created sudo_cast<QP> overload, and merged shared computation into separate helper

This commit is contained in:
Yves Delley
2024-06-01 20:09:29 +02:00
parent 1e287c2a27
commit 2459409caa
2 changed files with 114 additions and 68 deletions

View File

@@ -37,6 +37,45 @@ template<typename T, typename Other>
using maybe_common_type = MP_UNITS_TYPENAME std::conditional_t<requires { typename std::common_type_t<T, Other>; },
get_common_type<T, Other>, std::type_identity<T>>::type;
/**
* @brief Details about the conversion from one quantity to another.
*
* This struct calculates the conversion factor that needs to be applied to a number,
* in order to convert from one quantity to another. In addition to that, it also
* helps to determine what representations to use at which step in the conversion process,
* in order to avoid overflow and underflow while not causing excessive computations.
*
* @note This is a low-level facility.
*
* @tparam To a target quantity type to cast to
* @tparam From a source quantity type to cast from
*/
template<Quantity To, Quantity From>
requires(castable(From::quantity_spec, To::quantity_spec))
struct magnitude_conversion_traits {
// scale the number
static constexpr Magnitude auto c_mag = get_canonical_unit(From::unit).mag / get_canonical_unit(To::unit).mag;
static constexpr Magnitude auto num = numerator(c_mag);
static constexpr Magnitude auto den = denominator(c_mag);
static constexpr Magnitude auto irr = c_mag * (den / num);
using c_rep_type = maybe_common_type<typename std::remove_reference_t<From>::rep, typename To::rep>;
using c_mag_type = common_magnitude_type<c_mag>;
using multiplier_type = conditional<
treat_as_floating_point<c_rep_type>,
// ensure that the multiplier is also floating-point
conditional<std::is_arithmetic_v<value_type_t<c_rep_type>>,
// reuse user's type if possible
std::common_type_t<c_mag_type, value_type_t<c_rep_type>>, std::common_type_t<c_mag_type, double>>,
c_mag_type>;
using c_type = maybe_common_type<c_rep_type, multiplier_type>;
static constexpr auto val(Magnitude auto m) { return get_value<multiplier_type>(m); };
static constexpr multiplier_type num_mult = val(num);
static constexpr multiplier_type den_mult = val(den);
static constexpr multiplier_type irr_mult = val(irr);
static constexpr multiplier_type ratio = num_mult / den_mult * irr_mult;
};
/**
* @brief Explicit cast between different quantity types
*
@@ -64,34 +103,77 @@ template<Quantity To, typename From>
// warnings on conversions
} else {
// scale the number
constexpr Magnitude auto c_mag = get_canonical_unit(q_unit).mag / get_canonical_unit(To::unit).mag;
constexpr Magnitude auto num = numerator(c_mag);
constexpr Magnitude auto den = denominator(c_mag);
constexpr Magnitude auto irr = c_mag * (den / num);
using c_rep_type = maybe_common_type<typename std::remove_reference_t<From>::rep, typename To::rep>;
using c_mag_type = common_magnitude_type<c_mag>;
using multiplier_type = conditional<
treat_as_floating_point<c_rep_type>,
// ensure that the multiplier is also floating-point
conditional<std::is_arithmetic_v<value_type_t<c_rep_type>>,
// reuse user's type if possible
std::common_type_t<c_mag_type, value_type_t<c_rep_type>>, std::common_type_t<c_mag_type, double>>,
c_mag_type>;
using c_type = maybe_common_type<c_rep_type, multiplier_type>;
constexpr auto val = [](Magnitude auto m) { return get_value<multiplier_type>(m); };
if constexpr (std::is_floating_point_v<multiplier_type>) {
using traits = magnitude_conversion_traits<To, std::remove_reference_t<From>>;
if constexpr (std::is_floating_point_v<typename traits::multiplier_type>) {
// this results in great assembly
constexpr auto ratio = val(num) / val(den) * val(irr);
auto res = static_cast<MP_UNITS_TYPENAME To::rep>(
static_cast<c_type>(q.numerical_value_is_an_implementation_detail_) * ratio);
static_cast<traits::c_type>(q.numerical_value_is_an_implementation_detail_) * traits::ratio);
return {res, To::reference};
} else {
// this is slower but allows conversions like 2000 m -> 2 km without loosing data
auto res = static_cast<MP_UNITS_TYPENAME To::rep>(
static_cast<c_type>(q.numerical_value_is_an_implementation_detail_) * val(num) / val(den) * val(irr));
static_cast<traits::c_type>(q.numerical_value_is_an_implementation_detail_) * traits::num_mult /
traits::den_mult * traits::irr_mult);
return {res, To::reference};
}
}
}
/**
* @brief Explicit cast between different quantity_point types
*
* @note This is a low-level facility and is too powerful to be used by the users directly. They should either use
* `value_cast` or `quantity_cast`.
*
* @tparam ToQP a target quantity point type to which to cast to
*/
template<QuantityPoint ToQP, typename FromQP>
requires QuantityPoint<std::remove_cvref_t<FromQP>> &&
(castable(std::remove_reference_t<FromQP>::quantity_spec, ToQP::quantity_spec)) &&
(detail::same_absolute_point_origins(ToQP::point_origin, std::remove_reference_t<FromQP>::point_origin)) &&
((std::remove_reference_t<FromQP>::unit == ToQP::unit &&
std::constructible_from<typename ToQP::rep, typename std::remove_reference_t<FromQP>::rep>) ||
(std::remove_reference_t<FromQP>::unit != ToQP::unit))
[[nodiscard]] constexpr QuantityPoint auto sudo_cast(FromQP&& qp)
{
using qp_type = std::remove_reference_t<FromQP>;
if constexpr (is_same_v<std::remove_const_t<decltype(ToQP::point_origin)>,
std::remove_const_t<decltype(qp_type::point_origin)>>) {
return quantity_point{
sudo_cast<typename ToQP::quantity_type>(std::forward<FromQP>(qp).quantity_from(qp_type::point_origin)),
qp_type::point_origin};
} else {
// it's unclear how hard we should try to avoid truncation here. For now, the only corner case we cater for,
// is when the range of the quantity type of at most one of QP or ToQP doesn't cover the offset between the
// point origins. In that case, we need to be careful to ensure we use the quantity type with the larger range
// of the two to perform the point_origin conversion.
// Numerically, we'll potentially need to do three things:
// (a) cast the representation type
// (b) scale the numerical value
// (c) add/subtract the origin difference
// In the following, we carefully select the order of these three operations: each of (a) and (b) is scheduled
// either before or after (c), such that (c) acts on the largest range possible among all combination of source
// and target unit and represenation.
using traits = magnitude_conversion_traits<typename ToQP::quantity_type, typename qp_type::quantity_type>;
using c_rep_type = typename traits::c_rep_type;
if constexpr (traits::num_mult * traits::irr_mult > traits::den_mult) {
// original unit had a larger unit magnitude; if we first convert to the common representation but retain the
// unit, we obtain the largest possible range while not causing truncation of fractional values. This is optimal
// for the offset computation.
return sudo_cast<ToQP>(
sudo_cast<quantity_point<qp_type::reference, qp_type::point_origin, c_rep_type>>(std::forward<FromQP>(qp))
.point_for(ToQP::point_origin));
} else {
// new unit may have a larger unit magnitude; we first need to convert to the new unit (potentially causing
// truncation, but no more than if we did the conversion later), but make sure we keep the larger of the two
// representation types. Then, we can perform the offset computation.
return sudo_cast<ToQP>(sudo_cast<quantity_point<make_reference(qp_type::quantity_spec, ToQP::unit),
qp_type::point_origin, c_rep_type>>(std::forward<FromQP>(qp))
.point_for(ToQP::point_origin));
}
}
}
} // namespace mp_units::detail

View File

@@ -185,10 +185,9 @@ template<Unit auto ToU, Representation ToRep, typename QP>
* (e.g. non-truncating) conversion. In truncating cases an explicit cast have to be used.
*
* inline constexpr struct A : absolute_point_origin<A, isq::distance> A;
* inline constexpr struct B : relative_point_origin<A + 1*m> B;
*
* using ToQP = quantity_point<mm, B, int>;
* auto qp = value_cast<ToQP>(quantity_point{1.23 * m});
* using ToQ = quantity<mm, int>;
* auto qp = value_cast<ToQ>(quantity_point{1.23 * m});
*
* Note that value_cast only changes the "representation aspects" (unit and representation
* type), but not the "meaning" (quantity type or the actual point that is being described).
@@ -221,6 +220,16 @@ template<Quantity ToQ, typename QP>
* type and point origin), but not the "meaning" (quantity type or the actual point that is
* being described).
*
* Note also that changing the point origin bears risks regarding truncation and overflow
* similar to other casts that change representation (which is why we require a `value_cast`
* and disallow implicit conversions). This cast is guaranteed not to cause overflow of
* any intermediate representation type provided that the input quantity point is within
* the range of `ToQP`. Calling `value_cast<ToQP>(qp)` on a `qp` outside of the range of `ToQP`
* is potentially undefined behaviour.
* The implementation further attempts not to cause more than
* rounding error than approximately the sum of the resolution of `qp` as represented in `FromQP`,
* plust the resolution of `qp` as represented in `ToQP`.
*
* @tparam ToQP a target quantity point type to which to cast the representation of the point
*/
template<QuantityPoint ToQP, typename QP>
@@ -231,52 +240,7 @@ template<QuantityPoint ToQP, typename QP>
std::constructible_from<typename ToQP::rep, typename std::remove_reference_t<QP>::rep>
[[nodiscard]] constexpr QuantityPoint auto value_cast(QP&& qp)
{
using qp_type = std::remove_reference_t<QP>;
if constexpr (is_same_v<std::remove_const_t<decltype(ToQP::point_origin)>,
std::remove_const_t<decltype(qp_type::point_origin)>>) {
return quantity_point{
value_cast<typename ToQP::quantity_type>(std::forward<QP>(qp).quantity_from(qp_type::point_origin)),
qp_type::point_origin};
} else {
// it's unclear how hard we should try to avoid truncation here. For now, the only corner case we cater for,
// is when the range of the quantity type of at most one of QP or ToQP doesn't cover the offset between the
// point origins. In that case, we need to be careful to ensure we use the quantity type with the larger range
// of the two to perform the point_origin conversion.
// Numerically, we'll potentially need to do three things:
// (a) cast the representation type
// (b) scale the numerical value
// (c) add/subtract the origin difference
// In the following, we carefully select the order of these three operations: each of (a) and (b) is scheduled
// either before or after (c), such that (c) acts on the largest range possible among all combination of source
// and target unit and represenation.
constexpr Magnitude auto c_mag = get_canonical_unit(qp_type::unit).mag / get_canonical_unit(ToQP::unit).mag;
constexpr Magnitude auto num = detail::numerator(c_mag);
constexpr Magnitude auto den = detail::denominator(c_mag);
constexpr Magnitude auto irr = c_mag * (den / num);
using c_rep_type = detail::maybe_common_type<typename ToQP::rep, typename qp_type::rep>;
using c_mag_type = detail::common_magnitude_type<c_mag>;
using multiplier_type = conditional<
treat_as_floating_point<c_rep_type>,
// ensure that the multiplier is also floating-point
conditional<std::is_arithmetic_v<value_type_t<c_rep_type>>,
// reuse user's type if possible
std::common_type_t<c_mag_type, value_type_t<c_rep_type>>, std::common_type_t<c_mag_type, double>>,
c_mag_type>;
constexpr auto val = [](Magnitude auto m) { return get_value<multiplier_type>(m); };
if constexpr (val(num) * val(irr) > val(den)) {
// original unit had a larger unit magnitude; if we first convert to the common representation but retain the
// unit, we obtain the largest possible range while not causing truncation of fractional values. This is optimal
// for the offset computation.
return value_cast<typename ToQP::quantity_type>(
value_cast<c_rep_type>(std::forward<QP>(qp)).point_for(ToQP::point_origin));
} else {
// new unit may have a larger unit magnitude; we first need to convert to the new unit (potentially causing
// truncation, but no more than if we did the conversion later), but make sure we keep the larger of the two
// representation types. Then, we can perform the offset computation.
return value_cast<typename ToQP::quantity_type>(
value_cast<ToQP::unit, c_rep_type>(std::forward<QP>(qp)).point_for(ToQP::point_origin));
}
}
return detail::sudo_cast<ToQP>(std::forward<QP>(qp));
}