Examples with an alternate way to create quantities refactored

- examples modified to provide a unified library look-and-feel
- originals moved to a dedicated subdirectory for further reference and comparison
This commit is contained in:
Mateusz Pusz
2020-03-01 14:44:45 +01:00
parent 0c5864cc87
commit 4b33c0f7c5
10 changed files with 644 additions and 259 deletions

View File

@ -35,3 +35,5 @@ add_example(capacitor_time_curve)
add_example(clcpp_response)
add_example(conversion_factor)
add_example(kalman_filter-alpha_beta_filter_example2)
add_subdirectory(alternative_namespaces)

View File

@ -0,0 +1,31 @@
# The MIT License (MIT)
#
# Copyright (c) 2018 Mateusz Pusz
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
function(add_example target)
add_executable(${target}_alt ${target}.cpp)
target_link_libraries(${target}_alt PRIVATE mp::units)
endfunction()
add_example(box_example)
add_example(capacitor_time_curve)
add_example(clcpp_response)
add_example(conversion_factor)

View File

@ -0,0 +1,118 @@
#include <units/physical/si/acceleration.h>
#include <units/physical/si/density.h>
#include <units/physical/si/force.h>
#include <units/physical/si/length.h>
#include <units/physical/si/mass.h>
#include <units/physical/si/time.h>
#include <units/physical/si/volume.h>
#include <cassert>
namespace {
namespace length {
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
} // namespace length
namespace acceleration {
template<typename Rep = double>
using mps2 = units::si::acceleration<units::si::metre_per_second_sq, Rep>;
template<typename Rep = double>
constexpr mps2<> g{static_cast<Rep>(9.80665)};
} // namespace acceleration
namespace force {
template<typename Rep = double>
using N = units::si::force<units::si::newton, Rep>;
}
namespace mass {
template<typename Rep = double>
using kg = units::si::mass<units::si::kilogram, Rep>;
}
namespace density {
template<typename Rep = double>
using kgpm3 = units::si::density<units::si::kilogram_per_metre_cub, Rep>;
}
namespace volume {
template<typename Rep = double>
using m3 = units::si::volume<units::si::cubic_metre, Rep>;
}
} // namespace
struct Box {
static constexpr density::kgpm3<> air_density{1.225};
length::m<> length;
length::m<> width;
length::m<> height;
struct contents {
density::kgpm3<> density = air_density;
} contents;
Box(const length::m<>& l, const length::m<>& w, const length::m<>& h) : length{l}, width{w}, height{h} {}
force::N<> filled_weight() const
{
const volume::m3<> volume = length * width * height;
const mass::kg<> mass = contents.density * volume;
return mass * acceleration::g<>;
}
length::m<> fill_level(const mass::kg<>& measured_mass) const
{
return height * (measured_mass * acceleration::g<>) / filled_weight();
}
volume::m3<> spare_capacity(const mass::kg<>& measured_mass) const
{
return (height - fill_level(measured_mass)) * width * length;
}
void set_contents_density(const density::kgpm3<>& density_in)
{
assert(density_in > air_density);
contents.density = density_in;
}
};
#include <iostream>
using namespace units::si::literals;
int main()
{
auto box = Box{1000.0q_mm, 500.0q_mm, 200.0q_mm};
box.set_contents_density(1000.0q_kgpm3);
auto fill_time = 200.0q_s; // time since starting fill
auto measured_mass = 20.0q_kg; // measured mass at fill_time
std::cout << "mpusz/units box example...\n";
std::cout << "fill height at " << fill_time << " = " << box.fill_level(measured_mass) << " ("
<< (box.fill_level(measured_mass) / box.height) * 100 << "% full)\n";
std::cout << "spare_capacity at " << fill_time << " = " << box.spare_capacity(measured_mass) << '\n';
std::cout << "input flow rate after " << fill_time << " = " << measured_mass / fill_time << '\n';
std::cout << "float rise rate = " << box.fill_level(measured_mass) / fill_time << '\n';
auto fill_time_left = (box.height / box.fill_level(measured_mass) - 1) * fill_time;
std::cout << "box full E.T.A. at current flow rate = " << fill_time_left << '\n';
}

View File

@ -0,0 +1,80 @@
/*
Copyright (c) 2003-2020 Andy Little.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses./
*/
/*
capacitor discharge curve using compile_time
physical_quantities
*/
#include <units/physical/si/capacitance.h>
#include <units/physical/si/resistance.h>
#include <units/physical/si/time.h>
#include <units/physical/si/voltage.h>
#include <cmath>
#include <iostream>
namespace {
namespace voltage {
template<typename Rep = double>
using V = units::si::voltage<units::si::volt, Rep>;
template<typename Rep = double>
using mV = units::si::voltage<units::si::millivolt, Rep>;
template<typename Rep = double>
using uV = units::si::voltage<units::si::microvolt, Rep>;
template<typename Rep = double>
using nV = units::si::voltage<units::si::nanovolt, Rep>;
template<typename Rep = double>
using pV = units::si::voltage<units::si::picovolt, Rep>;
} // namespace voltage
} // namespace
using namespace units::si::literals;
int main()
{
std::cout << "mpusz/units capacitor time curve example...\n";
std::cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
std::cout.precision(3);
constexpr auto C = 0.47q_uF;
constexpr auto V0 = 5.0q_V;
constexpr auto R = 4.7q_kR;
for (auto t = 0q_ms; t <= 50q_ms; ++t) {
const auto Vt = V0 * std::exp(-t / (R * C));
std::cout << "at " << t << " voltage is ";
if (Vt >= 1q_V)
std::cout << Vt;
else if (Vt >= 1q_mV)
std::cout << voltage::mV<>{Vt};
else if (Vt >= 1q_uV)
std::cout << voltage::uV<>{Vt};
else if (Vt >= 1q_nV)
std::cout << voltage::nV<>{Vt};
else
std::cout << voltage::pV<>{Vt};
std::cout << "\n";
}
}

View File

@ -0,0 +1,236 @@
/*
Copyright (c) 2003-2019 Andy Little.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses./
*/
#include <units/physical/iau/length.h>
#include <units/physical/imperial/length.h>
#include <units/physical/international/length.h>
#include <units/physical/si/area.h>
#include <units/physical/si/length.h>
#include <units/physical/si/time.h>
#include <units/physical/si/volume.h>
#include <units/physical/typographic/length.h>
#include <units/physical/us/length.h>
#include <iostream>
namespace {
namespace length {
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
template<typename Rep = double>
using fm = units::si::length<units::si::femtometre, Rep>;
template<typename Rep = double>
using km = units::si::length<units::si::kilometre, Rep>;
template<typename Rep = double>
using AU = units::si::length<units::si::astronomical_unit, Rep>;
template<typename Rep = double>
using in = units::si::length<units::international::inch, Rep>;
template<typename Rep = double>
using angstrom = units::si::length<units::iau::angstrom, Rep>;
template<typename Rep = double>
using ch = units::si::length<units::imperial::chain, Rep>;
template<typename Rep = double>
using fathom = units::si::length<units::international::fathom, Rep>;
template<typename Rep = double>
using fathom_us = units::si::length<units::us::fathom, Rep>;
template<typename Rep = double>
using ft = units::si::length<units::international::foot, Rep>;
template<typename Rep = double>
using ft_us = units::si::length<units::us::foot, Rep>;
template<typename Rep = double>
using ly = units::si::length<units::iau::light_year, Rep>;
template<typename Rep = double>
using mi = units::si::length<units::international::mile, Rep>;
template<typename Rep = double>
using mi_naut = units::si::length<units::international::nautical_mile, Rep>;
template<typename Rep = double>
using pc = units::si::length<units::iau::parsec, Rep>;
template<typename Rep = double>
using pica_comp = units::si::length<units::typographic::pica_comp, Rep>;
template<typename Rep = double>
using pica_prn = units::si::length<units::typographic::pica_prn, Rep>;
template<typename Rep = double>
using point_comp = units::si::length<units::typographic::point_comp, Rep>;
template<typename Rep = double>
using point_prn = units::si::length<units::typographic::point_prn, Rep>;
template<typename Rep = double>
using rd = units::si::length<units::imperial::rod, Rep>;
template<typename Rep = double>
using yd = units::si::length<units::international::yard, Rep>;
} // namespace length
namespace time {
template<typename Rep = double>
using s = units::si::time<units::si::second, Rep>;
template<typename Rep = double>
using min = units::si::time<units::si::minute, Rep>;
template<typename Rep = double>
using h = units::si::time<units::si::hour, Rep>;
} // namespace time
namespace area {
template<typename Rep = double>
using m2 = units::si::area<units::si::square_metre, Rep>;
template<typename Rep = double>
using fm2 = units::si::area<units::si::square_femtometre, Rep>;
} // namespace area
} // namespace
using namespace units::si::literals;
using namespace units::international;
void simple_quantities()
{
using distance = length::m<>;
using time = time::s<>;
constexpr distance km = 1.0q_km;
constexpr distance miles = 1.0q_mi;
constexpr time sec = 1q_s;
constexpr time min = 1q_min;
constexpr time hr = 1q_h;
std::cout << "A physical quantities library can choose the simple\n";
std::cout << "option to provide output using a single type for each base unit:\n\n";
std::cout << km << '\n';
std::cout << miles << '\n';
std::cout << sec << '\n';
std::cout << min << '\n';
std::cout << hr << "\n\n";
}
void quantities_with_typed_units()
{
constexpr length::km<> km = 1.0q_km;
constexpr length::mi<> miles = 1.0q_mi;
std::cout.precision(6);
constexpr time::s<> sec = 1q_s;
constexpr time::min<> min = 1q_min;
constexpr time::h<> hr = 1q_h;
std::cout << "A more flexible option is to provide separate types for each unit,\n\n";
std::cout << km << '\n';
std::cout << miles << '\n';
std::cout << sec << '\n';
std::cout << min << '\n';
std::cout << hr << "\n\n";
constexpr length::m<> meter = 1q_m;
std::cout << "then a wide range of pre-defined units can be defined and converted,\n"
" for consistency and repeatability across applications:\n\n";
std::cout << meter << '\n';
std::cout << " = " << length::AU<>(meter) << '\n';
std::cout << " = " << length::angstrom<>(meter) << '\n';
std::cout << " = " << length::ch<>(meter) << '\n';
std::cout << " = " << length::fathom<>(meter) << '\n';
std::cout << " = " << length::fathom_us<>(meter) << '\n';
std::cout << " = " << length::ft<>(meter) << '\n';
std::cout << " = " << length::ft_us<>(meter) << '\n';
std::cout << " = " << length::in<>(meter) << '\n';
std::cout << " = " << length::ly<>(meter) << '\n';
std::cout << " = " << length::mi<>(meter) << '\n';
std::cout << " = " << length::mi_naut<>(meter) << '\n';
std::cout << " = " << length::pc<>(meter) << '\n';
std::cout << " = " << length::pica_comp<>(meter) << '\n';
std::cout << " = " << length::pica_prn<>(meter) << '\n';
std::cout << " = " << length::point_comp<>(meter) << '\n';
std::cout << " = " << length::point_prn<>(meter) << '\n';
std::cout << " = " << length::rd<>(meter) << '\n';
std::cout << " = " << length::yd<>(meter) << '\n';
}
void calcs_comparison()
{
std::cout.precision(20);
std::cout << "\nA distinct unit for each type is efficient and accurate\n"
"when adding two values of the same very big\n"
"or very small type:\n\n";
length::fm<float> L1A = 2q_fm;
length::fm<float> L2A = 3q_fm;
length::fm<float> LrA = L1A + L2A;
std::cout << L1A << " + " << L2A << " = " << LrA << "\n\n";
std::cout << "The single unit method must convert large\n"
"or small values in other units to the base unit.\n"
"This is both inefficient and inaccurate\n\n";
length::m<float> L1B = L1A;
length::m<float> L2B = L2A;
length::m<float> LrB = L1B + L2B;
std::cout << L1B << " + " << L2B << " = " << LrB << "\n\n";
std::cout << "In multiplication and division:\n\n";
area::fm2<float> ArA = L1A * L2A;
std::cout << L1A << " * " << L2A << " = " << ArA << "\n\n";
std::cout << "similar problems arise\n\n";
area::m2<float> ArB = L1B * L2B;
std::cout << L1B << " * " << L2B << "\n = " << ArB << '\n';
}
int main()
{
std::cout << "This demo was originally posted on com.lang.c++.moderated in 2006\n";
std::cout << "http://compgroups.net/comp.lang.c++.moderated/dimensional-analysis-units/51712\n";
std::cout << "Here converted to use mpusz/units library.\n\n";
simple_quantities();
quantities_with_typed_units();
calcs_comparison();
}

View File

@ -0,0 +1,79 @@
/*
Copyright (c) 2003-2020 Andy Little.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses./
*/
#include <units/physical/si/length.h>
#include <iostream>
/*
get conversion factor from one dimensionally equivalent
quantity type to another
*/
namespace {
template<units::Quantity Target, units::Quantity Source>
requires units::equivalent_dim<typename Source::dimension, typename Target::dimension>
inline constexpr std::common_type_t<typename Target::rep, typename Source::rep> conversion_factor(Target, Source)
{
// get quantities looking like inputs but with Q::rep that doesn't have narrowing conversion
typedef std::common_type_t<typename Target::rep, typename Source::rep> rep;
typedef units::quantity<typename Source::dimension, typename Source::unit, rep> source;
typedef units::quantity<typename Target::dimension, typename Target::unit, rep> target;
return target{source{1}}.count();
}
// get at the units text of the quantity, without its numeric value
inline auto constexpr units_str(const units::Quantity AUTO& q)
{
typedef std::remove_cvref_t<decltype(q)> qtype;
return units::detail::unit_text<typename qtype::dimension, typename qtype::unit>();
}
} // namespace
namespace {
namespace length {
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
} // namespace length
} // namespace
using namespace units::si::literals;
int main()
{
std::cout << "conversion factor in mpusz/units...\n\n";
constexpr length::m<> lengthA = 2.0q_m;
constexpr length::mm<> lengthB = lengthA;
std::cout << "lengthA( " << lengthA << " ) and lengthB( " << lengthB << " )\n"
<< "represent the same length in different units.\n\n";
std::cout << "therefore ratio lengthA / lengthB == " << lengthA / lengthB << "\n\n";
std::cout << "conversion factor from lengthA::unit of "
<< units_str(lengthA) << " to lengthB::unit of " << units_str(lengthB) << " :\n\n"
<< "lengthB.count( " << lengthB.count() << " ) == lengthA.count( " << lengthA.count()
<< " ) * conversion_factor( " << conversion_factor(lengthB, lengthA) << " )\n";
}

View File

@ -1,118 +1,82 @@
#include <units/physical/si/acceleration.h>
#include <units/physical/si/constants.h>
#include <units/physical/si/density.h>
#include <units/physical/si/force.h>
#include <units/physical/si/length.h>
#include <units/physical/si/mass.h>
#include <units/physical/si/time.h>
#include <units/physical/si/volume.h>
#include <units/format.h>
#include <cassert>
namespace {
namespace length {
using namespace units;
using namespace units::si::literals;
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
using m = si::metre;
using kg = si::kilogram;
using N = si::newton;
using m3 = si::cubic_metre;
using kgpm3 = si::kilogram_per_metre_cub;
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
inline constexpr auto g = si::standard_gravity;
} // namespace length
namespace acceleration {
template<typename Rep = double>
using mps2 = units::si::acceleration<units::si::metre_per_second_sq, Rep>;
template<typename Rep = double>
constexpr mps2<> g{static_cast<Rep>(9.80665)};
} // namespace acceleration
namespace force {
template<typename Rep = double>
using N = units::si::force<units::si::newton, Rep>;
}
namespace mass {
template<typename Rep = double>
using kg = units::si::mass<units::si::kilogram, Rep>;
}
namespace density {
template<typename Rep = double>
using kgpm3 = units::si::density<units::si::kilogram_per_metre_cub, Rep>;
}
namespace volume {
template<typename Rep = double>
using m3 = units::si::volume<units::si::cubic_metre, Rep>;
}
} // namespace
struct Box {
static constexpr density::kgpm3<> air_density{1.225};
static constexpr auto air_density = 1.225q_kgpm3;
length::m<> length;
length::m<> width;
length::m<> height;
si::length<m> length;
si::length<m> width;
si::length<m> height;
struct contents {
density::kgpm3<> density = air_density;
si::density<kgpm3> density = air_density;
} contents;
Box(const length::m<>& l, const length::m<>& w, const length::m<>& h) : length{l}, width{w}, height{h} {}
constexpr Box(const si::length<m>& l, const si::length<m>& w, const si::length<m>& h) : length{l}, width{w}, height{h} {}
force::N<> filled_weight() const
constexpr si::force<N> filled_weight() const
{
const volume::m3<> volume = length * width * height;
const mass::kg<> mass = contents.density * volume;
return mass * acceleration::g<>;
const si::volume<m3> volume = length * width * height;
const si::mass<kg> mass = contents.density * volume;
return mass * g;
}
length::m<> fill_level(const mass::kg<>& measured_mass) const
constexpr si::length<m> fill_level(const si::mass<kg>& measured_mass) const
{
return height * (measured_mass * acceleration::g<>) / filled_weight();
return height * (measured_mass * g) / filled_weight();
}
volume::m3<> spare_capacity(const mass::kg<>& measured_mass) const
constexpr si::volume<m3> spare_capacity(const si::mass<kg>& measured_mass) const
{
return (height - fill_level(measured_mass)) * width * length;
}
void set_contents_density(const density::kgpm3<>& density_in)
constexpr void set_contents_density(const si::density<kgpm3>& density_in)
{
assert(density_in > air_density);
contents.density = density_in;
}
};
#include <iostream>
using namespace units::si::literals;
int main()
{
auto box = Box{1000.0q_mm, 500.0q_mm, 200.0q_mm};
auto box = Box(1000.0q_mm, 500.0q_mm, 200.0q_mm);
box.set_contents_density(1000.0q_kgpm3);
auto fill_time = 200.0q_s; // time since starting fill
auto measured_mass = 20.0q_kg; // measured mass at fill_time
const auto fill_time = 200.0q_s; // time since starting fill
const auto measured_mass = 20.0q_kg; // measured mass at fill_time
std::cout << "mpusz/units box example...\n";
std::cout << "mp-units box example...\n";
std::cout << "fill height at " << fill_time << " = " << box.fill_level(measured_mass) << " ("
<< (box.fill_level(measured_mass) / box.height) * 100 << "% full)\n";
std::cout << "spare_capacity at " << fill_time << " = " << box.spare_capacity(measured_mass) << '\n';
std::cout << "input flow rate after " << fill_time << " = " << measured_mass / fill_time << '\n';
std::cout << "float rise rate = " << box.fill_level(measured_mass) / fill_time << '\n';
auto fill_time_left = (box.height / box.fill_level(measured_mass) - 1) * fill_time;
const auto fill_time_left = (box.height / box.fill_level(measured_mass) - 1) * fill_time;
std::cout << "box full E.T.A. at current flow rate = " << fill_time_left << '\n';
}

View File

@ -27,32 +27,12 @@
#include <cmath>
#include <iostream>
namespace {
namespace voltage {
template<typename Rep = double>
using V = units::si::voltage<units::si::volt, Rep>;
template<typename Rep = double>
using mV = units::si::voltage<units::si::millivolt, Rep>;
template<typename Rep = double>
using uV = units::si::voltage<units::si::microvolt, Rep>;
template<typename Rep = double>
using nV = units::si::voltage<units::si::nanovolt, Rep>;
template<typename Rep = double>
using pV = units::si::voltage<units::si::picovolt, Rep>;
} // namespace voltage
} // namespace
using namespace units::si::literals;
int main()
{
std::cout << "mpusz/units capacitor time curve example...\n";
using namespace units;
using namespace units::si;
std::cout << "mp-units capacitor time curve example...\n";
std::cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
std::cout.precision(3);
@ -61,20 +41,20 @@ int main()
constexpr auto R = 4.7q_kR;
for (auto t = 0q_ms; t <= 50q_ms; ++t) {
const auto Vt = V0 * std::exp(-t / (R * C));
const Voltage auto Vt = V0 * std::exp(-t / (R * C));
std::cout << "at " << t << " voltage is ";
if (Vt >= 1q_V)
std::cout << Vt;
else if (Vt >= 1q_mV)
std::cout << voltage::mV<>{Vt};
std::cout << quantity_cast<millivolt>(Vt);
else if (Vt >= 1q_uV)
std::cout << voltage::uV<>{Vt};
std::cout << quantity_cast<microvolt>(Vt);
else if (Vt >= 1q_nV)
std::cout << voltage::nV<>{Vt};
std::cout << quantity_cast<nanovolt>(Vt);
else
std::cout << voltage::pV<>{Vt};
std::cout << quantity_cast<picovolt>(Vt);
std::cout << "\n";
}
}

View File

@ -27,115 +27,23 @@
#include <iostream>
namespace {
namespace length {
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
template<typename Rep = double>
using fm = units::si::length<units::si::femtometre, Rep>;
template<typename Rep = double>
using km = units::si::length<units::si::kilometre, Rep>;
template<typename Rep = double>
using AU = units::si::length<units::si::astronomical_unit, Rep>;
template<typename Rep = double>
using in = units::si::length<units::international::inch, Rep>;
template<typename Rep = double>
using angstrom = units::si::length<units::iau::angstrom, Rep>;
template<typename Rep = double>
using ch = units::si::length<units::imperial::chain, Rep>;
template<typename Rep = double>
using fathom = units::si::length<units::international::fathom, Rep>;
template<typename Rep = double>
using fathom_us = units::si::length<units::us::fathom, Rep>;
template<typename Rep = double>
using ft = units::si::length<units::international::foot, Rep>;
template<typename Rep = double>
using ft_us = units::si::length<units::us::foot, Rep>;
template<typename Rep = double>
using ly = units::si::length<units::iau::light_year, Rep>;
template<typename Rep = double>
using mi = units::si::length<units::international::mile, Rep>;
template<typename Rep = double>
using mi_naut = units::si::length<units::international::nautical_mile, Rep>;
template<typename Rep = double>
using pc = units::si::length<units::iau::parsec, Rep>;
template<typename Rep = double>
using pica_comp = units::si::length<units::typographic::pica_comp, Rep>;
template<typename Rep = double>
using pica_prn = units::si::length<units::typographic::pica_prn, Rep>;
template<typename Rep = double>
using point_comp = units::si::length<units::typographic::point_comp, Rep>;
template<typename Rep = double>
using point_prn = units::si::length<units::typographic::point_prn, Rep>;
template<typename Rep = double>
using rd = units::si::length<units::imperial::rod, Rep>;
template<typename Rep = double>
using yd = units::si::length<units::international::yard, Rep>;
} // namespace length
namespace time {
template<typename Rep = double>
using s = units::si::time<units::si::second, Rep>;
template<typename Rep = double>
using min = units::si::time<units::si::minute, Rep>;
template<typename Rep = double>
using h = units::si::time<units::si::hour, Rep>;
} // namespace time
namespace area {
template<typename Rep = double>
using m2 = units::si::area<units::si::square_metre, Rep>;
template<typename Rep = double>
using fm2 = units::si::area<units::si::square_femtometre, Rep>;
} // namespace area
} // namespace
using namespace units::si::literals;
using namespace units::international;
using namespace units;
void simple_quantities()
{
using distance = length::m<>;
using time = time::s<>;
using namespace units::si;
using namespace units::international;
using distance = length<metre>;
using duration = si::time<second>;
constexpr distance km = 1.0q_km;
constexpr distance miles = 1.0q_mi;
constexpr time sec = 1q_s;
constexpr time min = 1q_min;
constexpr time hr = 1q_h;
constexpr duration sec = 1q_s;
constexpr duration min = 1q_min;
constexpr duration hr = 1q_h;
std::cout << "A physical quantities library can choose the simple\n";
std::cout << "option to provide output using a single type for each base unit:\n\n";
@ -148,14 +56,17 @@ void simple_quantities()
void quantities_with_typed_units()
{
constexpr length::km<> km = 1.0q_km;
constexpr length::mi<> miles = 1.0q_mi;
using namespace units::si;
using namespace units::international;
constexpr length<kilometre> km = 1.0q_km;
constexpr length<mile> miles = 1.0q_mi;
std::cout.precision(6);
constexpr time::s<> sec = 1q_s;
constexpr time::min<> min = 1q_min;
constexpr time::h<> hr = 1q_h;
constexpr si::time<second> sec = 1q_s;
constexpr si::time<minute> min = 1q_min;
constexpr si::time<hour> hr = 1q_h;
std::cout << "A more flexible option is to provide separate types for each unit,\n\n";
std::cout << km << '\n';
@ -164,42 +75,44 @@ void quantities_with_typed_units()
std::cout << min << '\n';
std::cout << hr << "\n\n";
constexpr length::m<> meter = 1q_m;
constexpr length<metre> meter = 1q_m;
std::cout << "then a wide range of pre-defined units can be defined and converted,\n"
" for consistency and repeatability across applications:\n\n";
std::cout << meter << '\n';
std::cout << " = " << length::AU<>(meter) << '\n';
std::cout << " = " << length::angstrom<>(meter) << '\n';
std::cout << " = " << length::ch<>(meter) << '\n';
std::cout << " = " << length::fathom<>(meter) << '\n';
std::cout << " = " << length::fathom_us<>(meter) << '\n';
std::cout << " = " << length::ft<>(meter) << '\n';
std::cout << " = " << length::ft_us<>(meter) << '\n';
std::cout << " = " << length::in<>(meter) << '\n';
std::cout << " = " << length::ly<>(meter) << '\n';
std::cout << " = " << length::mi<>(meter) << '\n';
std::cout << " = " << length::mi_naut<>(meter) << '\n';
std::cout << " = " << length::pc<>(meter) << '\n';
std::cout << " = " << length::pica_comp<>(meter) << '\n';
std::cout << " = " << length::pica_prn<>(meter) << '\n';
std::cout << " = " << length::point_comp<>(meter) << '\n';
std::cout << " = " << length::point_prn<>(meter) << '\n';
std::cout << " = " << length::rd<>(meter) << '\n';
std::cout << " = " << length::yd<>(meter) << '\n';
std::cout << " = " << quantity_cast<si::astronomical_unit>(meter) << '\n';
std::cout << " = " << quantity_cast<iau::angstrom>(meter) << '\n';
std::cout << " = " << quantity_cast<imperial::chain>(meter) << '\n';
std::cout << " = " << quantity_cast<international::fathom>(meter) << '\n';
std::cout << " = " << quantity_cast<us::fathom>(meter) << '\n';
std::cout << " = " << quantity_cast<international::foot>(meter) << '\n';
std::cout << " = " << quantity_cast<us::foot>(meter) << '\n';
std::cout << " = " << quantity_cast<international::inch>(meter) << '\n';
std::cout << " = " << quantity_cast<iau::light_year>(meter) << '\n';
std::cout << " = " << quantity_cast<international::mile>(meter) << '\n';
std::cout << " = " << quantity_cast<international::nautical_mile>(meter) << '\n';
std::cout << " = " << quantity_cast<iau::parsec>(meter) << '\n';
std::cout << " = " << quantity_cast<typographic::pica_comp>(meter) << '\n';
std::cout << " = " << quantity_cast<typographic::pica_prn>(meter) << '\n';
std::cout << " = " << quantity_cast<typographic::point_comp>(meter) << '\n';
std::cout << " = " << quantity_cast<typographic::point_prn>(meter) << '\n';
std::cout << " = " << quantity_cast<imperial::rod>(meter) << '\n';
std::cout << " = " << quantity_cast<international::yard>(meter) << '\n';
}
void calcs_comparison()
{
using namespace units::si;
std::cout.precision(20);
std::cout << "\nA distinct unit for each type is efficient and accurate\n"
"when adding two values of the same very big\n"
"or very small type:\n\n";
length::fm<float> L1A = 2q_fm;
length::fm<float> L2A = 3q_fm;
length::fm<float> LrA = L1A + L2A;
Length AUTO L1A = 2.q_fm;
Length AUTO L2A = 3.q_fm;
Length AUTO LrA = L1A + L2A;
std::cout << L1A << " + " << L2A << " = " << LrA << "\n\n";
@ -207,28 +120,30 @@ void calcs_comparison()
"or small values in other units to the base unit.\n"
"This is both inefficient and inaccurate\n\n";
length::m<float> L1B = L1A;
length::m<float> L2B = L2A;
length::m<float> LrB = L1B + L2B;
length<metre> L1B = L1A;
length<metre> L2B = L2A;
length<metre> LrB = L1B + L2B;
std::cout << L1B << " + " << L2B << " = " << LrB << "\n\n";
std::cout << "In multiplication and division:\n\n";
area::fm2<float> ArA = L1A * L2A;
Area AUTO ArA = L1A * L2A;
std::cout << L1A << " * " << L2A << " = " << ArA << "\n\n";
std::cout << "similar problems arise\n\n";
area::m2<float> ArB = L1B * L2B;
Area AUTO ArB = L1B * L2B;
std::cout << L1B << " * " << L2B << "\n = " << ArB << '\n';
}
} // namespace
int main()
{
std::cout << "This demo was originally posted on com.lang.c++.moderated in 2006\n";
std::cout << "http://compgroups.net/comp.lang.c++.moderated/dimensional-analysis-units/51712\n";
std::cout << "Here converted to use mpusz/units library.\n\n";
std::cout << "Here converted to use mp-units library.\n\n";
simple_quantities();
quantities_with_typed_units();

View File

@ -16,6 +16,7 @@
*/
#include <units/physical/si/length.h>
#include <units/format.h>
#include <iostream>
/*
@ -36,44 +37,23 @@ inline constexpr std::common_type_t<typename Target::rep, typename Source::rep>
return target{source{1}}.count();
}
// get at the units text of the quantity, without its numeric value
inline auto constexpr units_str(const units::Quantity AUTO& q)
{
typedef std::remove_cvref_t<decltype(q)> qtype;
return units::detail::unit_text<typename qtype::dimension, typename qtype::unit>();
}
} // namespace
namespace {
namespace length {
template<typename Rep = double>
using m = units::si::length<units::si::metre, Rep>;
template<typename Rep = double>
using mm = units::si::length<units::si::millimetre, Rep>;
} // namespace length
} // namespace
using namespace units::si::literals;
int main()
{
std::cout << "conversion factor in mpusz/units...\n\n";
using namespace units::si;
constexpr length::m<> lengthA = 2.0q_m;
constexpr length::mm<> lengthB = lengthA;
std::cout << "conversion factor in mp-units...\n\n";
std::cout << "lengthA( " << lengthA << " ) and lengthB( " << lengthB << " )\n"
constexpr length<metre> lengthA = 2.0q_m;
constexpr length<millimetre> lengthB = lengthA;
std::cout << fmt::format("lengthA( {} ) and lengthB( {} )\n", lengthA, lengthB)
<< "represent the same length in different units.\n\n";
std::cout << "therefore ratio lengthA / lengthB == " << lengthA / lengthB << "\n\n";
std::cout << fmt::format("therefore ratio lengthA / lengthB == {}\n\n", lengthA / lengthB);
std::cout << "conversion factor from lengthA::unit of "
<< units_str(lengthA) << " to lengthB::unit of " << units_str(lengthB) << " :\n\n"
<< "lengthB.count( " << lengthB.count() << " ) == lengthA.count( " << lengthA.count()
<< " ) * conversion_factor( " << conversion_factor(lengthB, lengthA) << " )\n";
std::cout << fmt::format("conversion factor from lengthA::unit of {:%q} to lengthB::unit of {:%q}:\n\n", lengthA, lengthB)
<< fmt::format("lengthB.count( {} ) == lengthA.count( {} ) * conversion_factor( {} )\n",
lengthB.count(), lengthA.count(), conversion_factor(lengthB, lengthA));
}