mirror of
https://github.com/mpusz/mp-units.git
synced 2025-08-06 13:44:27 +02:00
Merge pull request #337 from chiphogg/chiphogg/prime-wheel
Use wheel factorization for prime numbers
This commit is contained in:
165
src/core/include/units/bits/prime.h
Normal file
165
src/core/include/units/bits/prime.h
Normal file
@@ -0,0 +1,165 @@
|
||||
// The MIT License (MIT)
|
||||
//
|
||||
// Copyright (c) 2018 Mateusz Pusz
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <numeric>
|
||||
#include <optional>
|
||||
#include <tuple>
|
||||
|
||||
namespace units::detail {
|
||||
|
||||
constexpr bool is_prime_by_trial_division(std::size_t n)
|
||||
{
|
||||
for (std::size_t f = 2; f * f <= n; f += 1 + (f % 2)) {
|
||||
if (n % f == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Return the first factor of n, as long as it is either k or n.
|
||||
//
|
||||
// Precondition: no integer smaller than k evenly divides n.
|
||||
constexpr std::optional<std::size_t> first_factor_maybe(std::size_t n, std::size_t k)
|
||||
{
|
||||
if (n % k == 0) {
|
||||
return k;
|
||||
}
|
||||
if (k * k > n) {
|
||||
return n;
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
template<std::size_t N>
|
||||
constexpr std::array<std::size_t, N> first_n_primes()
|
||||
{
|
||||
std::array<std::size_t, N> primes;
|
||||
primes[0] = 2;
|
||||
for (std::size_t i = 1; i < N; ++i) {
|
||||
primes[i] = primes[i - 1] + 1;
|
||||
while (!is_prime_by_trial_division(primes[i])) {
|
||||
++primes[i];
|
||||
}
|
||||
}
|
||||
return primes;
|
||||
}
|
||||
|
||||
template<std::size_t N, typename Callable>
|
||||
constexpr void call_for_coprimes_up_to(std::size_t n, const std::array<std::size_t, N>& basis, Callable&& call)
|
||||
{
|
||||
for (std::size_t i = 0u; i < n; ++i) {
|
||||
if (std::apply([&i](auto... primes) { return ((i % primes != 0) && ...); }, basis)) {
|
||||
call(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<std::size_t N>
|
||||
constexpr std::size_t num_coprimes_up_to(std::size_t n, const std::array<std::size_t, N>& basis)
|
||||
{
|
||||
std::size_t count = 0u;
|
||||
call_for_coprimes_up_to(n, basis, [&count](auto) { ++count; });
|
||||
return count;
|
||||
}
|
||||
|
||||
template<std::size_t ResultSize, std::size_t N>
|
||||
constexpr auto coprimes_up_to(std::size_t n, const std::array<std::size_t, N>& basis)
|
||||
{
|
||||
std::array<std::size_t, ResultSize> coprimes;
|
||||
std::size_t i = 0u;
|
||||
|
||||
call_for_coprimes_up_to(n, basis, [&coprimes, &i](std::size_t cp) { coprimes[i++] = cp; });
|
||||
|
||||
return coprimes;
|
||||
}
|
||||
|
||||
template<std::size_t N>
|
||||
constexpr std::size_t product(const std::array<std::size_t, N>& values)
|
||||
{
|
||||
std::size_t product = 1;
|
||||
for (const auto& v : values) {
|
||||
product *= v;
|
||||
}
|
||||
return product;
|
||||
}
|
||||
|
||||
// A configurable instantiation of the "wheel factorization" algorithm [1] for prime numbers.
|
||||
//
|
||||
// Instantiate with N to use a "basis" of the first N prime numbers. Higher values of N use fewer trial divisions, at
|
||||
// the cost of additional space. The amount of space consumed is roughly the total number of numbers that are a) less
|
||||
// than the _product_ of the basis elements (first N primes), and b) coprime with every element of the basis. This
|
||||
// means it grows rapidly with N. Consider this approximate chart:
|
||||
//
|
||||
// N | Num coprimes | Trial divisions needed
|
||||
// --+--------------+-----------------------
|
||||
// 1 | 1 | 50.0 %
|
||||
// 2 | 2 | 33.3 %
|
||||
// 3 | 8 | 26.7 %
|
||||
// 4 | 48 | 22.9 %
|
||||
// 5 | 480 | 20.8 %
|
||||
//
|
||||
// Note the diminishing returns, and the rapidly escalating costs. Consider this behaviour when choosing the value of N
|
||||
// most appropriate for your needs.
|
||||
//
|
||||
// [1] https://en.wikipedia.org/wiki/Wheel_factorization
|
||||
template<std::size_t BasisSize>
|
||||
struct wheel_factorizer {
|
||||
static constexpr auto basis = first_n_primes<BasisSize>();
|
||||
static constexpr std::size_t wheel_size = product(basis);
|
||||
static constexpr auto coprimes_in_first_wheel =
|
||||
coprimes_up_to<num_coprimes_up_to(wheel_size, basis)>(wheel_size, basis);
|
||||
|
||||
static constexpr std::size_t find_first_factor(std::size_t n)
|
||||
{
|
||||
for (const auto& p : basis) {
|
||||
if (const auto k = first_factor_maybe(n, p)) {
|
||||
return *k;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto it = std::next(std::begin(coprimes_in_first_wheel)); it != std::end(coprimes_in_first_wheel); ++it) {
|
||||
if (const auto k = first_factor_maybe(n, *it)) {
|
||||
return *k;
|
||||
}
|
||||
}
|
||||
|
||||
for (std::size_t wheel = wheel_size; wheel < n; wheel += wheel_size) {
|
||||
for (const auto& p : coprimes_in_first_wheel) {
|
||||
if (const auto k = first_factor_maybe(n, wheel + p)) {
|
||||
return *k;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
static constexpr bool is_prime(std::size_t n) { return (n > 1) && find_first_factor(n) == n; }
|
||||
};
|
||||
|
||||
} // namespace units::detail
|
@@ -23,12 +23,19 @@
|
||||
#pragma once
|
||||
|
||||
#include <units/bits/external/hacks.h>
|
||||
#include <units/bits/prime.h>
|
||||
#include <units/ratio.h>
|
||||
#include <concepts>
|
||||
#include <cstdint>
|
||||
#include <numbers>
|
||||
#include <optional>
|
||||
#include <stdexcept>
|
||||
|
||||
namespace units {
|
||||
namespace detail {
|
||||
// Higher numbers use fewer trial divisions, at the price of more storage space.
|
||||
using factorizer = wheel_factorizer<4>;
|
||||
} // namespace detail
|
||||
|
||||
/**
|
||||
* @brief Any type which can be used as a basis vector in a BasePower.
|
||||
@@ -244,17 +251,6 @@ constexpr auto pow(BasePower auto bp, ratio p)
|
||||
// A variety of implementation detail helpers.
|
||||
namespace detail {
|
||||
|
||||
// Find the smallest prime factor of `n`.
|
||||
constexpr std::intmax_t find_first_factor(std::intmax_t n)
|
||||
{
|
||||
for (std::intmax_t f = 2; f * f <= n; f += 1 + (f % 2)) {
|
||||
if (n % f == 0) {
|
||||
return f;
|
||||
}
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
// The exponent of `factor` in the prime factorization of `n`.
|
||||
constexpr std::intmax_t multiplicity(std::intmax_t factor, std::intmax_t n)
|
||||
{
|
||||
@@ -278,7 +274,7 @@ constexpr std::intmax_t remove_power(std::intmax_t base, std::intmax_t pow, std:
|
||||
}
|
||||
|
||||
// A way to check whether a number is prime at compile time.
|
||||
constexpr bool is_prime(std::intmax_t n) { return (n > 1) && (find_first_factor(n) == n); }
|
||||
constexpr bool is_prime(std::intmax_t n) { return (n >= 0) && factorizer::is_prime(static_cast<std::size_t>(n)); }
|
||||
|
||||
constexpr bool is_valid_base_power(const BasePower auto& bp)
|
||||
{
|
||||
@@ -287,6 +283,20 @@ constexpr bool is_valid_base_power(const BasePower auto& bp)
|
||||
}
|
||||
|
||||
if constexpr (std::is_same_v<decltype(bp.get_base()), std::intmax_t>) {
|
||||
// Some prime numbers are so big, that we can't check their primality without exhausting limits on constexpr steps
|
||||
// and/or iterations. We can still _perform_ the factorization for these by using the `known_first_factor`
|
||||
// workaround. However, we can't _check_ that they are prime, because this workaround depends on the input being
|
||||
// usable in a constexpr expression. This is true for `prime_factorization` (below), where the input `N` is a
|
||||
// template parameter, but is not true for our case, where the input `bp.get_base()` is a function parameter. (See
|
||||
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1045r1.html for some background reading on this
|
||||
// distinction.)
|
||||
//
|
||||
// In our case: we simply give up on excluding every possible ill-formed base power, and settle for catching the
|
||||
// most likely and common mistakes.
|
||||
if (const bool too_big_to_check = (bp.get_base() > 1'000'000'000)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return is_prime(bp.get_base());
|
||||
} else {
|
||||
return bp.get_base() > 0;
|
||||
@@ -473,12 +483,30 @@ constexpr auto operator/(Magnitude auto l, Magnitude auto r) { return l * pow<-1
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// `as_magnitude()` implementation.
|
||||
|
||||
// Sometimes we need to give the compiler a "shortcut" when factorizing large numbers (specifically, numbers whose
|
||||
// _first factor_ is very large). If we don't, we can run into limits on the number of constexpr steps or iterations.
|
||||
//
|
||||
// To provide the first factor for a given number, specialize this variable template.
|
||||
//
|
||||
// WARNING: The program behaviour will be undefined if you provide a wrong answer, so check your math!
|
||||
template<std::intmax_t N>
|
||||
inline constexpr std::optional<std::intmax_t> known_first_factor = std::nullopt;
|
||||
|
||||
namespace detail {
|
||||
// Helper to perform prime factorization at compile time.
|
||||
template<std::intmax_t N>
|
||||
requires(N > 0)
|
||||
struct prime_factorization {
|
||||
static constexpr std::intmax_t first_base = find_first_factor(N);
|
||||
static constexpr std::intmax_t get_or_compute_first_factor()
|
||||
{
|
||||
if constexpr (known_first_factor<N>.has_value()) {
|
||||
return known_first_factor<N>.value();
|
||||
} else {
|
||||
return static_cast<std::intmax_t>(factorizer::find_first_factor(N));
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr std::intmax_t first_base = get_or_compute_first_factor();
|
||||
static constexpr std::intmax_t first_power = multiplicity(first_base, N);
|
||||
static constexpr std::intmax_t remainder = remove_power(first_base, first_power, N);
|
||||
|
||||
|
@@ -25,7 +25,13 @@
|
||||
#include <units/ratio.h>
|
||||
#include <type_traits>
|
||||
|
||||
namespace units {
|
||||
using namespace units;
|
||||
using namespace units::detail;
|
||||
|
||||
template<>
|
||||
inline constexpr std::optional<std::intmax_t> units::known_first_factor<9223372036854775783> = 9223372036854775783;
|
||||
|
||||
namespace {
|
||||
|
||||
// A set of non-standard bases for testing purposes.
|
||||
struct noninteger_base {
|
||||
@@ -149,6 +155,17 @@ TEST_CASE("make_ratio performs prime factorization correctly")
|
||||
// The failure was due to a prime factor which is larger than 2^31.
|
||||
as_magnitude<ratio(16'605'390'666'050, 10'000'000'000'000)>();
|
||||
}
|
||||
|
||||
SECTION("Can bypass computing primes by providing known_first_factor<N>")
|
||||
{
|
||||
// Sometimes, even wheel factorization isn't enough to handle the compilers' limits on constexpr steps and/or
|
||||
// iterations. To work around these cases, we can explicitly provide the correct answer directly to the compiler.
|
||||
//
|
||||
// In this case, we test that we can represent the largest prime that fits in a signed 64-bit int. The reason this
|
||||
// test can pass is that we have provided the answer, by specializing the `known_first_factor` variable template
|
||||
// above in this file.
|
||||
as_magnitude<9'223'372'036'854'775'783>();
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("magnitude converts to numerical value")
|
||||
@@ -334,7 +351,8 @@ TEST_CASE("can distinguish integral, rational, and irrational magnitudes")
|
||||
}
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Detail function tests below.
|
||||
|
||||
TEST_CASE("int_power computes integer powers")
|
||||
{
|
||||
@@ -358,16 +376,6 @@ TEST_CASE("int_power computes integer powers")
|
||||
|
||||
TEST_CASE("Prime helper functions")
|
||||
{
|
||||
SECTION("find_first_factor()")
|
||||
{
|
||||
CHECK(find_first_factor(1) == 1);
|
||||
CHECK(find_first_factor(2) == 2);
|
||||
CHECK(find_first_factor(4) == 2);
|
||||
CHECK(find_first_factor(6) == 2);
|
||||
CHECK(find_first_factor(15) == 3);
|
||||
CHECK(find_first_factor(17) == 17);
|
||||
}
|
||||
|
||||
SECTION("multiplicity")
|
||||
{
|
||||
CHECK(multiplicity(2, 8) == 3);
|
||||
@@ -514,6 +522,4 @@ TEST_CASE("strictly_increasing")
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
} // namespace units
|
||||
} // namespace
|
||||
|
@@ -52,6 +52,7 @@ add_library(unit_tests_static
|
||||
kind_test.cpp
|
||||
math_test.cpp
|
||||
point_origin_test.cpp
|
||||
prime_test.cpp
|
||||
ratio_test.cpp
|
||||
references_test.cpp
|
||||
si_test.cpp
|
||||
|
76
test/unit_test/static/prime_test.cpp
Normal file
76
test/unit_test/static/prime_test.cpp
Normal file
@@ -0,0 +1,76 @@
|
||||
// The MIT License (MIT)
|
||||
//
|
||||
// Copyright (c) 2018 Mateusz Pusz
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
#include <units/bits/prime.h>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
using namespace units::detail;
|
||||
|
||||
namespace {
|
||||
|
||||
template<std::size_t BasisSize, std::size_t... Is>
|
||||
constexpr bool check_primes(std::index_sequence<Is...>)
|
||||
{
|
||||
return ((Is < 2 || wheel_factorizer<BasisSize>::is_prime(Is) == is_prime_by_trial_division(Is)) && ...);
|
||||
}
|
||||
|
||||
static_assert(check_primes<2>(std::make_index_sequence<122>{}));
|
||||
|
||||
// This is the smallest number that can catch the bug where we use only _prime_ numbers in the first wheel, rather than
|
||||
// numbers which are _coprime to the basis_.
|
||||
//
|
||||
// The basis for N = 4 is {2, 3, 5, 7}, so the wheel size is 210. 11 * 11 = 121 is within the first wheel. It is
|
||||
// coprime with every element of the basis, but it is _not_ prime. If we keep only prime numbers, then we will neglect
|
||||
// using numbers of the form (210 * n + 121) as trial divisors, which is a problem if any are prime. For n = 1, we have
|
||||
// a divisor of (210 + 121 = 331), which happens to be prime but will not be used. Thus, (331 * 331 = 109561) is a
|
||||
// composite number which could wrongly appear prime if we skip over 331.
|
||||
static_assert(wheel_factorizer<4>::is_prime(109561) == is_prime_by_trial_division(109561));
|
||||
|
||||
static_assert(wheel_factorizer<1>::coprimes_in_first_wheel.size() == 1);
|
||||
static_assert(wheel_factorizer<2>::coprimes_in_first_wheel.size() == 2);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel.size() == 8);
|
||||
static_assert(wheel_factorizer<4>::coprimes_in_first_wheel.size() == 48);
|
||||
static_assert(wheel_factorizer<5>::coprimes_in_first_wheel.size() == 480);
|
||||
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[0] == 1);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[1] == 7);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[2] == 11);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[3] == 13);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[4] == 17);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[5] == 19);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[6] == 23);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[7] == 29);
|
||||
|
||||
static_assert(!wheel_factorizer<1>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<1>::is_prime(1));
|
||||
static_assert(wheel_factorizer<1>::is_prime(2));
|
||||
|
||||
static_assert(!wheel_factorizer<2>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<2>::is_prime(1));
|
||||
static_assert(wheel_factorizer<2>::is_prime(2));
|
||||
|
||||
static_assert(!wheel_factorizer<3>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<3>::is_prime(1));
|
||||
static_assert(wheel_factorizer<3>::is_prime(2));
|
||||
|
||||
} // namespace
|
Reference in New Issue
Block a user