si/length.h>
#include <units/physical/si/mass.h>
#include <units/physical/si/time.h>
#include <units/physical/si/volume.h>
#include <cassert>
namespace{
namespace {
namespace length{
namespace length {
template <typename Rep = double>
using m = units::si::length<units::si::metre,Rep>;
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
template <typename Rep = double>
using mm = units::si::length<units::si::millimetre,Rep>;
}
namespace acceleration{
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
template <typename Rep = double>
using mps2 = units::si::acceleration<units::si::metre_per_second_sq,Rep>;
} // namespace length
template <typename Rep = double>
constexpr mps2<> g{static_cast<Rep>(9.80665)};
}
namespace acceleration {
namespace force{
template<typename Rep = double>
using mps2 = units::si::acceleration<units::si::metre_per_second_sq, Rep>;
template <typename Rep = double>
using N = units::si::force<units::si::newton,Rep>;
}
template<typename Rep = double>
constexpr mps2<> g{static_cast<Rep>(9.80665)};
namespace mass {
} // namespace acceleration
template <typename Rep = double>
using kg = units::si::mass<units::si::kilogram,Rep>;
}
namespace force {
namespace density {
template<typename Rep = double>
using N = units::si::force<units::si::newton, Rep>;
template <typename Rep = double>
using kgpm3 = units::si::density<units::si::kilogram_per_metre_cub,Rep>;
}
namespace volume {
template <typename Rep = double>
using m3 = units::si::volume<units::si::cubic_metre,Rep>;
}
}
struct Box{
namespace mass {
Box(const length::m<> & l,
const length::m<> & w,
const length::m<> & h
): length{l},width{w},height{h}{}
template<typename Rep = double>
using kg = units::si::mass<units::si::kilogram, Rep>;
force::N<> filled_weight()const
{
const volume::m3<> volume
= length * width * height;
const mass::kg<> mass = contents.density * volume;
return mass * acceleration::g<>;
}
}
length::m<> fill_level(const mass::kg<> & measured_mass)const
{
return height
* (measured_mass * acceleration::g<>) / filled_weight();
}
namespace density {
volume::m3<> spare_capacity(const mass::kg<> & measured_mass)const
{
return (height - fill_level(measured_mass)) * width * length;
}
template<typename Rep = double>
using kgpm3 = units::si::density<units::si::kilogram_per_metre_cub, Rep>;
struct contents{
contents():density{air_density}{}
density::kgpm3<> density;
}contents;
}
void set_contents_density(const density::kgpm3<> & density_in)
{
assert( density_in > air_density );
contents.density = density_in;
}
namespace volume {
static constexpr density::kgpm3<> air_density{1.225};
template<typename Rep = double>
using m3 = units::si::volume<units::si::cubic_metre, Rep>;
}
} // namespace
struct Box {
static constexpr density::kgpm3<> air_density{1.225};
length::m<> length;
length::m<> width;
length::m<> height;
struct contents {
density::kgpm3<> density = air_density;
} contents;
Box(const length::m<>& l, const length::m<>& w, const length::m<>& h) : length{l}, width{w}, height{h} {}
force::N<> filled_weight() const
{
const volume::m3<> volume = length * width * height;
const mass::kg<> mass = contents.density * volume;
return mass * acceleration::g<>;
}
length::m<> fill_level(const mass::kg<>& measured_mass) const
{
return height * (measured_mass * acceleration::g<>) / filled_weight();
}
volume::m3<> spare_capacity(const mass::kg<>& measured_mass) const
{
return (height - fill_level(measured_mass)) * width * length;
}
void set_contents_density(const density::kgpm3<>& density_in)
{
assert(density_in > air_density);
contents.density = density_in;
}
length::m<> length;
length::m<> width;
length::m<> height;
};
#include <iostream>
@ -103,23 +101,18 @@ struct Box{
using namespace units::si::literals;
int main()
{
auto box = Box{1000.0mm, 500.0mm, 200.0mm};
box.set_contents_density(1000.0kgpm3);
auto box = Box{1000.0mm, 500.0mm, 200.0mm};
box.set_contents_density(1000.0kgpm3);
auto fill_time = 200.0s; // time since starting fill
auto measured_mass = 20.0kg; // measured mass at fill_time
std::cout << "mpusz/units box example...\n";
std::cout << "fill height at " << fill_time << " = "
<< box.fill_level(measured_mass) << "( " << (box.fill_level(measured_mass)/ box.height)*100 << "% full)\n";
std::cout << "spare_capacity at " << fill_time << " = "
<< box.spare_capacity(measured_mass) <<'\n';
std::cout << "input flow rate after " << fill_time
<< " = " << measured_mass / fill_time <<'\n';
std::cout << "float rise rate = "
<< box.fill_level(measured_mass) / fill_time <<'\n';
auto fill_time_left
= (box.height / box.fill_level(measured_mass) - 1) * fill_time ;
std::cout << "box full E.T.A. at current flow rate = " << fill_time_left <<'\n';
auto fill_time = 200.0s; // time since starting fill
auto measured_mass = 20.0kg; // measured mass at fill_time
std::cout << "mpusz/units box example...\n";
std::cout << "fill height at " << fill_time << " = " << box.fill_level(measured_mass) << " ("
<< (box.fill_level(measured_mass) / box.height) * 100 << "% full)\n";
std::cout << "spare_capacity at " << fill_time << " = " << box.spare_capacity(measured_mass) << '\n';
std::cout << "input flow rate after " << fill_time << " = " << measured_mass / fill_time << '\n';
std::cout << "float rise rate = " << box.fill_level(measured_mass) / fill_time << '\n';
auto fill_time_left = (box.height / box.fill_level(measured_mass) - 1) * fill_time;
std::cout << "box full E.T.A. at current flow rate = " << fill_time_left << '\n';
}

View File

@ -1,4 +1,3 @@
/*
Copyright (c) 2003-2020 Andy Little.
@ -23,54 +22,59 @@
#include <units/physical/si/capacitance.h>
#include <units/physical/si/resistance.h>
#include <units/physical/si/voltage.h>
#include <units/physical/si/time.h>
#include <units/physical/si/voltage.h>
#include <cmath>
namespace {
namespace voltage {
template <typename Rep = double>
using V = units::si::voltage<units::si::volt,Rep>;
template <typename Rep = double>
using mV = units::si::voltage<units::si::millivolt,Rep>;
template <typename Rep = double>
using uV = units::si::voltage<units::si::microvolt,Rep>;
template <typename Rep = double>
using nV = units::si::voltage<units::si::nanovolt,Rep>;
template <typename Rep = double>
using pV = units::si::voltage<units::si::picovolt,Rep>;
}
}
#include <iostream>
namespace {
namespace voltage {
template<typename Rep = double>
using V = units::si::voltage<units::si::volt, Rep>;
template<typename Rep = double>
using mV = units::si::voltage<units::si::millivolt, Rep>;
template<typename Rep = double>
using uV = units::si::voltage<units::si::microvolt, Rep>;
template<typename Rep = double>
using nV = units::si::voltage<units::si::nanovolt, Rep>;
template<typename Rep = double>
using pV = units::si::voltage<units::si::picovolt, Rep>;
} // namespace voltage
} // namespace
using namespace units::si::literals;
int main()
{
std::cout << "mpusz/units capacitor time curve example...\n";
std::cout.setf(std::ios_base::fixed,std::ios_base::floatfield);
std::cout.precision(3);
std::cout << "mpusz/units capacitor time curve example...\n";
std::cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
std::cout.precision(3);
constexpr auto C = 0.47uF;
constexpr auto V0 = 5.0V;
constexpr auto R = 4.7kR;
constexpr auto C = 0.47uF;
constexpr auto V0 = 5.0V;
constexpr auto R = 4.7kR;
for ( auto t = 0ms ; t <= 50ms; ++t ){
for (auto t = 0ms; t <= 50ms; ++t) {
const auto Vt = V0 * std::exp(-t / (R * C));
const auto Vt = V0 * std::exp(-t / (R * C));
std::cout << "at " << t << " voltage is ";
std::cout << "at " << t << " voltage is " ;
if ( Vt >= 1V ) std::cout << Vt ;
else if( Vt >= 1mV ) std::cout << voltage::mV<>{Vt};
else if( Vt >= 1uV ) std::cout << voltage::uV<>{Vt};
else if( Vt >= 1nV ) std::cout << voltage::nV<>{Vt};
else std::cout << voltage::pV<>{Vt};
std::cout << "\n";
}
if (Vt >= 1V)
std::cout << Vt;
else if (Vt >= 1mV)
std::cout << voltage::mV<>{Vt};
else if (Vt >= 1uV)
std::cout << voltage::uV<>{Vt};
else if (Vt >= 1nV)
std::cout << voltage::nV<>{Vt};
else
std::cout << voltage::pV<>{Vt};
std::cout << "\n";
}
}

View File

@ -1,4 +1,3 @@
/*
Copyright (c) 2003-2019 Andy Little.
@ -16,220 +15,222 @@
along with this program. If not, see http://www.gnu.org/licenses./
*/
#include <units/physical/si/length.h>
#include <units/physical/international/length.h>
#include <units/physical/us/length.h>
#include <units/physical/iau/length.h>
#include <units/physical/typographic/length.h>
#include <units/physical/imperial/length.h>
#include <units/physical/international/length.h>
#include <units/physical/si/area.h>
#include <units/physical/si/volume.h>
#include <units/physical/si/length.h>
#include <units/physical/si/time.h>
#include <units/physical/si/volume.h>
#include <units/physical/typographic/length.h>
#include <units/physical/us/length.h>
#include <iostream>
namespace {
namespace length{
namespace length {
template <typename Rep = double>
using m = units::si::length<units::si::metre,Rep>;
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
template <typename Rep = double>
using mm = units::si::length<units::si::millimetre,Rep>;
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
template <typename Rep = double>
using fm = units::si::length<units::si::femtometre,Rep>;
template<typename Rep = double>
using fm = units::si::length<units::si::femtometre, Rep>;
template <typename Rep = double>
using km = units::si::length<units::si::kilometre,Rep>;
template<typename Rep = double>
using km = units::si::length<units::si::kilometre, Rep>;
template <typename Rep = double>
using AU = units::si::length<units::si::astronomical_unit,Rep>;
template<typename Rep = double>
using AU = units::si::length<units::si::astronomical_unit, Rep>;
template <typename Rep = double>
using in = units::si::length<units::international::inch,Rep>;
template<typename Rep = double>
using in = units::si::length<units::international::inch, Rep>;
template <typename Rep = double>
using angstrom = units::si::length<units::iau::angstrom,Rep>;
template<typename Rep = double>
using angstrom = units::si::length<units::iau::angstrom, Rep>;
template <typename Rep = double>
using ch = units::si::length<units::imperial::chain,Rep>;
template<typename Rep = double>
using ch = units::si::length<units::imperial::chain, Rep>;
template <typename Rep = double>
using fathom = units::si::length<units::international::fathom,Rep>;
template<typename Rep = double>
using fathom = units::si::length<units::international::fathom, Rep>;
template <typename Rep = double>
using fathom_us = units::si::length<units::us::fathom,Rep>;
template<typename Rep = double>
using fathom_us = units::si::length<units::us::fathom, Rep>;
template <typename Rep = double>
using ft = units::si::length<units::international::foot,Rep>;
template<typename Rep = double>
using ft = units::si::length<units::international::foot, Rep>;
template <typename Rep = double>
using ft_us = units::si::length<units::us::foot,Rep>;
template<typename Rep = double>
using ft_us = units::si::length<units::us::foot, Rep>;
template <typename Rep = double>
using ly = units::si::length<units::iau::light_year,Rep>;
template<typename Rep = double>
using ly = units::si::length<units::iau::light_year, Rep>;
template <typename Rep = double>
using mi = units::si::length<units::international::mile,Rep>;
template<typename Rep = double>
using mi = units::si::length<units::international::mile, Rep>;
template <typename Rep = double>
using mi_naut = units::si::length<units::international::nautical_mile,Rep>;
template<typename Rep = double>
using mi_naut = units::si::length<units::international::nautical_mile, Rep>;
template <typename Rep = double>
using pc = units::si::length<units::iau::parsec,Rep>;
template<typename Rep = double>
using pc = units::si::length<units::iau::parsec, Rep>;
template <typename Rep = double>
using pica_comp = units::si::length<units::typographic::pica_comp,Rep>;
template<typename Rep = double>
using pica_comp = units::si::length<units::typographic::pica_comp, Rep>;
template <typename Rep = double>
using pica_prn = units::si::length<units::typographic::pica_prn,Rep>;
template<typename Rep = double>
using pica_prn = units::si::length<units::typographic::pica_prn, Rep>;
template <typename Rep = double>
using point_comp = units::si::length<units::typographic::point_comp,Rep>;
template<typename Rep = double>
using point_comp = units::si::length<units::typographic::point_comp, Rep>;
template <typename Rep = double>
using point_prn = units::si::length<units::typographic::point_prn,Rep>;
template<typename Rep = double>
using point_prn = units::si::length<units::typographic::point_prn, Rep>;
template <typename Rep = double>
using rd = units::si::length<units::imperial::rod,Rep>;
template<typename Rep = double>
using rd = units::si::length<units::imperial::rod, Rep>;
template <typename Rep = double>
using yd = units::si::length<units::international::yard,Rep>;
template<typename Rep = double>
using yd = units::si::length<units::international::yard, Rep>;
}
} // namespace length
namespace time{
namespace time {
template <typename Rep = double>
using s = units::si::time<units::si::second,Rep>;
template<typename Rep = double>
using s = units::si::time<units::si::second, Rep>;
template <typename Rep = double>
using min = units::si::time<units::si::minute,Rep>;
template<typename Rep = double>
using min = units::si::time<units::si::minute, Rep>;
template <typename Rep = double>
using h = units::si::time<units::si::hour,Rep>;
}
template<typename Rep = double>
using h = units::si::time<units::si::hour, Rep>;
namespace area{
} // namespace time
template <typename Rep = double>
using m2 = units::si::area<units::si::square_metre,Rep>;
namespace area {
template <typename Rep = double>
using fm2 = units::si::area<units::si::square_femtometre,Rep>;
}
}
template<typename Rep = double>
using m2 = units::si::area<units::si::square_metre, Rep>;
template<typename Rep = double>
using fm2 = units::si::area<units::si::square_femtometre, Rep>;
} // namespace area
} // namespace
#include <iostream>
using namespace units::si::literals;
using namespace units::international;
void simple_quantities()
{
using distance = length::m<>;
using time = time::s<>;
using distance = length::m<>;
using time = time::s<>;
constexpr distance km = 1.0km;
constexpr distance miles = 1.0mi;
constexpr distance km = 1.0km;
constexpr distance miles = 1.0mi;
constexpr time sec = 1s;
constexpr time min = 1min;
constexpr time hr = 1h;
constexpr time sec = 1s;
constexpr time min = 1min;
constexpr time hr = 1h;
std::cout << "A physical quantities library can choose the simple\n";
std::cout << "option to provide output using a single type for each base unit:\n\n";
std::cout << km << '\n';
std::cout << miles << '\n';
std::cout << sec << '\n';
std::cout << min << '\n';
std::cout << hr << "\n\n";
std::cout << "A physical quantities library can choose the simple\n";
std::cout << "option to provide output using a single type for each base unit:\n\n";
std::cout << km << '\n';
std::cout << miles << '\n';
std::cout << sec << '\n';
std::cout << min << '\n';
std::cout << hr << "\n\n";
}
void quantities_with_typed_units()
{
constexpr length::km<> km = 1km;
constexpr length::mi<> miles = 1.0mi;
constexpr length::km<> km = 1.0km;
constexpr length::mi<> miles = 1.0mi;
std::cout.precision(6);
std::cout.precision(6);
constexpr time::s<> sec = 1s;
constexpr time::min<> min = 1min;
constexpr time::h<> hr = 1h;
constexpr time::s<> sec = 1s;
constexpr time::min<> min = 1min;
constexpr time::h<> hr = 1h;
std::cout << "A more flexible option is to provide separate types for each unit,\n\n";
std::cout << km << '\n';
std::cout << miles << '\n';
std::cout << sec << '\n';
std::cout << min << '\n';
std::cout << hr << "\n\n";
std::cout << "A more flexible option is to provide separate types for each unit,\n\n";
std::cout << km << '\n';
std::cout << miles << '\n';
std::cout << sec << '\n';
std::cout << min << '\n';
std::cout << hr << "\n\n";
constexpr length::m<> meter = 1m;
std::cout << "then a wide range of pre-defined units can be defined and converted,\n"
" for consistency and repeatability across applications:\n\n";
constexpr length::m<> meter = 1m;
std::cout << "then a wide range of pre-defined units can be defined and converted,\n"
" for consistency and repeatability across applications:\n\n";
std::cout << meter << '\n' ;
std::cout << " = " << length::AU<>(meter) << '\n';
std::cout << " = " << length::angstrom<>(meter) << '\n';
std::cout << " = " << length::ch<>(meter) << '\n';
std::cout << " = " << length::fathom<>(meter) << '\n';
std::cout << " = " << length::fathom_us<>(meter) << '\n';
std::cout << " = " << length::ft<>(meter) << '\n';
std::cout << " = " << length::ft_us<>(meter) << '\n';
std::cout << " = " << length::in<>(meter) << '\n';
std::cout << " = " << length::ly<>(meter) << '\n';
std::cout << " = " << length::mi<>(meter) << '\n';
std::cout << " = " << length::mi_naut<>(meter) << '\n';
std::cout << " = " << length::pc<>(meter) << '\n';
std::cout << " = " << length::pica_comp<>(meter) << '\n';
std::cout << " = " << length::pica_prn<>(meter) << '\n';
std::cout << " = " << length::point_comp<>(meter) << '\n';
std::cout << " = " << length::point_prn<>(meter) << '\n';
std::cout << " = " << length::rd<>(meter) << '\n';
std::cout << " = " << length::yd<>(meter) << '\n';
std::cout << meter << '\n';
std::cout << " = " << length::AU<>(meter) << '\n';
std::cout << " = " << length::angstrom<>(meter) << '\n';
std::cout << " = " << length::ch<>(meter) << '\n';
std::cout << " = " << length::fathom<>(meter) << '\n';
std::cout << " = " << length::fathom_us<>(meter) << '\n';
std::cout << " = " << length::ft<>(meter) << '\n';
std::cout << " = " << length::ft_us<>(meter) << '\n';
std::cout << " = " << length::in<>(meter) << '\n';
std::cout << " = " << length::ly<>(meter) << '\n';
std::cout << " = " << length::mi<>(meter) << '\n';
std::cout << " = " << length::mi_naut<>(meter) << '\n';
std::cout << " = " << length::pc<>(meter) << '\n';
std::cout << " = " << length::pica_comp<>(meter) << '\n';
std::cout << " = " << length::pica_prn<>(meter) << '\n';
std::cout << " = " << length::point_comp<>(meter) << '\n';
std::cout << " = " << length::point_prn<>(meter) << '\n';
std::cout << " = " << length::rd<>(meter) << '\n';
std::cout << " = " << length::yd<>(meter) << '\n';
}
void calcs_comparison()
{
std::cout.precision(20);
std::cout << "\nA distinct unit for each type is efficient and accurate\n"
"when adding two values of the same very big\n"
"or very small type:\n\n";
std::cout.precision(20);
std::cout << "\nA distinct unit for each type is efficient and accurate\n"
"when adding two values of the same very big\n"
"or very small type:\n\n";
length::fm<float> L1A = 2fm;
length::fm<float> L2A = 3fm;
length::fm<float> LrA = L1A + L2A;
length::fm<float> L1A = 2fm;
length::fm<float> L2A = 3fm;
length::fm<float> LrA = L1A + L2A;
std::cout << L1A << " + " << L2A << " = " << LrA << "\n\n";
std::cout << L1A << " + " << L2A << " = " << LrA << "\n\n";
std::cout << "The single unit method must convert large\n"
"or small values in other units to the base unit.\n"
"This is both inefficient and inaccurate\n\n";
std::cout << "The single unit method must convert large\n"
"or small values in other units to the base unit.\n"
"This is both inefficient and inaccurate\n\n";
length::m<float> L1B = L1A;
length::m<float> L2B = L2A;
length::m<float> LrB = L1B + L2B;
length::m<float> L1B = L1A;
length::m<float> L2B = L2A;
length::m<float> LrB = L1B + L2B;
std::cout << L1B << " + " << L2B << " = " << LrB << "\n\n";
std::cout << L1B << " + " << L2B << " = " << LrB << "\n\n";
std::cout << "In multiplication and division:\n\n";
std::cout << "In multiplication and division:\n\n";
area::fm2<float> ArA = L1A * L2A ;
std::cout << L1A << " * " << L2A << " = " << ArA << "\n\n";
area::fm2<float> ArA = L1A * L2A;
std::cout << L1A << " * " << L2A << " = " << ArA << "\n\n";
std::cout <<"similar problems arise\n\n";
std::cout << "similar problems arise\n\n";
area::m2<float> ArB = L1B * L2B;
std::cout << L1B << " * " << L2B << "\n = " << ArB << '\n';
area::m2<float> ArB = L1B * L2B;
std::cout << L1B << " * " << L2B << "\n = " << ArB << '\n';
}
int main()
{
std::cout << "This demo was originally posted on com.lang.c++.moderated in 2006\n";
std::cout << "http://compgroups.net/comp.lang.c++.moderated/dimensional-analysis-units/51712\n";
std::cout << "Here converted to use mpusz/units library.\n\n";
std::cout << "This demo was originally posted on com.lang.c++.moderated in 2006\n";
std::cout << "http://compgroups.net/comp.lang.c++.moderated/dimensional-analysis-units/51712\n";
std::cout << "Here converted to use mpusz/units library.\n\n";
simple_quantities();
quantities_with_typed_units();
calcs_comparison();
simple_quantities();
quantities_with_typed_units();
calcs_comparison();
}

View File

@ -1,4 +1,3 @@
/*
Copyright (c) 2003-2020 Andy Little.
@ -17,75 +16,64 @@
*/
#include <units/physical/si/length.h>
#include <iostream>
/*
get conversion factor from one dimensionally equivalent
quantity type to another
get conversion factor from one dimensionally equivalent
quantity type to another
*/
namespace {
template <
units::Quantity Target,
units::Quantity Source
>
requires units::equivalent_dim<typename Source::dimension,typename Target::dimension>
constexpr inline
std::common_type_t<
typename Target::rep,
typename Source::rep
>
conversion_factor(Target , Source)
{
// get quantities looking like inputs but with Q::rep that doesnt have narrowing conversion
typedef std::common_type_t<
typename Target::rep,
typename Source::rep
> rep;
typedef units::quantity<typename Source::dimension,typename Source::unit,rep> source;
typedef units::quantity<typename Target::dimension,typename Target::unit,rep> target;
return target{source{1}}.count();
}
// get at the units text of the quantity, without its numeric value
auto inline constexpr units_str( const units::Quantity & q)
{
typedef std::remove_cvref_t<decltype(q)> qtype;
return units::detail::unit_text<typename qtype::dimension, typename qtype::unit>();
}
template<units::Quantity Target, units::Quantity Source>
requires units::equivalent_dim<typename Source::dimension, typename Target::dimension>
constexpr inline std::common_type_t<typename Target::rep, typename Source::rep> conversion_factor(Target, Source)
{
// get quantities looking like inputs but with Q::rep that doesn't have narrowing conversion
typedef std::common_type_t<typename Target::rep, typename Source::rep> rep;
typedef units::quantity<typename Source::dimension, typename Source::unit, rep> source;
typedef units::quantity<typename Target::dimension, typename Target::unit, rep> target;
return target{source{1}}.count();
}
// get at the units text of the quantity, without its numeric value
auto inline constexpr units_str(const units::Quantity& q)
{
typedef std::remove_cvref_t<decltype(q)> qtype;
return units::detail::unit_text<typename qtype::dimension, typename qtype::unit>();
}
} // namespace
namespace {
namespace length{
namespace length {
template <typename Rep = double>
using m = units::si::length<units::si::metre,Rep>;
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
template <typename Rep = double>
using mm = units::si::length<units::si::millimetre,Rep>;
}
}
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
#include <iostream>
} // namespace length
} // namespace
using namespace units::si::literals;
int main()
{
std::cout << "conversion factor in mpusz/units...\n\n";
std::cout << "conversion factor in mpusz/units...\n\n";
constexpr length::m<> lengthA = 2.0m;
constexpr length::mm<> lengthB = lengthA;
constexpr length::m<> lengthA = 2.0m;
constexpr length::mm<> lengthB = lengthA;
std::cout << "lengthA( " << lengthA << " ) and lengthB( " << lengthB << " )\n"
"represent the same length in different units.\n\n";
std::cout << "lengthA( " << lengthA << " ) and lengthB( " << lengthB << " )\n"
<< "represent the same length in different units.\n\n";
std::cout << "therefore ratio lengthA / lengthB == " << lengthA / lengthB << "\n\n";
std::cout << "therefore ratio lengthA / lengthB == " << lengthA / lengthB << "\n\n";
std::cout << "conversion factor from "
"lengthA::unit of " << units_str(lengthA)
<< " to lengthB::unit of " << units_str(lengthB) << " :\n\n"
"lengthB.count( " << lengthB.count() << " ) == "
"lengthA.count( " << lengthA.count() << " ) * "
"conversion_factor( " << conversion_factor(lengthB, lengthA) << " )\n";
std::cout << "conversion factor from lengthA::unit of "
<< units_str(lengthA) << " to lengthB::unit of " << units_str(lengthB) << " :\n\n"
<< "lengthB.count( " << lengthB.count() << " ) == lengthA.count( " << lengthA.count()
<< " ) * conversion_factor( " << conversion_factor(lengthB, lengthA) << " )\n";
}