Merge pull request #601 from chiphogg/chiphogg/sqrt-mag#474

Compute values for rational magnitude powers
This commit is contained in:
Mateusz Pusz
2024-07-31 05:24:27 +09:00
committed by GitHub
5 changed files with 212 additions and 11 deletions

View File

@@ -334,7 +334,7 @@ struct expr_fractions : decltype(expr_fractions_impl<OneType, type_list<Ts...>>(
// expr_make_spec
template<typename NumList, typename DenList, typename OneType, template<typename...> typename To>
[[nodiscard]] consteval auto expr_make_spec_impl()
[[nodiscard]] MP_UNITS_CONSTEVAL auto expr_make_spec_impl()
{
constexpr std::size_t num = type_list_size<NumList>;
constexpr std::size_t den = type_list_size<DenList>;
@@ -359,7 +359,7 @@ template<typename NumList, typename DenList, typename OneType, template<typename
*/
template<typename NumList, typename DenList, typename OneType, template<typename, typename> typename Pred,
template<typename...> typename To>
[[nodiscard]] consteval auto get_optimized_expression()
[[nodiscard]] MP_UNITS_CONSTEVAL auto get_optimized_expression()
{
using num_list = expr_consolidate<NumList>;
using den_list = expr_consolidate<DenList>;
@@ -380,7 +380,7 @@ template<typename NumList, typename DenList, typename OneType, template<typename
*/
template<template<typename...> typename To, typename OneType, template<typename, typename> typename Pred, typename Lhs,
typename Rhs>
[[nodiscard]] consteval auto expr_multiply(Lhs, Rhs)
[[nodiscard]] MP_UNITS_CONSTEVAL auto expr_multiply(Lhs, Rhs)
{
if constexpr (is_same_v<Lhs, OneType>) {
return Rhs{};

View File

@@ -307,6 +307,119 @@ template<typename T>
return checked_square(int_power(base, exp / 2));
}
template<typename T>
[[nodiscard]] consteval std::optional<T> checked_int_pow(T base, std::uintmax_t exp)
{
T result = T{1};
while (exp > 0u) {
if (exp % 2u == 1u) {
if (base > std::numeric_limits<T>::max() / result) {
return std::nullopt;
}
result *= base;
}
exp /= 2u;
if (base > std::numeric_limits<T>::max() / base) {
return (exp == 0u) ? std::make_optional(result) : std::nullopt;
}
base *= base;
}
return result;
}
template<typename T>
[[nodiscard]] consteval std::optional<T> root(T x, std::uintmax_t n)
{
// The "zeroth root" would be mathematically undefined.
if (n == 0) {
return std::nullopt;
}
// The "first root" is trivial.
if (n == 1) {
return x;
}
// We only support nontrivial roots of floating point types.
if (!std::is_floating_point<T>::value) {
return std::nullopt;
}
// Handle negative numbers: only odd roots are allowed.
if (x < 0) {
if (n % 2 == 0) {
return std::nullopt;
} else {
const auto negative_result = root(-x, n);
if (!negative_result.has_value()) {
return std::nullopt;
}
return static_cast<T>(-negative_result.value());
}
}
// Handle special cases of zero and one.
if (x == 0 || x == 1) {
return x;
}
// Handle numbers bewtween 0 and 1.
if (x < 1) {
const auto inverse_result = root(T{1} / x, n);
if (!inverse_result.has_value()) {
return std::nullopt;
}
return static_cast<T>(T{1} / inverse_result.value());
}
//
// At this point, error conditions are finished, and we can proceed with the "core" algorithm.
//
// Always use `long double` for intermediate computations. We don't ever expect people to be
// calling this at runtime, so we want maximum accuracy.
long double lo = 1.0;
long double hi = static_cast<long double>(x);
// Do a binary search to find the closest value such that `checked_int_pow` recovers the input.
//
// Because we know `n > 1`, and `x > 1`, and x^n is monotonically increasing, we know that
// `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`. We will preserve this as an
// invariant.
while (lo < hi) {
long double mid = lo + (hi - lo) / 2;
auto result = checked_int_pow(mid, n);
if (!result.has_value()) {
return std::nullopt;
}
// Early return if we get lucky with an exact answer.
if (result.value() == x) {
return static_cast<T>(mid);
}
// Check for stagnation.
if (mid == lo || mid == hi) {
break;
}
// Preserve the invariant that `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`.
if (result.value() < x) {
lo = mid;
} else {
hi = mid;
}
}
// Pick whichever one gets closer to the target.
const auto lo_diff = x - checked_int_pow(lo, n).value();
const auto hi_diff = checked_int_pow(hi, n).value() - x;
return static_cast<T>(lo_diff < hi_diff ? lo : hi);
}
template<typename T>
[[nodiscard]] consteval widen_t<T> compute_base_power(MagnitudeSpec auto el)
@@ -317,9 +430,6 @@ template<typename T>
// Note that since this function should only be called at compile time, the point of these
// terminations is to act as "static_assert substitutes", not to actually terminate at runtime.
const auto exp = get_exponent(el);
if (exp.den != 1) {
std::abort(); // Rational powers not yet supported
}
if (exp.num < 0) {
if constexpr (std::is_integral_v<T>) {
@@ -329,8 +439,19 @@ template<typename T>
}
}
auto power = exp.num;
return int_power(static_cast<widen_t<T>>(get_base_value(el)), power);
const auto pow_result =
checked_int_pow(static_cast<widen_t<T>>(get_base_value(el)), static_cast<std::uintmax_t>(exp.num));
if (pow_result.has_value()) {
const auto final_result =
(exp.den > 1) ? root(pow_result.value(), static_cast<std::uintmax_t>(exp.den)) : pow_result;
if (final_result.has_value()) {
return final_result.value();
} else {
std::abort(); // Root computation failed.
}
} else {
std::abort(); // Power computation failed.
}
}
// A converter for the value member variable of magnitude (below).

View File

@@ -23,8 +23,14 @@
find_package(Catch2 3 REQUIRED)
add_executable(
unit_tests_runtime distribution_test.cpp fixed_string_test.cpp fmt_test.cpp math_test.cpp atomic_test.cpp
truncation_test.cpp
unit_tests_runtime
distribution_test.cpp
fixed_string_test.cpp
fmt_test.cpp
math_test.cpp
atomic_test.cpp
truncation_test.cpp
quantity_test.cpp
)
if(${projectPrefix}BUILD_CXX_MODULES)
target_compile_definitions(unit_tests_runtime PUBLIC ${projectPrefix}MODULES)

View File

@@ -0,0 +1,75 @@
// The MIT License (MIT)
//
// Copyright (c) 2024 Chip Hogg
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <catch2/catch_test_macros.hpp>
#ifdef MP_UNITS_IMPORT_STD
import std;
#else
#include <atomic>
#include <numbers>
#endif
#ifdef MP_UNITS_MODULES
import mp_units;
#else
#include <mp-units/math.h>
#include <mp-units/systems/si.h>
#endif
using namespace mp_units;
using namespace mp_units::si::unit_symbols;
namespace {
template<typename T>
constexpr bool within_4_ulps(T a, T b)
{
static_assert(std::is_floating_point_v<T>);
auto walk_ulps = [](T x, int n) {
while (n > 0) {
x = std::nextafter(x, std::numeric_limits<T>::infinity());
--n;
}
while (n < 0) {
x = std::nextafter(x, -std::numeric_limits<T>::infinity());
++n;
}
return x;
};
return (walk_ulps(a, -4) <= b) && (b <= walk_ulps(a, 4));
}
} // namespace
// conversion requiring radical magnitudes
TEST_CASE("unit conversions support radical magnitudes", "[conversion][radical]")
{
REQUIRE(within_4_ulps(sqrt((1.0 * m) * (1.0 * km)).numerical_value_in(m), sqrt(1000.0)));
}
// Reproducing issue #474 exactly:
TEST_CASE("Issue 474 is fixed", "[conversion][radical]")
{
constexpr auto val_issue_474 = 8.0 * si::si2019::boltzmann_constant * 1000.0 * K / (std::numbers::pi * 10 * Da);
REQUIRE(within_4_ulps(sqrt(val_issue_474).numerical_value_in(m / s),
sqrt(val_issue_474.numerical_value_in(m * m / s / s))));
}

View File

@@ -199,7 +199,6 @@ static_assert(std::convertible_to<quantity<isq::length[km], int>, quantity<isq::
static_assert(std::constructible_from<quantity<isq::length[km]>, quantity<isq::length[m], int>>);
static_assert(std::convertible_to<quantity<isq::length[m], int>, quantity<isq::length[km]>>);
///////////////////////
// obtaining a number
///////////////////////